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Abstract

The spectral bundle method proposed by Helmberg and Rendl [HR00] is well es-
tablished for solving large-scale semidefinite programs (SDP) thanks to its low per
iteration computational complexity and strong practical performance. In this paper,
we revisit this classic method showing it achieves sublinear convergence rates in terms
of both primal and dual SDPs under merely strong duality, complementing previous
guarantees on primal-dual convergence. Moreover, we show the method speeds up to
linear convergence if (1) structurally, the SDP admits strict complementarity, and (2)
algorithmically, the bundle method captures the rank of the optimal solutions. Such
complementary and low rank structure is prevalent in many modern and classical appli-
cations. The linear convergence result is established via an eigenvalue approximation
lemma which might be of independent interest. Numerically, we confirm our theoret-
ical findings that the spectral bundle method, for modern and classical applications,
speeds up under these conditions. Finally, we show that the spectral bundle method
combined with a recent matrix sketching technique is able to solve an SDP with billions
of decision variables in a matter of minutes.

1 Introduction

We consider the problem of solving semidefinite programs (SDPs) of the form

maximize
X∈Sn⊂Rn×n

〈−C,X〉

subject to AX = b

X � 0,

(P)

where the decision variable X ∈ Sn ⊂ Rn×n is a symmetric matrix and n may be large
(numerically, we consider up to n ≈ 160, 000, resulting in billions of entries in X), and the
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problem data is comprised of a symmetric cost matrix C ∈ Sn, a linear map A : Sn → Rm,
and a right hand side vector b ∈ Rn. The task of solving (P) can often be equivalently
approached via its dual problem, optimizing over y ∈ Rn,

minimize
y∈Rm

〈−b, y〉

subject to A∗y � C
(D)

where A∗ denotes the adjoint map of A. We denote the solution sets of (P) and (D) as X?
and Y? respectively.

Semidefinite programming occurs at the heart of many important large-scale problems
(for example, matrix completion [CR09], max-cut [GW95], community detection [Ban18],
and phase retrieval [CSV13]). A huge branch of literature has been devoted to the problem of
efficiently solving SDPs like (P) [Tod01, NN89, NN94, Ali95, BM03, GM75, HR00, BPC+11,
FM16, FM16, YFC19, Ren14, DYC+19]. We refer the reader to [Mon03], [DYC+19, Section
2], and [MHA19, Section 3 and 4], surveying this myriad of methods.

Among these methods, spectral bundle methods, proposed by Helmberg and Rendl [HR00],
stand out due to their low per iteration complexity and fast practical convergence. These
two properties are critical to effectively tackling large-scale SDPs (as a high iteration cost
may make computing even a single iteration prohibitively slow). In this work, we derive
convergence guarantees for a family of spectral bundle methods and identify further com-
putational benefits in both convergence rates and per iteration costs whenever the optimal
solutions possess certain low-rank structures, prevalent in many modern applications.

Instead of solving either (P) or (D) directly, Helmberg and Rendl’s spectral method
considers the following equivalent penalization dual problem: for any sufficiently large α,
e.g., larger than the trace of any maximizer of (P) [DYC+19, Lemma 6.1]1, (D) is equivalent
to (in the sense of having the same optimal value and solution set)2

minimize
y∈Rm

F (y) : = 〈−b, y〉+ αmax{λmax(A∗y − C), 0}. (pen-D)

In Section 2, we formally define bundle methods and the considered family of spectral variants
for solving SDPs. The main idea behind these methods is to approximate the nonnegative
eigenvalue function αmax{λmax(A∗y − C), 0} by a maximum of lower bounds indexed by a
small SDP representable set. Roughly speaking, the considered family of spectral methods
maintain this approximation using rp past eigenvectors and rc current eigenvectors of the
matrix A∗(y) − C evaluated at the past and current iterates respectively. We denote a
method from this family as (rp, rc)-SpecBM. There is a rich history of studying methods of
this form, which we provide detailed connections to in Appendix A.

Importantly, the use of a small SDP representable set makes the problem of minimizing
this eigenvalue approximation tractable. This can result in per iteration complexities much
lower than that of many ADMM type methods [BPC+11] or the second-order bundle method

1The lemma in [DYC+19] as written requires the primal solution to be unique, but applies equally when
there are multiple solutions, replacing the condition α > tr(X?) by α > supX?∈X?

tr(X?).
2Actually, the spectral bundle method of Helmberg and Rendl requires the trace of every feasible X for

(P) to be the same and deals with the eigenvalues instead of the maximum of the eigenvalues and zero in
(pen-D). However, the method extends directly to the general setting without fixed trace.
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in [Ous00], which both require full eigenvalue decomposition of an n × n matrix, requiring
O(n3) operations in general. Section 2.3 discusses the iteration cost and computational
advantages of this approach (which can rely on as few as one eigenvector computation per
iteration, rc = 1).

Spectral bundle methods for solving SDPs have received considerable attention since
being first proposed in [HR00] and have been considered in many extended settings by the
algorithmic variants of [HK02, ANP08, HOR14]. Despite the success of these methods,
past convergence theory, e.g., [HR00, Lemma 5] 3, mainly focuses on whether the iterates
converge, rather than their convergence rates. This work’s analysis of spectral methods aims
to explain and predict empirical performance and quantify the tradeoffs related to these
methods’ low iteration costs.

Our contributions. In this work, we establish convergence guarantees for a broad family
of spectral bundle methods, (rp, rc)-SpecBM, and show that these convergence rates speed
up substantially under appropriate structural conditions, matching observed performance.

• Sublinear Spectral Bundle Method convergence rates: In Theorem 3.1, we
show that any configuration of (rp, rc)-SpecBM admits a O(1/ε3) convergence rate in
terms of the dual objective and O(1/ε6) in terms of the primal merely assuming strong
duality holds. Additionally, under strict complementarity (formalized in Section 3.1),
dual and primal convergence speeds up to O(1/ε) and O(1/ε2) respectively.

• Linear convergence under low-rankness: In Theorem 3.2, we further show linear
convergence if (1) strict complementarity and dual uniqueness hold and (2) the number
of eigenvectors computed each iteration rc exceeds the largest of any primal optimal
solution’s rank. This fast convergence result is based on a novel eigenvalue approx-
imation Lemma 3.9 showing that when the optimal solution is low rank, the bundle
method’s model objective becomes quadratically accurate.

• Scalability and storage reductions under low-rankness: Finally, we show that
spectral bundle methods can scale up to tackle large-scale SDPs whenever solutions
possess the appropriate low-rank structure. This is accomplished in part by incor-
porating the matrix sketching ideas of [TYUC17b, YUTC17]. Whenever the primal
optimal solutions are low-rank, this tool enables the spectral bundle method to be ap-
plied without ever storing a matrix X with n2 entries, attaining the notion of storage
optimality discussed in [DYC+19, Section 1.2]. Section 5 demonstrates these scalability
gains following from configuring the spectral method based on our linear convergence
theory and utilizing the improved time and space complexity induced by sketching.

1.1 Low Rankness and Algorithm Performance

A ubiquitous structure among applications of semidefinite programming is that the solutions
of (P) are low rank. For many applications, an explicit upper bound on this rank is available
from domain knowledge:

3We note that [HR00, Lemma 5] only shows the dual objective converges and did not address the primal
convergence. An analysis of primal convergence is given in [Hel04, Theorem 15.6]. Our results in Section 3
can also be used to conclude primal convergence from dual convergence.
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• Recommendation systems and matrix completion: The user-item rating matrix
underlying many recommendation systems is usually incomplete and requires filling-in
missing entries. This problem is also known as matrix completion. It has been observed
in [CC18, figure 5] and [FDCU19, figure 3] that for different movie-lens datasets [HK15],
the underlying complete matrix has rank no more than 30 even though there are
thousands of users and items.

• Sensor networks and Euclidean distance matrix completion: In sensor net-
works, usually only a few pairs’ distances are known or measured while the distance
matrix for all the pairs is desired. This is also known as the Euclidean distance matrix
completion problem. When distances are actually measured in our three-dimensional
world, the resulting distance matrix must have rank at most three [AKW99, SY07].

• Community detection and Z2 synchronization: The problem of community de-
tection aims to identify clusters in a graph where nodes within the same community
are more likely to have an edge. The SDP formulation of this problem [GV16, LCX21]
has a solution with rank no more than the number of clusters. In an idealized two
cluster problem and its continuous version [ABBS14, LCX21] (Z2 synchronization),
the optimal SDP solution has rank one. Both of these models play an important role
in understanding the theoretical limit of computational methods [BBS17, ABBS14].

Other examples of the prevalence of low-rank optimal solutions include Max-Cut, which has
solution rank no more than 30 for various datasets [DU20, Table 1], and phase retrieval
[CESV15], which always has a unique rank one solution.

The presence of low-rank solutions is critical to enabling our linear convergence guarantees
and improvements in iteration cost (in both time and space complexity) for spectral bundle
methods. Our linear convergence results require the parameter rc to be greater or equal
to the dimension of the null space of every dual optimal solution’s slack matrix. Under
strict complementarity and primal-dual uniqueness, this condition is equivalent to rc ≥
rank(X?), i.e, the parameter rc is larger than or equal to the primal solution rank. Both
conditions are satisfied for many applications as verified in [DU20]. Moreover, we observe in
our numerics that even if the dual uniqueness condition fails (which indeed occurs for matrix
completion [DU20]) as long as strict complementarity holds, we only need rc ≥ rank(X?).

A larger choice of rc increases the per iteration computational complexity of the spectral
bundle method (discussed in Section 2.3). Hence selecting rc near rank(X?) maintains fast
linear convergence while notably reducing the method’s per iteration time complexity for
applications with low-rank solutions. Similarly, we discuss storage reduction techniques in
Section 5.2 utilizing an estimate upper bounding the optimal solution rank. As a result, the
amount of needed memory can scale linearly with this estimate, establishing improved space
complexity for low-rank applications as well.

1.2 Paper Organization and Notation

Section 2 formally introduces bundle methods (based on proximal regularization and aggre-
gation) and the family of spectral bundle methods considered, (rp, rc)-SpecBM. Then Section
3 presents our main convergence theory. Section 5 numerically demonstrates convergence
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speed-ups whenever the parameter rc is chosen larger than the optimal solution rank, match-
ing our theory, and shows how matrix sketching ideas can be applied to notably scale up
this approach (to problems with billions of entries in X).

Notation. We denote members of the optimal solution sets by X? ∈ X? and y? ∈ Y?.
We equip Sn and Rm with the trace inner product and the dot product respectively, and
denoted both as 〈·, ·〉. The induced norms are both denoted as ‖·‖. For a symmetric matrix
A ∈ Sn, we denote its eigenvalues as λmax(A) = λ1(A) ≥ · · · ≥ λn(A) with a corresponding
set of orthonormal eigenvectors v1, v2, . . . , vn. The notation Sn+ ⊂ Sn denotes the set of n×n
symmetric positive semidefinite matrices. The matrix operator two norm, Frobenius norm,
and nuclear norm are denoted as ‖·‖

op
, ‖·‖

F
, and ‖·‖∗ respectively. We denote the maximum

nuclear norm of the primal solution set by DX? = supX?∈X?
‖X?‖∗ and of a penalized dual

level set by Dy0 = supF (y)≤F (y0)‖y‖. The dual slack matrix for each y ∈ Rm is defined as
Z(y):=C − A∗y. The operator norm of A∗ is defined as ‖A∗‖

op
= maxy∈Rm,‖y‖≤1‖A∗y‖F

.
For a closed set X ⊂ Rm and a point z ∈ Rm, we define the distance of z to X ⊂ Rm as
dist(z,X ) = infx∈X‖x− z‖.

2 Preliminaries and Spectral Bundle Methods

In this section, we first review two standard conditions (strong duality and strict complemen-
tarity) of well-behaved semidefinite programs. Then Section 2.1 introduces the framework
for proximal bundle methods and Section 2.2 specializes this to define spectral bundle meth-
ods by utilizing carefully constructed eigenvalue approximations (based on a bundle of past
and current eigenvectors). Finally, in Section 2.3, we discuss the needed computations and
per iteration costs to implement such a spectral bundle method.

Throughout, we assume that the pair of semidefinite programming problems (P) and (D)
satisfy strong duality : namely that the solution sets X? and Y? are nonempty, compact and
each pair (X?, y?) ∈ X? × Y? has zero duality gap

p? := 〈−C,X?〉 = 〈−b, y?〉 =: d?.

Note that we require X? and Y? to be nonempty and compact instead of just p? = d?. This
condition holds whenever Slater’s conditions are satisfied by both (P) and (D) and the map
A is surjective.

Following [AHO97, Definition 4], we say a pair (X?, y?) with dual slack matrix Z?(y?) =
C −A∗(y?) satisfies strict complementarity if

rank(X?) + rank(Z?) = n.

Whenever such a pair exists, we say (P) and (D) satisfy strict complementarity. This condi-
tion is satisfied by generic SDPs [AHO97] as well as by many well structured SDPs [DU20].

2.1 Proximal Bundle Methods

A bundle method for solving a generic minimization problem miny∈Rm f(y) constructs an
approximation of the objective f̄t at each iteration t, typically based on (sub)gradient eval-
uations of f at a sequence of points zt (utilizing both the past and current iterates). We
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denote the set of subgradients of a convex function f by ∂f(y) = {g ∈ Rm | f(y′) ≥
f(y) + 〈g, y′ − y〉 for all y′}, referred to as the subdifferential of f at y.

Each iteration of a proximal bundle method computes the following proximal step mini-
mizing this model of the true objective

zt+1 ∈ argmin f̄t(y) +
ρ

2
‖y − yt‖2 (1)

where yt ∈ Rm is the current reference point (proximal center) and ρ > 0. The point
zt+1 ∈ Rm serves two purposes: (i) it is used to construct the next model objective function
f̄t+1 and (ii) if zt+1 offers sufficient descent, defined for some fixed β ∈ (0, 1) as f(zt+1) ≤
f(yt)− β

(
f(yt)− f̄t(zt+1)

)
, then the next iteration takes yt+1 = zt+1 (called a descent step),

otherwise the proximal center is not changed yt+1 = yt (called a null step). This process is
formalizes in Algorithm 1.

For the sake of simplifying our development and to take advantage of existing conver-
gence theory for proximal bundle methods, we will assume that this model f̄t is constructed
satisfying the following three properties: f̄t+1 is a lower bound on the true objective f

f̄t+1(y) ≤ f(y) for all y ∈ Rm , (2)

f̄t+1 is lower bounded by the linearization given by some subgradient gt+1 ∈ ∂f(zt+1) com-
puted after each (1)

f̄t+1(y) ≥ f(zt+1) + 〈gt+1, y − zt+1〉 for all y ∈ Rm , (3)

f̄t+1 is lower bounded by the linearization given by the subgradient sk+1 := ρ(zt+1 − yt) ∈
∂f̄t+1(zt+1) (i.e., the subgradient certifying that zt+1 minimizes (1))

f̄t+1(y) ≥ f̄t(zt+1) + 〈st+1, y − zt+1〉 for all y ∈ Rm , (4)

A bundle method with a full memory may construct f̄t as the maximum of all f(zτ ) +
〈gτ , · − zτ 〉 with τ ≤ t. Alternatively, a bundle method with cut aggregation may utilize a
much simpler model given by the maximum of the two required lower bounds (3) and (4),
where the second bound serves as an aggregation of all the previous subgradient bounds.
Spectral bundle methods construct a more specialized model approximating the eigenvalue
function in (pen-D).

2.1.1. Proximal Bundle Method Convergence Guarantees Under any method of
constructing models f̄t+1 satisfying these conditions, (2)-(4), the proximal bundle method is
known to converge to a minimizer for any closed convex objective that attains its minimum
value. Here we briefly review the existing guarantees on this method’s rates of convergence.
In our analysis, we will utilize these results as a blackbox to bound the penalized dual
formulation’s objective gap F (yt)− F (y?) ≤ ε when specialized to spectral bundle methods.

In particular, we are interested in guarantees on the sequence of proximal centers yt, which
by definition have non-increasing function value (only changing at descent steps). Moreover,
Algorithm 1 has bounded M = supt≥0{‖gt‖} < ∞ and D = supt≥0{dist(yt,Y?)} < ∞ since
both sequences of iterates, zt and yt, produced by the bundle method are well known to
converge whenever Y? 6= ∅ [Rus06, (7.64)].
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Algorithm 1: Proximal Bundle Method

Data: z0 = y0 ∈ Rn, f̄0 = f(y0) + 〈g0, · − y0〉
1 Step k: (k ≥ 0)

2 Compute candidate iterate zt+1 ← argmin
z∈Rd

f̄t(z) +
ρ

2
‖z − yt‖2;

3 If β(f(yt)− f̄t(zt+1)) ≤ f(yt)− f(zt+1) // Descent step

4 Set yt+1 ← zt+1;
5 Else // Null step

6 Set yt+1 ← yt;
7 Compute f̄t+1 without violating (2), (3), or (4); // Update Model

Several previous works have bounded the total number of steps (descent and null) required
to reach a target optimality gap ε > 0. The earliest such guarantee for the proximal bundle
method was given by Kiwiel [Kiw00], showing that after O(1/ε3) total steps (descent and
null), the method has f(yt)− f(y?) ≤ ε. More recently, Du and Ruszczynski [DR17] showed
under a quadratic growth bound (like that given by Lemma 3.3), this convergence rate
improves toO(log(1/ε)/ε). Recently, Diaz and Grimmer [DG21] derived slightly more general
versions of theseO(1/ε3) andO(1/ε) bounds (improving the latter by a log factor). Following
Theorems 2.1 and 2.3 of [DG21], the following convergence guarantees hold.

Theorem 2.1. For any convex f with nonempty set of minimizers, the iterates yt of Algo-
rithm 1 have f(yt)− inf f ≤ ε for all

t ≥ O
(

ρM2D4

β(1− β)2ε3

)
.

Additionally, if some µ > 0 has f(y) − inf f ≥ µ dist(y,Y?)2 for all y, this bound improves
to

t ≥ O
(

M2

β(1− β)2 min{µ/ρ, 1}ε

)
.

The big-O notation above suppresses universal constants as well as additive terms with
a lesser order of dependence on 1/ε.

2.2 Spectral Bundle Methods

Directly applying the above proximal bundle method to the dual penalized formulation (pen-D)
requires computing a subgradient of the maximum eigenvalue function. For each zt ∈ Rm, a
subgradient is given by −b+ αAvv> ∈ ∂F (zt) where v is any top eigenvector of A∗zt −C if
λmax(A∗zt − C) > 0 and is 0 otherwise. This corresponds to the affine lower bound

F (y) ≥ 〈−b, y〉+ 〈αvv>,A∗y − C〉 . (5)

The key idea behind spectral bundle methods is to improve on this lower bound by
utilizing infinitely many affine lower bounds to model the objective more closely. For any
Z ∈ Sn:

max{λmax(Z), 0} = max
〈X,I〉≤1,X�0

〈X,Z〉.
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Hence we may rewrite the penalized dual objective F as

F (y) = max
〈X,I〉≤α,X�0

〈−b, y〉+ 〈X,A∗y − C〉. (6)

Of course, this form is no easier to solve than the original penalized form (pen-D). However,
this perspective gives a natural way to model F by replacing the constraint set {〈X, I〉 ≤
α,X � 0} with a smaller convex set. One choice is that we compute a matrix V ∈ Rn×r

for some small value r with orthonormal columns, i.e., V >V = I ∈ Rr×r. Then we form the
following spectral lower bound model based on V :

F̄V (y) : = max
〈S,I〉≤α,S∈Sr+

〈−b, y〉+ 〈V SV >,A∗y − C〉. (7)

When r = 1 and V is selected as a top eigenvector of A∗zt − C, F̄V recovers (5). For
r > 1, selecting V spanning v gives a strictly better approximation. The choice of V should
consist of eigenvectors based on the present iterate and (potentially) the accumulation of
past spectral information.

To ensure this spectral model always satisfies the needed aggregate bound (4), one further
refinement is needed. In addition to the selection of past and current eigenvectors generating
V , the spectral bundle method maintains a carefully selected weighted sum of the past
spectral bounds as X̄ ∈ Sn+ with

∥∥X̄∥∥∗ = tr(X̄) ≤ α. Then we build our model using this

matrix X̄ along with V ∈ Rn×r as:

F̄(V,X̄)(y) : = max
η tr(X̄)+tr(S)≤α,η≥0,S∈Sr+

〈−b, y〉+ 〈ηX̄ + V SV >,A∗y − C〉. (8)

In the following subsection, we detail the exact method for selecting rc top eigenvalues from
the current iteration and rp past eigenvalues to construct V and the selection of X̄ needed
to ensure (4) holds.

2.2.1. A Family of Spectral Bundle Methods: (rp, rc)-SpecBM The considered
family of spectral bundle methods utilizes r̄ = rp + rc eigenvectors in its spectral approxi-
mations V . We maintain two sequences of iterates, initialized with z0 = y0 = 0 ∈ Rm and
an initial spectral model F̄(V0,X̄0) given by X̄0 = 0 and any V0 ∈ Rn×r̄ with orthonormal
columns. The sequence of iterates yt serve as the reference point (proximal center) for the
proximal subproblem F̄(Vt,X̄t)(z) + ρ

2
‖z− yt‖2 to be minimized, producing the next candidate

point zt+1. (rp, rc)-SpecBM does this by iterating the same basic three steps as Algorithm 1,
formalized in Algorithm 2:

First, each iteration t of (rp, rc)-SpecBM computes zt+1 := z?t , η
?
t , and S?t by solving the

proximal subproblem

min
z

max
η tr(X̄t)+tr(S)≤α,η≥0,S∈Sr̄+

〈−b, z〉+ 〈ηX̄t + VtSV
>
t ,A∗z − C〉+

ρ

2
‖z − yt‖2. (9)

In Section 2.3, we detail how to compute such a minimax solution. Second, (rp, rc)-SpecBM
computes the next reference point yt+1 using the same descent test of the proximal bundle

8



Algorithm 2: (rp, rc)-Spectral Bundle Method

Data: X̄0 = 0, z0 = y0 = 0 ∈ Rn, orthonormal V0 ∈ Rn×r̄

1 Step k: (k ≥ 0)
2 Compute candidate zt+1 := z?t , η

?
t , and S?t solving the subproblem (9);

3 If β(F (yt)− F̄(Vt,X̄t)(zt+1)) ≤ F (yt)− F (zt+1) // Descent step

4 Set yt+1 ← zt+1;
5 Else // Null step

6 Set yt+1 ← yt;
7 Compute the decomposition S?t = Q1Λ1Q

>
1 +Q2Λ2Q

>
2 ;

8 Compute v1, . . . , vrc top eigenvectors of A∗z?t − C;
9 Set next X̄t+1 by (10) and (11) ; // Update Model

10 Set next Vt+1 spanning v1, . . . , vrc and VtQ1;

method. Finally, (rp, rc)-SpecBM computes the next spectral model (Vt+1, X̄t+1) as follows:
Define the matrix attaining the inner maximization above as

Xt = η?t X̄t + VtS
?
t V
>
t . (10)

Denote the eigenvalue decomposition of S?t = Q1Λ1Q
>
1 + Q2Λ2Q

>
2 , where Λ1 consists of the

largest rp eigenvalues, and Λ2 consists of the rest of the eigenvalues. Then set the next
model’s X̄t+1 as

X̄t+1 = η?t X̄t + VtQ2Λ2Q
>
2 V
>
t . (11)

The rationale behind this update as suggested in [HR00] is that the important spectral
information of Xt, apart from X̄t, are those eigenvectors VtQ1 which correspond to the
larger eigenvalues. By explicitly keeping those eigenvectors VtQ1 in Vt+1, we hope the model
accuracy of F̄ is improved in the next round. Another choice of aggregation is to set X̄t+1 =
Xt, which can be analyzed by similar reasoning to our analysis. We follow (11) as this is the
one proposed in [HR00].

Compute rc orthonormal top eigenvectors v1, . . . , vrc of the current dual A∗z?t −C. Then
set the next model’s orthonormal Vt+1 to spa these rc current eigenvectors and the rp aggre-
gate directions VtQ1. For example, the next orthonormal matrix Vt+1 can be computed as a
QR factorization of [VtQ1; v1, . . . , vrc ], setting Vt+1 = Q.

Note selecting of top eigenvectors of A∗z?t − C can be viewed as selecting the primary
directions describing infeasibilities in the dual slack matrix C −A∗z?t .

2.3 Computational Details and Concerns

In Section 3.2, we verify that the necessary inequalities (2), (3) and (4) are all satisfied by
(rp, rc)-SpecBM’s construction of its model F(Vt+1,X̄t+1). Consequently, the proximal bundle
method’s O(1/ε3) and O(1/ε) (see Section 2.1.1) objective value convergence guarantees
apply.

To efficiently implement the spectral bundle method, one needs to efficiently solve the
minimax optimization subproblem (9) at each iteration. Define the t-th spectral set Wt as

Wt = {ηX̄t + VtSV
>
t | η ≥ 0, S ∈ Sr̄+, and η tr(X̄t) + tr(S) ≤ α}. (12)

9



Hence the minimax subproblem (9) is equivalent to

min
z

max
X∈Wt

〈−b, z〉+ 〈X,A∗z − C〉+
ρ

2
‖z − yt‖2

= max
X∈Wt

min
z
〈−b, z〉+ 〈X,A∗z − C〉+

ρ

2
‖z − yt‖2

(13)

where the equality follows from Sion’s minimax theorem.
By completing the square, we find that the inner minimization is achieved only when

z = yt + 1
ρ
(b−AX). Consequently, the subproblem reduces to

max
X∈Wt

min
z
〈−b, z〉+ 〈X,A∗z − C〉+

ρ

2
‖z − yt‖2

= max
X∈Wt

〈−b, yt〉+ 〈X,A∗yt − C〉 −
1

2ρ
‖b−AX‖2

=− min
X∈Wt

〈b, yt〉+ 〈X,C −A∗yt〉+
1

2ρ
‖b−AX‖2.

(14)

This last minimization problem in (14) is the augmented Lagrangian problem of Problem
(P) with the decision variable X restricted to Wt+1 instead of Sn+. This interpretation as
solving an augmented Lagrangian during its iterations has been explored by [Lem01, section
5.2].

Recalling the definition of (12), this augmented Lagrangian problem in (14) is a low
dimension subproblem. Namely, it is equivalent to

min
(η,S)∈St

ft(η, S), (15)

where ft(η, S) = 〈b, yt〉 + 〈ηX̄t + VtSV
>
t , C − A∗yt〉 + 1

2ρ

∥∥b−A(ηX̄t + VtSV
>
t

)∥∥2
and St =

{(η, S) | S � 0, η ≥ 0, tr(S) + tr(X̄t)η ≤ α}.
As r̄ = rp + rc, this problem has dimension 1 + r̄(r̄+ 1)/2. This problem could be solved

with an accelerated first-order method as gradients of ft and the projection to the constraint
set St (after a proper scaling) can be done with time complexity O(r̄3) (see [DG22, Appendix
B] for detail). Alternatively, interior point method (described in [HR00, Section 6]) can be
applied with O(r̄6) time complexity per iteration due to inverting an

(
r̄
2

)
×
(
r̄
2

)
matrix. This is

particularly useful when the problem (15) fails to be well conditioned. Note rp and rc can be
chosen as low as 0 and 1, respectively, which would yield a dimension two subproblem over
(S, η) ∈ R2 with constraints S ≥ 0, η ≥ 0 and S + tr(X̄t)η ≤ α, and a quadratic objective
ft. In this case, explicit formulas for the optimal S?t and η?t can be derived easily to avoid
numerical optimization. Note once optimal S?t and η?t are found, the needed subproblem
solution is exactly z?t = yt + 1

ρ

(
b−A(η?t X̄t + VtS

?
t V
>
t )
)
.

Storage concerns. We note that just for the purpose of computing S?t and η?t , one
needs not to store X̄t but only need to store AX̄t, 〈C, X̄t〉, and tr(X̄t), as we may write f̄t
as

f̄t(η, S) =〈b, yt〉+ η〈X̄t, C〉 − η〈A(X̄), yt〉+ 〈VtSV >t , C −A∗yt〉

+
1

2ρ

∥∥b− η(AX̄t)−A(VtSV
>
t )
∥∥2
.

(16)
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The updates of AX̄t, 〈C, X̄t〉, and tr(X̄t) are also easy given the low rank updates of
X̄t in (11). Keeping only AX̄t, 〈C, X̄t〉 and tr(X̄t) is advantageous when A and 〈C, ·〉 can
be quickly applied to low rank matrices. Moreover, one can recover the matrix X̄t without
the need of storing X̄t for the spectral bundle method using the matrix sketching idea in
[TYUC17b]. We further illustrate this in Section 5.2, showing such techniques enable the
spectral bundle method to be applied to far larger problem instances.

3 Analysis of (rp, rc)-SpecBM

In this section, we present our convergence guarantees for the considered family of bundle
methods whenever strong duality holds, with improved guarantees whenever strict comple-
mentarity holds. Under any selection of the algorithmic parameters, Theorem 3.1 below
gives sublinear convergence guarantees for both primal and dual solutions, showing Xt and
yt converge in terms of feasibility and objective gap. Whenever rc is selected large enough
(to capture the rank of the primal optimal solutions), Theorem 3.2 shows much faster linear
convergence occurs.

Our sublinear convergence guarantees for (rp, rc)-SpecBM apply for any selection of the
algorithmic parameters ρ > 0, β ∈ (0, 1), rp ≥ 0, rc ≥ 1. The only requirement is that
the penalization parameter be selected large enough α ≥ 2DX? . Under any such parameter
selection, the spectral bundle method converges at a rate of O(1/ε3), which improves to
O(1/ε) whenever strict complementarity holds. This is formalized below and proven in
Section 3.2.

Theorem 3.1. Suppose strong duality holds. Given any β ∈ (0, 1), rc ≥ 1, ρ > 0, α ≥ 2DX?,
V0 ∈ Rn×r̄, and z0 = y0 ∈ Rm, and target accuracy ε ∈ (0, 1

2
), (rp, rc)-SpecBM produces a

solution pair Xt and yt with F (yt)− F (y?) ≤ ε and

approximate primal feasibility: ‖b−AXt‖2 ≤ ε, Xt � 0,

approximate dual feasibility: λmin(C −A∗yt) ≥ −ε,
approximate primal-dual optimality: |〈b, yt〉 − 〈C,Xt〉| ≤

√
ε

by some iteration t ≤ O(1/ε3). Moreover, if additionally strict complementarity holds, then
these conditions are reached by some iteration t ≤ O(1/ε).

Deriving the convergence rates above relies on leveraging the existing analysis [DR17,
Gri19, Kiw00, DG21] for generic proximal bundle methods to specialized spectral models.
The recent work [DG21] further shows adaptive, nonconstant stepsize selection rules (replac-
ing ρ by a sequence of parameters ρt) can improve the O(1/ε3) rate to O(1/ε2). Practically
implementing such schemes (and computing needed constants) may be difficult and so con-
structing such an adaptive spectral bundle method is beyond the scope of this work (but
may be of future interest).

Even greater improvements in convergence follow if (in addition to strict complementar-
ity) the number of eigenvalues computed at each iteration satisfies

rc ≥ rd := max
y∈Y?

dim(nullspace(Z(y?))) (17)

11



where rd denotes the largest dimension of the null space of dual slack matrices. As discussed
in Section 1.1, for several modern applications [CR09, CSV13, RFP10, DU20] of (P), X? is
unique, admits rank r? : = rank(X?)� n, and satisfies strict complementarity under certain
structural probabilistic assumptions. If in addition, the dual solution is unique, then we
only need rc ≥ rd = r?.

4 The requirement rc ≥ r? can be motivated from an eigenvalue
computational perspective as the bottom r? eigenvalues of the slack Z(yt) start to coalesce
once yt is close to Y?. Moreover, we numerically observe in Section 5 that even if there are
multiple dual solutions, rc ≥ r? suffices to yield quick convergence while rc < r? induces slow
convergence.

Under these conditions, (rp, rc)-SpecBM will converge linearly once yt is close enough
to Y? (note the above sublinear convergence guarantees provide a constant bound on the
number of iterations required to reach any fixed neighborhood). This is formalized below
and proven in Section 3.3.

Theorem 3.2. Suppose strong duality and strict complementarity holds. Then under proper
selection of ρ and any β ∈ [0, 1

2
], α ≥ 2DX? , V0 ∈ Rn×r̄, z0 = y0 ∈ Rm, and rc ≥ rd, after at

most T0 steps, (rp, rc)-SpecBM will subsequently only take descent steps and converge linearly
to an optimal solution. Consequently, for any ε ∈ (0, 1

2
), (rp, rc)-SpecBM produces a solution

pair Xt and yt with F (yt)− F (y?) ≤ ε and

approximate primal feasibility: ‖b−AXt‖2 ≤ ε, Xt � 0,

approximate dual feasibility: λmin(C −A∗yt) ≥ −ε,
approximate primal-dual optimality: |〈b, yt〉 − 〈C,Xt〉| ≤

√
ε

by some iteration t ≤ T0 +O(log(1/ε)).

Bounds on T0 and proper selection of ρ are discussed at the beginning of Section 3.3.

3.1 Preliminaries on Growth Bounds and Primal-Dual Conver-
gence

Before proving our two main convergence theorems for spectral bundle methods, we develop
a few preliminary lemmas. These results characterize the effect of strong duality and strict
complementarity on the penalized dual problem (pen-D) and then relate approximately
minimizing (pen-D) to approximate feasibility and optimality of both (P) and (D).

Whenever the considered primal-dual SDP pair satisfies strong duality, they each satisfy
a growth bound, ensuring that the objective gap and/or level of infeasibility grow quickly
as one moves away from the set of optimal solutions. Under strict complementarity, we find
this growth is quadratic, which facilitates our faster convergence rates for spectral bundle
methods.

Lemma 3.3 (Quadratic Growth). [Stu00, Section 4] Suppose strong duality holds for (P)
and (D), then there exists ζ1, ζ2 ≥ 1, such that for any fixed ε > 0, there are some γ1, γ2 > 0

4Here the equality rd = r? is due to strict complementarity and the rank-nullity theorem.
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such that for all y with F (y) ≤ 〈−b, y?〉+ ε, and all X � 0 with |〈C,X〉 − 〈C,X?〉| ≤ ε and
‖AX − b‖ ≤ ε:

distζ1(y,Y?) ≤
1

γ1

(F (y)− F (y?)), (18)

distζ2(X,X?) ≤
1

γ2

(|〈C,X〉 − 〈C,X?〉|+ ‖AX − b‖). (19)

If in addition, strict complementarity holds for some pair of primal dual solutions (X?, y?) ∈
X? × Y?, then ζ1 = ζ2 = 2.

Proof. Define the sublevel set S1 = {y | F (y) ≤ 〈−b, y?〉 + ε}, and the set S2 = {X | X �
0, |〈C,X〉 − 〈C,X?〉| ≤ ε, and ‖AX − b‖ ≤ ε}. We first show these two sets are compact.
Indeed, using [Rus06, Theorem 7.21], the penalty form minX�0 g(X) := 〈C,X〉+γ‖AX − b‖
has the same solution set as the primal SDP (P) for some large γ > 0 . Thus the compactness
of the set S1 and S2 is ensured by the compactness of the primal and dual solution sets X?,
Y?.

Next, we utilize the result in [DW17, Theorem 4.5.1], which is a restatement of the result
in [Stu00, Section 4]. Let us focus on the primal inequality (19). The optimal solution
set of (P) is X? = L ∩ Sn+ where L : = {X | 〈C,X〉 = p?, AX = b}. Since the sublevel
set S2 is compact, the result in [DW17, Theorem 4.5.1] ensures that for some c1 > 0, and
d1 > 0, there holds the inequality dist(X,X?)2d1 ≤ c1 dist(X,L) for any X � 0. Here
the number d1 is called the singularity and is bounded by n [Stu00, Lemma 3.6]. Since
dist(X,L) ≤ c2(|〈C,X〉 − 〈C,X?〉|+ ‖AX − b‖) for some c2 > 0 as L is an affine space, we
have shown the inequality (19). In addition, if strict complementarity holds, then d1 ≤ 1
due to [Stu00, Section 5]. A similar argument applies to the dual inequality (18) using
[DW17, Theorem 4.5.1], compactness of Y?, and that dist(Z, Sn+) ≤ nmax{λmax(−Z), 0} for
any Z ∈ Sn.

Given F (yt) − F (y?) is converging to have zero objective gap, the above growth bound
ensures dist(yt,Y?) converges to zero. However, the corresponding rate of convergence would
depend on the generic exponent ζ1. The following three lemmas provide direct relationships
(without dependence on ζ1 or ζ2) between the spectral bundle method’s convergence on the
penalized dual formulation and the primal-dual feasibility and optimality of its iterates Xt

and yt. Utilizing these bounds, our analysis of (rp, rc)-SpecBM can then focus on showing
convergence in the penalized dual objective gap. For ease of notation, we utilize the short-
hand F̄t : = F̄(Vt,X̄t) to denote the spectral bundle method’s approximation of F at iteration
t.

Lemma 3.4 (Primal Feasibility). At every descent step t, (rp, rc)-SpecBM has

Xt � 0, and ‖b−AXt‖2 ≤ 2ρ

β
(F (yt)− F (y?)).

Proof. According to the definition of Xt in (10), we have Xt = η?t X̄t + VtS
?
t V
>
t . Since η ≥ 0

and S?t � 0 by construction in (9), Xt is positive semidefinite.
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The first-order optimality condition for minimizing (9) ensures

− b+AXt = ρ(yt − yt+1). (20)

Hence ‖−b+AXt‖2 = ρ2‖(yt − yt+1)‖2. The difference yt − yt+1 can be bounded as follows
by the penalized dual objective value gap, completing the proof,

ρ

2
‖yt+1 − yt‖2 ≤ F (yt)− F̄t(yt+1) ≤ F (yt)− F (yt+1)

β
≤ F (yt)− F (y?)

β

where the first inequality follows as yt+1 = zt+1 minimizes F̄t(z) + ρ
2
‖z− yt‖2 and the second

follows from the definition of a descent step.

Lemma 3.5 (Dual Feasibility). At every descent step t, provided α ≥ 2DX?, (rp, rc)-SpecBM
has

λmin(C −A∗yt+1) ≥ −(F (yt)− F (y?))

DX?

.

Proof. Strong duality ensures that for any X? ∈ X?, one has 〈C,X?〉 = 〈b, y?〉, or equivalently
〈X?, Z(y?)〉 = 0. Hence

〈b, yt+1 − y?〉 = 〈AX?, yt+1 − y?〉
= 〈X?,A∗(yt+1 − y?)〉
= 〈X?, Z(y?)− Z(yt+1)〉
≤ −‖X?‖∗min{λmin(C −A∗yt+1), 0}.

Since y? minimizes (pen-D), we have

F (yt)− F (y?) ≥ F (yt+1)− F (y?) = 〈−b, yt+1 − y?〉 − αmin{λmin(C −A∗yt+1), 0}
≥ −‖X?‖min{λmin(C −A∗yt+1), 0}

where the last inequality uses that α ≥ 2DX? ≥ 2‖X?‖∗. Since X? is arbitrary, we have the
claimed feasibility bound.

Lemma 3.6 (Primal-Dual Optimality). At every descent step t, provided α ≥ 2DX?, (rp, rc)-
SpecBM has

〈b, yt+1〉 − 〈C,Xt〉 ≤
α

DX?

(F (yt)− F (y?)) +

√
2ρ

β
(F (yt)− F (y?)) Dy0

and below by

〈b, yt+1〉 − 〈C,Xt〉 ≥ −
1− β
β

(F (yt)− F (y?))−
√

2ρ

β
(F (yt)− F (y?)) Dy0 .

Proof. The standard duality analysis shows the primal-dual objective gap equals

〈b, yt+1〉 − 〈C,Xt〉 = 〈AXt, yt+1〉 − 〈C,Xt〉+ 〈b−AXt, yt+1〉
= 〈Xt,A∗yt+1 − C〉+ 〈b−AXt, yt+1〉.

14



Notice that the second term here is bounded above and below as

|〈b−AXt, yt+1〉| ≤
√

2ρ

β
(F (yt)− F (y?)) ‖yt+1‖ ≤

√
2ρ

β
(F (yt)− F (y?)) Dy0

using Lemma 3.4 and that ‖yt+1‖ ≤ Dy0 as F (yt+1) ≤ F (yt) ≤ F (y0). Hence we only need
to bound the first term above, 〈Xt,A∗yt+1 − C〉, showing that the spectral bundle method
approaches satisfying complementary slackness.

An upper bound on this inner product follows from Lemma 3.5 as

〈Xt,A∗yt+1 − C〉 ≤ −‖Xt‖∗λmin(C −A∗yt+1) ≤ ‖Xt‖∗(F (yt)− F (y?))

DX?

.

Combining the above with tr(Xt) ≤ α by construction, we have

〈b, yt+1〉 − 〈C,Xt〉 ≤
α

DX?

(F (yt)− F (y?)) +

√
2ρ

β
(F (yt)− F (y?)) Dy0 .

A lower bound on this inner product follows as

1− β
β

(F (yt)− F (yt+1)) ≥ F (yt+1)− F̄t(yt+1)

= −αmin{λmin(C −A∗yt+1), 0}+ 〈C,Xt〉 − 〈AXt, yt+1〉
≥ 〈Xt, C −A∗yt+1〉,

where the first inequality follows from the definition of a descent step, the equality follows
from the definition of F̄t and the optimality of Xt in (9). Hence

〈b, yt+1〉 − 〈C,Xt〉 ≥ −
1− β
β

(F (yt)− F (y?))−
√

2ρ

β
(F (yt)− F (y?)) Dy0 .

3.2 Proof of Theorem 3.1

At some iteration t of (rp, rc)-SpecBM, let v+ be a top eigenvector of λmax(A∗zt+1 − C) if
λmax(A∗zt+1−C) > 0 and be zero otherwise. Then denote gt+1 = −b+αA(v+v

>
+) ∈ ∂F (zt+1)

as the subgradient corresponding to this maximum eigenvector and st+1 = −ρ(zt+1 − yt) ∈
∂F̄t(zt+1) as the aggregate subgradient, certifying optimality of (9). For the existing prox-
imal bundle method convergence rates to apply (see Section 2.1.1), we need to verify con-
ditions (2), (3), and (4) hold with f̄t = F̄t. Given these conditions, Theorem 2.1 ensures
(rp, rc)-SpecBM has penalized dual objective gap F (yt) − F (y?) converging at a rate of
O(1/ε3), or O(1/ε) whenever quadratic growth holds (e.g., whenever strict complementarity
holds by Lemma 3.3). Then our claimed results on primal feasibility, dual feasibility, and
primal-dual optimality follow by applying Lemmas 3.4, 3.5, and 3.6.
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Recall the spectral bundle method’s model approximates {X | 〈X, I〉 ≤ α,X � 0} at
iteration t+ 1 by the spectral set

Wt+1 := {ηX̄t+1 + Vt+1SV
>
t+1 | η ≥ 0, S ∈ Sr̄+, and η tr(X̄t+1) + tr(S) ≤ α},

giving F̄t+1(y) = 〈−b, y〉+ maxX∈Wt+1〈X,A∗y − C〉.
First we note that (2) is immediate for (rp, rc)-SpecBM since its model always lower

bounds the true objective (6) as Wt+1 ⊆ {X | 〈X, I〉 ≤ α,X � 0}.
Next we verify (3). Since Vt+1 spans v+, some vector s has Vt+1s = v+. Consequently

considering η = 0 and S = αss> shows αv+v
>
+ ∈ Wt+1 and so

F̄t+1(y) ≥ 〈−b, y〉+ 〈αv+v
>
+,A∗y − C〉 = F (zt+1) + 〈gt+1, y − zt+1〉

holds with gt+1 = −b+ αA(v+v
>
+).

Finally, we verify (4). By the optimality condition of (9), and definition of Xt, zt+1, we
know that

−b+AXt = ρ(yt − zt+1) = st+1 (21)

F̄t(zt+1) = 〈−b, zt+1〉+ 〈Xt,A∗zt+1 − C〉. (22)

Similar to the reasoning for (3), we first show Xt lies in Wt+1: To see this, recall that
Vt+1 was selected to span the rp top eigenvector directions of S?t given by VtQ1. Then
there is an S such that Vt+1SV

>
t+1 = VtQ1Λ1Q

>
1 V
>
t .5 This choice of S alongside η = 1 has

Xt = ηX̄t+1 + Vt+1SV
>
t+1 due to the updating scheme (11) of X̄t+1 and definition of Xt in

(10). This choice of S is feasible because S � 0 as Λ1 � 0, and

η tr(X̄t+1) + tr(S) = tr(η?t X̄t) + tr(VtQ2Λ2Q
>
2 V
>
t ) + tr(VtQ1Λ1Q

>
1 V
>
t )

= η?t tr(X̄t) + tr(VtS
?
t V
>
t ) ≤ α

(23)

where the first equality above relies on the definition of X̄t+1 and that tr(S) = tr(Vt+1SV
>
t+1)

(because Vt+1 has orthonormal columns), and the last inequality is due to Vt having orthonor-
mal columns and η?t and S?t satisfying the constraint η? tr(X̄t) + tr(S?t ) ≤ α by construction.
Thus

F̄t+1(y) ≥ 〈−b, y〉+ 〈Xt,A∗y − C〉 = F̄t(zt+1) + 〈st+1, y − zt+1〉

holds with st+1 = −ρ(zt+1 − yt).

3.3 Proof of Theorem 3.2
3.2.1. Verifying (2), (3), and (4) In this section, we first discuss the needed bounds
on T0 and ρ for our linear convergence analysis to apply. In the following subsections, we
prove the following central pair of lemmas which directly imply Theorem 3.2. Namely, under
appropriate selections of T0 and ρ, the model F̄t becomes quadratically close to the true
penalized dual objective (see Lemma 3.7). Consequently, every iteration is a descent step,
linearly contracting towards optimality (see Lemma 3.8).

5Indeed, one can take S = V >
t+1VtQ1Λ1Q

>
1 V

>
t Vt+1 as Vt+1 spans the columns of VtQ1.
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Lemma 3.7. Under the assumptions and notations in Theorem 3.2, there is some η > 0
(independent of ε) such that for t ≥ T0, we have

F̄t(z) ≤ F (z) ≤ F̄t(z) +
η

2
‖z − yt‖2 for all z ∈ Rm. (24)

Lemma 3.8. Suppose (24) holds at iterate iteration t, then for any ρ ≥ η, Algorithm 1 with
any choice of β ∈ (0, 1

2
] will take a descent step satisfying

dist(yt+1,Y?) ≤
√

ρ

2γ1 + ρ
dist(yt,Y?). (25)

We note that if we assume yt = zt always, then Lemma 3.8 can be derived using a
combination of the proofs for prox-linear method in [DL18, DP19]. The reader might find
the detailed procedure in Appendix C. Our proof here is self-contained, directly employs
the quadratic growth of F and the quadratic closeness of the model F̄ , and shows that the
descent step is taken, i.e., yt = zt.

3.3.1. Discussion on the bounds on T0 and ρ Denote the gap parameter as δ :=
infy?∈Y? maxr≤rd λr(−Z(y?))−λr+1(−Z(y?)) and the quadratic growth parameter for F from
Lemma 3.3 as γ1 > 0. The gap parameter δ is nonzero from the definition of rd, the
compactness of Y?, and continuity of the function maxr≤rd λr(Z(·))− λr+1(Z(·)). When the
dual solution is unique, we have δ = λrd(−Z(y?)) − λrd+1(−Z(y?)). With these notations,

the constant η in Lemma 3.7 is η = 4α‖A∗‖2
op

max
{

72 supy?∈Y?‖2Z(y?)‖op

δ2 , 9(8
√

2+16)
δ

}
(see the

proof of Lemma 3.7 in Section 3.3.2 for details).
Let the number T0 be the first descent step such that for all t ≥ T0, Z(yt) is δ/3 close

to the solution set Z(Y?) = {Z(y?) | y? ∈ Y?}. Using the O(1/ε) convergence rate from
Theorem 3.1 and quadratic growth from Lemma 3.3, this must hold for all

t ≥ T0 = O

(
‖A∗‖2

op

δ2γ1

)
. (26)

Indeed, for any y ∈ Rm, by picking a solution y? ∈ Y? closest to y, we have

‖Z(y)− Z(y?)‖F
= ‖A∗(y − y?)‖F

≤‖A∗‖
op
‖y − y?‖ = ‖A∗‖

op
dist(y,Y?)

≤‖A∗‖
op

√
(F (y)− F (y?))/γ1.

(27)

From the above inequality, we see that the condition F (yt) − F (y?) ≤ δ2γ1

9‖A∗‖op
ensures that

λrd(Z(yt)) ≥ δ
3
. Such condition is satisfied for any yt with t ≥ T0 by the O(1/ε) convergence

rate from Theorem 3.1 and our choice of T0 in (26).
We require the regularization parameter ρ be chosen larger than η, i.e.,

ρ ≥ 4α‖A∗‖2
op

max

{
72 supy?∈Y?‖2Z(y?)‖op

δ2
,
9(8
√

2 + 16)

δ

}
. (28)
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3.3.2. Proof of Lemma 3.7 Without loss of generality, we have zt = yt (that is, the
previous step was a descent step). Define the r-th spectral plus set of a matrix X ∈ Sn with
λr(X) − λr+1(X) > 0 as C+

r (X) := {V SV > | tr(S) ≤ 1, S � 0, S ∈ Sr} where V ∈ Rn×r

is the matrix formed by the orthonormal eigenvectors of X corresponding to its r largest
eigenvalues. The following lemma, proved in Section 4, shows these top eigenvectors give a
quadratically accurate model.

Lemma 3.9. Suppose X ∈ Sn has eigenvalues λr(X)− λr+1(X) = δ and denote the Λr,n =
max{|λr+1(X)|, |λn(X)|}. Then for any Y ∈ Sn, the quantity fX(Y ) : = max{λ1(Y ), 0} −
maxW∈C+

r (X)〈W,Y 〉 satisfies that

0 ≤ fX(Y ) ≤ 8‖Y −X‖2
F
Λr,n

δ2
+

(8
√

2 + 16)‖Y −X‖2
F

δ
. (29)

This lemma shows that the function maxW∈C+
r (X)〈W,Y 〉 has captured the nonsmooth

part of the max{λ1(Y ), 0} and is accurate to max{λ1(Y ), 0} up to second order. This result
is key to establishing (24) for all t ≥ T0 in the following two sections (first assuming a unique
dual solution for ease and then in general).

Unique solution case. First suppose the dual solution y? is unique and the correspond-
ing dual slack is denoted as Z?. In this case, our choice of T0 ensures yt is sufficiently close
to y? such that ‖Z(yt)− Z?‖op

≤ δ
3

where δ is the rd-th eigengap of −Z?. Then from Weyl’s
inequality, we know the rd−th eigengap of −Z(yt), λrd(−Z(yt))− λrd+1(−Z(yt)), is at least
δ
3
, and ‖Z(yt)‖op

≤ 2‖Z?‖op
.

Let V ∈ Rn×rd denote the matrix formed by the eigenvectors corresponding to the rd
largest eigenvalue of −Z(yt). We find that

F (y)− F̄t(y) = αmax{λmax(−Z(y)), 0} − max
ηα+tr(S)≤α,η≥0,S∈Src

+

〈ηX̄ + VtSV
>
t ,−Z(y)〉

≤ αmax{λmax(−Z(y)), 0} − max
tr(S)≤α,S∈Srd+

〈V SV >,−Z(y)〉

= α

(
max{λmax(−Z(y)), 0} − max

W∈C+
rd

(−Z(yt))
〈W,−Z(y)〉

)

≤ α

(
72‖Z(yt)− Z(y)‖2

F
‖2Z?‖op

δ2
+

9(8
√

2 + 16)‖Z(yt)− Z(y)‖2
F

δ

)

≤ 2α‖A∗‖2
op

max{
72‖2Z?‖op

δ2
,
9(8
√

2 + 16)

δ
}‖y − yt‖2,

where the first inequality restricts the spectral set considered since rc ≥ rd by assump-
tion and the second inequality applies Lemma 3.9. Combining the fact that F̄t lower
bounds F (y) by construction, we see the model F̄t is indeed quadratically accurate with

η = 4α‖A∗‖2
op

max{72‖2Z?‖op

δ2 , 9(8
√

2+16)
δ

} in (24).
Multiple dual solutions case. Now we generalize the above reasoning to when Y?

contains multiple points. Recall we defined δ as

δ = inf
y?∈Y?

max
r≤rd

λr(−Z(y?))− λr+1(−Z(y?)) (30)
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which is nonzero from the definition of rd, the compactness of Y?, and continuity of the
function maxr≤rd λr(Z(·))− λr+1(Z(·)). Hence if dist(Z(yt), Z(Y?)) is less than a third of δ,
then there is an r and y? ∈ Y?, such that −Z(y?) is no more than δ

3
away from Z(yt), and

has λr(−Z(y?)) − λr+1(−Z(y?)) ≥ δ. Hence, we can repeat previous argument for the case
of unique dual solution and replace rd and ‖Z?‖op

by r and 2 supy?∈Y?‖Z(y?)‖op
respectively.

Thus the model F̄t is quadratically accurate in (24) with η = 4α‖A∗‖2
op

max{72 supy?∈Y?‖2Z(y?)‖op

δ2 ,
9(8
√

2+16)
δ

} as stated in (28).

3.3.3. Proof of Lemma 3.8 Suppose (24) is satisfied for some η > 0 at iteration t.
Without loss of generality, η = ρ since we require η ≤ ρ. We first show (rp, rc)-SpecBM
must take a descent step for β ≤ 1

2
. We know the minimizer z?t of F̄t(z)+ ρ

2
‖z − yt‖2 satisfies

that for any z ∈ Rm

F̄t(z
?
t ) +

ρ

2
‖z?t − yt‖

2 +
ρ

2
‖z?t − z‖

2 ≤ F̄t(z) +
ρ

2
‖z − yt‖2, (31)

since F̄t(z) + ρ
2
‖z − yt‖2 is ρ-strongly convex. Setting z = yt and (24) shows

F (yt)− F̄t(z?t ) ≥ ρ‖z?t − yt‖
2 ≥ 0, and

ρ

2
‖z?t − yt‖

2 ≤ F (yt)− F (z?t ). (32)

Using sequentially that β ≤ 1/2, the quadratic bound (24) and then (32) shows

β
(
F (yt)− F̄t(z?t )

)
≤ 1

2

(
F (yt)− F̄t(z?t )

)
≤ 1

2
(F (yt)− F (z?t )) +

ρ

4
‖yt − z?t ‖

2

≤ F (yt)− F (z?t ).
(33)

Hence, we see the method will indeed take a descent step and yt+1 = z?t is in the sublevel set
defined by {y | F (y) ≤ F (y0)}.

Now we show this descent step contracts the distance to Y?, yielding linear convergence.
Considering z = y? for any y? ∈ Y? in (31) and using (24) ensures

F (z?t ) ≤ F (y?) +
ρ

2

(
‖y? − yt‖2 − ‖z?t − y?‖

2). (34)

Now recall the quadratic growth of F (derived from Lemma 3.3) that there is a γ1 > 0 such
that for all z ∈ {y | F (y) ≤ F (y0)},

F (z)− F (y?) ≥ γ1 dist2(z,Y?).
Hence combining this with (34), we find that

γ1 dist2(z?t ,Y?) ≤
ρ

2

(
‖y? − yt‖2 − ‖z?t − y?‖

2)
=⇒

(
γ1 +

ρ

2

)
dist2(z?t ,Y?) ≤

ρ

2
‖y? − yt‖2

=⇒ dist2(z?t ,Y?) ≤
ρ

2γ1 + ρ
‖y? − yt‖2.

(35)

Setting y? to be the point in Y? nearest to yt shows yt+1 = z?t satisfies the recurrence

dist(yt+1,Y?) ≤
√

ρ

2γ1 + ρ
dist(yt,Y?),

ensuring convergence occurs geometrically, contracting by a factor of
√

ρ
2γ1+ρ

< 1.
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4 Proof of Lemma 3.9

Lastly, we provide a proof of Lemma 3.9. In addition to the Frobenius norm bound, we also
provide an operator two norm bound (42).

Recall the assumption that λr(X)− λr+1(X) = δ > 0 for some δ > 0. Let V ∈ Rn×r be
an orthonormal matrix formed by the r eigenvectors corresponding to the top r eigenvalues.
Recall r-th spectral plus set C+

r (X) := {V SV > | tr(S) ≤ 1, S � 0, S ∈ Sr}. Note that for
any orthonormal O ∈ Rr×r, replacing V by V O produces the same spectral set C+

r (X).
For any Y ∈ Sn, since max{λ1(Y ), 0} = maxW�0,tr(W )≤1,〈W,Y 〉, we see the following

inequality always holds as {W |W � 0, tr(W ) ≤ 1} ⊃ C+
r (X):

max{λ1(Y ), 0} ≥ max
W∈C+

r (X)
〈W,Y 〉. (36)

Define the error fX(Y ) as

fX(Y ) = λ1(X)− max
W∈C+

r (X)
〈W,Y 〉. (37)

We always have fX(Y ) ≥ 0 as previously argued. If λ1(Y ) < 0, then max{λ1(Y ), 0} = 0
and hence Y 4 0. Thus the approximation maxW∈C+

r (X)〈W,Y 〉 = 0 as well. Hence we may
only consider the case λ1(Y ) > 0 in the following. Let v be the eigenvector with two norm
‖v‖ = 1 corresponding to the largest eigenvalue λ1(Y ), then

fX(Y ) = λ1(Y )− max
W∈C+

r (X)
〈W,Y 〉 = min

W∈C+
r (X)
〈vv> −W,Y 〉

= min
W∈C+

r (X)
〈vv> −W,Y −X〉︸ ︷︷ ︸

R1

+ 〈vv> −W,X〉︸ ︷︷ ︸
R2

.

To analyzeR1 andR2, we define some notation first. Denote V ′ ∈ Rn×r to be the orthonormal
matrix formed by the eigenvectors corresponding to the top r eigenvalues of Y . Moreoever,
let v denote the first column of V ′. Also denote F ∈ Rn×(n−r) to be an orthonormal matrix
formed by the rest eigenvectors of X. So the eigenvalue decomposition of X is X = V Λ1V

>+
FΛ2F

>, for some diagonal Λ1 ∈ Sr and Λ2 ∈ S(n−r)×(n−r). Let the matrix O? ∈ Rr×r : O? ∈
arg minOO>=I‖V O − V ′‖F

. Below, we set VO = V O?.
We bound the R2 term first. We may choose W = V V >vv>V V > here. With such a

choice, R2 equals the following:

R2 = 〈vv> −W,X〉 = 〈vv>, X〉 − 〈W,X〉
(a)
= 〈vv>, V Λ1V

> + FΛ2F
>〉 − 〈V V >vv>V V >, V Λ1V

> + FΛ2F
>〉

(b)
= 〈vv>, V Λ1V

>〉+ 〈vv>, FΛ2F
>〉 − 〈vv>, V Λ1V

>〉
(c)
= 〈V ′e1(V ′e1)>, FΛ2F

>〉.

Here we use the eigenvalue decomposition of X in step (a). Step (b) uses the fact that V
has orthonormal columns and that V >F = 0 as the columns are orthonormal. Step (c) uses
the fact that v is the first column of V ′.
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Let the error between VO and V ′ be given by E = V ′ − VO and let e1 ∈ Rr be the
vector with first entry 1 and all other entries 0. Using these, we upper bound R2 =
〈V ′e1(e1V

′)>, FΛ2F
>〉 as

R2 = 〈(VO + E)e1e
>
1 (VO + E)>, FΛ2F

>〉
(a)
= 〈Ee1e

>
1 E
>, FΛ2F

>〉
(b)

≤
∥∥Ee1e

>
1 E
>∥∥
∗

∥∥FΛ2F
>∥∥

op

(c)
=
∥∥Ee1e

>
1 E
>∥∥

op

∥∥FΛ2F
>∥∥

op

(d)

≤ ‖Ee1‖2
op
‖Λ2‖op

(e)

≤ ‖E‖2
op
‖Λ‖

op
.

(38)

Here we use the fact V >O F = 0 in step (a). Step (b) is due to the Hölder’s inequality. Step
(c) uses the fact that for rank 1 matrix, the Frobenius norm is the same as its operator
norm. Step (d) uses the submultiplicity of operator two norm. The last step (e) uses the
fact operator norm of e1 is 1.

Next we bound R1. Considering W = V V >vv>V V > = VOV
>
O vv

>VOV
>
O , the difference

vv> −W is

vv> −W = V ′e1(V ′e1)> − VOV >O vv>VOV >O
= V ′e1(V ′e1)> − VOV >O V ′e1(V ′e1)>VOV

>
O

= (VO + E)e1e
>
1 (VO + E)> − VOV >O (VO + E)e1e

>
1 (VO + E)>VOV

>
O

= Ee1e
>
1 V
>
O + VOe1e

>
1 E
> + Ee1e1E

>

− VOV >O Ee1e
>
1 V
>
O − VOe1e

>
1 E
>VOV

>
O − VOV >O Ee1e

>
1 EVOV

>
O .

Hence, using the fact the nuclear norm of rank one matrix is the same as operator norm, the
nuclear norm of vv> −W is bounded by∥∥vv> −W∥∥∗ ≤∥∥Ee1e

>
1 V
>
O

∥∥
op

+
∥∥VOe1e

>
1 E
>∥∥

op
+
∥∥Ee1e1E

>∥∥
op

+
∥∥VOV >O Ee1e

>
1 V
>
O

∥∥
op

+
∥∥VOe1e

>
1 E
>VOV

>
O

∥∥
op

+
∥∥VOV >O Ee1e

>
1 EVOV

>
O

∥∥
op

(a)

≤4‖E‖
op

+ 2‖E‖2
op
.

Here in step (a), we use the fact that
∥∥e1e

>
1

∥∥
op
≤ 1 and ‖V ‖

op
≤ 1. Using Hölder’s inequality

again, the first term R1 is bounded by

R1 = 〈vv> −W,Y −X〉 ≤
∥∥vv> −W∥∥∗‖Y −X‖op

≤
(
4‖E‖

op
+ 2‖E‖2

op

)
‖Y −X‖

op
. (39)

Now combining (39) and (38), we find that fX(Y ) is upper bounded by

fX(Y ) ≤ ‖Λ2‖op
‖E‖2

op
+
(
4‖E‖

op
+ 2‖E‖2

op

)
‖Y −X‖

op
.

Let us consider two cases:
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1. First consider the Frobenius norm. The Frobenius bound [YWS15, Theorem 2] applied
to E ensures that

‖E‖
F
≤ 2
√

2‖Y −X‖
F

δ
.

Hence in this case, we have for all Y ∈ Sn

fX(Y ) ≤
8‖Y −X‖2

F
‖Λ2‖op

δ2
+

8
√

2‖Y −X‖2
F

δ
+

16‖Y −X‖3
F

δ2
.

2. Second consider the operator norm. Using [YWS15, Theorem 2] again, we have the
operator norm of E bounded by

‖E‖
op
≤

2
√

2
√
r‖Y −X‖

op

δ
.

In this case, the function fX(Y ) is upper bounded by

fX(Y ) ≤
8r‖Y −X‖2

op
‖Λ2‖op

δ2
+

8
√

2
√
r‖Y −X‖2

op

δ
+

16r‖Y −X‖3
op

δ2
. (40)

If ‖Y −X‖
op
≤ δ, then using it for the term

16r‖Y−X‖3op

δ2 , we have

fX(Y ) ≤
8r‖Y −X‖2

op
‖Λ2‖op

δ2
+

(8
√
r + 16r)‖Y −X‖2

op

δ
. (41)

Still, we have not reached a globally quadratically accurate model. Let us show that the func-
tion fX(Y ) is always bounded by a linear difference. Note that we have maxW∈C+

r (X)〈W,Y 〉 =

max{λ(V >Y V ), 0}. We decompose fX(Y ) into two terms:

fX(Y ) = max{λ1(Y ), 0} −max{λ1(V >Y V ), 0}
= max{λ1(Y ), 0} −max{λ1(X), 0}︸ ︷︷ ︸

R1

+ max{λ1(X), 0} −max{λ1(V >Y V ), 0}︸ ︷︷ ︸
R2

.

For the term R1, we note the function max{x, 0} for any x ∈ R is 1-Lipschitz with respect
to the norm |x|. Thus the term R1 is bounded by

|R1| ≤ |λ1(Y )− λ1(X)| ≤ ‖Y −X‖
op
.

For the second term R2, we note that λ1(X) = λ1(V >XV ) because of the definition of
V . Hence, using the same reasoning, we have

|R2| ≤
∥∥V >XV − V >Y V ∥∥

op
≤ ‖X − Y ‖

op

where the last line is due to submultiplicity of operator two norm. Hence, we see the error
function fX(Y ) is always bounded by

|fX(Y )| ≤ 2‖X − Y ‖
op
.
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The inequality (41) tells us that when ‖X − Y ‖
op
≤ δ, we have fX(Y ) ≤ 8r‖Y−X‖2op‖Λ2‖op

δ2 +
(8
√

2r+16r)‖Y−X‖2op

δ
. Now if ‖X − Y ‖

op
≥ δ, then it follows that

2‖X−Y ‖2op

δ
≥ 2‖X − Y ‖

op
.

Hence, the model maxW∈C+
r (X)〈W,Y 〉 is always quadratically accurate: for all Y ∈ Sn,

0≤ fX(Y ) ≤min

{
8r‖Y −X‖2

op
‖Λ2‖op

δ2
+

(8
√

2r + 16r)‖Y −X‖2
op

δ
,
2‖X − Y ‖2

op

δ

}
. (42)

The same argument applies to the Frobenius norm case, and we reach

fX(Y ) ≤
8‖Y −X‖2

F
‖Λ2‖op

δ2
+

(8
√

2 + 16)‖Y −X‖2
F

δ
. (43)

5 Numerics

In this section, we first present numerical experiments demonstrating (i) sublinear conver-
gence generically for the spectral bundle method under a range of configurations and (ii)
once the conditions listed in Theorem 3.2 hold, convergence speeds up (to linear conver-
gence). Subsequently, we show substantial speedups in both time and space complexity are
achievable utilizing a sketching technique, enabling the spectral method to effectively solve
much larger problem instances.

5.1 Max-Cut and Matrix Completion Experiments

We consider two common SDP problems, matrix completion and max-cut, whose formula-
tions are stated in Table 1. As discussed in Section 1.1, both of these families of problems
typically have low-rank primal optimal solutions.

We consider the following instances of these semidefinite programs: For max-cut, we take
L as the Laplacian of the graph G24 in [Gse] with 2000 vertices. For matrix completion,
Ω denotes the set of indices of the observed entries of the underlying rank 3 matrix X\ ∈
R1000×1000. Here X\ = WW> where W ∈ R1000×3 with each entry following the Rademacher
distribution. Each entry of X\ is observed with probability p = 0.04. Both problems have
decision variable size 2000× 2000.

For both problems, we initialize with X0, y0, z0 all zero. For max-cut, we set α = 2n, ρ =
0.5, β = 0.25 and run for 200 iterations, and for matrix completion, we set α = 4

∥∥X\
∥∥
∗, ρ =

5, β = 0.25 and run for 100 iterations. The subproblem (9) is solved via Mosek [Mos10].
Likewise, the optimal value p? and primal solution X? for max-cut is obtained through Mosek

[Mos10], whereas for matrix completion, we set p? = 2
∥∥X\

∥∥
∗ and X? =

[
X\ X\

X\ X\

]
for matrix

completion. Such a choice of X? indeed solves matrix completion SDP with high probability
[CR09]. Let the rank of the optimal solution be r? = rank(X?), which is 18 for max-cut and
3 for matrix completion.

We consider two configurations of the parameters rc and rp: (i) rc = 1 while rp = r?− 2,
r? − 1, and r?, and (ii) rp = 0, rc = r? − 1, r?, and r? + 1. In the first setting, we primarily
accumulate past information with rp on the order of the rank of the primal optimal solution,
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Problem (rp, rc) Dual Opt. Primal Opt. Primal Feas.

Matrix Completion (1, 1) 0.08836 0.01950 0.02383

max − 〈I,W1〉 − 〈I,W2〉
s.t. Xij = X\

ij , (i, j) ∈ Ω[
W1 X
X> W2

]
� 0.

(0, 2) 0.07774 0.01077 0.01020
(2, 1) 0.04868 0.008485 0.02086
(0, 3) 8.014e-7 3.843e-8 8.220e-5
(3, 1) 6.853e-6 2.729e-5 5.582e-4
(0, 4) 2.800e-6 1.880e-6 1.437e-4

Max-cut (16, 1) 0.02078 0.01530 0.2324

max 〈L,X〉
s.t. diag(X) = 1

X � 0

(0, 17) 7.697e-6 4.546e-6 2.239e-4
(17, 1) 0.01261 0.02124 0.1907
(0, 18) 1.789e-7 6.862e-7 1.049e-4
(18, 1) 0.01716 0.01640 0.2258
(0, 19) 6.776e-8 8.144e-9 8.963e-5

Table 1: The final accuracy of yt and Xt reached by the spectral bundle method for matrix
completion and max-cut problem under different configurations of (rp, rc).

while computing only one new eigenvector per iteration. In the second setting, the method
retains no additional past information (beyond the aggregation X̄t), relying primarily on the
current rc eigenvectors.

Experiment Results. Table 1 shows the accuracy of the last iterates in terms of primal
and dual optimality and feasibility. The dual optimality (dual opt.), primal optimality

(primal opt.), and primal feasibility (primal feas.) are defined as F (y)−d?
|d?| , | 〈C,X〉−p?

p?
|, and

‖AX−b‖
‖b‖ respectively. We find that primal feasibility tends to be worse than dual optimality

by one or two orders of magnitude, while primal optimality is usually of the same order.
Slower convergence in primal feasibility aligns with expectations based on our lemmas in
Section 3.1, as primal feasibility ‖AX − b‖ is only guaranteed to be on the order of the
square root of dual optimality.

Figure 1 shows the evolution of dual objective value F in (pen-D) as each method runs.
The spectral bundle methods performance across these configurations and problem settings
tends to agree with our theories predictions. As shown in Figure 1a and Figure 1b, in
general, when rc < r?, the spectral bundle method converges sublinearly (with the exception
(3, 1)-SpecBM for matrix completion). Once rc ≥ r?, the method converges quickly for
both max-cut and matrix completion as expected from our Theorem 3.2. As shown in
Table 1, whenever rc ≥ r?, the method solves both problems in terms of dual optimality to
moderately high accuracy (∼ 10−8). Most instances with rc < r? only achieved a moderate
accuracy (∼ 10−2). We suspect the limitation to 10−8 accuracy is due to the inaccuracy in
the eigenvalue computations or the subproblem solver for (9).

5.2 Matrix Sketching for the Spectral Bundle Method

A particular bottleneck in solving large scale SDPs is storing the primal matrix Xt. Here we
show how to avoid storing this iterate by introducing the matrix sketching idea developed in
[TYUC17a, TYUC17b, YUTC17] and demonstrate its usage on the previous max-cut and
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Figure 1: The evolution of the relative penalized dual objective value F (yt)−F (y?)
|F (y?)| for different

configurations of the (rp, rc) on problems of size 2000× 2000.

Algorithm 3: Matrix sketching procedure

Data: Iteration number T , dimension n, an integer r > 0, the sequence of
VtQ2Λ2Q

>
2 V
>
t , t = 0, . . . , T , and VT+1, S

?
T+1 in Algorithm 2;

1 Sample Ψ ∈ Rn×R with an R ≥ 3r + 1 and Ψij
iid∼ N(0, 1);

2 Initialize Ȳ0 = 0 ∈ Rn×R;
3 For t = 0, . . . , T − 1
4 Update Ȳt+1 = VtQ2Λ2Q

>
2 (V >t Ψ) + η?t Ȳt

5 Compute YT = VTS
?
T (V >T Ψ) + η?T ȲT ;

6 Reconstruct X̂T := YT (Ψ>YT )†Y >T ;

matrix completion instances. Applying (rp, rc)-SpecBM with such a sketching procedure,
we are able to solve a matrix completion SDPs with several billion decision variables (up to
(1.6× 105)× (1.6× 105)) in only a few minutes.

We detail the matrix sketching procedure in Algorithm 3. The method requires an integer
r > 0, which represents either an estimate of the true rank of the primal solution or the
user’s computational/storage budget for managing larger matrices.

The algorithm first draws a random matrix Ψ ∈ Rn×R with i.i.d. normal entries. Denote
the number of total iteration as T . The main idea of the method is that using Ψ, we can
form a low rank sketch of X̄t, denoted by Ȳt, as

Ȳt = X̄tΨ ∈ Rn×R. (44)

Using the update formula X̄t+1 = η?t X̄t + VtQ2Λ2Q
>
2 V
>
t , we can obtain Ȳt as done in Algo-

rithm 3 on Line 4.
The retrieve the primal matrix XT , we form the sketch matrix Yt = XtΨ = η?t Ȳt +

VTS
?
T (V >T Ψ) using the relationship that Xt = η?t X̄t + VtS

?
t V
>
t . The matrix Xt is then

reconstructed using Yt via the last line of the algorithm where the notation (Ψ>YT )† is
the pseudo-inverse of Ψ>YT . Note that X̂T is positive semidefinite since XT is and Ψ>YT =
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Ψ>XTΨT . A numerical stable implementation of the last line can be found in [TYUC17a,
Algorithm 3], which outputs (UT ,ΛT ) such that X̂T = UTΛTU

>
T with UT ∈ Rn×R having

orthonormal columns and a nonnegative diagonal Λt. Note that one can then store X̂T via
the factors (UT ,ΛT ) rather than forming X̂T explicitly. From [TYUC17a, Theorem 4.1], we
have the following guarantee:

EΨ‖XT − X̂T‖∗ ≤
4

3
‖XT − [XT ]r‖∗, (45)

where ‖ · ‖∗ is the nuclear norm and [·]r is the best rank r approximation in terms of
Frobenius norm. Hence, if XT is close to a low rank matrix X?, then so long as r ≥ r?, the
approximation error XT − X̂T is small.

Thus (rp, rc)-SpecBM combined with the matrix sketching procedure can avoid forming
new iterates X̄t andXt, which each occupiesO(n2) storage. As discussed in the end of Section
2.3, we know that we can solve the subproblem (9) by storing dt = AX̄t, ct = 〈C, X̄t〉, and
ht = tr(X̄t) rather than computing them directly from X̄t. Hence, (rp, rc)-SpecBM combined
with the matrix sketching idea described above can report a nearly optimal, low rank XT

while only using storage of size

O( nr︸︷︷︸
storing Ψ, Ȳt, and Yt

+ m︸︷︷︸
storing dt, ct, and ht

). (46)

The quantity O(nr+m) can be significantly smaller than O(n2) for applications of SDP (P)
when the rank estimate r is small (constant or logarithmic with respect to n) and m is on
the order of n, see [DYC+19] and [YUTC17] for further discussion of storage benefits.

5.2.1. Max-Cut and Matrix Completion Experiments with Sketching Continuing
the previous experimental setup for max-cut and matrix completion, we demonstrate the
usage of the matrix sketching procedure here. First, in Figure 2, we measure the numerical
rank of Xt (measured by the number of singular values larger than 10−2). We see that the
intermediate rank of Xt can be much larger than the primal optimal solution rank, rank(X?),
even though we expect it will eventually converge to have rank equal to rank(X?). This is
a particularly relevant observation in justifying the use of sketching procedures as only a
low-rank sketch of the primal solution matrix needs to be stored at any time. Alternative
approaches, such as storing Xt via a factorization (e.g., its eigenvalue decomposition), may
still incur high storage costs due to the high rank of intermediate iterates. 6

Next, we measure the relative difference between the reconstruction X̂t and the true
iterate Xt. That is, we reconstruct Xt in each iteration t by setting the input T = t in
Algorithm 3. We setR = 10 for the case of matrix completion andR = 60 for the case of max-
cut. Note that this is only for demonstration, in practice, one does not need to reconstruct

6Careful readers might notice that for the case of Max-cut and SpecBM with rc = 1, the iterate is always
low rank. A further investigation (not shown here) on the trace of VtS

?
t V

>
t and η?t X̄t shows that when rc = 1,

η?t X̄t is negligible and VtS
?
t V

>
t dominates. This might be due to the design as we keep the important past

spectral information explicitly in VtQ1 as in Algorithm 2. This observation might suggest to use VtS
?
t V

>
t

alone to approximate Xt rather than using the matrix sketching. However, the iterate Xt, in this case, does
not produce a good approximation of X?.
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Figure 2: The evolution of the rank of the converging primal sequence Xt.

Xt in every iteration but only reconstruct it whenever needed. Figure 3 shows the potential

for a large difference
‖Xt−X̂t‖

F

‖Xt‖F
at intermediate iterates, but only a negligible difference once

the method is converging compared to the level primal optimality and feasibility of Xt.

5.2.2. Large-scale Matrix Completion Experiments Finally, we demonstrate that
(rp, rc)-SpecBM coupled with the matrix sketching procedure described above (Sketching
(rp, rc)-SpecBM) is able to solve much larger problem instances. To illustrate this, we
compare it with Mosek [Mos10], SDPT3 [TTT06], SketchyCGAL [YTF+21], and (rp, rc)-
SpecBM. The first two are matured general purpose solvers. The third is designed for
solving large scale SDPs.

Due to the ease of computing the optimal solutions with bounded rank for simulated
matrix completion problems, we focus on it. We follow the setting of matrix completion
in Section 5.1 but vary the dimension of X\ and the observation probability p = 100

n
. The

resulting primal matrix size n × n of the SDP ranges from n = 200 to n = 1.6 × 105. For
(rp, rc)-SpecBM and Sketching (rp, rc)-SpecBM, we set rp = 0 and rc = 4 based on the
previous strong performance when n = 2000. We allow each method to run for 400 seconds

with up to 8GB of memory. Table 2 displays the relative recovery error
‖X̂−X\‖

F

‖X\‖
F

of each

method, where X̂ is extracted from the left top n
2
× n

2
block of the returned solution.

From Table 2, we see that the matured solvers (Mosek and SDPT3) are able to reach very
high accuracy 10−10 ∼ 10−11 but do not scale past n = 1600. SketchyCGAL successfully
scales to tackle problem of size n = 160000. However, we note the recovery error degrades as
n grows. (For n ≥ 80000, this error is worse than the trivial estimator X̂ = 0). We see that
SpecBM achieves a moderate accuracy 10−4 ∼ 10−5 whenever the method did not exhaust
its time and memory budget. However, the method does not scale up for problems of size
n ≥ 20000 due to the cost of managing the n× n matrix Xt.

Sketching SpecBM achieves the best balance between accuracy and time. It is able to
solve the SDP problem of size n = 160000 to moderate accuracy 10−4. In terms of storage
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Figure 3: The evolution of the difference
‖Xt−X̂t‖

F

‖Xt‖F
between the sketching primal sequence

X̂t and the primal sequence Xt.

(which is not report here), we also observe the memory usage of the sketching method scales
linearly with the dimension n while SpecBM scales quadratically.

n Mosek SDPT3 SketchyCGAL SpecBM Sketching SpecBM

200 1.0200e-10 3.9900e-10 3.1400e-04 9.4800e-05 4.1100e-05
400 8.2000e-10 7.2800e-09 5.9800e-04 8.4500e-05 2.6800e-05
800 8.9400e-10 9.5000e-11? 9.0400e-04 9.8600e-05 1.4800e-05
1600 5.3700e-11? ∞ 0.0013 1.9000e-04 9.1500e-05
3200 ∞ ∞ 0.0020 6.3600e-05 1.5900e-05
5000 ∞ ∞ 0.0042 1.1000e-04 4.3400e-05
10000 ∞ ∞ 0.0073 1.5300e-04 9.5600e-05
20000 ∞ ∞ 0.1503 ∞ 1.0700e-05
40000 ∞ ∞ 0.1640 ∞ 1.3100e-04
80000 ∞ ∞ 1.3523 ∞ 1.2700e-04
160000 ∞ ∞ 1.5652 ∞ 1.5200e-04

Table 2: Comparison of different solvers for the matrix completion problem in Section 5.1.
The symbol ∞ notes failure to finish within 400 seconds or requiring over 8GB of memory.
Both entries with ? used more than 400 seconds but less than three hours.

6 Discussion

In this paper, we presented sublinear convergence rates for a family of spectral bundle meth-
ods and show the method speeds up to linear convergence with proper parameter choice and
low-rank structural assumptions. We verify our theoretical results via numerical experiments
and demonstrate their applicability to solving large-scale semidefinite programs.
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We conclude by presenting a few future directions, further building on the theoretical
and practical effectiveness of spectral bundle methods:

• Handling more general constraints: The problem format (P) only has equality
and positive semidefiniteness constraints. Incorporating inequality constraints and
certain norm constraints such as ‖AX − b‖ ≤ ε for some ε > 0 might be beneficial for
other semidefinite programming applications such as stochastic block models with more
than 2 blocks [AL+18] and noisy matrix completion [CP10]. It seems straightforward
to extend this work to these new settings by introducing additional dual variables or
analyzing new dual objectives.

• Converging to the relative interior of the dual solution set Y?: In Theorem
3.2, the rank estimate rc needs to satisfy rc ≥ rd instead of rc ≥ rank(X?) assuming
uniqueness of the primal solution. Though the quantity rd can be indeed larger than
rank(X?) as shown in [DU20, Theorem 5.1], rc ≥ rank(X?) already ensures quick
convergence in our numerics. Based on the proof of Theorem 3.2, this more general
setting of linear convergence can be proved assuming the method converges to a dual
solution that is in the relative interior of Y?. This is indeed what we observed by
examining the dual slack matrices experimentally. Of course, this cannot be guaranteed
by the current algorithm design. Hence we pose the question of whether an algorithm
can maintain our low per iteration complexity while always converging to the relative
interior of the optimal solution set.

• Adaptive choice of ρ and (rp, rc): Our analysis assumes the choice of ρ and (rp, rc)
is constant. Is it possible to analyze adaptively setting ρ and (rp, rc)? An adaptive rule
of rc is of great practical importance as the prior information about the primal solution
rank may not be available to the user. In [Ous00, eq. (40) and Remark 4], two adaptive
rules of rc have been proposed. These rules might be combined with an upper bound on
rc to ensure the per iteration computation complexity does not explode. An adaptive
choice of rp may not be of critical importance given the existence of the aggregation,
though we may simply use the adaptive rule of rc for rp. Adaptive rules for updating
ρ have been considered in [DG21]. We leave theoretical and numerical investigations
of these rules into future work.

• Matrix sketching or not: We require an external procedure matrix sketching to
enhance the scalability of SpecBM. For the special case (3, 1)-SpecBM for matrix com-
pletion, such an external procedure is not needed as VtS

?
t V
>
t approximates X? well (not

shown here). Further analysis and numerical investigation on this direction, especially
combined with adaptive rank choice, is interesting and may reveal that SpecBM is
self-sufficient for scalability.

• Incorporating second-order information: In the work of [HOR14], the idea of
incorporating second-order information with low rank approximation (a version of block
eigenvectors) has been explored and the algorithm, CB-diag, appears to achieve 10−4

precision faster than the spectral bundle method with rc = 1 [HOR14, Section 7]. Yet
no convergence theory has been given for this method. Is it possible to adapt some of
the proof techniques here to provide faster convergence guarantees for CB-diag?
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A A historical remark on (rp, rc)-SpecBM

The algorithm presented in Helmberg and Rendle’s paper [HR00, Algorithm 4.1] requires
rc = 1 and allows the parameter rp to vary by the user. The requirement on rc might be due
to the fact that the authors want to avoid guessing the correct multiplicity of the optimal
solution as done in previous works such as [CDW75, PW82, Ove92] and the use of entire
spectrum as done in [Ove92, Ous00], since requiring SpecBM with rc = 1 is enough for
their method to converge. Nevertheless, in their implementation, on [HR00, page 690], it is
mentioned that “P k may be enriched with additional Lanczos-vectors from the eigenvalue
computation”. In our notation, this means that we allow rc > 1. This is made more clear
in the book chapter [HO00, page 330], “...add nA Lanczos vectors corresponding to the
largest eigenvalues of Ti”. In our notations, this means set rc = nA > 1. A more systematic
approach to the spectral bundle method using past and current eigenvectors can also be
found in [LO00, Section 3.4.2 and Section 3.4.3], where multiple eigenvectors of the current
Z(zt) are computed7.

A subtle difference between the method in [LO00, Ous00] and the one presented in this
paper is that the algorithmic parameter (chosen at each iteration) in [LO00, Ous00] is ε
rather than rc. The quantity ε is a quantity associated with the ε-enlargement of the largest
eigenvalue: given a symmetric matrix A, its ε-enlargement is defined as

Λε : = {λi | λi(A) ≥ λ1(A)− ε}.

Accordingly, the rc in [LO00, eq. (3.21)] is defined to be

the cardinality of Λε.

We do not take this approach as our motivating applications in Section 1.1 have natural
upper bounds on the solution rank which can be used to set rc (even without knowledge
of such bounds, we still guarantee the method converges, albeit sublinearly, for any rc ≥
1). Regardless, considering adaptive choice in model construction is an important practical
direction as the upper bound information may not be available.

One primary reason for the use of an ε-enlargement in [LO00, Ous00] is its connection
to Markovian dual bundle methods [HUL93, Chap. XIII], which utilizes the so-called ε-
subdifferential [HUL93, Chap. XI]. The ε-enlargement can be used as an inner approximation
of the ε-subdifferential utilizing the structure of the largest eigenvalue function [Ous00, eq.
(12)]. However, as discussed in [LO00, Beginning of Sec. 3.3], determining a good rule for
selecting ε is hard as it has a bivalent role. In the case of our results on linear speedups, we
would require ε to be a half or a constant fraction of the eigengap δ for the negative dual
optimal slack matrix −A∗y?+C, defined in (30), so that when the iterate is near the solution
with distance comparable to the eigengap, we can identify the rank. However, determining
the eigengap a priori is even harder than an upper estimate of the rank of the primal solution
for the applications described in Section 1.1.

7Note the way of dealing with past eigenvectors is different from the approach used in this paper.
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B Projecting to a scaled St
Recall the spectral bundle method needs to solve the subproblem

min
(η,S)∈St

ft(η, S),

where
ft(η, S) : =〈b, yt〉+ 〈ηX̄t + VtSV

>
t , C −A∗yt〉

+
1

2ρt

∥∥b−A(ηX̄t + VtSV
>
t

)∥∥2
,

St :={S � 0, η ≥ 0, tr(S) + αη ≤ α}.

(47)

After rescaling this constraint set, we may consider the constraint set as

S̃ = {S ∈ Sk+, η ≥ 0, tr(S) + η ≤ 1},

and a new objective f̃t(η, S) = f(η, αS).
Below we detail how to project any (η0, S0) ∈ R × Sr̄ on to the set S̃, yielding some

(η?, S?). This can be done by diagonalizing and projecting onto a simplex as follows:

1. Compute the eigenvalue decomposition of S0 = V Λ0V
>, where Λ0 ∈ Sr̄ is a diagonal

matrix with diagonal ~λ0 = (λ1, . . . , λr̄).

2. Compute (η?, ~λ?) = arg minη+
∑r̄

i=1 λi≤1, η≥0, λi≥0

∥∥∥(η0, ~λ0)− (η, ~λ)
∥∥∥.

3. Form S? = V diag( ~λ?)V >. Here diag(λ) forms a diagonal matrix with the vector λ
on the diagonal.

The main computational cost is the eigenvalue decomposition which requires O(r̄3) time.
The second step requires projection to the convex hull of probability simplex and the origin,
which can be done in O(r̄ log r̄) time [WCP13]. The correctness of this procedure can be
verified as in [AZHHL17, Lemma 3.1] and [Gar19, Lemma 6].

C Relationship between Lemma 3.8 and [DL18, DP19]

The two papers [DL18, DP19] study the prox-linear method, and the concept of a quadrat-
ically accurate model is not explicitly mentioned. However, a combination of proofs there
can be employed to establish Lemma 3.8 assuming a descent step is taken yt+1 = zt+1 (which
we handle in (33)).

Specifically, based on a quadratically accurate model, we obtain inequalities (32) (the
second inequality) and (34) (with a transformation based on the law of cosine). And these
two correspond to [DL18, Eq. (3.2) and (3.3)]. The authors of [DL18] then prove the linear
convergence based on an error bound condition [DL18, Definition 3.1] that is specific to
the prox-linear method. To use the proof there for the bundle method, we define the error
bound condition as dist(yt,Y?) ≤ β0‖yt+1 − yt‖ where yt+1 = arg minz F̄t(z) + ρ

2
‖z − yt‖2
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for some β0 > 0. For objective with quadratic growth, the error bound condition for prox-
linear method can be proved using [DL18, Corollary 3.6] which is based on a step-lengths
comparison inequality [DL18, Inequality (3.11)]. To use the proof in [DL18, Corollary 3.6], we
need to define an appropriate notion of step-lengths comparison inequality and prove it holds
under the quadratically accurate model. We define the comparison inequality in the context
of bundle methods as ‖yt+1 − yt‖ ≥ β1‖ŷt − yt‖ where ŷ = arg minz F (z) + ρ

2
‖z − yt‖2. This

inequality can be proved based on [DP19, the proof of Theorem 4.5] which only uses that
the given model F̄t is a quadratically accurate model.
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