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LOGARITHMIC STABILIZATION OF AN ACOUSTIC SYSTEM WITH A

DAMPING TERM OF BRINKMAN TYPE

KAÏS AMMARI, FATHI HASSINE, AND LUC ROBBIANO

Abstract. We study the problem of stabilization for the acoustic system with a spatially
distributed damping. Without imposing any hypotheses on the structural properties of the
damping term, we identify logarithmic decay of solutions with growing time. Logarithmic
decay rate is shown by using a frequency domain method and combines a contradiction
argument with the multiplier technique and a new Carleman estimate to carry out a special
analysis for the resolvent.
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1. Introduction

We consider the following system of equations:

(1.1)















ut +∇r + b u = 0, in Ω× R+,
rt + div u = 0, in Ω× R+,
u · n = 0, on Γ× R+,
u(0, x) = u0(x), r(0, x) = r0(x), x ∈ Ω,

where Ω is a bounded domain in Rd, d ≥ 2, with a smooth boundary Γ, div = ∇· is the
divergence operator and b ∈ L∞(Ω), with b ≥ 0 on Ω and such that

(1.2) ∃ b− > 0 such that b ≥ b− on ω.

Here ω 6= ∅ stands for the open subset of Ω on which the feedback is active. As usual n denotes
the unit outward normal vector along Γ.

The system of equations (1.1) is a linearization of the acoustic equation governing the propa-
gation of acoustic waves in a compressible medium, see Lighthill [21, 22, 23], where b u represents

2010 Mathematics Subject Classification. 35L04, 93B07, 93B52, 74H55.
Key words and phrases. logarithmic stability, Carleman estimate, resolvent estimate, dissipative hyperbolic

system, acoustic equation.

1

http://arxiv.org/abs/2004.10669v1


2 KAÏS AMMARI, FATHI HASSINE, AND LUC ROBBIANO

a damping term of Brinkman type. This kind of damping arises also in the process of homog-
enization (see Allaire [1]), and is frequently used as a suitable penalization in fluid mechanics
models, see Angot, Bruneau, and Fabrie [4]. Our main goal is to prove the logarithmic decay of
solutions of (1.1) with growing time.

Let L2(Ω) denote the standard Hilbert space of square integrable functions in Ω and its closed
subspace L2

m(Ω) = {f ∈ L2(Ω) :
∫

Ω f(x) dx = 0}. To avoid abuse of notation, we shall write

‖ · ‖ for the L2(Ω)-norm or the L2(Ω)d-norm.

Denoting H = (L2(Ω))d × L2
m(Ω), we introduce the operator

A =

(

0 ∇
div 0

)

: D(A) =
{

(u, r) ∈ H, (∇r, div u) ∈ H, u · n|Γ = 0
}

⊂ H → H,

and

B =

( √
b

0

)

∈ L((L2(Ω))d, H), B∗ =
( √

b 0
)

∈ L(H, (L2(Ω))d).

We recall that for u ∈ (L2(Ω))d with div u ∈ L2(Ω), u · n|Γ make sens in H−1/2(Γ) (see Girault-
Raviart [13, Chp 1, Theorem 2.5]).

Accordingly, the problem (1.1) can be recasted in an abstract form:

(1.3)

{

Zt(t) +AZ(t) + BB∗Z(t) = 0, t > 0,
Z(0) = Z0,

where Z = (u, r), or, equivalently,

(1.4)

{

Zt(t) = AdZ(t), t > 0,
Z(0) = Z0,

with Ad = −A− BB∗ with D(Ad) = D(A).

It can be shown (see [2]) that for any initial data (u0, r0) ∈ D(A) the problem (1.1) admits
a unique solution

(u, r) ∈ C([0,∞);D(A)) ∩C1([0,∞);H).

Moreover, the solution (u, r) satisfies, the energy identity

(1.5) E(0)− E(t) =

∫ t

0

∥

∥

∥

√
b u(s)

∥

∥

∥

2

(L2(Ω))d
ds, for all t ≥ 0

with

(1.6) E(t) =
1

2
‖(u(t), r(t))‖2H , ∀ t ≥ 0,

where we have denoted

〈(u, r), (v, p)〉H =

∫

Ω

(u(x).v(x) + r(x)p(x)) dx, ‖(u, r)‖H =

√

∫

Ω

(

|u(x)|2 + r2(x)
)

dx.

Using (1.5) and a standard density argument, we can extend the solution operator for data
(u0, r0) ∈ H . Consequently, we associate with the problem (1.1) (or to the abstract Cauchy
problems (1.3) or (1.4)) a semi-group that is globally bounded in H .

As the energy E is nonincreasing along trajectories, we want to determine the set of initial
data (u0, r0) for which

(1.7) E(t) → 0 as t→ ∞.

Such a question is of course intimately related to the structural properties of the function b,
notably to the geometry of the set ω on which the damping is effective. In fact, when the damping
term is globally distributed Ammari, Feireisl and Nicaise [2] showed an exponential decay rate of
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the energy by the means of an observability inequality associated with the conservative problem
of (1.1). Besides, it is also shown that if the damping coefficient is not uniformly positive definite
(i.e inf

x∈Ω
b(x) = 0) then the system (1.1) is not exponentially stable. In this paper we consider

a damping which is locally distributed over the domain Ω without any geometrical control
condition in particular this including the case when the damping coefficient is not uniformly
positive defined. So we expect to prove a weaker decay rate then given in [2]. More precisely,
we prove a logarithm decay rate of the energy. Our approach is based in the frequency domain
method which consist to prove an exponential loss on the resolvent estimate [7, 6, 10] where the
main tool for establishing a such decay is the Carleman estimate.

The theory of Carleman estimates for scalar equations is rather well developed by now. We
refer to Hörmander [14] and Lebeau and Robbiano [17, 18, 19] for the second-order elliptic and
hyperbolic PDE’s and to Isakov [15] second-order parabolic and Schrödinger operators. However,
it turned out that Carleman estimates for systems in more than two variables are difficult to
obtain and still somehow very limited: The first results to systems go back to then Carleman’s
original work [9] which is written for a system in two independent variables, and we refer to
Calderón [8] and Kreiss [16] for more relevant systems. Recently, Eller and Toundykov [11] have
established a Carleman estimate for some first-order elliptic systems. This estimate is extended
to elliptic boundary value problems provided the boundary condition satisfies a Lopatinskii-type
requirement. In this paper we provide a Carleman estimate for a system of first-order which does
not fit into the same framework as that of Eller and Toundykov [11]. Unlike their approach, our
method is based into the Hörmander approach which is essentially based on the sub-ellipticity
condition and the Gårding inequality in order to control the non-elliptical regions.

The paper is organized as follows. Section 2 summarizes some well known facts concerning
the acoustic system (1.1). In section 3, we establish a new Carleman estimate needed for the
stabilization problem of the system (1.1). In Section 4, we prove the logarithmic stability for
the system (1.1).

2. Preliminaries

We start with a simple observation that the problem (1.1) can be viewed as a bounded (in H)
perturbation of the conservative system

(2.8)

{

ut +∇r = 0, in Ω× R+,
rt + div u = 0, in Ω× R+,

which can be recast as the standard wave equation

rtt −∆r = 0.

Consequently, the basic existence theory for (1.1) derives from that of (2.8). Hence Ad generates
a C0-semigroup (S(t))t≥0 in H that is even of contraction because Ad is dissipative (see (1.5)).

The first main difficulty is that the operator Ad possesses a non-trivial (and large) kernel
that is left invariant by the evolution. Indeed if (u, r) belongs to kerAd, then it is solution of
the “stationary” problem

(2.9) ∇r + bu = 0, div u = 0, in Ω.

Thus multiplying the first identity of (2.9) by u and integrating over Ω yields
∫

Ω

(∇r · u+ b|u|2) dx = 0.

By an integration by parts, using the fact that u is solenoidal and the boundary condition
u · n = 0 on Γ, we get

∫

Ω

∇r · udx = 0,
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and therefore we obtain
∫

Ω

b|u|2 dx = 0.

In other words, we have

u = 0 on supp b,

and coming back to (2.9), we find

∇r = 0.

Accordingly, we have shown that

kerAd = {(u, 0) ∈ D(A) | div u = 0, u|supp b = 0, u · n|Γ = 0}.
For shortness set E = kerAd and introduce also its orthogonal complement H0 in H .

It is easy to check that

〈Ad(w, s), (u, r)〉H = 0 for any (w, s) ∈ D(A), (u, r) ∈ E;

in particular, the semi-group associated with (1.1) leaves both E andH0 invariant. Consequently,
the decay property (1.7) may only hold for initial data emenating from the set H0.

The following observation can be shown by a simple density argument:

Lemma 2.1. The solution (u, r) of (1.1) with initial datum in D(Ad) satisfies

(2.10) E′(t) = −
∫

Ω

b |u|2 dx ≤ 0.

Therefore the energy is non-increasing and (1.5) holds for all initial datum in H.

As already shown in the above, the strong stability result (1.7) may hold only if we take the
initial data

(u0, r0) ∈ H0 = ker[Ad]
⊥.

There are several ways how to show (1.7), here we make use of the following result due to Arendt
and Batty [5]:

Theorem 2.1. Let (T (t))t≥0 be a bounded C0-semigroup on a reflexive Banach space X. Denote
by A the generator of (T (t)) and by σ(A) the spectrum of A. If σ(A) ∩ iR is countable and no
eigenvalue of A lies on the imaginary axis, then lim

t→+∞
T (t)x = 0 for all x ∈ X.

In view of this theorem we need to identify the spectrum of Ad lying on the imaginary axis,
and we have according to [2]:

• Suppose that |ω| > 0. If λ is a non-zero real number, then iλ is not an eigenvalue of Ad.
• Suppose that |ω| > 0. If λ is a non-zero real number, then iλ belongs to the resolvent

set ρ(Ad) of Ad.

Now, Theorem 2.1 leads to

Corollary 2.1 ([2]). Let (u, r) be the unique semi-group solution of the problem (1.1) emanating
from the initial data (u0, r0) ∈ H. Let PE be the orthogonal projection onto the space E = ker[Ad]
in H, and let

(w, s) = PE(u
0, r0).

Then

‖(u, r)(t, ·)− (w, s)‖H → 0 as t→ ∞

We now state the main result of this article. We begin by a proposition on an estimate of the
resolvent.
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Proposition 2.1. There exist C > 0 such that for every |µ| ≥ 1, and (f, g) ∈ H = (L2(Ω))d ×
L2
m(Ω), the solution (u, r) ∈ D(A) of (Ad + iµ)(u, r) = (f, g) satisfied

(2.11) ‖(u, r)‖H ≤ CeC|µ|‖(f, g)‖H ,
or equivalently

(2.12) ‖(Ad + iµ)−1‖L(H) ≤ CeC|µ|.

We recall the following result.

Theorem 2.2. Let B a generator of a C0-semigroup (T (t))t≥0 on H, a Hilbert space. We
assume

‖T (t)‖L(H) is uniformly bounded with respect t ≥ 0,(2.13)

B + iµ is invertible for every µ ∈ R,(2.14)

There exists C > 0 such that ‖(B + iµ)−1‖L(H) ≤ CeC|µ|.(2.15)

Then there exist C1 > 0 such that for all u ∈ D(B) we have

‖T (t)u‖H ≤ C1
‖Bu‖H
ln(3 + t)

, ∀ t ≥ 0.

One has also, for every k ≥ 1 there exists C2 > 0 such that if u ∈ D(Bk), we have

‖T (t)u‖H ≤ C1
‖Bku‖H
lnk(3 + t)

, ∀ t ≥ 0.

A weak version of this theorem was first proven by Lebeau [17], next Burq [6] gives the precise
statement. We also refer to Batty and Duyckaerts [7] for some generalizations.

On H0 = ker[Ad]
⊥, as seen above Ad + iµ is invertible on H0, in fact Ad is invertible on

H0 and Ad + iµ is invertible on H for µ 6= 0. The semigroup is bounded as the norm on H is
non-increasing by (1.5). With Proposition 2.1, we can apply Theorem 2.2. We then obtain.

Theorem 2.3. Let (u, r) be the unique semi-group solution of the problem (1.1) emanating from
the initial data (u0, r0) ∈ D(A). Let PE be the orthogonal projection onto the space E = ker[Ad]
in H, and let

(w, s) = PE(u
0, r0).

Then

‖(u, r)(t, ·)− (w, s)‖H ≤ C
‖Ad(u

0, r0)‖H
ln(3 + t)

, ∀ t ≥ 0,

for some C > 0 independent of (u0, r0).

Proposition 2.1 is obtained from Carleman estimates. We need two kinds of such estimates,
first an estimate far away the boundary, second an estimate up to the boundary. Both estimates
are proven in the next section.

3. Carleman estimates

Let Ω be an open bounded subset of Rd. Let (u, r) be a solution of the resolvent problem
(A0 + iµ)(u, r) = (f, g) ∈ (L2(Ω))d × L2

m(Ω), that is

(3.1)

{

−∇r + iµu = f in Ω,

− div u+ iµr = g in Ω.
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Here we moreover assume that (u, r) are supported in K ⊂ Ω where K is a compact set. Taking
the divergence of the first line and using that div u = iµr − g, we obtain

(3.2) −∆r − µ2r = iµg + div f in Ω.

We have to give a Carleman estimate for the solution of this type of equation. This is done in
Section 3.2. to do that we need some tools on pseudo-differential operators we recall below.

3.1. Pseudo-differential operators. We start this section with some useful notations. If
α = (α1, . . . , αn) ∈ Nn is a multi-index, we introduce the following notation:

ξα = ξα1

1 . . . ξαn

n , ∂α = ∂α1

x1
. . . ∂αn

xn
, Dα = Dα1

1 . . . Dαn

n and |α| = α1 + · · ·+ αn

where Dk = −i ∂

∂xk
= −i∂xk

. We denote by C ∞
c (V ) the set of functions of class C∞ compactly

supported in V . For a compact subset K of Rn, we note by C ∞
c (K) the set of functions

in C
∞
c (Rn) supported in K. The space L2(V ) is equipped with the usual norm denoted by

‖u‖0. For s ∈ N we set Hs(V ) = {u ∈ D ′(V ); ∂αu ∈ L2(V ) ∀ |α| ≤ s}. The Schwartz space
S (Rn) is the set of functions of C∞ class with rapid decay rate. Its dual, S ′(Rn) is the
set of temperate distributions. If u ∈ S (Rn) its Fourier transform denoted by û is defined

by û(ξ) =

∫

Rn

e−iy.ξu(y) dy where y.ξ =

n
∑

i=1

yiξi stands for the euclidean inner production in

Rn. Let f and g be two smooth functions defined in V × Rn, we define the Poisson bracket

by {f, g} =
n
∑

j=1

(∂ξjf.∂xj
g − ∂xj

f.∂ξjg). And if A and B are two operators we define there

commutator by [A,B] = A ◦B −B ◦A.

Definition 3.1. Let a( . , . , τ) ∈ C ∞(Rn ×Rn) where τ ≥ 1 is a large parameter, such that for
every muti-index α, β ∈ Nn we have

|∂αx ∂βξ a(x, ξ, τ)| ≤ Cα,β 〈ξ, τ〉m−|β|
, ∀x ∈ R

n, ∀ ξ ∈ R
n, ∀ τ ≥ 1,

where we denoted by 〈ξ, τ〉 = (|ξ|2 + τ2)
1
2 . In this case we say that a is a symbol of order m and

we write a ∈ Smτ . We call principal symbol of a ∈ Smτ the equivalence class of a in Smτ /S
m−1
τ .

We also define S−∞
τ =

⋂

r∈R

Srτ and S+∞
τ =

⋃

r∈R

Srτ .

Definition 3.2. We define the pseudo-differential operator of order m by

a(x,D, τ)u(x) = Op(a)u(x) =
1

(2π)n

∫

Rn

eix.ξa(x, ξ, τ)û(ξ) dξ, ∀u ∈ S (Rn),

where a ∈ Smτ . The set of the pseudo-differential operator of order m is denoted by Ψmτ . If
A ∈ Ψmτ , we denote by σp(A) his principal symbol.

Remarks 3.1. Let s ∈ R for u ∈ S ′(Rn) we set the following norm

‖u‖τ,s = ‖Λsτu‖0 with Λsτ := Op(〈ξ, τ〉s).
Hence we can define the corresponding space

Hs
τ (R

n) = {u ∈ S
′(Rn) ; ‖u‖τ,s <∞}.

Theorem 3.1. Let s ∈ R and a(x, ξ, τ) ∈ Smτ , then the operator Op(a) : Hs
τ −→ Hs−m

τ maps
continuously and uniformly for τ > 1.

Lemma 3.1. Let m ∈ R and aj ∈ Sm−j
τ with j ∈ N. Then there exist a ∈ Smτ such that

∀N ∈ N, a−
N
∑

j=0

aj ∈ Sm−N−1
τ .
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We then write a ∼
∑

j

aj. The symbol a is unique up to S−∞
τ in the sens that the difference of

two symbols is in S−M
τ for all M ∈ N. Hence, we identify a0 with the principal symbol of a.

Theorem 3.2. Let a ∈ Smτ and b ∈ Sm
′

τ , then Op(a) ◦ Op(b) = Op(c) with c ∈ Sm+m′

τ which
admits the following asymptotic expansion

c(x, ξ, τ) ∼
∑

α

1

i|α|α!
∂αξ a(x, ξ, τ)∂

α
x b(x, ξ, τ).

Theorem 3.3. Let a ∈ Smτ and b ∈ Sm
′

τ , then [Op(a), Op(b)] = Op(c) with c ∈ Sm+m′−1
τ and

principal symbol

σ(c)(x, ξ, τ) =
1

i
{a, b}(x, ξ, τ)

which admits the following asymptotic expansion

c(x, ξ, τ) ∼
∑

α

1

i|α|α!

(

∂αξ a(x, ξ, τ)∂
α
x b(x, ξ, τ) − ∂αξ b(x, ξ, τ)∂

α
x a(x, ξ, τ)

)

.

Theorem 3.4. Let a ∈ Smτ , then Op(a)∗ = Op(b) with b ∈ Smτ which admits the following
asymptotic expansion

b(x, ξ, τ) ∼
∑

α

1

i|α|α!
∂αξ ∂

α
x ā(x, ξ, τ).

In particular we have σp(Op(a)
∗) = ā.

Theorem 3.5 (Gårding inequality). Let K be a compact subset of Rn and a(x, ξ, τ) ∈ Smτ , of
principal symbol am. We suppose that there exist C > 0 and R > 0 such that

Re am(x, ξ, τ) ≥ C〈ξ, τ〉m, ∀x ∈ K, ξ ∈ R
n, τ ≥ 1, 〈ξ, τ〉 ≥ R.

Then for any 0 < C′ < C there exists τ∗ > 0 we have

Re(Op(a)u, u)L2(Rn) ≥ C′‖u‖2τ,m
2
, ∀u ∈ C

∞
c (K), τ ≥ τ∗.

3.2. Local Carleman estimate away from the boundary. We set the operator

P (x,D) = −µ2 −∆,

a real values function ϕ and then we define the conjugate operator by

Pϕ(x,D) = eτϕP (x,D)e−τϕ,

where µ is a parameter that depends on τ , precisely we suppose that

(3.3) c0τ ≤ |µ| ≤ c′0τ ∀ τ ≥ 1,

for some constants c′0 > c0 > 0. Then we have

Pϕ(x,D)w = −µ2w −∆w + 2τ∇ϕ.∇w − τ2|∇ϕ|2w + τ∆ϕw

whose symbol is given by

σ(Pϕ) = |ξ|2 + 2iτ∇ϕ.ξ − τ2|∇ϕ|2 + τ∆ϕ− µ2

and with principal symbol pϕ given by

pϕ(x, ξ, τ) = |ξ + iτ∇ϕ|2 − µ2 = |ξ|2 + 2iτ∇ϕ.ξ − τ2|∇ϕ|2 − µ2.

We define the following self-adjoint operators

Q2 =
Pϕ + P ∗

ϕ

2
and Q1 =

Pϕ − P ∗
ϕ

2i
with principal symbols respectively

q2(x, ξ, τ) = |ξ|2 − τ2|∇ϕ|2 − µ2 and q1(x, ξ, τ) = 2τ∇ϕ.ξ.
Noting that Pϕ = Q2 + iQ1 and pϕ = q2 + iq1.
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We assume that the weight function ϕ ∈ C∞(Rn,R) satisfies the following sub-ellipticity
condition in K a compact set of Rd, if

|∇ϕ| > 0 in K(3.4)

∀ (x, ξ, τ) ∈ K × R
n × [1,+∞); pϕ(x, ξ, τ) = 0 =⇒ {q2, q1}(x, ξ, τ) ≥ C〈ξ, τ〉3 > 0.

Note that the constant C does not depend on µ assuming (3.3).

Remark 3.1. Noting that

pϕ(x, ξ, τ) = 0 ⇐⇒ |ξ|2 = τ2|∇ϕ|2 + µ2 and ∇ϕ.ξ = 0.

Lemma 3.2. Let ψ ∈ C ∞(Rn,R) such that |∇ψ| > 0 in K. Then for λ large enough ϕ = eλψ

satisfies the sub-ellipticity assumption in K.

Proof. We can assume that ψ ≥ 0, as we can add a constant to ψ and ϕ is multiplied by a
constant β. Changing τ in τ/β we can see that sub-ellipticity condition is also satisfied for a
different constant C. A straightforward calculation shows that

{q2, q1}(x, ξ, τ) = 4τ
(

tξϕ′′ξ + τ2 t(∇ϕ)ϕ′′∇ϕ
)

.

Using the fact that ϕ = eλψ then we have

∇ϕ = λ∇ψϕ, ϕ′
j = λϕψ′

j and ϕ′′
jk = λϕψ′′

jk + λ2ϕψ′
jψ

′
k, 1 ≤ j, k ≤ n,

therefore we obtain

{q2, q1} = 4τλ3ϕ3
(

λτ2|∇ψ|4 + τ2 t(∇ψ)ψ′′∇ψ + |λϕ|−2 tξψ′′ξ + λ−1|ϕ|−2|∇ψ.ξ|2
)

.

Now if pϕ = 0 then |ξ|2 = τ2|∇ϕ|2 + µ2 = τ2λ2ϕ2|∇ψ|2 + µ2, which gives that

|λϕ|−2 tξψ′′ξ ≥ −|ψ′′|
(

τ2|∇ψ|2 + |λϕ|−2µ2
)

≥ −Cτ2
(

|∇ψ|2 + λ−2
)

.

Besides, we have

τ2 t(∇ψ)ψ′′∇ψ ≥ −Cτ2|∇ψ|2.
Then it follows from these estimates that

{q2, q1} ≥ 4τλ3ϕ3
(

λτ2|∇ψ|4 + τ2 t(∇ψ)ψ′′∇ψ + |λϕ|−2 tξψ′′ξ
)

≥ 4τλ3ϕ3(λτ2|∇ψ|4 − Cτ2|∇ψ|2 − Cτ2λ−2).

Since |∇ψ| > 0 in the compact set K then for λ large enough we have {q2, q1} ≥ Cλτ
3 > 0. As

|ξ| is comparable to τ on pϕ = 0, we obtain the result. �

Lemma 3.3. Let f and g be two real continuous functions defined in K such that f is positive
on a compact subset K of Rd and verifies that

∀ y ∈ K, f(y) = 0 =⇒ g(y) ≥ L > 0.

We set hκ = κf + g, then for κ sufficiently large then hκ ≥ C for some constant C > 0.

Proof. Let y0 ∈ K to prove the result we distinguish two cases.
Case 1: We assume f(y0) = 0. Then according to the assumption made in this lemma we
have hκ(y0) = g(y0) ≥ L. Then there exists a neighborhood of y0, Vy0 such that for y ∈ Vy0 and
every κ > 0, hκ(y) ≥ g(y) ≥ L/2. Let κy0 = 1.
Case 2: We assume f(y0) > 0. Since f and g are continuous, there exist Vy0 a neighborhood
of y0 and C1, C2 > 0 such that f(y) ≥ C1 and |g(y)| ≤ C2 for all y ∈ Vy0 . Then for all
κ ≥ (L+ C2)/C1, hκ(y) ≥ L. Let κy0 = (L+ C2)/C1.

We coverK, by compactness argument, by a finite number of such neighborhoods Vy1 , . . . , Vyp
with associated κj = κyj . Taking κ = max

1≤j≤p
{κj}, we have hκ(y) ≥ L/2 on each Vyj , then on K.

This completes the proof. �
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Lemma 3.4. Let V an open bounded subset of Rd and κ > 0. We suppose that ϕ verifies the
sub-ellipticity assumption on K and we set ρκ = κ(q22 + q

2
1)+ τ{q2, q1}. Then for κ large enough

there exists C > 0 such that for all (x, ξ) ∈ K × Rd and τ ≥ 1 we have ρκ(x, ξ) ≥ C〈ξ, τ〉4.

Proof. First we assume |ξ| large with respect τ , that is |ξ| ≥ βτ for β sufficiently large, to be
fixed below. We have

ρκ(x, ξ) = κ(q22 + q21) + τ{q2, q1}
= κ

(

|ξ|2 − (τ2|∇ϕ|2 + µ2)
)2

+ 4κτ2(∇ϕ.ξ)2 + 4τ2 tξϕ′′ξ + τ4 t(∇ϕ)ϕ′′∇ϕ

= κ〈ξ, τ〉4
(

1− (τ2(1 + |∇ϕ|2) + µ2)

〈ξ, τ〉2
)2

+ 4κτ2(∇ϕ.ξ)2 + 4τ2 tξϕ′′ξ + τ4 t(∇ϕ)ϕ′′∇ϕ(3.5)

≥ C′〈ξ, τ〉4 − Cτ2|ξ|2 − Cτ4,

if β is sufficiently large such that
(τ2(1 + |∇ϕ|2) + µ2)

〈ξ, τ〉2 ≤ 1/2 and for some constants C′, C > 0.

If β is sufficiently large we obtain Cτ2|ξ|2 +Cτ4 ≤ C′〈ξ, τ〉4/2, from (3.5) we obtain ρκ(x, ξ) ≥
C′′〈ξ, τ〉4, for C′′ > 0. This fixes β.

Second we assume |ξ| ≤ βτ . As ρκ is homogeneous of degree 4 in (ξ, τ, µ), we can prove the
estimate on K ′ = {(x, ξ, τ, µ) ∈ K ×Rd× [0,+∞)×R, |ξ|2+ τ2+µ2 = 1, |ξ| ≤ βτ, c0τ ≤ |µ| ≤
c′0τ} taking into account of (3.3). As K ′ is a compact set, we can apply Lemma 3.3 by taking
f = q22 + q21 and g = τ{q2, q1}. This completes the proof. �
Theorem 3.6. Let Ω be an open bounded set of Rn and ϕ be a function that satisfies the
sub-ellipticity assumption in K. Then there exist τ∗ > 0 and C > 0 such that

(3.6) τ3‖eτϕr‖20 + τ‖eτϕ∇r‖20 + τ−1
∑

α=2

‖eτϕDαr‖20 ≤ C‖eτϕPr‖20.

for all r ∈ C
∞
c (K), τ ≥ τ∗ and µ satisfying (3.3).

This theorem is classical, and we can find in Hörmander [14]. Here we give a proof to be
complete.

Proof. Let’s take w = eτϕr then Pr = f can be written as follow Pϕw = g = f eτϕ. Since
g = Q2w + iQ1w and Q1 and Q2 are symmetric then we have

‖g‖20 = ‖Q2w‖20 + ‖Q1w‖20 + i(Q1w,Q2w)− i(Q2w,Q1w)

= (Q2Q2w,w) + (Q1Q1w,w) + i(Q2Q1w,w) − i(Q1Q2w,w)

=
(

(

Q2
1 +Q2

2 + i[Q2, Q1]
)

w,w
)

.(3.7)

We fix κ large enough such that the statement of Lemma 3.4 is fulfilled, then for τ sufficiently
large satisfying κτ−1 ≤ 1 then from (3.7) we obtain

(3.8) τ−1
((

κ(Q2
1 +Q2

2) + iτ [Q2, Q1]
)

w,w
)

≤ ‖g‖20.
Since the principal symbol of κ(Q2

1+Q
2
2)+iτ [Q2, Q1] is given by ρκ(x, ξ, τ) = κ(q22+q

2
1)+τ{q2, q1}

then from Lemma 3.4 we have ρκ(x, ξ, τ) ≥ C〈ξ, τ〉4 therefore by Gårding inequality (Theorem
3.5) it follows that

Re
((

κ(Q2
1 +Q2

2) + iτ [Q2, Q1]
)

w,w
)

≥ ‖w‖2τ,2.
Combining this inequality with (3.8) we find

(3.9) τ−1‖w‖2τ,2 ≤ ‖g‖20.
which reads

(3.10) τ3‖w‖20 + τ‖∇w‖20 + τ−1
∑

|α|=2

‖Dαw‖20 ≤ C‖eτϕf‖20.
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Since we have

eτϕDjr = (Dj + iτ∂jϕ)w, eτϕDjDkr = (Dj + iτ∂jϕ)(Dk + iτ∂kϕ)w,

then we have

(3.11) τ‖eτϕ∇r‖20 ≤ C
(

τ3‖w‖20 + τ‖∇w‖20
)

and

(3.12) τ−1
∑

|α|=2

‖eτϕDαr‖20 ≤ C



τ3‖w‖20 + τ‖∇w‖20 + τ−1
∑

|α|=2

‖Dαw‖20



 .

Thus, estimate (3.6) follows by replacing (3.11) and (3.12) into (3.10). This concludes the
proof. �

Theorem 3.7. Let Ω be an open bounded set of Rd, let K ⋐ Ω and ϕ be a function that satisfies
the sub-ellipticity assumption in K. Then there exist τ∗ > 0 and C > 0 such that

τ3‖eτϕr‖20 + τ‖eτϕ∇r‖20 ≤ Cτ2
(

‖eτϕg‖20 + ‖eτϕf‖20
)

for all r ∈ C
∞
c (K) which satisfies (3.2), τ ≥ τ∗ and µ satisfying (3.3).

From this theorem we can deduce this corollary.

Corollary 3.1. Let Ω be an open bounded set of Rd, let K ⋐ Ω and ϕ be a function that satisfies
the sub-ellipticity assumption in K. Then there exist τ∗ > 0 and C > 0 such that

τ3‖eτϕu‖20 + τ3‖eτϕr‖20 + τ‖eτϕ∇r‖20 ≤ Cτ2
(

‖eτϕg‖20 + ‖eτϕf‖20
)

for all r, u ∈ C∞
c (K) which satisfies (3.1), τ ≥ τ∗ and µ satisfying (3.3).

Proof. As r satisfies (3.2), with Theorem 3.7, we only have to estimate τ3‖eτϕu‖20. From the
first equation of (3.1) we have τ3‖eτϕu‖20 . τ3‖eτϕµ−1(f +∇r)‖20, which gives the result using
(3.3). �

Proof of Theorem 3.7. We set Pϕ = eτϕPe−τϕ, w = eτϕr, F = −eτϕf and G = iµeτϕg +
τeτϕ∇ϕ.f . Then from (3.2) we have

Pϕw = G+ div(F ).

Let K1 be such that K ⋐ K1 ⋐ Ω and let χ ∈ C ∞
c (K1) be such that χ = 1 on K. Setting

v = χΛ−1
τ w with Λτ = (τ2 −∆)1/2 and we write

Pϕv = χΛ−1
τ Pϕw + [Pϕ, χΛ

−1
τ ]w = χΛ−1

τ (G+ div(F )) + [Pϕ, χΛ
−1
τ ]w,

then we find

(3.13) ‖Pϕv‖0 ≤ C
(

τ−1‖G‖0 + ‖F‖0 + ‖w‖0
)

.

Applying Estimate (3.9) in the proof of Theorem 3.6 to v then we obtain

τ−
1
2 ‖v‖τ,2 ≤ C‖Pϕv‖0

We have v = Λ−1
τ w + [χ,Λ−1

τ ]w then ‖w‖τ,1 . ‖v‖τ,2 + ‖w‖0. That together with (3.13)

τ−
1
2 ‖w‖τ,1 ≤ C

(

τ−1‖G‖0 + ‖F‖0 + ‖w‖0
)

.

Multiplying by τ which is chosen sufficiently large then we obtain

τ
1
2 ‖w‖τ,1 ≤ C (‖G‖0 + τ‖F‖0) ≤ Cτ (‖eτϕg‖0 + ‖eτϕf‖0) .

As ‖w‖τ,1 is equivalent to τ‖eτϕr‖0 + ‖eτϕ∇r‖0 arguing as in the proof of (3.11) we obtain the
result of the theorem. �
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3.3. Local Carleman estimate at the boundary. In this section because the boundary,
we use a tangential pseudo-differential calculus. This calculus is completely analogous to the
one presented in Section 3.1 except that a function a(x′, xd, ξ

′) is a symbol in (x′, ξ′) in the
sense of Definition 3.1 where xd is a parameter and the estimates given in Definition 3.1 are
uniform with respect xd. To avoid confusion we denote by Sm

T,τ the class of tangential symbol
of order m, Op

T
(a) the operator associated with the symbol a ∈ Sm

T,τ . The class of operators
associated with symbols in Sm

T,τ is denoted by ΨmT,τ . We refer to [20] for details on these symbols

and operators. We consider functions in a half space Rd−1 × (0,+∞) = Rd+, and we denote
by ‖.‖+ = ‖.‖L2(Rd

+
) the L2-norm and (., .)+ = (., .)L2(Rd

+
) the associated inner product. At

the boundary xd = 0 we denote the L2-norm by |g|2 =
∫

Rd−1 |g(x′)|2dx′ and the inner product

associated by (., .)∂ = (., .)L2(Rd−1). A set W = ω × Γ in R
d × R

d−1 × R
+ is called a conic

open set, if there exist ω an open set in Rd, and Γ an open set in Rd−1 × R+ such that for all
(ξ′, τ) ∈ Γ and λ > 0 then (λξ′, λτ) ∈ Γ. For s ∈ R we denote by Λs

T,τ the tangential operator
defined by Λs

T,τ = Op
T
(〈ξ′, τ〉s).

We recall the following microlocal Gårding inequality obtained, for instance, by applying
sharp Gårding inequality.

Theorem 3.8 (Microlocal Gårding inequality). Let K be a compact set of Rd and let W be a
conic open set of Rd×Rd−1×R+ contained in K×Rd−1×R+. Let also χ ∈ S0

T,τ be homogeneous
of order 0 (for 〈ξ′, τ〉 ≥ 1) and be such that supp(χ) ⊂W .

Let a(x, ξ′, τ) ∈ Sm
T,τ , with principal part am homogeneous of order m. If there exist C0 > 0

and R > 0 such that

Re am(x, ξ′, τ) ≥ C0 〈ξ′, τ〉m , (x, ξ′, τ) ∈ W, τ ∈ [1,+∞), 〈ξ′, τ〉 ≥ R,

then for any 0 < C1 < C0, N ∈ N, there exist CN and τ∗ ≥ 1 such that

Re
(

Op
T
(a)Op

T
(χ)u,Op

T
(χ)u

)

+
≥ C1‖Λm/2T,τ Op

T
(χ)u‖2+ − CN‖Λ−N

T,τ u‖2+,

for u ∈ S (Rd) and τ ≥ τ∗.

As we want to change the variables in order to have a flat boundary which is convenient to
do the computations, we use the language and usual tools of Riemannian geometry. In this
framework the gradient and divergence operators keep forms we can follow after a change of
variables. Our purpose is to use these tools locally and we do not use manifold tools as charts,
atlas and etc. To fix the notation, let V be an open set in Rd. Let g(x) =

(

gij(x)
)

1≤i,j≤d
be a

positive symmetric matrix called the metric, we denote by g−1(x) =
(

gij(x)
)

1≤i,j≤d
the inverse

of g(x). For a smooth function r, we denote by (∇gr(x))i =
∑

1≤j≤d g
ij(x)∂xj

r(x) the gradient

of r. We have ∇gr(x) ∈ TxV , this means that ∇gr is a tangent vector field.

For u(x) =
(

u1(x), . . . , ud(x)
)

a smooth tangent vector field, we define the divergence operator
by

divg u(x) =
(

det g(x)
)−1/2 ∑

1≤j≤d

∂xj

(

(

det g(x)
)1/2

uj(x)
)

.

For a smooth function r and a smooth tangent vector field u, we have

(3.14) divg(ru) = r divg u+ g(∇gr, u), where g(∇gr, u) =
∑

1≤i,j≤d

gij(∇gr)iuj .

For two smooth functions r1 and r2 we have

(3.15) ∇g(r1r2) = r1∇gr2 + r2∇gr1.
It is well-known that there exist coordinates (called normal geodesic coordinates) such that the
boundary is defined locally by xd = 0, the open set Ω ∩ V is defined by xd > 0, the metric g is
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such that gid = gdi = 0 for i = 1, . . . , d − 1 and, gdd = 1. We denote by g̃ = (gij)1≤i,j≤d−1 the
metric g on xd fixed.

We can define on each manifold xd = const the gradient and divergence operators associated
with g̃ and for r a smooth function and ũ = (u1, . . . , ud−1) a smooth vector field on xd = const,
we have

(∇̃gr)i =
∑

1≤j≤d−1

gij∂xj
r for i = 1, . . . , d− 1, divg̃ ũ = (det g̃)−1/2

∑

1≤j≤d−1

∂xj

(

(det g̃)1/2uj
)

.

In such coordinates, we have det g = det g̃. The gradient and divergence operators take the
following form.

∇gr = (∇̃gr, ∂xd
r), divg u = divg̃ ũ+ ∂xd

ud + hud, where h = (det g̃)−1/2∂xd
(det g̃)1/2.(3.16)

We recall that the equation of the resolvent problem (A0 + iµ)(u, r) = (f, g) locally takes the
form

(3.17)











−∇gr + iµu = f in xd > 0,

− divg u+ iµr = g in xd > 0,

ud = 0 on xd = 0.

We have the following theorem

Theorem 3.9. Let x0 ∈ Rd−1 × {0}, we assume there exist a neighborhood of x0 where ϕ
satisfies (3.4) the sub-ellipticity condition and ∂xd

ϕ(x0) > 0. Then there exist V0 be an open set
of Rd such that x0 ∈ V0, C > 0, and τ∗ > 0 such that

τ1/2|eτϕr|xd=0|+ τ1/2‖eτϕu‖+ + τ1/2‖eτϕr‖+ + τ−1/2‖eτϕ∇gr‖+ ≤ C
(

‖eτϕf‖+ + ‖eτϕg‖+
)

,

for u, r ∈ C
∞(Rd) supported on V0, satisfying (3.17), for every τ ≥ τ∗ and µ satisfying (3.3).

Let v = eτϕu and w = eτϕr. We have from (3.14) and (3.15)

∇gr = e−τϕ
(

∇gw − τw∇gϕ
)

,

divg u = e−τϕ
(

divg v − τg(∇gϕ, v)
)

.

Then System (3.17) takes the form

(3.18)











−∇gw + τw∇gϕ+ iµv = F in xd > 0,

− divg v + τg(∇gϕ, v) + iµw = G in xd > 0,

vd = 0 on xd = 0,

where F = eτϕf and G = eτϕg.

In the following, we denote by F̃ = (F 1, . . . , F d−1) and by ṽ = (v1, . . . , vd−1), then we have

F = (F̃ , F d) and v = (ṽ, vd). Multiplying (3.18) by i, we have

(3.19)



















−i∇̃gw + iτw∇̃gϕ− µṽ = iF̃ in xd > 0,

−i∂xd
w + iτw∂xd

ϕ− µvd = iF d in xd > 0,

−i divg v + iτ g̃(∇̃gϕ, ṽ) + iτvd∂xd
ϕ− µw = iG in xd > 0,

vd = 0 on xd = 0.

For this system we prove the following Carleman estimate.

Proposition 3.1. Let x0 ∈ R
d−1 × {0}, we assume there exist a neighborhood of x0 where ϕ

satisfies (3.4) the sub-ellipticity condition and ∂xd
ϕ(x0) > 0. For s ∈ R, there exist V0 be an

open set such that x0 ∈ V0, C > 0, and τ∗ > 0 such that

|Λs+1/2
T,τ w|xd=0|+ τ1/2‖Λs

T,τv‖+ + τ−1/2‖Λs+1
T,τ w‖+ ≤ C

(

‖Λs
T,τF‖+ + ‖Λs

T,τG‖+
)

,

for v, w ∈ S (Rd) satisfying (3.19), supported in V0, for every τ ≥ τ∗ and µ satisfying (3.3).
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From this proposition we deduce Theorem 3.9 taking s = 0. Indeed we have τ1/2|w|xd=0| .
|Λ1/2

T,τw|xd=0| and from (3.17) we have

τ−1/2‖eτϕ∇gr‖+ . ‖eτϕ
(

∇gr − iµu
)

‖+ + |µ|τ−1/2‖eτϕu‖+ . ‖eτϕf‖+ + τ1/2‖eτϕu‖+,

from (3.3).

We begin by reducing the system in a 2 × 2 system. We denote by ζ′ ∈ S1
T,τ the tangential

symbol of the operator −i∇̃g + iτ∇̃gϕ. We have

ζi =
∑

1≤j≤d−1

gij(ξj + iτ∂xj
ϕ) for i = 1, . . . , d− 1.

Let Op
T
(δ) := −i divg̃ +iτ g̃(∇̃gϕ, ·) where δ ∈ S1

T,τ . The principal symbol of the operator δ is

(ξ1 + iτ∂x1
ϕ, . . . , ξd−1 + iτ∂xd−1

ϕ) modulo symbol in S0
T,τ . The first equation of (3.19) reads

Op
T
(ζ′)w − µṽ = iF̃ . Applying in both side of this equation the operator Op

T
(δ), we obtain

(3.20) Op
T
(δ)ṽ = −iµ−1Op

T
(δ)F̃ + µ−1Op

T
(δ)Op

T
(ζ′)w.

From (3.16) we have

−i divg v + iτ g̃(∇̃gϕ, ṽ) = Op
T
(δ)ṽ − i∂xd

vd − ihvd

= Dxd
vd − iµ−1Op

T
(δ)F̃ + µ−1Op

T
(δ)Op

T
(ζ′)w − ihvd.

From this equation and second and third of (3.19) we obtain two equations on w and vd, that is
(3.21)










Dxd
w + iτw∂xd

ϕ− µvd = iF d in xd > 0,

Dxd
vd + µ−1Op

T
(δ)Op

T
(ζ′)w − µw + iτvd∂xd

ϕ− ihvd = iG+ iµ−1Op
T
(δ)F̃ in xd > 0,

vd = 0 on xd = 0.

Let U = (w, vd), the system (3.21) has the form

Dxd
U +BU = H, where H = (iF d, iG+ µ−1Op

T
(δ)F̃ ),

and B is a tangential matrix operators with principal symbol

b =

(

iτ∂xd
ϕ −µ

µ−1q(x, ξ′)− µ iτ∂xd
ϕ

)

,

modulo µ−1S1
T,τ , where q(x, ξ′) =

∑

1≤i,j≤d−1

gij(x)
(

ξi + iτ∂xi
ϕ(x)

)(

ξj + iτ∂xj
ϕ(x)

)

. The char-

acteristic polynomial of b is given by P (λ) = (λ − iτ∂xd
ϕ)2 + q − µ2. Let α ∈ C such that

α2 = q − µ2 with Reα ≥ 0. The definition of α is ambiguous when q − µ2 ≤ 0 but in this case
if q− µ2 < 0 the root are simple and the analysis below is independent of the choice of root. In
particular the roots are smooth, or if q−µ2 = 0 the root is double and below, we give a specific
analysis in this case. The root of P (λ) are iτ∂xd

ϕ± iα and the analysis in what follows depends
on the location of roots in complex plane. We have the following result, denoting s = t2 where
t, s ∈ C we have for r0 > 0,

(3.22) |Re t| S r0 ⇐⇒ 4r20 Re s− 4r40 + (Im s)2 S 0.

Indeed, let t = x+iy, we have Re s = x2−y2 and Im s = 2xy, we obtain 4r20 Re s−4r40+(Im s)2 =
4(r20 + y2)(x2 − r20) which gives the result.

From (3.22), we obtain that |Reα| S τ |∂xd
ϕ| is equivalent to

(3.23) 4τ2(∂xd
ϕ)2(Re q − µ2)− 4τ4(∂xd

ϕ)4 + (Im q)2 S 0,
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where, from the definition of q, we have














Re q(x, ξ′) =
∑

1≤i,j≤d−1

gij(x)
(

ξiξj − τ2∂xi
ϕ(x)∂xj

ϕ(x)
)

,

Im q(x, ξ′) = τ
∑

1≤i,j≤d−1

gij(x)ξj∂xi
ϕ(x).

We prove a microlocal Carleman estimate.

Lemma 3.5. Let x0 ∈ R
d−1×{0}, we assume there exist a neighborhood of x0 where ϕ satisfies

(3.4) the sub-ellipticity condition and ∂xd
ϕ(x0) > 0. Let (ξ′0, τ0) ∈ Rd−1 × R+ be such that

|ξ′0|2 + τ20 = 1. There exist W be an open conic set of (x0, ξ
′
0, τ0), χ1 ∈ S0

T,τ be an homogenous
symbol of order 0 for 〈ξ′, τ〉 ≥ 1 supported in W and χ1 = 1 in a conic neighborhood of (x0, ξ

′
0, τ0).

For s ∈ R, there exist C > 0, and τ∗ > 0 such that

|Λs+1/2
T,τ Op

T
(χ1)w|xd=0|+ τ1/2‖Λs

T,τOp
T
(χ1)v‖+ + τ−1/2‖Λs+1

T,τ Op
T
(χ1)w‖+

≤ C
(

‖Λs
T,τF‖+ + ‖Λs

T,τG‖+ + ‖Λs
T,τw‖+ + ‖Λs

T,τv
d‖+

)

,

for v, w ∈ S (Rd) satisfying (3.19), for every τ ≥ τ∗ and µ satisfying (3.3).

This lemma implies Proposition 3.1 as we can cover 〈ξ′, τ〉 = 1 by a finite number of open
sets given by the statement of Lemma 3.5.

For the proof of Lemma 3.5, we distinguish two cases, α 6= 0 and α = 0.

Assume that α(x0, ξ
′
0, τ0) 6= 0. By continuity and homogeneity in (ξ′, τ), α 6= 0 in a conic

neighborhoodW of (x0, ξ
′
0, τ0). Let χ0 ∈ S0

T,τ be an homogenous symbol of order 0 for 〈ξ′, τ〉 ≥ 1
such that χ0 = 1 in a conic neighborhood of (x0, ξ

′
0, τ0), supported in W and χ1 supported on

χ0 = 1. Writing

b =

(

iτ∂xd
ϕ −µ

µ−1α2 iτ∂xd
ϕ

)

,

the left eigenvector associated with iτ∂xd
ϕ+iα (resp. iτ∂xd

ϕ−iα ) is
(

−iα µ
) (

resp.
(

iα µ
))

.

Let α̃ = χ0α, as α is a smooth homogenous function of order 1 in W , α̃ ∈ S1
T,τ . Recall the

notation Λs
T,τ = Op

T
(〈ξ′, τ〉s), according with the above algebraic computations and with the

left vector found, we define

(3.24)

{

z1 = −iΛ−1
T,τOp

T
(α̃)Op

T
(χ1)w + µΛ−1

T,τOp
T
(χ1)v

d

z2 = iΛ−1
T,τOp

T
(α̃)Op

T
(χ1)w + µΛ−1

T,τOp
T
(χ1)v

d.

As vd = 0 on xd = 0 we obtain z1 + z2 = 0 on xd = 0. Applying ±iΛ−1
T,τOp

T
(α̃)Op

T
(χ1) to the

first equation (3.21), µΛ−1
T,τOp

T
(χ1) to the second equation and summing up, we obtain

(3.25) Dxd
zj +Op

T

(

iτ∂xd
ϕ+ (−1)jiα̃

)

zj = Hj where

‖Λs
T,τHj‖+ . ‖Λs

T,τF
d‖+ + ‖Λs

T,τG‖+ + ‖Λs
T,τ F̃‖+ + ‖Λs

T,τw‖+ + ‖Λs
T,τv

d‖+.
We compute

2Re(Hj , iΛ
2s+1
T,τ zj)+ = 2Re(Dxd

zj +Op
T

(

iτ∂xd
ϕ+ (−1)jiα̃

)

zj, iΛ
2s+1
T,τ zj)+(3.26)

= |Λs+1/2
T,τ (zj)|xd=0|2 + 2Re(Λ2s+1

T,τ Op
T

(

τ∂xd
ϕ+ (−1)jα̃

)

zj , zj)+,

using that

(3.27) 2Re(Dxd
h, iΛ2m

T,τh)+ = |Λm
T,τh|xd=0|2,

for h ∈ S (Rd).

If j = 2, we have τ∂xd
ϕ + Reα & τ + |ξ′| in W . Let χ2 ∈ S0

T,τ supported in χ0 = 1 and
χ2 = 1 on the support of χ1. From symbolic calculus we have

(3.28) ‖Λs
T,τ

(

z2 −Op
T
(χ2)z2

)

‖+ . ‖Λ−N
T,τ w‖+ + ‖Λ−N

T,τ v
d‖+.
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Then the tangential Gårding inequality of Theorem 3.8 applies and we have

2Re(Λ2s+1
T,τ Op

T

(

τ∂xd
ϕ+ α̃

)

z2, z2)+ ≥ C1‖Λs+1
T,τ z2‖2+ − CN

(

‖Λ−N
T,τ w‖2+ + ‖Λ−N

T,τ v
d‖2+

)

.

From (3.26), we then deduce

(3.29) 2Re(H2, iΛ
2s+1
T,τ z2)+ ≥

C1

(

|Λs+1/2
T,τ (z2)|xd=0|2 + ‖Λs+1

T,τ z2‖2+
)

− CN
(

‖Λ−N
T,τ w‖2+ + ‖Λ−N

T,τ v
d‖2+

)

,

for C1 > 0, for every N > 0 and CN > 0, uniformly with respect to τ chosen sufficiently large.
This implies

|Λs+1/2
T,τ (z2)|xd=0|+ ‖Λs+1

T,τ z2‖+ . ‖Λs
T,τH2‖+ + ‖Λ−N

T,τ w‖+ + ‖Λ−N
T,τ v

d‖+.(3.30)

Lemma 3.6. Assume that α 6= 0 in W .

If Reα− ∂xd
ϕ 6= 0 on W , we have

‖ Λs+1
T,τ z1‖+ ≤ C

(

‖ Λs
T,τH1‖+ + |Λs+1/2

T,τ (z1)|xd=0|+ ‖Λs
T,τw‖+ + ‖Λs

T,τv
d‖+

)

,(3.31)

for some C > 0.

If Reα− τ∂xd
ϕ = 0 at (x0, ξ

′
0, τ0), we have

‖ Λ
s+1/2
T,τ z1‖+ ≤ C

(

‖ Λs
T,τH1‖+ + |Λs+1/2

T,τ (z1)|xd=0|+ ‖Λs
T,τw‖+ + ‖Λs

T,τv
d‖+

)

,(3.32)

for some C > 0.

Proof. We have to distinguish three cases, that is |Reα| S τ |∂xd
ϕ| at (x0, ξ

′
0, τ0).

• If |Reα| < τ |∂xd
ϕ|, from (3.23) this is equivalent to

4τ2(∂xd
ϕ)2(Re q − µ2)− 4τ4(∂xd

ϕ)4 + (Im q)2 < 0.

We have τ∂xd
ϕ−Reα & τ+ |ξ′| in W . Then we have the same computations as in (3.29)

and (3.30), and we have

|Λs+1/2
T,τ (z1)|xd=0|+ ‖Λs+1

T,τ z1‖+ . ‖Λs
T,τH1‖+ + ‖Λ−N

T,τ w‖+ + ‖Λ−N
T,τ v

d‖+
which is a better estimate than (3.31).

• If |Reα| > τ |∂xd
ϕ|, from (3.22) this is equivalent to

4τ2(∂xd
ϕ)2(Re q − µ2)− 4τ4(∂xd

ϕ)4 + (Im q)2 > 0.

Observe that this case contains the case where τ0 = 0 as |ξ′0| = 1, and in W we have
q(x, ξ′, τ) ≥ c|ξ′|2 and |ξ′| ≫ τ .

As −τ∂xd
ϕ+Reα & τ + |ξ′| in W , from (3.26), we can introduce a cutoff as in (3.28)

to apply the tangential Gårding inequality of Theorem 3.8, we deduce

−2Re(H1, iΛ
2s+1
T,τ z1)+ + |Λs+1/2

T,τ (z1)|xd=0|2 & ‖Λs+1
T,τ z1‖2+ − CN

(

‖Λ−N
T,τ w‖2+ + ‖Λ−N

T,τ v
d‖2+

)

,

and then

‖Λs+1
T,τ z1‖+ . ‖Λs

T,τH1‖+ + |Λs+1/2
T,τ (z1)|xd=0|+ ‖Λ−N

T,τ w‖+ + ‖Λ−N
T,τ v

d‖+,

which implies (3.31).
• If Reα = τ∂xd

ϕ at (x0, ξ
′
0, τ0), from (3.22) and as Reα and ∂xd

ϕ are positive, this is
equivalent to

4τ2(∂xd
ϕ)2(Re q − µ2)− 4τ4(∂xd

ϕ)4 + (Im q)2 = 0, at (x0, ξ
′
0, τ0).
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We use Carleman technics to obtain an estimate. Before doing that we must translate sub-
ellipticity assumption (3.4) on pϕ on analogous condition on α. First observe that

pϕ(x, ξ, τ) = (ξd + iτ∂xd
ϕ)2 + α2 = (ξd + iτ∂xd

ϕ+ iα)(ξd + iτ∂xd
ϕ− iα).

As iτ0∂xd
ϕ(x0) − iα(x0, ξ

′
0, τ0) ∈ R, pϕ = 0 is equivalent to ξd + iτ∂xd

ϕ − iα = 0. Noting that
iτ∂xd

ϕ + iα 6∈ R thus ξd + iτ∂xd
ϕ + iα 6= 0 in W . Second, for a smooth function q = qr + iqi

where qr, qi are real valued, we have {q, q̄} = 2i{qi, qr}. Thus on pϕ = 0 we have

{pϕ, pϕ} = |ξd + iτ∂xd
ϕ+ iα|2{ξd + iτ∂xd

ϕ− iα, ξd − iτ∂xd
ϕ+ iᾱ}

= 2i|ξd + iτ∂xd
ϕ+ iα|2{τ∂xd

ϕ− Reα, ξd + Imα}.
Thus sub-ellipticity condition reads in W , there exists C > 0 such that

ξd + iτ∂xd
ϕ− iα = 0 =⇒ {ξd + Imα, τ∂xd

ϕ− Reα} ≥ C〈ξ′, τ〉.(3.33)

At (x0, ξ
′
0, τ0), observe that we can choose ξd such that ξd+ Imα = 0 and as τ0∂xd

ϕ−Reα = 0,
the condition (3.33) means, by continuity and homogeneity, there exists C > 0 such that

(3.34) {ξd + Imα, τ∂xd
ϕ− Reα} ≥ C〈ξ′, τ〉 in W,

eventually shrinking W .

Let

A =
1

2

(

Op
T
(iτ∂xd

ϕ− iα̃) + Op
T
(iτ∂xd

ϕ− iα̃)∗
)

,

B =
1

2i

(

Op
T
(iτ∂xd

ϕ− iα̃)−Op
T
(iτ∂xd

ϕ− iα̃)∗
)

.

We have A = A∗, B = B∗, Op
T
(iτ∂xd

ϕ− iα̃) = A+ iB, and principal symbol of A is Im α̃ and
principal symbol of B is τ∂xd

ϕ− Re α̃.

Now from (3.25) we compute for z = Op
T
(χ0)Λ

s
T,τz1

‖
(

Dxd
+Op

T
(iτ∂xd

ϕ− iα̃)
)

z‖2+ = ‖
(

Dxd
+A

)

z‖2+ + ‖Bz‖2+(3.35)

+ 2Re
(

(

Dxd
+A

)

z, iBz
)

+
.

We have

2Re
(

Dxd
z, iBz

)

+
=

(

[Dxd
, iB]z, z

)

+
+ (Bz|xd=0, z|xd=0)∂ .

As the principal symbol of B is τ∂xd
ϕ− Re α̃, we obtain

(3.36) 2Re
(

Dxd
z, iBz

)

+
≥ Re

(

i[Dxd
,Op

T
(τ∂xd

ϕ− Re α̃)]z, z
)

+

+Re(Op
T
(τ∂xd

ϕ− Re α̃)z|xd=0, z|xd=0)∂ − C‖z‖2+ − C|z|xd=0|2,
for some constant C > 0. We also have

2Re
(

Az, iBz
)

+
=

(

i[A,B]z, z
)

+
≥ Re

(

i[Op
T
(Im α̃),Op

T
(τ∂xd

ϕ− Re α̃)]z
)

+
− C‖z‖2+.

Then from this estimate and (3.36), we obtain

(3.37) 2Re
(

(

Dxd
+A

)

z, iBz
)

+
≥ Re

(

i[Dxd
+Op

T
(Im α̃),Op

T
(τ∂xd

ϕ− Re α̃)]z, z
)

+

+Re(Op
T
(τ∂xd

ϕ− Re α̃)z|xd=0, z|xd=0)∂ − C‖z‖2+ − C|z|xd=0|2.
The principal symbol of i[Dxd

+ Op
T
(Im α̃),Op

T
(τ∂xd

ϕ − Re α̃)] is {ξd + Imα, τ∂xd
ϕ − Reα},

then from (3.34) and microlocal Gårding inequality of Theorem 3.8, we have

Re
(

i[Dxd
+Op

T
(Im α̃),Op

T
(τ∂xd

ϕ− Re α̃)]z, z
)

+
≥ C1‖ Λ

1/2
T,τ z‖2+ − CN‖Λ−N

T,τ z1‖2+.(3.38)

We have

|(Op
T
(τ∂xd

ϕ− Re α̃)z|xd=0, z|xd=0)∂ | . |Λ1/2
T,τ z|xd=0|2,
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then from (3.35), (3.37) and (3.38) we obtain

‖ Λ
1/2
T,τ z‖+ .

∥

∥

(

Dxd
+Op

T
(iτ∂xd

ϕ− iα̃)
)

z
∥

∥

+
+ |Λ1/2

T,τ z|xd=0|+ ‖Λ−N
T,τ z1‖+,(3.39)

as we can absorb the remainder term ‖z‖2+ by the left hand side. Recalling the definition of z1
given by formula (3.24), the symbolic calculus yields

‖Λ1/2
T,τOp

T
(χ0)Λ

s
T,τz1 − Λ

s+1/2
T,τ z1‖+ . ‖Λs−1/2

T,τ w‖+ + ‖Λs−1/2
T,τ vd‖+.

From z = Op
T
(χ0)Λ

s
T,τz1, we deduce

‖Λs+1/2
T,τ z1‖+ . ‖ Λ

1/2
T,τ z‖+ + ‖Λs−1/2

T,τ w‖+ + ‖Λs−1/2
T,τ vd‖+.(3.40)

Symbolic calculus also gives
∥

∥

(

Dxd
+Op

T
(iτ∂xd

ϕ− iα̃)
)

z
∥

∥

+
. ‖Λs

T,τH1‖+ + ‖Λs
T,τw‖+ + ‖Λs

T,τv
d‖+,(3.41)

and

|Λ1/2
T,τ z|xd=0| . |Λs+1/2

T,τ (z1)|xd=0|.(3.42)

Then from (3.39)–(3.42) we obtain

‖Λs+1/2
T,τ z1‖+ . ‖Λs

T,τH1‖+ + |Λs+1/2
T,τ (z1)|xd=0|+ ‖Λs

T,τw‖+ + ‖Λs
T,τv

d‖+,(3.43)

which is (3.32). This achieves the proof of Lemma 3.6 as we have treated the three cases. �

We can prove Lemma 3.5 in the case α 6= 0.

If Reα− ∂xd
ϕ 6= 0 on W , from (3.30), Lemma 3.6, and as z1 + z2 = 0 on xd = 0, we deduce

|Λs+1/2
T,τ (z2)|xd=0|+ ‖Λs+1

T,τ z2‖+ + ‖Λs+1
T,τ z1‖+
. ‖Λs

T,τH2‖+ + ‖Λs
T,τH1‖+ + ‖Λs

T,τw‖+ + ‖Λs
T,τv

d‖+.
From (3.25) we deduce

|Λs+1/2
T,τ (z2)|xd=0|+ ‖Λs+1

T,τ z2‖+ + ‖Λs+1
T,τ z1‖+ . ‖Λs

T,τG‖+ + ‖Λs
T,τF

d‖+ + ‖Λs
T,τ F̃‖+(3.44)

+ ‖Λs
T,τv

d‖+ + ‖Λs
T,τw‖+.

We have from (3.24), z1 + z2 = 2µΛ−1
T,τOp

T
(χ1)v

d and from (3.3) we deduce

(3.45) τ‖Λs
T,τOp

T
(χ1)v

d‖+ . |µ|‖Λs
T,τOp

T
(χ1)v

d‖+ . ‖Λs+1
T,τ z1‖+ + ‖Λs+1

T,τ z2‖+.
We have Op

T
(α̃)∗Λs

T,τΛ
s
T,τOp

T
(α̃) = Op

T
(〈ξ′, τ〉2sα̃2) modulo an operator of order 2s+ 1. As α̃

is not 0 on the support of χ1, the tangential Gårding inequality of Theorem 3.8 yields

‖Λs
T,τOp

T
(α̃)Op

T
(χ1)w‖+ + ‖Λ−N

T,τ w‖+ & ‖Λs
T,τOp

T
(χ1)w‖+,

for every N > 0. From this and as z2 − z1 = 2iΛ−1
T,τOp

T
(α̃)Op

T
(χ1)w from (3.24), we deduce

(3.46) ‖Λs+1
T,τ Op

T
(χ1)w‖+ . ‖Λs+1

T,τ z1‖+ + ‖Λs+1
T,τ z2‖+ + ‖Λ−N

T,τ w‖+.
From the first equation of (3.19) and from (3.3) we have

τ‖Λs
T,τOp

T
(χ1)ṽ‖+ . ‖Λs+1

T,τ Op
T
(χ1)w‖+ + ‖Λs

T,τ F̃‖+ + ‖Λs
T,τw‖+

. ‖Λs+1
T,τ z1‖+ + ‖Λs+1

T,τ z2‖+ + ‖Λs
T,τ F̃‖+ + ‖Λs

T,τw‖+.(3.47)

From (3.24), (z2)|xd=0 = iΛ−1
T,τOp

T
(α̃)Op

T
(χ1)w|xd=0, arguing as from above and using the

Gårding estimate of Theorem 3.5, we have

(3.48) |Λs+1/2
T,τ Op

T
(χ1)w|xd=0| . |Λs+1/2

T,τ (z2)|xd=0|.
From (3.44)–(3.48) we obtain Lemma 3.5.
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If Reα− τ∂xd
ϕ = 0 at (x0, ξ

′
0, τ0), adding (3.30) to ε(3.32) for ε > 0, we deduce

|Λs+1/2
T,τ (z2)|xd=0|+ ‖Λs+1/2

T,τ z2‖+ + ε‖Λs+1/2
T,τ z1‖+

. ‖Λs
T,τH2‖+ + ε‖Λs

T,τH1‖+ + ‖Λs
T,τw‖+ + ‖Λs

T,τv
d‖+ + ε|Λs+1/2

T,τ (z1)|xd=0|.
From (3.25) and as z1 + z2 = 0 on xd = 0, we deduce for ε small enough tat

(3.49) |Λs+1/2
T,τ (z2)|xd=0|+ ‖Λs+1/2

T,τ z2‖+ + ‖Λs+1/2
T,τ z1‖+

. ‖Λs
T,τG‖+ + ‖Λs

T,τF
d‖+ + ‖Λs

T,τ F̃‖+ + ‖Λs
T,τv

d‖+ + ‖Λs
T,τw‖+.

We have from (3.24), z1+z2 = 2µΛ−1
T,τOp

T
(χ1)v

d. Let χ2 ∈ S0
T,τ supported in χ0 = 1 and χ2 = 1

on the support of χ1. From symbolic calculus we have

‖(Op
T
(χ2)Λ

s+3/2
T,τ µ−1)(µΛ−1

T,τOp
T
(χ1)v

d)− Λ
s+1/2
T,τ Op

T
(χ1)v

d‖+ . ‖Λ−N
T,τ v

d‖+.

As Op
T
(χ2)Λ

s+3/2
T,τ µ−1 is an operator of order s + 1/2 as |µ| and |ξ′| are comparable on the

support of χ2, we deduce
(3.50)

τ1/2‖Λs
T,τOp

T
(χ1)v

d‖+ . ‖Λs+1/2
T,τ Op

T
(χ1)v

d‖+ . ‖Λs+1/2
T,τ z1‖+ + ‖Λs+1/2

T,τ z2‖+ + ‖Λ−N
T,τ v

d‖+.
We have τ−1Op

T
(α̃)∗Λs

T,τΛ
s
T,τOp

T
(α̃) = τ−1Op

T
(〈ξ′, τ〉2sα̃2) modulo an operator of order 2s.

As α̃ is not 0 on the support of χ1, the tangential Gårding inequality of Theorem 3.8 yields

τ−1/2‖Λs
T,τOp

T
(α̃)Op

T
(χ1)w‖+ + ‖Λ−N

T,τ w‖+ & τ−1/2‖Λs+1
T,τ Op

T
(χ1)w‖+,

for every N > 0. From this and as z2 − z1 = 2iΛ−1
T,τOp

T
(α̃)Op

T
(χ1)w from (3.24), we deduce,

using symbolic calculus and χ2χ1 = χ1,

τ−1/2‖Λs+1
T,τ Op

T
(χ1)w‖+ . τ−1/2‖Λs+1

T,τ Op
T
(χ2)Λ

−1
T,τOp

T
(α̃)Op

T
(χ1)w‖+ + ‖Λ−N

T,τ w‖+(3.51)

. ‖Λs+1/2
T,τ z1‖+ + ‖Λs+1/2

T,τ z2‖+ + ‖Λ−N
T,τ w‖+,

as τ−1/2Λs+1
T,τ Op

T
(χ2) is an operator of order s+ 1/2.

From the first equation of (3.19) and (3.3), we have

τ1/2‖Λs
T,τOp

T
(χ1)ṽ‖+ . ‖Λs+1

T,τ µ
−1τ1/2Op

T
(χ1)w‖+ + ‖Λs

T,τ F̃‖+ + ‖Λs
T,τw‖+(3.52)

. ‖Λs+1/2
T,τ z1‖+ + ‖Λs+1/2

T,τ z2‖+ + ‖Λs
T,τw‖+ + ‖Λs

T,τ F̃‖+,
from (3.51).

From (3.24), (z2)|xd=0 = iΛ−1
T,τOp

T
(α̃)Op

T
(χ1)w|xd=0, arguing as from above and using the

Gårding estimate of Theorem 3.5, we have

(3.53) |Λs+1/2
T,τ Op

T
(χ1)w|xd=0| . |Λs+1/2

T,τ (z2)|xd=0|.
From (3.49)–(3.53) we obtain Lemma 3.5.

Now we consider the case q−µ2 = 0. Let ε > 0, we can shrink W such that |q−µ2| ≤ ε〈ξ′, τ〉2
in W . Note that |µ| ∼ τ ∼ |ξ′| on W . Let χ1 be the cutoff defined previously supported on W
and χ0 supported on W and χ0 = 1 on the support of χ1. By symbolic calculus we have

Op
T
(χ1)Op

T
(δ)Op

T
(ζ′) = Op

T
(δ)Op

T
(ζ′)Op

T
(χ1) + [Op

T
(χ1),Op

T
(δ)Op

T
(ζ′)](3.54)

= Op
T
(q)Op

T
(χ1) + Op

T
(r1)Op

T
(χ1)

+ Op
T
(χ0)[Op

T
(χ1),Op

T
(δ)Op

T
(ζ′)] + Op

T
(r−N ),

where r1 ∈ S1
T,τ and r−N ∈ S−N

T,τ . Observe that µ−1χj ∈ S−1
T,τ for j = 1, 2.

From (3.21), (3.54), and by symbolic calculus we have






Dxd
Op

T
(χ1)w + iτ(∂xd

ϕ)Op
T
(χ1)w − µOp

T
(χ1)v

d = H1 in xd > 0,
Dxd

Op
T
(χ1)v

d + µ−1Op
T
(q − µ2)Op

T
(χ1)w + iτ(∂xd

ϕ)Op
T
(χ1)v

d = H2 in xd > 0,
vd = 0 on xd = 0,
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where

(3.55) ‖Λs
T,τHj‖+ ≤ Cε

(

‖Λs
T,τF

d‖+ + ‖Λs
T,τG‖+ + ‖Λs

T,τw‖+ + ‖Λs
T,τv

d‖+ + ‖Λs
T,τ F̃‖+

)

,

for j = 1, 2 with Cε depends on ε. We compute

(3.56) 2Re(H1, iΛ
2s+1
T,τ Op

T
(χ1)w)+

= 2Re(Dxd
Op

T
(χ1)w + iτ(∂xd

ϕ)Op
T
(χ1)w − µOp

T
(χ1)v

d, iΛ2s+1
T,τ Op

T
(χ1)w)+.

By microlocal Gårding inequality of Theorem 3.8 we have, using τ ∼ |ξ′| on W

(3.57) 2Re(iτ(∂xd
ϕ)Op

T
(χ1)w, iΛ

2s+1
T,τ Op

T
(χ1)w)+ ≥ C0‖Λs+1

T,τ Op
T
(χ1)w‖2+ − CN‖Λ−N

T,τ w‖2

for C0 > 0, for all N > 0 and CN > 0.

From this, (3.27) and (3.56) we obtain

(3.58) 2Re(H1, iΛ
2s+1
T,τ Op

T
(χ1)w)+

≥ |Λs+1/2
T,τ Op

T
(χ1)w|xd=0|2+C1‖Λs+1

T,τ Op
T
(χ1)w‖2+−µ2C2‖ΛsT,τOp

T
(χ1)v

d‖2+−CN‖Λ−N
T,τ w‖2,

for C1, C2 > 0, for all N > 0 and CN > 0.

We then obtain

(3.59) |Λs+1/2
T,τ Op

T
(χ1)w|xd=0|2 + ‖Λs+1

T,τ Op
T
(χ1)w‖2+ ≤ µ2C3‖ΛsT,τOp

T
(χ1)v

d‖2+
+ Cε

(

‖Λs
T,τF

d‖+ + ‖Λs
T,τG‖+ + ‖Λs

T,τw‖+ + ‖Λs
T,τv

d‖+ + ‖Λs
T,τ F̃‖+

)

,

for C3 > 0, for all N > 0 and CN , Cε > 0.

Now we compute

(3.60) 2Re(H2, iµΛ
2s
T,τOp

T
(χ1)v

d)+ = 2Re(Dxd
Op

T
(χ1)v

d, iµΛ2s
T,τOp

T
(χ1)v

d)+

+ 2Re(µ−1Op
T
(q)Op

T
(χ1)w − µOp

T
(χ1)w + iτ(∂xd

ϕ)Op
T
(χ1)v

d, iµΛ2s
T,τOp

T
(χ1)v

d)+.

From (3.27) we have 2Re(Dxd
Op

T
(χ1)v

d, iΛ2s
T,τOp

T
(χ1)v

d)+ = 0 as vd = 0 on xd = 0.

As Cε2 〈ξ′, τ〉2 − µ−2(q − µ2)2 ≥ ε2 〈ξ′, τ〉2, on W with C > 0, using that τ ∼ |µ| ∼ |ξ′|, we
have by microlocal Gårding inequality of Theorem 3.8

2Re(µ−1Op
T
(q − µ2)Op

T
(χ1)w,Λ

2s
T,τµ

−1Op
T
(q − µ2)Op

T
(χ1)w)+

≤ C4ε
2‖Λs+1

T,τ Op
T
(χ1)w‖2+ + CN,ε‖Λ−N

T,τ w‖2+.
Then we have

(3.61) 2Re(µ−1Op
T
(q)Op

T
(χ1)w − µOp

T
(χ1)w, iµΛ

2s
T,τOp

T
(χ1)v

d)+

≤ ε|µ|C5‖ΛsT,τOp
T
(χ1)v

d‖+
(

‖Λs+1
T,τ Op

T
(χ1)w‖+ + CN,ε‖Λ−N

T,τ w‖+
)

,

for C5 > 0.

From microlocal Gårding inequality of Theorem 3.8 and as ∂xd
ϕ(x0) > 0, we have

(3.62)

2Re(iτ(∂xd
ϕ)Op

T
(χ1)v

d, iµΛ2s
T,τOp

T
(χ1)v

d)+ ≥ µ2C6‖ΛsT,τOp
T
(χ1)v

d‖2+ − CN‖Λ−N
T,τ v

d‖2+,
where C6 > 0 is independent of ε, for all N > 0, CN > 0.

From (3.55) and (3.60)–(3.62) we obtain

µ2‖Λs
T,τOp

T
(χ1)v

d‖2+ ≤ |µ|εC2‖ΛsT,τOp
T
(χ1)v

d‖+
(

‖Λs+1
T,τ Op

T
(χ1)w‖+ + CN,ε‖Λ−N

T,τ w‖+
)

+ Cε
(

‖Λs
T,τF

d‖+ + ‖Λs
T,τG‖+ + ‖Λs

T,τw‖+ + ‖Λs
T,τv

d‖+ + ‖Λs
T,τ F̃‖+

)2
.
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We deduce

µ2‖Λs
T,τOp

T
(χ1)v

d‖2+ ≤ ε2C7

(

‖Λs+1
T,τ Op

T
(χ1)w‖2+

)

+ Cε
(

‖Λs
T,τF

d‖+ + ‖Λs
T,τG‖+ + ‖Λs

T,τw‖+ + ‖Λs
T,τv

d‖+ + ‖Λs
T,τ F̃‖+

)2
.(3.63)

By the linear combination (3.63)+ε(3.59) and fixing ε sufficiently small, from (3.3) and τ suffi-
ciently large, we deduce

(3.64) τ‖Λs
T,τOp

T
(χ1)v

d‖+ + |Λs+1/2
T,τ Op

T
(χ1)w|xd=0|+ ‖Λs+1

T,τ Op
T
(χ1)w‖+

. ‖Λs
T,τF

d‖+ + ‖Λs
T,τG‖+ + ‖Λs

T,τw‖+ + ‖Λs
T,τv

d‖+ + ‖Λs
T,τ F̃‖+.

From the first equation of (3.19) and from (3.3) we have

τ‖Λs
T,τOp

T
(χ1)ṽ‖+ . ‖Λs+1

T,τ Op
T
(χ1)w‖+ + ‖Λs

T,τ F̃‖+ + ‖Λs
T,τw‖+(3.65)

. ‖Λs
T,τF

d‖+ + ‖Λs
T,τG‖+ + ‖Λs

T,τ F̃‖+ + ‖Λs
T,τw‖+ + ‖Λs

T,τv
d‖+,

from (3.64). From (3.64) and (3.65) we obtain Lemma 3.5 in the case α = 0.

4. Logarithmic stability

The exponential estimate of Proposition 2.1 is the consequence of the two following results.
First a global Carleman estimate with an observability term and second an estimate of the
observability term coming from the dissipation.

Let ω0 and ω1 be open sets such that ω1 ⋐ ω0 ⋐ ω, and, from (1.2), we have b(x) ≥ b− > 0
for x ∈ ω. In what follows we denote by ‖.‖0 := ‖.‖L2(Ω).

Theorem 4.1. Let Ω be an open bounded set of Rd with smooth boundary. Let ϕ ∈ C (Rd) be
a function that satisfies the sub-ellipticity assumption in Ω \ ω1. Then there exist τ∗ > 0 and
C > 0 such that

τ3/2‖eτϕr‖0+τ3/2‖eτϕu‖0 ≤ C
(

τ‖eτϕg‖0 + τ‖eτϕf‖0 + τ3/2‖eτϕr‖L2(ω0) + τ3/2‖eτϕu‖L2(ω0)

)

,

for all u, r ∈ C
∞
c (Ω) which satisfies (3.1), u · n|Γ = 0, τ ≥ τ∗, and µ satisfying (3.3).

Remarks 4.1. It is classical that there exist ψ such that ∂nψ(x) < 0 for x ∈ ∂Ω and ∇ψ 6= 0
for x ∈ Ω\ω1 (see Fursikov-Imanuvilov [12]). From Lemma 3.2, ϕ = eλψ satisfies sub-ellipticity
condition in Ω \ ω1 for λ sufficiently large. In what follows we fix such a function ϕ.

Proposition 4.1. Let (u, r) ∈ D(A) solution of (Ad + iµ)(u, r) = (f, g) ∈ H. Then we have

|µ|‖
√
bu‖20 ≤ C‖(u, r)‖H‖(f, g)‖H(4.1)

|µ|‖r‖2L2(ω0)
≤ C‖(u, r)‖H‖(f, g)‖H ,

for some constant C > 0.

From these two results we are able to prove Proposition 2.1.

Proof of Proposition 2.1. Noting that the resolvent problem (A− iµ)(u, r) = (f, g) is written as
follow







∇r + iµu = f − bu in Ω
div(u) + iµr = g in Ω
u.n = 0 on Γ.

This allows us to apply Theorem 4.1. So let C2 = maxx∈Ω ϕ(x) and C1 = minx∈Ω ϕ(x) we
deduce from the Carleman estimate of Theorem 4.1 that

(4.2) ‖r‖0 + ‖u‖0 . e(C2−C1)τ
(

‖g‖0 + ‖f + bu‖0 + ‖r‖L2(ω0) + ‖u‖L2(ω0)

)

.
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Taking τ = |µ|/c0 accordingly with (3.3), by the estimates of Proposition 4.1 and as ‖bu‖0 .
‖
√
bu‖0, we have

(4.3) ‖(u, r)‖H . CeK|µ|
(

‖(f, g)‖H + ‖(u, r)‖1/2H ‖(f, g)‖1/2H

)

,

which yields ‖(u, r)‖H . eK
′|µ|‖(f, g)‖H . This is the sought result. �

Proof of Proposition 4.1. From equation, we have −∇r+ iµu− bu = f taking the inner product
with u, we obtain −(∇r, u)+ iµ‖u‖2−(bu, u) = (f, u). Integrating by parts, we have −(∇r, u) =
(r, div u) as u · n = 0 on ∂Ω. Using the second equation − div u+ iµr = g, we have −(∇r, u) =
(r, iµr − g). We thus obtain

−iµ‖r‖2 − (r, g) + iµ‖u‖2 − (bu, u) = (f, u).

Taking the real part of this equation we have |µ|‖
√
bu‖2 ≤ |(f, u)| + |(r, g)|. This implies the

first estimate of (4.1).

Let χ ∈ C∞
c (Rd) such that χ(x) = 1 for x ∈ ω0 and χ supported in ω. Taking the inner

product between − div u + iµr = g and χ2r, we obtain (− div u, χ2r) + iµ‖χr‖2 = (g, χ2r).
Integrating by parts we have (− div u, χ2r) = (u, χ2∇r) + (u, 2χr∇χ) and by equation −∇r +
iµu− bu = f we have

−iµ‖ χu‖2 − (u, χ2bu)− (u, χ2f) + (u, 2χr∇χ) + iµ‖χr‖2 = (g, χ2r).

Taking account that b ≥ b− in ω, thus on the support of χ, we have

|µ|‖χr‖2 . ‖(u, r)‖H‖(f, g)‖H + ‖u∇χ‖‖χr‖+ |µ|‖ χu‖2 + ‖
√
bu‖2.

We can estimate ‖u∇χ‖ and ‖ χu‖ by ‖
√
bu‖ and by the first estimate of Proposition 4.1 we

obtain the second estimate. �

Proof of Theorem 4.1. Let x0 ∈ Ω \ ω1, from Corollary 3.1 if x0 ∈ Ω or from Theorem 3.9 if
x0 ∈ ∂Ω we obtain, in both cases, an open neighborhood (in R

d) of x0, V such that

(4.4) τ3/2‖eτϕr‖0 + τ3/2‖eτϕu‖0 ≤ C (τ‖eτϕg‖0 + τ‖eτϕf‖0) ,
for u, r ∈ C∞

c (V ). By compactness of Ω\ω1 we can find a finite recovering (Vj)j∈J of Ω\ω1. Let

(χj)j∈J be a partition of unity subordinated to (Vj)j∈J such that
∑

j∈J χj(x) = 1 for x ∈ Ω\ω1.

Let uj = χju and rj = χjr where (u, r) solution to (3.1), u · n|Γ = 0. We have

−∇rj + iµuj = χjf − r∇χj
− div uj + iµrj = χjg − u · ∇χj .

We can apply the Carleman estimate (4.4) in each Vj and we obtain

τ3/2‖eτϕrj‖0 + τ3/2‖eτϕuj‖0 . τ‖eτϕ(χjg − u · ∇χj)‖0 + τ‖eτϕ(χjf − r∇χj)‖0
. τ‖eτϕg‖0 + τ‖eτϕu‖0 + τ‖eτϕf‖0 + τ‖eτϕr‖0.

We have

τ3/2‖eτϕr‖0 + τ3/2‖eτϕu‖0
. τ3/2

∑

j∈J

(

‖eτϕrj‖0 + ‖eτϕuj‖0
)

+ τ3/2‖eτϕr‖L2(ω0) + τ3/2‖eτϕu‖L2(ω0)

. τ‖eτϕg‖0 + τ‖eτϕu‖0 + τ‖eτϕf‖0 + τ‖eτϕr‖0 + τ3/2‖eτϕr‖L2(ω0) + τ3/2‖eτϕu‖L2(ω0).

This gives the sought result as we can absorb the term τ‖eτϕu‖0 + τ‖eτϕr‖0 with the left hand
side. �
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