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Abstract

In this paper, we disprove EMSO(FO2) convergence law for the binomial random graph
G(n, p) for any constant probability p. More specifically, we prove that there exists an existential
monadic second order sentence with 2 first order variables such that, for every p ∈ (0, 1), the
probability that it is true on G(n, p) does not converge.

1 Introduction

For undirected graphs, sentences in the monadic second order logic (MSO sentences) are
constructed using relational symbols ∼ (interpreted as adjacency) and =, logical connectives
¬,→,↔,∨,∧, first order (FO) variables x, y, x1, . . . that express vertices of a graph, MSO
variables X, Y,X1, . . . that express unary predicates, quantifiers ∀,∃ and parentheses (for formal
definitions, see [9]). If, in an MSO sentence φ, all the MSO variables are existential and in the
beginning, then the sentence is called existential monadic second order (EMSO). For example,
the EMSO sentence

∃X [∃x1∃x2 X(x1) ∧ ¬X(x2)] ∧ ¬[∃y∃z X(y) ∧ ¬X(z) ∧ y ∼ z]

expresses the property of being disconnected. Note that this sentence has 1 monadic variable
and 4 FO variables but it can be easily rewritten with only 2 FO variables by identifying y
with x1 and z with x2. In what follows, for a sentence φ, we use the usual notation from model
theory G |= φ if φ is true for G.

In [8], Kaufmann and Shelah disproved the MSO 0-1 law (0-1 law for a logic L states that
every sentence ϕ ∈ L is either true on (asymptotically) almost all graphs on the vertex set
[n] := {1, . . . , n} as n → ∞, or false on almost all graphs). Moreover, they even disproved
a weaker logical law which is called the MSO convergence law (convergence law for a logic L
states that, for every sentence ϕ ∈ L, the fraction of graphs on the vertex set [n] satisfying ϕ
converges as n → ∞). In terms of random graphs, their result can be formulated as follows:
there exists an MSO sentence ϕ such that P(G(n, 1/2) |= ϕ) does not converge as n → ∞.
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Recall that, for p ∈ (0, 1), the binomial random graph G(n, p) is a graph on [n] with each pair
of vertices connected by an edge with probability p and independently of other pairs. For more
information, we refer readers to the books [1, 3, 7]. In contrast, G(n, 1/2) obeys first-order
(FO) 0-1 law [4, 5]. In 2001, Le Bars [2] disproved EMSO convergence law for G(n, 1/2) and
conjectured that, for EMSO sentences with 2 FO variables (or, shortly, EMSO(FO2) sentences),
G(n, 1/2) obeys the zero-one law. In 2019, Popova and the second author [11] disproved this
conjecture. Notice that all the above results but the last one can be easily generalized to ar-
bitrary constant edge probability p. In [11], it is noticed that the Le Bars conjecture fails for
a dense set of p ∈ (0, 1). In this paper, we disprove the Le Bars conjecture for all p ∈ (0, 1).
We prove something even stronger: there exists a EMSO(FO2) sentence ϕ such that, for every
p ∈ (0, 1), {P[G(n, p) |= ϕ]}n does not converge. Notice that this one sentence disproves the
convergence law for all p. Let us define the sentence.

LetX(k, `,m) be the number of 6-tuples (X1, x1, X2, x2, X3, x3), consisting of setsX1, X2, X3 ⊂
[n] and vertices x1 ∈ X1, x2 ∈ X2, x3 ∈ X3, such that

• |X1| = k, |X2| = `, |X3| = m and Xi ∩Xj = ∅ for i 6= j,

• each Xi dominates [n] \ (X1 tX2 tX3), i.e. every vertex from [n] \ (X1 tX2 tX3) has
at least one neighbor in each Xi,

• for any distinct i, j ∈ {1, 2, 3}, there is exactly one edge between Xi and Xj — namely,
the edge between xi and xj.

Theorem 1. For any constant p ∈ (0, 1), P(∃k, `,m X(k, `,m) > 0) does not converge as
n→∞.

Clearly, the property {∃k, `,m X(k, `,m) > 0} can be defined in EMSO(FO2), e.g., by the
following sentence:

∃X1∃X2∃X3 DIS(X1, X2, X3) ∧DOM(X1, X2, X3) ∧ φ1(X1, X2, X3) ∧ φ2(X1, X2, X3),

where the formula

DIS(X1, X2, X3) =
∧

1≤i<j≤3

(
∀x∀y [Xi(x) ∧Xj(y)]⇒ [x 6= y]

)
says that X1, X2, X3 are disjoint; the formula

DOM(X1, X2, X3) = ∀x
[
¬(X1(x) ∨X2(x) ∨X3(x))

]
⇒
[ 3∧
j=1

(∃y Xj(y) ∧ (x ∼ y))

]
says that each vertex from [n] \ (X1 tX2 tX3) has a neighbor in each Xi; the formula

φ1(X1, X2, X3) =
3∧
i=1

(
∃x Xi(x) ∧

(
∀y [(y 6= x) ∧Xi(y)]⇒

[
∀x

(∨
j 6=i

Xj(x)

)
⇒ (x � y)

]))
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says that, for every i ∈ {1, 2, 3}, there is at most one vertex that has neighbors in sets Xj,
j 6= i; the formula

φ2(X1, X2, X3) =
∧

1≤i<j≤3

(
∃x∃y Xi(x) ∧Xj(y) ∧ (x ∼ y)

)
says that, for any two distinct Xi, Xj, there exists an edge between them. Clearly, φ1∧φ2 is true
if and only if there exist x1 ∈ X1, x2 ∈ X2, x3 ∈ X3, such that, for any distinct i, j ∈ {1, 2, 3},
there is exactly one edge between Xi and Xj — the edge between xi and xj.

We prove Theorem 1 in the following way. First, we show that, for some sequence of positive
integers (n

(1)
i , i ∈ N),

∑
k,`,m EX(k, `,m) → 0 (random variables are defined on G(n

(1)
i , p)) as

i → ∞. Then, we show that, for another sequence (n
(2)
i , i ∈ N), there exists k = k(i) such

that P(X(k, k, k) > 0) is bounded away from 0 for all large enough i (using second moment
methods).

We compute EX(k, `,m) and study its behavior in Section 2. Sections 3, 4 present the

sequences n
(1)
i , n

(2)
i respectively and prove that they are as desired.

Remark. It is easy to see, using the union bound, that with asymptotical probability 1 in
G(n, p), there are no three sets X1, X2, X3 such that each Xi dominates [n] \ (X1 t X2 t X3)
and there are no edges between distinct Xi and Xj. It means that there exists a sequence {ni}i
such that, with a probability that is bounded away from 0 for large enough i, one can remove
at most 3 edges from G(ni, p) such that the modified graph and G(ni, p) are EMSO(FO2)–
distinguishable. On the other hand, it is impossible to remove a bounded number of edges
from G(n, p) to make it FO–distinguishable from the original graph (with a probability that
is bounded away from 0 for large enough n). Indeed, the FO almost sure theory T of G(n, p)
is complete and its set of axioms E consists of so called extension axioms (see, e.g., [12]). It
is straightforward that all axioms from E hold with asymptotical probability 1 after a deletion
of any bounded set of edges from G(n, p). From the completeness and the FO 0-1 law, our
observation follows.

2 Expectation

Let Dn := {x, y, z ≥ 1 : x+ y + z ≤ n} and consider integers k, `,m ∈ Dn. Then, clearly,

EX(k, `,m) =
n!

k!`!m!(n− k − `−m)!
(k · ` ·m)× (1− p)k`+`m+km−3p3×

×
∏

v∈[n]\(X1∪X2∪X3)

[
(1− (1− p)k)(1− (1− p)`)(1− (1− p)m)

]
≤ (1)

nk+`+mek+`+m

kk``mm
exp

(
ln(k`m) + (k`+ km+ `m− 3) ln(1− p) + 3 ln p

− (n− k − `−m)[(1− p)k + (1− p)` + (1− p)m]

)
= ef(k,`,m)+g(k,`,m), (2)

3



where f and g are two functions defined on Dn as follows:

f(k, `,m) = k ln(n/k) + ` ln(n/`) +m ln(n/m) + ln(k`m) + k + `+m

− n((1− p)k + (1− p)` + (1− p)m) + (k`+ km+ `m− 3) ln(1− p) + 3 ln p, (3)

g(k, `,m) = (k + `+m)[(1− p)k + (1− p)` + (1− p)m]. (4)

Let us now compute the partial derivatives:

∂f

∂k
= ln

n

k
+ (`+m) ln(1− p) +

1

k
− n(1− p)k ln(1− p) + 1,

∂2f

∂k2
= −1

k
− 1

k2
− n(1− p)k ln2(1− p),

∂2f

∂k∂`
=

∂2f

∂`∂m
=

∂2f

∂k∂m
= ln(1− p).

Other derivatives can be obtained by using the symmetry of f . Let us find k∗ such that
∂f
∂k

∣∣
(k∗,k∗,k∗)

= ∂f
∂`

∣∣
(k∗,k∗,k∗)

= ∂f
∂m

∣∣
(k∗,k∗,k∗)

= 0. There is exactly one such k∗ since the equation

ln
n

k
+ 2k ln(1− p) +

1

k
− n(1− p)k ln(1− p) + 1 = 0

has the unique solution

k∗ =
lnn− ln lnn+ ln ln 1

1−p

ln 1
1−p

+O

(
ln lnn

lnn

)
. (5)

Let us show that A = (k∗, k∗, k∗) is a point of local maximum of f for all n large enough.
Consider the Hessian matrix

C =



∂2f
∂k2

∣∣∣
A

∂2f
∂k∂`

∣∣∣
A

∂2f
∂k∂m

∣∣∣
A

∂2f
∂k∂`

∣∣∣
A

∂2f
∂`2

∣∣∣
A

∂2f
∂`∂m

∣∣∣
A

∂2f
∂k∂m

∣∣∣
A

∂2f
∂`∂m

∣∣∣
A

∂2f
∂m2

∣∣∣
A


= ln(1−p)


lnn(1 + o(1)) 1 1

1 lnn(1 + o(1)) 1

1 1 lnn(1 + o(1))

 .

By Sylvester’s criterion [6, Theorem 7.2.5], it is negative-definite for all n large enough: the
leading principal minors equal

ln(1− p) lnn(1 + o(1)) < 0,

det

[
ln(1− p)

(
lnn(1 + o(1)) 1

1 lnn(1 + o(1))

)]
= ln2(1− p) ln2 n(1 + o(1)) > 0,

detC = ln3(1− p) ln3 n(1 + o(1)) < 0.

Therefore, A is indeed a local maximum point.
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We have

f(A) = 3k∗ (lnn− ln k∗)− 3n(1− p)k∗ + 3(k∗)2 ln(1− p) + 3k∗ +O(ln lnn)

= 3k∗ (lnn− ln k∗ + k∗ ln(1− p) + 1)− 3 lnn

ln 1
1−p

+O(ln lnn)

= 3k∗ − 3 lnn

ln 1
1−p

+O(ln lnn) = O(ln lnn).

Notice that k∗ is not necessarily an integer. In Section 3, we show that n can be chosen in
a way such that k∗ = bk∗c + 1

2
+ o(1). In this case, the following lemma appears to be useful

for bounding from above EX(k, `,m) for all possible k, `,m (in particular, it implies that, for
such n, f(A) bounds from above f(k, `,m) for all integer (k, `,m) ∈ Dn).

Lemma 2. Uniformly over all (k, `,m) ∈ Dn such that min{|k−k∗|, |`−k∗|, |m−k∗|} ≥ 1
2
+o(1),

f(k, `,m) ≤ −
ln 1

1−p

2
lnn(1 + o(1))

[
(k − k∗)2 + (`− k∗)2 + (m− k∗)2

]
. (6)

Proof. Let us set ∆1 = k − k∗,∆2 = `− `∗,∆3 = m−m∗. Due to (3),

f(k, `,m)− f(k∗, k∗, k∗) ≤ − ln
1

1− p
(∆1∆2 + ∆1∆3 + ∆2∆3) +

3∑
i=1

(
∆i lnn− ln

(k∗ + ∆i)
k∗+∆i

(k∗)k∗
− n(1− p)k∗

(
(1− p)∆i − 1

)
− 2∆ik

∗ ln
1

1− p
+ 2|∆i|

)
≤

3∑
i=1

(
∆2
i ln 1

1−p

2
− k∗ ln

k∗ + ∆i

k∗
−∆i ln k

∗ −
lnn

(
(1− p)∆i − 1 + o(1)

)
ln 1

1−p
−∆i lnn(1 + o(1))

)
,

where the last inequality follows from the inequalities −∆1∆2−∆1∆3−∆2∆3 ≤ 1
2
(∆2

1+∆2
2+∆2

3)

and −∆i ln
(
1 + ∆i

k∗

)
≤ 0.

Notice that −k∗ ln(1 + ∆i/k
∗) ≤ −∆i ln k

∗I(∆i ≤ 0). Indeed, for positive ∆i, the inequality
is obvious. If ∆i ≤ 0, then it is sufficient to verify the inequality only for boundary values
∆i = 0 and ∆i = 1− k∗ (the function −k∗ ln(1 + x/k∗) + x ln k∗ changes its monotonicity only
once on [1− k∗, 0]: first, it decreases and, after x = k∗/ ln k∗ − k∗, it increases). We get

f(k, `,m)− f(k∗, k∗, k∗) ≤
3∑
i=1

(
∆2
i ln 1

1−p

2
−∆i lnn−

lnn

ln 1
1−p

(
(1− p)∆i − 1

))
(1 + o(1)) =

[
3∑
i=1

∆2
i ln 1

1−p

2
− lnn

ln 1
1−p

3∑
i=1

γ

(
∆i ln

1

1− p

)]
(1 + o(1)) ≤ 1 + o(1)

2
ln

1

1− p

3∑
i=1

∆2
i (1− lnn),

where γ(x) = x+ e−x − 1 ≤ x2/2 for all x > 0. Inequality (6) follows.
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3 A sequence of small probabilities

Let us find a sequence (n
(1)
i , i ∈ N) such that P(∃k, `,m X(k, `,m) > 0)→ 0 as i→∞.

For i ∈ N, set

n := n
(1)
i =

⌊(
1

1− p

)i+ 1
2

i

⌋
.

Clearly, k∗ = k∗(n) = i+ 1
2

+ o(1) (k∗ is defined in (5)).
Using Lemma 2 and inequality (2), we get that, uniformly over all k, `,m ∈ Dn,

EX(k, `,m) ≤ e
− 1

2
ln 1

1−p
lnn(1+o(1))

[
(k−k∗)2+(`−k∗)2+(m−k∗)2

]
+g(k,`,m)

.

Notice that

g(k, `,m) < 3

[
|k − k∗|+ |`− k∗|+ |m− k∗|

]
+ 3k∗

[
(1− p)k + (1− p)` + (1− p)m

]
and

3k∗
[
(1− p)k + (1− p)` + (1− p)m

]
= o(1) lnn

[
(k − k∗)2 + (`− k∗)2 + (m− k∗)2

]
.

Therefore,

EX(k, `,m) ≤ e
− 1

2
ln 1

1−p
lnn(1+o(1))

[
(k−k∗)2+(`−k∗)2+(m−k∗)2

]
.

By the union bound and Markov’s inequality,

P

(
∃k, `,m ∈ Dn X(k, `,m) > 0

)
≤

∑
k,`,m∈Dn

EX(k, `,m) ≤

[
∞∑
j=1

e−
j
8

ln 1
1−p

lnn(1+o(1))

]3

= o(1).

Therefore, (n
(1)
i , i ∈ N) is the desired sequence.

4 A sequence of large probabilities

Here, we introduce a sequence (n
(2)
i , i ∈ N), such that, for some k = k(n

(2)
i ), P(X(k, k, k) >

0) is bounded away from 0 for all i large enough. For i ∈ N, define

n
(2)
i =

⌊(
1

1− p

)i
i

⌋
. (7)

Notice that k∗ = k∗(n
(2)
i ) = i + o(1), where k∗ is defined in (5). Setting n = n

(2)
k for any

6



k ∈ N, we have

EX(k, k, k) =
n!

k!k!k!(n− 3k)!
k3(1− p)3k2−3 · p3 ·

[
(1− (1− p)k)

]3(n−3k)

=
nn
√

2πn

k3k
√

(2πk)3 · (n− 3k)n−3k
√

2π(n− 3k)
· k3(1− p)3k2−3p3 · e−3n(1−p)k(1 + o(1))

=
n3ke3k

k3k
√

(2π)3

(
p

1− p

)3

k3/2(1− p)3k2e−3k(1 + o(1))

=

(
p

1− p

)3
k3/2√
(2π)3

(1 + o(1)).

(8)

So, EX(k, k, k)→∞ as k →∞. It remains to prove that [EX(k, k, k)]2/EX2(k, k, k) is bounded
away from 0 and apply the Paley–Zygmund inequality [10] (stated below).

Theorem 3 (Paley–Zygmund inequality). Let X be a non-negative random variable with
EX2 <∞. Then for any 0 ≤ λ < 1,

P[X > λEX] ≥ (1− λ)2 (EX)2

E [X2]
.

4.1 Second moment

Let us call a tuple (X1, x1, X2, x2, X3, x3) a k-tuple if sets X1, X2, X3 ⊂ [n] are disjoint,
|X1| = |X2| = |X3| = k and x1 ∈ X1, x2 ∈ X2, x3 ∈ X3. Let us call a k-tuple (X1, x1, X2, x2, X3, x3)
special, if it satisfies the conditions given in Section 1:

• every vertex v from [n] \ (X1 ∪X2 ∪X3) has at least one neighbor in each Xi,

• for any distinct i, j ∈ {1, 2, 3}, there is exactly one edge between Xi and Xj — namely,
the edge between xi and xj.

Let
X = (X1, x1, X2, x2, X3, x3) and Y = (Y1, y1, Y2, y2, Y3, y3), (9)

be two k-tuples. Everywhere below, we denote

r := |(X1 tX2 tX3) ∩ (Y1 t Y2 t Y3)|,

ri := |Yi ∩ (X1 tX2 tX3)|, rj+3 := |Xj ∩ (Y1 t Y2 t Y3)|, ri,j := |Yi ∩Xj|.
Let Γ be the set of all k-tuples. For X ∈ Γ, let ξX be the Bernoulli random variable that

equals 1 if and only if X is special. Then X(k, k, k) =
∑
X∈Γ ξX . From this,

EX2(k, k, k) =
∑
X ,Y∈Γ

ξX ξY .

We compute this value in the usual way by dividing the summation into parts with respect
to the value of r:

EX2(k, k, k) = S1 + S2 + S3, (10)

7



• S1 =
∑
X ,Y∈Γ: r∈(r0,3k−r0) ξX ξY ,

• S2 =
∑
X ,Y∈Γ: r≤r0 ξX ξY ,

• S3 =
∑
X ,Y∈Γ: r≥3k−r0 ξX ξY ,

where r0 =
⌈

16
ln[1/(1−p)]

⌉
.

In Section 4.3, we give upper bounds on S1 and S2. An upper bound on S3 is given in
Section 4.4. In Section 4.5, we apply the Paley–Zygmund inequality and finish the proof.
Auxiliary lemmas that are used for bounds on Si are given in Section 4.2.

4.2 Auxiliary lemmas

For a k-tuple X = (X1, x1, X2, x2, X3, x3), let NX be the event saying that there are no
edges between X1, X2, X3 except for those between x1, x2, x3.

Lemma 4. Let X ,Y be k-tuples. Then

P(NY |NX ) ≤ (1− p)3k2− r2

3
−3.

Figure 1: two k-tuples X and Y with given intersections ri,j, i, j ∈ {1, 2, 3}.

Proof. The number of pairs (u, v) ∈ [n2] such that u ∈ Yi, v ∈ Yj for some i 6= j but u and v
do not belong to Xĩ, Xj̃ for any distinct ĩ, j̃ ∈ {1, 2, 3} equals

3k2 − 1

2

∑
i,j

ri,j
∑

ĩ 6=i,j̃ 6=j

rĩ,j̃ ≥ 3k2 − (r1r2 + r2r3 + r3r1) ≥ 3k2 − r2

3
,

where we used that
r2

9
=

(
r1 + r2 + r3

3

)2

≥ r1r2 + r2r3 + r3r1

3
. (11)

Finally, it remains to notice that conditional probability P(NY |NX ) does not exceed (1 −
p)3k2− r2

3
−3 since we should exclude no more than 3 pairs of vertices (u, v) that coincide with a

pair of vertices from y1, y2, y3.
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Lemma 5. Let X ,Y be k-tuples and there exists s ∈ {1, 2, 3} such that rs > k − r0 and
rs,j < k − 6r0 for all j ∈ {1, 2, 3}. If r0 <

1
30
k, then

P(NY |NX ) ≤ (1− p)3k2− r2

3
−3+4kr0 .

Proof. Repeating previous arguments, it is sufficient to prove that 1
2

∑
i,j ri,j

∑
ĩ 6=i,j̃ 6=j rĩ,j̃ ≤

r2

3
− 4kr0. Without loss of generality, let us assume that rs,1 ≥ rs,2 ≥ rs,3.
Applying (11) for r4, r5, r6, we get

1

2

∑
i,j

ri,j
∑

p6=i,q 6=j

rp,q = (r4r5 + r4r6 + r5r6)−
3∑
i=1

(ri,1ri,2 + ri,2ri,3 + ri,1ri,3) ≤

(r4r5 + r4r6 + r5r6)− (rs,1rs,2 + rs,1rs,3 + rs,2rs,3) ≤
r2

3
− (rs,1rs,2 + rs,1rs,3 + rs,2rs,3) ≤ r2

3
− rs,1(rs − rs,1) <

r2

3
− rs,1(k − r0 − rs,1) ≤

r2

3
− (k − 6r0)(k − r0 − (k − 6r0)) =

r2

3
− 5r0(k − 6r0) ≤ r2

3
− 4r0k (12)

since the function f(x) = x(k − r0 − x) is concave on [k−r0
3
, k − 6r0], and so, it achieves the

minimum value at one of the ends of the segment. Clearly, the value at the right end is
smaller.

Lemma 6. Let r0 > 0 be a fixed number. Let X ,Y be k-tuples (9) and r ≤ r0. Then the
probability that each Xj, j ∈ {1, 2, 3}, and each Yi, i ∈ {1, 2, 3}, are dominating sets in [n] \
((X1 tX2 tX3) ∪ (Y1 t Y2 t Y3)) does not exceed (1− 6(1− p)k)n(1 + o(1)).

Proof. Fix a vertex v ∈ [n] \ ((X1 t X2 t X3) ∪ (Y1 t Y2 t Y3)). Set X := X1 t X2 t X3,
Y := Y1 t Y2 t Y3. Then {v has neighbors in each Xj and each Yi} ⊂ A ∪ B ∪ C, where

• A =

{
∀i ∈ {1, 2, 3} v has neighbors both in Xi \ Y and in Yi \X

}
,

• B =

{
∃i ∈ {1, 2, 3} v has a neighbor in Xi∩Y and does not have a neighbor in Xi \Y

}
,

• C =

{
∃i ∈ {1, 2, 3} v has a neighbor in Yi∩X and does not have a neighbor in Yi \X

}
.

Clearly,

P(A) =
6∏
i=1

(1− (1− p)k−ri).

P(v has a neighbor in Yi∩X and does not have a neighbor in Yi\X) = (1−p)k−ri(1−(1−p)ri),

P(v has a neighbor in Xj∩Y and does not have a neighbor in Xj\Y ) = (1−p)k−rj+3(1−(1−p)rj+3).

9



Therefore,

P(A ∪ B ∪ C) ≤
6∏
i=1

(1− (1− p)k−ri) +
6∑
i=1

(1− p)k−ri(1− (1− p)ri) =

1−
6∑
i=1

(1− p)k−ri +O
(
(1− p)2k

)
+

6∑
i=1

((1− p)k−ri − (1− p)k) = 1− 6(1− p)k +O
(
(1− p)2k

)
.

So, multiplying over v ∈ n\((X1tX2tX3)∪(Y1tY2tY3)) and recalling that n = bk/(1−p)kc,
we get the desired bound.

4.3 Small and medium intersections

In this section, we estimate S1 and S2.

By Lemma 4 and Lemma 6,

S1 ≤
3k−r0∑
r=r0

(
n

3k

)
33kk3

(
n

3k − r

)(
3k

r

)
33kk3(1− p)3k2−3(1− p)3k2− r2

3
−3, (13)

S2 ≤
∑
r≤r0

n!

k!k!k!(n− 3k)!
(1−p)3k2−3k3

∑
s1,s2,s3

ns1ns2ns3

s1!s2!s3!
(1−p)3k2− r2

3
−3k3(1−6(1−p)k)n(1+o(1)),

(14)
where the second summation is over all non-negative integers s1, s2, s3 such that s1+s2+s3 =

3k − r and, for each i ∈ {1, 2, 3}, |si − k| ≤ r0.

From (13), we get that, for k large enough,

S1 ≤
3k−r0∑
r=r0

(en
3k

)3k
(

en

3k − r

)3k−r

23k36kk6(1− p)6k2−6− r2

3 ≤

3k−r0∑
r=r0

(n
k

)6k−r (3623)
k
k6e6k−r(

1− r
3k

)3k−r (1− p)6k2−6− 1
3
r2 ≤

3k−r0∑
r=r0

(1− p)rk−6− r2

3 e15k,

where the last inequality is obtained from

• the definition of n (we get n ≤ k(1− p)−k),

• the inequality ln(1 − x) > −x − x2 that is true for all x ∈ (0, 1) (it is applied here with
x = r

3k
),

• and the inequality k6 < Ck that is true for any C > 1 and large enough k (it is applied
here with C = e9

3623
> 1).

10



Finally, we get that

S1 <

3k−r0∑
r=r0

(
(1− p)r−

6
k
− r2

3k · e15
)k

= o(1) (15)

since, for r ∈ [r0, 3k − r0], we have r − 6
k
− r2

3k
≥ r0(1− 6

kr0
− r0

3k
) = r0(1− o(1)) and due to the

choice of r0 >
16

ln[1/(1−p)] .

It remains to bound S2. For k large enough, we get

S2 ≤
(n/k)3k

k3/2
(
1− 3k

n

)n−3k
(1− p)6k2− r20

3
−6k6(1− 6(1− p)k)n ×

∑
r≤r0

∑
s1,s2,s3

ns1ns2ns3

s1!s2!s3!
≤

c1e
3kk9/2(1− p)3k2(1− 6(1− p)k)n

∑
r≤r0

∑
s1,s2,s3

n3k−r

s1!s2!s3!

for some positive constant c1, where the last inequality follows from the definition of n and the
inequality ln(1− x) ≥ − x

1−x applied to x = 3k
n

.
Notice that, for s1, s2, s3 such that s1 + s2 + s3 = 3k − r and |si − k| ≤ r0, we get that

s1!s2!s3! ≥
√
s1s2s3s

s1
1 s

s2
2 s

s3
3 e
−s1−s2−s3 ≥

√
(k − r0)3

(
k − r

3

)3k−r
er−3k

since the minimum value of ss11 s
s2
2 s

s3
3 is achieved when s1 = s2 = s3. Therefore, we get

S2 ≤ c2e
3kk3(1− p)3k2

(
1− 6(1− p)k

)n∑
r≤r0

(
en

k − r/3

)3k−r

≤ r0c2e
3kk3(1− p)3k2e−6n(1−p)k

(en
k

)3k

≤ c3k
3 (16)

for some positive constants c2 and c3.

4.4 Large intersections

In this section we produce an upper bound for S3. We let S3 = S1
3 + S2

3 , where S1
3 is the

summation over all X ,Y such that r > 3k − r0 and for each Yi there exists Xj which almost
coincides with Yi (see Figure 2):

∀i ∈ {1, 2, 3} ∃j ∈ {1, 2, 3} : ri,j ≥ k − 6r0. (17)

Notice that given X and r4, r5, r6, the number of ways to choose Yi ∩ (X1 t X2 t X3),
i ∈ {1, 2, 3}, is bounded from above by(

k

k − r4

)(
k

k − r5

)(
k

k − r6

)
33k−r ≤ (3k)3k−r.

Also, given X and Y1, Y2, Y3 such that (17) holds, the number of choices of y1, y2, y3 such
that (Y1, y1, Y2, y2, Y3, y3) has a chance to be special is O(k) since, for every possible choice

11



Figure 2: two types of intersections between Yi and Xj. Case 1 is presented in simplified form
(in general, each Yi may have a non-empty intersection with each Xj).

of (y1, y2, y3), there exists j ∈ {1, 2, 3} such that, for every i ∈ {1, 2, 3}, yi belongs to either
{x1, x2, x3}, or (Y1 t Y2 t Y3) \ (X1 tX2 tX3) (this set has a bounded size), or Xj. Indeed, it
is not possible that two y-vertices belong to different X-sets and do not belong to {x1, x2, x3}
because there are no edges between X1, X2, X3 other than those between x1, x2, x3.

Finally, given X and Y ,

P(NY |NX ) ≤ (1− p)−3+
∑

i∈{1,2,3}(k−ri)(r−ri).

Since r1 + r2 + r3 = r, we get∑
i

(k−ri)(r−ri) = 3kr−k
∑
i

ri−r2+
∑
i

r2
i = 2kr−r2+

∑
i

ri ≥ 2kr−r2+r2/3 = 2r(3k−r)/3.

Combining all the above bounds, we get that there exists C > 0 such that

S1
3 ≤

n!

k!k!k!(n− 3k)!
p3(1− p)3k2−3k3(1− (1− p)k)3(n−6k)×

Ckn3k−r(3k)3k−r(1− p)2r(3k−r)/3. (18)

The product in the first line of (18) asymptotically equals to EX(k, k, k) = O(k3/2) due to
(8). Moreover,

(
3nk(1− p)2r/3

)3k−r ≤

(
3

(
1

1− p

)k
k2(1− p)2k−2r0/3

)3k−r

= O(1).

Therefore, S1
3 = O(k5/2).
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It remains to bounds S2
3 . Applying Lemma 5 and inequalities 3k − r ≤ r0, r0 ≥ 16/ ln 1

1−p ,
we get

S2
3 ≤

[
n!

k!k!k!(n− 3k)!
(1− p)3k2−3k3(1− (1− p)k)3(n−6k)

]
n3k−r33kk3(1− p)4kr0−3 =

O

(
k4.533k

(
k

(1− p)k

)3k−r

(1− p)4kr0

)
= O

(
k4.533kkr0(1− p)3kr0

)
= o(1).

Finally,
S3 = S1

3 + S2
3 = O(k5/2). (19)

4.5 Final steps

Set X = X(k, k, k). Due to (8), EX ∼ p3

(
√

2π(1−p))
3k3/2. On the other hand, combining (10)

with bounds (15), (16), (19), we get that there exists c > 0 such that EX2 = S1 +S2 +S3 < ck3.
By Paley-Zygmund inequality (Theorem 3), for k large enough,

P(X > 0) ≥ (EX)2

EX2
>

p6

2π(1− p)6c
.

Therefore, (n
(2)
i , i ∈ N) is the desired sequence.
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