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SETS AVOIDING SIX-TERM ARITHMETIC PROGRESSIONS IN Z
n
6 ARE

EXPONENTIALLY SMALL

PÉTER PÁL PACH AND RICHÁRD PALINCZA

Abstract. We show that sets avoiding 6-term arithmetic progressions in Z
n
6 have size at

most 5.709n. It is also pointed out that the “product construction” does not work in this
setting, specially, we show that for the extremal sizes in small dimensions we have r6(Z6) = 5,
r6(Z

2
6) = 25 and 116 ≤ r6(Z

3
6) ≤ 124.

1. Introduction

There has been great interest in finding progression-free sets in Z
n
m := (Z/(mZ))n, espe-

cially when m = 3 or 4. Let rk(Z
n
m) denote the maximal size of a set A ⊂ Z

n
m with no

k distinct elements in arithmetic progression. Note that for m = 3, 4, 5 the properties “no
arithmetic progression of length 3 modulo m” and “no 3 points on any line” are equivalent.
The last property is also well known under the name caps.
The following is known [3, 4, 5, 2] for the cases k = 3, m ∈ {3, 4}:

2.21738 . . .n ≤ r3(Z
n
3 ) ≤ 2.755 . . .n ,

3n/
√
n ≪ r3(Z

n
4 ) ≤ 3.61 . . .n ,

and more generally, for primes p ≥ 3 and some positive constant δp

r3(Z
n
p ) ≤ (p− δp)

n.

(Note that the lower bound for r3(Z
n
3 ) holds only for sufficiently large values of n, the upper

bounds hold for every n.) Indeed the argument yields [1] the bound

r3(Z
n
p ) ≤ (J(p)p)n,

where

(1.1) J(p) =
1

p
min
0<t<1

1− tp

(1− t) t(p−1)/3
.

As J(p) is decreasing and J(3) ≤ 0.9184 one can conclude that for every m ≥ 3 the following
holds (see e.g. [1] and [8]):

(1.2) r3(Z
n
m) ≤ (0.9184m)n

for every m ≥ 3.
Note that the method could be applied for any finite field Fq with q = pα, however, since

r3(F
n
q ) = r3(F

αn
p ) the relevant cases are those when the prime power q is a prime. (The

resulting upper bound from the application to Fpα is worse than the bound coming from the
case of Fp.)
It is easy to see that the sequence (r3(Z

n
m))

1/n converges to some limit α3,m. The main idea
behind this observation is that with the help of the product construction one can bubble up
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constructions found in small dimensions. Namely, if A avoids 3AP’s in dimension n, then
the t-fold direct product A× A× · · · × A

︸ ︷︷ ︸
t

also avoids 3AP’s in dimension tn.

As α3,m < m we may say that 3AP-free sets in Z
n
m are exponentially small when m ≥ 3.

Prior to this work for longer progressions it has not yet been decided in any of the cases
4 ≤ k ≤ m whether rk(Z

n
m) is also exponentially small or of order of magnitude (m− o(1))n

(as n → ∞). In this note we will prove that whenever 6 | m and k ∈ {4, 5, 6} the quantity
rk(Z

n
m) is exponentially small, specially, r6(Z

n
6 ) ≤ 5.709n. It is tempting to also formulate

this statement as lim(r6(Z
n
6 ))

1/n ≤ 5.709, however, somewhat surprisingly, we do not see a
proof of the statement that r6(Z

n
6 )

1/n converges (although we believe it surely does). The
convergence is not immediate, because the product construction does not work in general.
When k = 3 or m is a prime power, the t-fold direct product A×A× · · · ×A

︸ ︷︷ ︸
t

avoids k-AP’s

when A itself is k-AP-free, however, for general k and m this fails to hold. Let us illustrate
this by the case k = 6, m = 6. In dimension 1 we clearly have r6(Z6) = 5, and, for instance,
the set A = {0, 1, 2, 3, 4} is 6AP-free. By taking A × A = {0, 1, 2, 3, 4} × {0, 1, 2, 3, 4} we
obtain a 25-element subset of Z2

6 which contains the following 6AP:

(0, 0), (2, 3), (4, 0), (0, 3), (2, 0), (4, 3).

Although the product construction is not applicable, the value of r6(Z
2
6) still turns out to be

25 = 52, however, we will show that r6(Z
3
6) < 125 = (r6(Z6))

3.
Summarizing our results we prove the following bounds:

Theorem 1.1. For sets without arithmetic progression of length 6 we have the following
results in small dimensions:

r6(Z
1
6) = 5, r6(Z

2
6) = 25, 116 ≤ r6(Z

3
6) ≤ 124.

Theorem 1.2. For sets without arithmetic progression of length 6 we have the following
results:

4.434n ≤ 2nr3(Z
n
3 ) ≤ r6(Z

n
6 ) ≤ 5.709n,

assuming that n is sufficiently large.

If 6 | m, then Z
n
6 is a subgroup of Zn

m, and by using the bound from Theorem 1.2 in each
of the (m/6)n cosets the following corollary is obtained:

Corollary 1.3. If 6 | m and k ∈ {4, 5, 6}, then rk(Z
n
m) ≤ (0.948m)n, if n is sufficiently large.

Finally, we provide another upper bound for r6(Z
n
6 ) in terms of r3(Z

n
3 ).

Theorem 1.4. For sets without arithmetic progression of length 6 we have the following
result:

r6(Z
n
6 ) ≤ 2n+1

√

3nr3(Zn
3 ).

Note that by using the bound r3(Z
n
3 ) ≤ 2.756n Theorem 1.4 implies that r6(Z

n
6 ) ≤ 5.75n

which bound is worse than the one in Theorem 1.2, however, if r3(Z
n
3 ) ≤ 2.69n, then Theo-

rem 1.4 gives a better estimation than Theorem 1.2.
The paper is organized as follows: In Section 2 we give a reformulation for the problem

of finding rk(Z
n
6 ) with k ∈ {3, 4, 5, 6} in terms of possible total sizes of systems of subsets

of Zn
3 satisfying certain properties. In Section 3 we prove Theorem 1.1, Theorem 1.2 and

Theorem 1.4. Some concluding remarks are given in Section 4.
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2. Subset reformulation

We may express Z
n
6 as Z

n
6 = F ⊕ R, where F = {0, 2, 4} ∼= Z

n
3 and R = {0, 3}n ∼= Z

n
2 .

A sequence a1 = f1 + r1, a2 = f2 + r2, . . . , ak = fk + rk (where fi ∈ F, ri ∈ R) forms an
arithmetic progression in Z

n
6 if and only if f1, f2, . . . , fk is an arithmetic progression in Z

n
3

and r1, r2, . . . , rk is an arithmetic progression in Z
n
2 , respectively. Note that if the elements are

distinct, then k ≤ 6. If k = 3, then the progression consists of pairwise different elements if
and only if f1, f2, f3 are distinct. Since the sequence r1, r2, . . . is alternating, for k ∈ {4, 5, 6}
the necessary and sufficient conditions for getting k distinct elements is that f1, f2, f3 are
distinct and r1, r2 are distinct. Using this decomposition we may reformulate the property
that “a subset A ⊆ Z

n
6 avoids k-term arithmetic progressions” in terms of a property of

systems of subsets of Zn
3 . Namely, let A(r) = {f ∈ Z

n
3 : f + r ∈ A} for r ∈ R and let us

define properties (∗)3, (∗)4, (∗)5, (∗)6 as follows:
The system of subsets A(r) (r ∈ Z

n
2 ) satisfies

• property (∗)3, if A(r′) ∪A(r′′) is 3AP-free for every pair r′, r′′ ∈ Z
n
2 ,

• property (∗)4, if it is not possible to choose two different indices r′, r′′ ∈ Z
n
2 and a

3AP a, b, c in Z
n
3 such that a, b ∈ A(r′) and a, c ∈ A(r′′),

• property (∗)5, if it is not possible to choose two different indices r′, r′′ ∈ Z
n
2 and a

3AP a, b, c in Z
n
3 such that a, b, c ∈ A(r′) and a, b ∈ A(r′′),

• property (∗)6, if A(r′)∩A(r′′) is 3AP-free for every pair of distinct indices r′, r′′ ∈ Z
n
2 .

Note that in this reformulation Z
n
2 serves only as an index set of size 2n, its structure does

not play any role.
Let us summarize in the following statement how the reformulation can be used to study

the rk(Z
n
6 ) values.

Proposition 2.1. Let k ∈ {3, 4, 5, 6}. The maximum total size of a system of subsets A(r) ⊆
Z
n
3 (r ∈ Z

n
2) satisfying property (∗)k is rk(Z

n
6 ).

Proof. The statements immediately follow from the structural description of arithmetic pro-
gressions in Z

n
6 . �

Let us mention that the problem of determining the size of the largest 3AP-free subset of
Z
n
6 is equivalent with doing so in case of Zn

3 :

Proposition 2.2. For sets without arithmetic progression of length three the following holds:

r3(Z
n
6 ) = 2nr3(Z

n
3 ).

Proof. If A0 ⊆ Z
n
3 is 3AP-free, then the system A(x) = A0 (x ∈ Z

n
2 ) satisfies property (∗)3,

thus r3(Z
n
6 ) ≥ 2nr3(Z

n
3 ).

On the other hand, if
∑

x∈Zn
2

|A(x)| > 2nr3(Z
n
3 ), then for some x we have |A(x)| > r3(Z

n
3 ),

thus A(x) contains a 3AP, and (∗)3 fails to hold. Hence, r3(Z
n
6 ) = 2nr3(Z

n
3 ). �

In fact the argument only used that 6 has residue 2 modulo 4, and in general it yields the
following statement:

Proposition 2.3. If m = 4M + 2 for some integer M , then

r3(Z
n
m) = 2nr3(Z

n
m/2).
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While studying r3(Z
n
m) there are some technical differences between the cases when m is

odd and when m is divisible by 4, but the case when m is an even number not divisible
by 4 simply reduces to the odd case. We shall mention that for certain composite values
of m there has been some improvements on the trivial corollaries of the prime case, like
r3(Z

n
9 ) ≤ 3nr3(Z

n
3 ). Namely, the method was adapted to odd prime powers [1, 7, 9] and also

to the technically more difficult even case for m = 23 = 8. [8]

3. Proofs

Proof of Theorem 1.1. Dimension 1. Clearly, r6(Z
1
6) = 5. Any 5-element subset of Z1

6 is
trivially 6AP-free.
Dimension 2. Now, we show that r6(Z

2
6) = 25. Using the reformulation from Section 2 we

are interested in the maximal possible total size of a system of four subsets of Z2
3 satisfying

property (∗)6. That is, we would like to determine the maximum of
4∑

i=1

|Ai|, where Ai ⊆
Z
2
3 (1 ≤ i ≤ 4) such that no 3AP is contained in at least two of the subsets Ai. The total

number of 3AP’s in Z
2
3 is 9·8

6
= 12, thus the four subsets A1, A2, A3, A4 can contain at

most twelve 3AP’s in total. It is easy to determine the smallest possible number of 3AP’s
that must be contained in a subset of a given size (by hand or by a computer search). Let
us summarize the results in the table below:

size of A 0 1 2 3 4 5 6 7 8 9
min #3AP in A 0 0 0 0 0 1 2 5 8 12

Let xi denote the number of i-element subsets among A1, A2, A3, A4 (where 0 ≤ i ≤ 9).

Since each 3AP can appear in at most one set Ai, the optimal value for
4∑

i=1

|Ai| can not be

more than the solution of the following integer program:

maxx1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 8x8 + 9x9

subject to
x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 = 4
x5 + 2x6 + 5x7 + 8x8 + 12x9 ≤ 12
x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 : nonnegative integers

(The first constraint ensures that four subsets are chosen, and the second constraint holds,
since the total number of 3AP’s contained in the four subsets can not be more than the total
number of 3AP’s in Z

2
3.)

By solving the above integer program we obtain that the optimal value is 25 which is
attained at x6 = 3, x7 = 1 (everything else is 0). That is, to achieve 25, one of the subsets
must have size 7, and the three other subsets must have size 6.
By symmetry, we may assume that A1 = Z

2
3 \ {u, v}, where u and v are two different

elements. Let w = −u − v be the third point on the line uv. Let α denote the direction of
the line uv. Note that in Z

2
3 there are four possible directions, let us denote the other three

directions by β, γ and δ.
Note that A2, A3, A4 must have size 6 and each of them must contain exactly two 3AP’s.

In Z
2
3 there are two types of 6-element sets: the complement of a 6-element set is either an

affine line or not. To contain only two 3AP’s the sets A2, A3, A4 must all be the complements
of affine lines, in other words, each of them is a union of two parallel lines. Moreover, these
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lines must not be parallel with the line uv, otherwise at least one of them would be contained
in two subsets (in A1 and here).
Also, none of these lines can go through w, as this would result in a 3AP contained both

in A1 and here.
Finally, a line from Ai and a line from Aj (where 2 ≤ i < j ≤ 4) must not be parallel with

each other because of similar reasons. That is, we may assume that A2, A3, A4 are the unions
of two-two lines of directions β, γ, δ, respectively.
Therefore, A2, A3, A4 can be characterized as follows: A2, A3, A4 are all the unions of two

parallel lines, where the directions of the lines are β, γ, δ resp., furthermore each line goes
through u or v. (Thus {A2, A3, A4} is uniquely determined.)
The obtained system {A1, A2, A3, A4} satisfies the conditions, since:

• A1 contains two 3AP’s with direction α and three more 3AP’s that contain w.
• None of the 3AP’s contained in A2, A3, A4 have direction α and none of them contains
w.

• The two-two lines contained in A2, A3, A4 have directions β, γ, δ, respectively.

Hence, we proved that the largest 6AP-free set in Z
2
6 has size 25 (and it is unique in the

above described sense).

Dimension 3. Analogously to the previous case, with a quick computer check we find
that the minimum number of 3AP’s that must be contained in subsets of Z3

3 of given sizes are
the numbers below. (Let mj denote the minimum number of 3AP’s that must be contained
in a set of size j.)

size of A (j) 0 1 2 3 4 5 6 7 8 9 10 11 12 13
min #3AP in A (mj) 0 0 0 0 0 0 0 0 0 0 2 3 4 7

size of A (j) 14 15 16 17 18 19 20 21 22 23 24 25 26 27
min #3AP in A (mj) 10 13 16 20 24 33 42 51 60 70 80 92 104 117

Let xi denote the number of i-element subsets among A1 − A8 (where 0 ≤ i ≤ 27).

Since each 3AP can appear in at most one set Ai, the optimal value for
8∑

i=1

|Ai| can not be

more than the solution of the following integer program:

max
27∑

i=1

ixi

subject to
27∑

i=0

xi = 8

27∑

i=0

mixi ≤ 117

x0, x1, . . . , x27 : nonnegative integers

With the help of an IP solver we obtained that the optimum is 124 yielding the bound

r6(Z
3
6) ≤ 124.

Turning to the lower bound, with computer help we found the following construction where
the total size of the eight subsets is 116:
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Hence,

116 ≤ r6(Z
3
6).

�

Proof of Theorem 1.2. The lower bound follows from Proposition 2.2 and Edel’s [3] lower
bound for r3(Z

n
3 ).

For proving the upper bound it suffices to show that
∑

i∈I

|Ai| ≤ 5.709n if the system of

subsets (of Zn
3 ) {Ai : i ∈ I} satisfies property (∗)6 and |I| = 2n.

We will use a supersaturation extension [6] of the cap set result. This says that any
subset of Zn

3 of density α has three-term arithmetic progression density at least αC , where
C ≈ 13.901 is an explicit constant 1. (Note that this includes counting trivial three-term
arithmetic progressions.)

Let β = 3/21/C ≈ 2.854, then we have βC = 3C

2
. The total size of subsets having size at

most βn is at most 2nβn. Now, we consider the subsets with size larger than βn. Let mi

denote the number of those subsets whose size lies in (2iβn, 2i+1βn]. Since each 3AP can
occur in at most one set, we obtain that

mi(2
iβn/3n)C ≤ 1

yielding that mi ≤ (3/β)Cn2−iC . Therefore, the total size of subsets of size larger than βn is
at most

∞∑

i=0

mi2
i+1βn ≤

∞∑

i=0

(3/β)Cn2−iC2i+1βn = (2β)n
∞∑

i=0

21−(C−1)i ≤ 2.001(2β)n.

Hence, by adding up the obtained upper bounds for sets of size at most βn and larger than
βn it is obtained that

∑
|Ai| ≤ 3.001(2β)n.

�

Proof of Theorem 1.4. It suffices to prove that S :=
∑

i∈I

|Ai| ≤ 2n+1
√

3nr3(Zn
3 ) if the system

of subsets (of Zn
3 ) {Ai : i ∈ I} satisfies property (∗)6 and |I| = 2n.

Let us enumerate the elements of Zn
3 by the positive integers from [3n]. For i ∈ I let vi

be the characteristic vector of Ai, that is, the jth entry of vi is 1 if the element (from Z
n
3 )

1Namely, C = 1 + log 3
log(3/α) , where α = 3J(3) = 2.755 . . .
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labeled by j is contained in Ai and 0 otherwise. Let w :=
∑

i∈I

vi, denote the entries of w by

w1, . . . , w3n. Note that w1 + · · ·+ w3n =
∑

i∈I

|Ai| = S.

By the Cauchy inequality

(3.1) w2 = w2
1 + · · ·+ w2

3n ≥ (w1 + · · ·+ w3n)
2

3n
=

S2

3n
.

Since Ai ∩ Aj is 3AP-free for any two different indices i, j ∈ I we have vivj ≤ r3(Z
n
3 ).

Therefore,

(3.2) w2 =
∑

i∈I

v2i +
∑

i,j∈I,i 6=j

vivj ≤ S + 22nr3(Z
n
3 ).

By comparing (3.1) and (3.2) we obtain that S2 − 3nS − 22n3nr3(Z
n
3 ) ≤ 0 which yields

S ≤ 3n +
√

32n + 22n+23nr3(Z
n
3 )

2
< 2n+1

√

3nr3(Zn
3 ).

�

4. Concluding remarks

In this paper we prove that r6(Z
n
6 ) ≤ 5.709n, which implies that rk(Z

n
m) is exponentially

smaller than mn when 6 | m and k ∈ {4, 5, 6}. Previously this was known only for the cases
3 = k ≤ m, and according to our knowledge there is no pair of k,m with 3 ≤ k ≤ m such
that rk(Z

n
m) = (m− o(1))n is known to be true.
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