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Abstract

We develop a general framework for identifying phase reduced equations for finite
populations of coupled oscillators that is valid far beyond the weak coupling approxi-
mation. This strategy represents a general extension of the theory from [Wilson and
Ermentrout, Phys. Rev. Lett 123, 164101 (2019)] and yields coupling functions that
are valid to higher-order accuracy in the coupling strength for arbitrary types of cou-
pling (e.g., diffusive, gap-junction, chemical synaptic). These coupling functions can
be used to understand the behavior of potentially high-dimensional, nonlinear oscilla-
tors in terms of their phase differences. The proposed formulation accurately replicates
nonlinear bifurcations that emerge as the coupling strength increases and is valid in
regimes well beyond those that can be considered using classic weak coupling assump-
tions. We demonstrate the performance of our approach through two examples. First,
we use diffusively coupled complex Ginzburg-Landau (CGL) model and demonstrate
that our theory accurately predicts bifurcations far beyond the range of existing cou-
pling theory. Second, we use a realistic conductance-based model of a thalamic neuron
and show that our theory correctly predicts asymptotic phase differences for non-weak
synaptic coupling. In both examples, our theory accurately captures model behaviors
that weak coupling theories can not.

1 Introduction

Self-sustained oscillations are observed in a wide array of biological [46, 17], physical [37,
27], and chemical [18, 8] systems. A common and powerful approach to understanding
how network oscillators interact is the phase reduction method [18, 17, 12, 29]. Its utility
comes from reducing a network of N general n-dimensional oscillators into N−1 equations
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that characterize the temporal evolution of phase differences. Indeed, the weak coupling
paradigm has driven much work on coupled oscillators in recent decades [10, 13, 36, 7, 28,
33].

Unfortunately, the weak coupling assumption cannot accurately capture the dynamical
behavior of coupled oscillator networks in many practical applications. This limitation is
especially true in many biological systems. For instance, while individual cortical neurons
elicit small-magnitude postsynaptic responses [16], the postsynaptic neuron receives tens
of thousands of such responses, resulting in effectively strong coupling [32]. Subcortical
networks such as the basal ganglia include strong synaptic conductances [38]. Pacemaker
neurons such as those in the pre-Boetzinger complex and crab stomatogastric ganglion
have coupling strengths several orders of magnitude beyond the regime for which the weak
coupling approximation is valid [3, 15]. For weak coupling to serve as a good approximation
in these cases, perturbed trajectories must remain within a small neighborhood of the
underlying limit cycle – a particularly restrictive requirement for limit cycles that have
slowly decaying transients [45, 9].

To overcome the weak coupling assumption, researchers have used particular tractable
models such as integrate-and-fire models [40, 11], or used common features in coupled
biological oscillators such as pulse-like coupling [6, 5, 4, 31, 26] to make problems tractable.
We wish to establish a general extension of weak coupling theory for potentially high-
dimensional oscillators that includes non-pulsatile coupling.

Recent work in this direction includes [44], the authors derive a general second-order
correction to the classic first-order theory of weakly coupled oscillators. The method ex-
ploits the theory of isostable coordinates [23, 42], which represent level sets of the slowest
decaying modes of the Koopman operator [25, 2] to derive the higher-order accuracy cor-
rections for the phase dynamics. The authors in [34, 14] introduce a general numerical
method to numerically estimate higher-order phase equations. Finally, although not di-
rectly a coupling result, the results of [41] are highly relevant, where Wilson introduced a
phase reduction method for strong perturbations using isostable coordinates.

In this paper, we develop a general framework that can be used to identify coupling
functions that are valid to arbitrary accuracy using an asymptotic expansion in the reduced
order coordinates. Related work by [34, 14] requires estimations obtained by the phase
dynamics over time, i.e., the full model must be computed for potentially long times and
become difficult to implement in high dimensions. In contrast, we exploit the higher-
order isostable reduction from [41] and derive high-accuracy phase-interaction functions to
higher-order accuracy in the coupling strength. This work extends upon previous results
in [44, 43] that computed second-order accurate coupling functions using the isostable
coordinate framework.

By restricting our attention to a hypersurface defined by the slowest decaying isostable
coordinates, the resulting framework can be readily implemented even if the underlying
models are high-dimensional. Furthermore, the numerical implementation only involves
computing a hierarchy of scalar ODEs and scalar integrals and does not require a priori
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knowledge of the phase trajectories. One caveat is that we use first-order averaging the-
ory. However, we find that first-order averaging is sufficient to capture non-weak coupling
dynamics in our examples.

We organize the paper as follows. In Section 2, we introduce our general phase reduction
method for N coupled oscillators. In Section 2.1, we demonstrate up to order ε3 how our
symbolic solver derives the reduced equations using N = 2 oscillators. We apply our
results to the complex Ginzburg-Landau (CGL) ODE model in Section 3.1 and a realistic
conductance-based neural model of a thalamic neuron in Section 3.2. We conclude with a
discussion in Section 4.

All code used to generate the phase equations are publicly available on GitHub at
https://github.com/youngmp/strongcoupling. Our open-source implementation is writ-
ten in Python [39]. The repository includes documentation on how to use our software for
general systems and includes additional examples.

2 Derivation

In this section, we reduce the dynamics of N strongly coupled oscillators to a system of
N − 1 equations representing the phase differences. We begin with the autonomous ODEs

Ẋi = F (Xi) + ε

N∑
j=1

aijG(Xi, Xj), i = 1, . . . , N, (1)

where each system admits a T -periodic limit cycle Y (t) when ε = 0. We allow ε >
0 not necessarily small and assume general smooth vector fields F : Rn → Rn and a
smooth coupling function G : Rn × Rn → Rn. The scalars aij modulate the strength of
coupling between pairs of oscillators, whereas ε modulates the overall coupling strength
of the network. Throughout the text, we will use subscripts i and j to denote oscillator
indices and superscripts k and ` to denote exponents and expansions.

Similar to prior studies [42, 44], we make the explicit assumption that all but one of the
n− 1 non-unity Floquet multipliers is sufficiently close to 0 so that only a single isostable
coordinate is required per oscillator. Additional isostable coordinates could be considered
with appropriate modifications to the derivation to follow. Let κ < 0 be the corresponding
Floquet exponent. Using the theory of isostable reduction [44, 41], Equation (1) reduces
to the phase-amplitude coordinates,

θ̇i = 1 + εZ(θi, ψi) ·
N∑
j=1

aijG(θi, ψi, θj , ψj),

ψ̇i = κψi + εI(θi, ψi) ·
N∑
j=1

aijG(θi, ψi, θj , ψj).

(2)
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where θi represents the phase of oscillator i and ψi represents the amplitude of a trajectory
perturbed away from the underlying limit cycle. Note that θi is a function of time, but
we will generally suppress this dependence for notational convenience in the derivation to
follow. We will later show that the variable ψi, once expanded in ε, can be expressed in
terms of θi, θj , thus reducing the dimension of the system to one.

The functions Z and I can be computed to arbitrarily high accuracy by computing
coefficients of the expansions:

Z(θ, ψ) ≈ Z(0)(θ) + ψZ(1)(θ) + ψ2Z(2)(θ) + . . . , (3)

I(θ, ψ) ≈ I(0)(θ) + ψI(1)(θ) + ψ2I(2)(θ) + . . . , (4)

Xi(t) ≈ Y (θi) + ψig
(1)(θi) + ψ2

i g
(2)(θi) + . . . , (5)

ψi(t) ≈ εp(1)i (t) + ε2p
(2)
i (t) + ε3p

(3)
i (t) + . . . , (6)

where Z(k), I(k), and g(k) are the phase response curve (PRC), isostable response curve
(IRC), and Floquet eigenfunction expansions respectively, θi are the phase variables of each
oscillator and ψi are the amplitude coordinates. Using the method in [41], these functions
can be computed numerically provided the underlying equations are known. We will assume
that we have performed such computations for a given system and have solutions Z(k),
I(k), and g(k) for each k (our Python implementation includes methods that automate the
computation of these functions).

Next, we expand the coupling function G in powers of ε. Let us fix a particular pair
of oscillators i and j. To expand G in powers of ε, we use the Floquet eigenfunction
approximation

∆xi ≈ ψig(1)(θi) + ψ2
i g

(2)(θi) + . . . , (7)

where ∆xi ≡ Xi(t) − Y (θi(t)). We view the coupling function as the map G : R2n → Rn

where G(X) = [G1, . . . Gn]T ∈ Rn, Gm : R2n → R, and X =
[
XT
i , X

T
j

]T
∈ R2n. We

then apply the standard definition of higher-order derivatives from [22, 41] to obtain the
multivariate Taylor expansion in ∆xi.

Starting with an arbitrary mth coordinate of the vector-valued function G(Y + ∆X),
where Y = [Y (θi)

T , Y (θj)
T ]T , and ∆X = [∆xTi ,∆x

T
j ]T (both 2n× 1 column vectors), the

Taylor expansion yields

Gm(Y + ∆X) = Gm(Y ) +G(1)
m (Y )∆X +

∞∑
k=2

1

k!

[
k
⊗ ∆XT

]
vec
(
G(k)
m (Y )

)
, (8)

where

G(k)
m =

∂vec
(
G

(k−1)
m

)
∂XT

∈ R(2n)(k−1)×2n. (9)

That is, the partial of G is taken with respect to all coordinates of oscillators i and j.
We replace ∆X in Equation (9) with the Floquet eigenfunction expansions (Equation (7))
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and replace each ψki with the expansion for ψi (Equation (6)). With these substitutions
in place, we collect the expansion of G in powers of ε. In general, the notation becomes
cumbersome, so we summarize this step by writing

G(θi, ψi, θj , ψj) =K(0)(θi, θj)

+ εK(1)
(
θi, θj , p

(1)
i , p

(1)
j

)
+ ε2K(2)

(
θi, θj , p

(1)
i , p

(2)
i , p

(1)
j , p

(2)
j

)
+ . . . .

(10)

The O(1) K(k) functions are the appropriately-collected terms including partials of G and
the Floquet eigenfunctions. In the calculations to follow, we often suppress the dependence

on the O(1) functions p
(k)
i , p

(k)
j . We refer the reader to Appendix A for the details of

Equation (10). It is straightforward to verify (using a symbolic package) that for a given

k, each K(`) term only depends on terms p
(`)
i , p

(`)
j for ` ≤ k.

At this step, we have all the necessary expansions in ε to rewrite the phase-amplitude
equations in Equation (2) in powers of ε. However, this system is still in two dimensions
per oscillator. In order to reduce the equations to one per oscillator, we solve for ψi in
terms of θi, θj . To this end, we proceed with the method suggested by [44].

Making the substitution θ̂i = θi − t in Equation (2) yields,

˙̂
θi = ε

N∑
j=1

aijZ(θ̂i + t, ψi) ·G(θ̂i + t, θ̂j + t), (11)

ψ̇i = κψi + ε
N∑
j=1

aijI(θ̂i + t, ψi) ·G(θ̂i + t, θ̂j + t). (12)

Now substituting the expansion ψi(t) = εp
(1)
i (t) + ε2p

(2)
i (t) + ε3p

(3)
i (t) + . . . , into Equation

(12), yielding a hierarchy of ODEs in powers of ε of ψi in terms of θ̂i, θ̂j . The left-hand
consists of straightforward time-derivatives:

ψ′i = ε
d

dt
p
(1)
i + ε2

d

dt
p
(2)
i + ε3

d

dt
p
(3)
i + . . . .

5



The right-side, after plugging in the function expansions, reads

κψi+ε
N∑
j=1

aijI(θ̂i + t, ψi) ·G(θ̂i + t, θ̂j + t)

= κ
[
εp

(1)
i (t) + ε2p

(2)
i (t) + . . .

]
+ ε

N∑
j=1

aij

([
I
(0)
i (θ̂i + t) + ψI

(1)
i (θ̂i + t) + ψ2I

(2)
i (θ̂i + t) + . . .

]
·
[
K

(0)
i (θ̂i + t, θ̂j + t) + εK

(1)
i (θ̂i + t, θ̂j + t) + ε2K

(2)
i (θ̂i + t, θ̂j + t) + . . .

])
.

These expansions yield the hierarchy of scalar ODEs in ε,

O(ε) :
dp

(1)
i

dt
= κp

(1)
i (t) +

N∑
j=1

aijI
(0) ·K(0),

O(ε2) :
dp

(2)
i

dt
= κp

(2)
i +

N∑
j=1

aij

(
I(0) ·K(1) + p

(1)
i I(1) ·K(0)

)
,

O(ε3) :
dp

(3)
i

dt
= κp

(3)
i +

N∑
j=1

aij

(
I(0) ·K(2) + p

(1)
i I(1) ·K(1)

+ p
(2)
i I(1) ·K(0) +

(
p
(1)
i

)2
I(2) ·K(0)

)
,

...

where p
(k)
i are functions of time t (with phase shifts in θ̂i and θ̂j as we will show below),

I(k) are functions of θ̂i + t, and K(k) are functions of θ̂i + t, θ̂j + t. Note that all ODEs are
first-order inhomogeneous differential equations with forcing terms that depend on lower-
order solutions, so we can solve each ODE explicitly. In particular, the forcing functions
f (k)(θ̂i + t, θ̂j + t) are the summed terms above:

f (1)(θ̂i + t, θ̂j + t) =
N∑
j=1

aijI
(0) ·K(0)

f (2)(θ̂i + t, θ̂j + t) =

N∑
j=1

aij

(
I(0) ·K(1) + p

(1)
i I(1) ·K(0)

)
,

f (3)(θ̂i + t, θ̂j + t) =
N∑
j=1

aij

(
I(0) ·K(2) + p

(1)
i I(1) ·K(1) + p

(2)
i I(1) ·K(0) +

(
p
(1)
i

)2
I(2) ·K(0)

)
,

...
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The integrating factor method yield a solution for p
(k)
i in terms of the forcing function f (k),

p
(k)
i (t) =

N∑
j=1

aij

∫ t

t0

eκ(t−s)f (k)(θ̂i + s, θ̂j + s)ds+ eκtC, k = 1, 2, . . .

where C is a constant of integration. To discard transients, we ignore the constant of
integration and take t0 → −∞. For convenience, we also make the change of variables
s→ t− s. Then the solutions become,

p
(k)
i (t) =

N∑
j=1

aij

∫ ∞
0

eκsf (k)(θ̂i + t− s, θ̂j + t− s)ds (13)

= p̃
(k)
i (θ̂1 + t, . . . , θ̂N + t). (14)

Note that p
(k)
i (t) is a function of time, whereas p̃

(k)
i is a function of space. In particular, p̃

(k)
i

acts on the N -torus. Recalling that p̃
(k)
i are coefficients of the ε-expansion of ψi, it follows

that each ψi can be written directly in terms of θ̂1, . . . , θ̂N and we have therefore eliminated

the equation for ψi (note the lowest order p̃
(k)
i is the same function as the function rj as

[44]).
We now simplify Equation (11) by introducing the expansions derived above:

˙̂
θi = ε

N∑
j=1

aijZ(θ̂i + t, ψi) ·G(θ̂i + t, θ̂j + t)

= ε

N∑
j=1

aij

[
Z(0) + ψiZ

(1) + ψ2
i Z

(2) + ψ3
i Z

(3) + . . .
]
·
[
K(0) + εK(1) + ε2K(2) + ε3K(3) + . . .

]
.

Substituting the expansion for ψi and collecting in powers of ε yields,

˙̂
θi = ε

N∑
j=1

aijK
(0) · Z(0)

+ ε2
N∑
j=1

aijK
(1) · Z(0) + p̃

(1)
i K(0) · Z(1)

+ ε3
N∑
j=1

aijK
(2) · Z(0) + p̃

(1)
i K(1) · Z(1) + p̃

(2)
i K(0) · Z(1) +

(
p̃
(1)
i

)2
K(0) · Z(2)

...

Note that the suppressed dependencies are as follows: K(0) = K(0)(θ̂i + t, θ̂j + t), K(1) =

K(1)(θ̂i + t, θ̂j + t, p̃
(1)
i , p̃

(1)
j ), K(2) = K(2)(θ̂i + t, θ̂j + t, p̃

(1)
i , p̃

(2)
i , p̃

(1)
j , p̃

(2)
j ), p̃

(k)
i,j = p̃ki,j(θ̂1 +
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t, . . . , θ̂N + t), and Z(k) = Z(k)(θ̂i + t). The differential equation above represents a system
of non-autonomous ODEs for the phase dynamics of each oscillator.

In order to obtain an autonomous ODE that preserves the long-term dynamics of this
non-autonomous system, we apply (first-order) averaging theory to obtain:

θ̇i = ε
N∑
j=1

aijH(1)(θi, θj) + ε2
N∑
j=1

aijH(2)(θi, θj) + ε3
N∑
j=1

aijH(2)(θi, θj) + . . . , (15)

where

H(1)(θi, θj) =
1

T

∫ T

0
K(0) · Z(0)dt,

H(2)(θi, θj) =
1

T

∫ T

0
K(1) · Z(0) + p̃

(1)
i K(0) · Z(1)dt,

H(3)(θi, θj) =
1

T

∫ T

0
K(2) · Z(0) + p̃

(1)
i K(1) · Z(1) + p̃

(2)
i K(0) · Z(1) +

(
p̃
(1)
i

)2
K(0) · Z(2)dt.

System (15) represents the phase dynamics of N strongly coupled oscillators taking into
account the amplitude dynamics.

Remark: our use of first-order averaging is a strong assumption, but its utility depends
on the system of interest. For the example systems we consider in this paper, first-order
averaging is sufficient to capture phase dynamics far beyond the weak coupling regime.
However, if a system or problem demands higher-order averaging, we may incorporate
methods from [20, 21] in future studies.

We note that for numerical implementation, computing Equation (13) is the most
computationally expensive step because it a scalar time integral that must be recomputed
for pairs of phase variables. We refer the reader to Appendix B for details of our numerical
approach.

2.1 Computation of Coupling Functions for N = 2 Oscillators

As a concrete example of how our symbolic script generates phase equations, we show the
process for deriving the phase equations for two reciprocally coupled oscillators θ1, θ2 up
to order O(ε3). We assume a system of N = 2 coupled oscillators without self-coupling
(aii = 0). We write ηi = θ̂i + t for brevity.

Recall the ε-expansion in the coupling function G in the previous section:

G(η1, ψ1, η2, ψ2) =K(0)(η1, η2)

+ εK(1)
(
η1, η2, p

(1)
1 , p

(1)
2

)
+ ε2K(2)

(
η1, η2, p

(1)
1 , p

(2)
1 , p

(1)
2 , p

(2)
2

)
+ . . . .

8



Each K(k) contains the amplitude expansions ψ1 and ψ2. We derive more explicit forms
for K(k) by plugging in the Floquet eigenfunction expansions

∆xi ≈ ψi(t)g(1)(ηi) + ψ2
i g

(2)(ηi) +O
(
ψ3
i

)
,

into the derivative expansion of G,

Gm(Y + ∆X) = Gm(Y ) +G(1)
m (Y )∆X +

∞∑
k=2

1

k!

[
k
⊗ ∆XT

]
vec
(
G(k)
m (Y )

)
,

and collect in powers of ψi. The appropriately-collected terms are

G(η1, ψ1, η2, ψ2) =
∑
k+`≤2

ψk1ψ
`
2M

(k,`)(η1, η2), (16)

where the functions M (k,`) are maps M (k,`) : S1 × S1 → R2 consisting of the expanded
Floquet eigenfunctions of order ψkψ`and the partial derivatives of G. To obtain an expan-
sion in ε, we plug in the amplitude expansion (6) and collect in powers of ε, noting that

for N = 2 without self coupling, the p
(k)
i (t) terms are

p
(k)
i (t) =

∫ ∞
0

eκsf (k)(θ̂i + t− s, θ̂j + t− s)ds

≡ p(k)i (θ̂i + t, θ̂j + t),

where i = 1, 2, j = 3− i. The resulting K(k) functions are,

K(0)(η1, η2) = M (0,0)(η1, η2),

K(1)(η1, η2) = p
(1)
2 (η2, η1)M

(0,1)(η1, η2) + p
(1)
1 (η1, η2)M

(1,0)(η1, η2),

K(2)(η1, η2) =
(
p
(1)
2 (η2, η1)

)2
M (0,2)(η1, η2) + p

(1)
1 (η1, η2)p

(1)
2 (η2, η1)M

(1,1)(η1, η2),

+
(
p
(1)
1 (η1, η2)

)2
M (2,0)(η1, η2).

Next, we write the ε-expansion of the PRC function Z, again using the amplitude expansion
(6):

Z(η1, η2) = Z(0)(η1) + εp
(1)
1 (η1, η2)Z

(1)(η1)

+ ε2
[
p
(2)
1 (η1, η2)Z

(1)(η1) +
(
p
(1)
1 (η1, η2)

)2
Z(2)(η1)

]
+O(ε3),

where i = 1, 2, j = 3 − i. We now plug the ε-expansions for G and Z into the phase
equation (11), and average to yield,

θ1 = εH(1)(θ2 − θ1) + ε2H(2)(θ2 − θ1) + ε3H(3)(θ2 − θ1) +O
(
ε4
)
,

9



where

H(1)(η) =
1

T

∫ T

0
Z(0) ·M (0,0)ds.

H(2)(η) =
1

T

∫ T

0
p
(1)
1 Z(1) ·M (0,0) + p

(1)
2 Z(0) ·M (0,1) + p

(1)
1 Z(0)M (1,0)ds.

H(3)(η) =
1

T

∫ T

0

[
Z(0) ·K(2) + p

(1)
1 Z(1) ·K(1) + p

(2)
1 Z(1) ·K(0) +

(
p
(1)
1

)2
Z(2) ·K(0)

]
ds.

All Z(k) are functions of the integrating variable s, all K(k) are functions of (s, η + s), all

p
(k)
1 are functions of (s, η+s), and all p

(k)
2 (contained inside the K(k) terms) are functions of

(η+ s, s). The equation for θ2 is identical, but with θ1− θ2 as inputs to the H(k) functions.
Finally, we take the phase difference φ = θ2 − θ1, resulting in the scalar equation,

φ̇ = ε [H(−φ)−H(φ)] ≡ −2Hodd(φ)

= ε
[
H(1)(−φ)−H(1)(φ)

]
+ ε2

[
H(2)(−φ)−H(2)(φ)

]
+ ε3

[
H(3)(−φ)−H(3)(φ)

]
+O

(
ε4
)
,

where Hodd is the odd part of H, and we will often refer to the right-hand side of the above
as −2Hodd, or with a slight abuse of notation, simply call them interaction functions. As
mentioned earlier, fixed points of the scalar −2Hodd function inform us of the existence and
stability of phase-locked states in a given pair of coupled oscillators. We will demonstrate
this property in the examples to follow.

We remark that this expansion is consistent with previously developed strategies for
getting the first and second order responses. The first order term contains the functions
M (0,0) and Z(0), which are the coupling function G and classic infinitesimal phase response
curve, so H(1) is the classic interaction function. The second-order term is identical to that
derived in [44]. Most importantly, the proposed theory represents an extension of the work
in [44] and can be used to calculate coupling functions to arbitrary orders of accuracy in
the coupling strength. Higher order approximations are straightforward to attain through
symbolic manipulations, which is automated using our Python code.

3 Results

3.1 CGL Model

We begin with a relatively straightforward example of two diffusively coupled complex
Ginzburg-Landau (CGL) models:

x′j = (1− x2j − y2j )xj − q(x2j + y2j )yj + ε [xk − xj − d(yk − yj)] ,
y′j = (1− x2j − y2j )yj + q(x2j + y2j )xj + ε [yk − yj + d(xk − xj)] , (17)

10
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Figure 1: Examples of generalized H functions in the CGL model. Roots indicate existence
of phase-locked solutions (with stability determined by the slopes). A,B,C: second, fourth,
and tenth order interaction functions, respectively, for the choice of coupling parameters
d = 0.4 and ε = 0.26. Stability in the antiphase state only appears in C with the addition
of the tenth-order term (inset shows a negative slope at antiphase). D,E,F: higher-order
coupling functions for second, fourth, and tenth order, respectively, for the choice of cou-
pling parameters d = 0.3 and ε = −0.66. Stability in the synchronous state only appears
in F with the addition of the tenth-order term (inset shows a negative slope at synchrony).
q = 1 for this example.

where j = 3 − k with k = 1, 2. When ε = 0 and q = 1, the system admits a stable
2π-periodic limit cycle, xj(t) = cos(qt), yj = sin(qt). Depending on the choices of d, q
and ε, the model (17) can admit stable phase locked solutions, stable antiphase solutions,
or bistability between phase-locked and antiphase solutions. Critical curves that define
regions of stability were computed exactly by [1] and are given by

εs =
dq − 1

d2 + 1
,

εa =
1− dq

d2 − 2dq + 3
.

(18)

These curves are shown as black lines in Figure 2 and define regions where different locking
modalities are stable. We compare our method to the ground truth of Equation (18) by
generating H functions of different order truncations and tracking the fixed points of the
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equation

φ̇ = ε [H(−φ)−H(φ)] .

as a function of ε and d.
Examples ofH functions are shown in Figure 1. Panels A, B, and C show theH function

for second, fourth, and tenth order for d = 0.4 and ε = 0.26. For this coupling strength,
second and fourth order H functions show that antiphase is unstable, but the tenth order
function reveals a stable antiphase solution. Panels D, E, F, show the H function for
second, fourth, and tenth order for d = 0.3 and ε = −0.66. Second and fourth order
show that synchrony is unstable, but the tenth order function reveals a stable synchronous
solution.
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Figure 2: Two-parameter diagram of the CGL model in coupling parameters d and ε.
Synchrony is only stable in regions I and II, whereas antiphase is only stable in regions I and
III. All black lines are analytically computed from Equation (18). Black solid lines denote
boundaries where the system switches between stable and unstable synchrony (εs). Black
dashed lines denote boundaries where the system switches between stable and unstable
antiphase (εa). Purple solid, dashed: bifurcations detected using 2nd order interaction
functions from [44]. Green solid, dashed: bifurcations detected using 10th order interaction
functions. The points labeled ?A,B,C and ?D,E,F correspond to the parameter values used
in Figure 1A,B,C, and D,E,F, respectively.

In Figure 2, we show the boundaries constructed from our theory using second order
(purple) and tenth order (green) H functions. The system switches between stable and
unstable synchrony across solid lines (between regions I and III), and between stable and
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unstable antiphase across dashed lines (between regions I and II). As expected, the tenth-
order approximation closely follows the ground-truth curves (black) for a much greater
range of d, ε, compared to existing second-order theory. The parameter values correspond-
ing to Figure 1A, B, C are labeled with a star (?) towards the upper left corner of the
diagram. This point is in parameter region I, which corresponds to stable synchrony and
unstable antiphase, confirming the accuracy of Figure 1C. The parameter values corre-
sponding to Figure 1D, E, F are labeled with a star (?) towards the lower left corner of
the diagram. This point is also in parameter region I and we confirm stable synchrony and
unstable antiphase observed in Figure 1F.

The analytically tractable features of this model allow us to confirm our theory and
demonstrate its strong performance. Additionally, our theory can also be applied straight-
forwardly to analytically intractable models as will be seen in the next example.

3.2 Thalamic Neuron Model

As a second example, we consider a model of synaptically coupled conductance-based
neurons taken from [35] that replicate the salient dynamical behaviors of tonically firing
thalamic neurons. The state variables of the thalamic neuron models satisfy

dVi
dt

= (−IL(Vi) + INa(Vi) + IK(Vi) + IT(Vi)− gsynwj(Vi − Esyn) + Iapp)/C,

dhi
dt

= (h∞(Vi)− hi)/τh(Vi),

dri
dt

= (r∞(Vi)− ri)/τr(Vi),
dwi
dt

= α(1− wi)/(1 + exp((Vi − VT)/σT ))− βwi,

where i = 1, 2, j = 3− i. The voltage variable Vi depend on the gating variables hi, ri,
and receives synaptic inputs from the synaptic variable wj from the reciprocal neuron. We
consider excitatory synaptic coupling, Esyn = 0. We will use the parameter gsyn to denote
the coupling strength in this section (it is equivalent to ε in our formulation). All remaining
equations are listed in Appendix C along with the parameters in Table A1.

Figure 3 shows generalized H functions up to first, second, and fourth order for gsyn ∈
{0.01, 0.09, 0.25}. For gsyn = 0.02, all generalized H functions exhibit the same types
of stability, namely unstable synchrony and stable antiphase (Figure 3A), and the full
model converges to antiphase as expected (Figure 3A, black arrow and black curves). For
gsyn = 0.09, all H functions agree in stability (Figure 3B, bottom black arrow and black
lines). However, only the fourth-order H function explains the slow transitions to antiphase
for solutions near synchrony.

We remark on a few important features in the bottom panels of Figure 3B,C that may
appear erroneous but are in fact consistent with our theory. Note that the underlying limit
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Figure 3: Examples of generalized H functions in the thalamic model. Roots indicate
existence of phase-locked solutions, and slopes the stability. In each top panel, first (pur-
ple), second (blue), and fourth (green) order generalized interaction functions are shown.
In each bottom panel, the phase difference between two full thalamic models are shown
for 20 initial conditions. A: with gsyn = 0.02, i.e., weak coupling, all orders agree and
the full model converges to the antiphase state as indicated by the black arrow. B: with
gsyn = 0.0.9, the weak coupling theory remains valid and the stability of fixed points agree
with the higher-order interaction functions. Note that the fourth order function (top panel)
predicts a region indicated by ?, where phase differences evolve relatively slowly. The phase
differences near synchrony in the full model (bottom panel) exhibit slow changes in the
phase differences indicated by a ?, consistent with the fourth-order prediction. C: with
gsyn = 0.25, only fourth order captures the existence of near-synchronous states. To ease
comparisons, we scaled the first order function by a factor of 10 and the second order term
by a factor of 7. The black arrow indicates the location of the antiphase point in the full
system.

cycle will deform as a function of the coupling strength gsyn, and the greater the coupling
strength the greater the deformation. Although we don’t show the limit cycle deformation
explicitly, we have observed that the shape and period of the limit cycle with no coupling,
gsyn = 0, may differ substantially from the shape and period of the limit cycle for stronger
coupling, e.g., when we increase gsyn to gsyn = 0.09 and gsyn = 0.25. In the case of weak
coupling, a standard approach is to use the limit cycle with no coupling as a reference point
to initialize solutions with some desired phase difference. This choice works well because
weak coupling does not perturb solutions far from the unperturbed limit cycle. However,
in the case of strong coupling, using the unperturbed limit cycle to initialize solutions
results in strong transients as the solutions settle on to the strongly perturbed limit cycle.
Because the strongly perturbed limit cycle may differ greatly in shape and period from the
unperturbed limit cycle, the transients sometimes allow oscillators to switch in the sign of
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the phase.
For example, oscillators initialized using the unperturbed limit cycle at θ1 and θ2, where

θ2 lags just behind θ1 (φ = θ2−θ1 < 0), may rapidly switch in order and result in θ1 lagging
just behind θ2 (φ > 0) as the underlying trajectories settle on to the strongly perturbed
limit cycle. It is possible to mitigate the issue of transients by using the strongly perturbed
limit cycle as a reference to initialize solutions, but we chose to use the unperturbed limit
cycle as it is a standard approach. For the few initial conditions that result in this type
of switch, we chose to reverse their sign post hoc. For this reason, some initial conditions
appear to be missing in Panel B, and some phase difference trajectories overlap in panel
C.

Regarding the convergence of phase differences away from the antiphase T0/2 in panels
B and C, note that we used the period T0 ≈ 10.6 of the unperturbed oscillator to normalize
all solutions, so the antiphase state during strong coupling will appear incorrect by a factor
of T0.09/T0 and T0.25/T0, where T0.09 ≈ 10 is the period of oscillation at gsyn = 0.09 and
T0.25 ≈ 8.4 is the period of oscillation at gsyn = 0.25. The ratios T0.09/T0 and T0.25/T0 are
consistent with the respective differences seen in panels B and C.
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Figure 4: One-parameter bifurcation diagrams in gsyn of the phase difference between two
Thalamic oscillators. A: Bifurcation diagram of the full system. Synchrony is unstable,
antiphase is stable, and for gsyn ≈ 0.19, a stable near-synchronous state emerges. B:
Bifurcation diagram of the reduced system using an order 2 approximation. Synchrony is
unstable and antiphase is stable as expected, but there is no near-synchronous solution. The
bifurcation diagram when using the order 1 accurate coupling functions (i.e. the standard
theory of weakly coupled oscillators) is identical to the order 2 accurate diagram. C:
Bifurcation diagram of the reduced system using an order 4 approximation. Synchrony
is unstable and antiphase is unstable in agreement with the full model, and the near-
synchronous branch appears for gsyn ≈ 0.1.

We further illustrate the differences between the generalized H functions using one-
parameter bifurcation diagrams (Figure 4). Similar to the CGL model, we follow fixed
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points of the phase difference equation

φ̇ = gsyn [H(−φ)−H(φ)] ,

for different order truncations. The bifurcation parameter is naturally gsyn.
To compute the one-parameter diagram of the full model, we used Newton’s method

to converge onto the underlying stable phase-locked states. For a given coupling strength
gsyn, we initialized the model at antiphase to capture the antiphase solution, then incre-
mented gsyn by a small amount (0.02nS) and repeated the stability calculation to follow the
antiphase branch. To compute the stability of other branches, we repeated this calculation
by initializing the full model at different phase shifts (one at synchrony and the other at a
phase difference that led to the stable phase-locked branch). The full model exhibits unsta-
ble synchrony, stable antiphase, and a stable phase-locked state that emerges at gsyn ≈ 0.19
as gsyn increases (Figure 4A). We were unable to capture unstable phase-locked branches
in the full system using this method.

In Figure 4, we find that using the second-orderH function captures unstable synchrony
and stable antiphase, but not the stable phase-locked solution. Finally, using the fourth-
order H function, we capture all qualitative features of the full model including the stable
phase-locked solution, which emerges at gsyn ≈ 0.1. We are also able to capture the unstable
phase-locked branch.

This result demonstrates the general utility our theory. It is naturally applicable to ar-
bitrary, smooth n-dimensional smooth dynamical systems with arbitrary, smooth coupling
functions. Despite stronger coupling inducing relatively large changes to the underlying
vector field, the theory robustly reproduces the behaviors of the full, unreduced model.

4 Discussion

In this paper, we have established a general coupled oscillator theory for coupling strengths
that extend well beyond the regime of weak coupling. By exploiting phase-amplitude rela-
tionships based on the isostable coordinate framework, we derived coupling functions valid
to arbitrary orders of accuracy in the coupling strength. To verify the theory, we applied
our theory to two different models. In the first example, we used the CGL model to demon-
strate how higher-order coupling functions accurately characterize both the existence and
stability of synchronous and antiphase solutions. Using these higher-order coupling func-
tions, we reproduced the analytically derived boundaries in the two-parameter bifurcation
diagram with much greater accuracy than existing methods. In the second example, we
considered a neurobiologically motivated model of a tonically firing neuron. Our theory
accurately reproduced the phase-locked solutions of coupled thalamic models.

Provided relatively mild conditions such as sufficient smoothness of the vector fields are
satisfied, our theory can be applied to a wide variety of oscillatory dynamical systems in
the biological, chemical, and physical sciences. While we only explicitly considered N = 2
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oscillators in this paper, an important future direction includes augmenting this theory to
networks of oscillators and extending classic results on weakly coupled oscillators.

We have demonstrated the utility of our theory, but some limitations remain. First,
strong coupling leads to strongly deformed limit cycles in the full system, and phase in-
formation from the weakly coupled system does not necessarily transfer into the strongly
coupled system. While our theory manages to accurately capture phase and amplitude
information far from the unperturbed limit cycle without using direct knowledge of the
strongly coupled system, care must be taken when translating from our theory to the
full system. The theory is best suited to understanding the asymptotic behavior of cou-
pled oscillators (although it is worth reiterating that the theory can reproduce qualitative
transient behavior for non-weak coupling).

Other limitations of our theory are computational. Some of the functions in this pa-
per are expensive to compute, but this limitation may be improved by existing work on
phase reduction theory for strong perturbations. In [19], the authors introduce the local
orthogonal rectification (LOR). In contrast to the isostable framework, LOR codes the
amplitude as an orthogonal distance from a limit-cycle trajectory. Other insights that may
lead to more efficient computation of coupling functions may be gleaned from [30], where
authors introduce a parameterization method to compute higher-order phase-amplitude
coordinates, which sidesteps the need to compute symbolic derivatives and the need to use
Newton’s method in this work and in [44].

Finally, we discuss where our results stand relative to general work using pulse-coupled
oscillators. In [5], the authors derive a general method – independent of model, coupling
strength, and synapse – to predict N : 1 phase locking. These pulse-coupled methods
are powerful and broadly applicable to experimental neuroscience because the underly-
ing differential equations need not be known. Similarly, Cui et al. derive a functional
phase response curve given a regular stream of pulse trains perturbing oscillator phase
responses with additional effects such as adaptation[6]. However, the former results rely
on a strongly attracting limit cycle and the latter results on the input type (pulsatile and
regular). Beyond the linear regime, if the input changes or multiple inputs are applied, it is
generally challenging to generalize the experimentally obtained phase response curves. In
particular, when only considering the linear phase response curves, the resulting reduced
order equations, in general (especially with weakly attracting limit cycles), will not predict
bifurcations that result as the coupling strength increases. The continuous-time method
proposed in this paper provides a systematic method for generating coupling functions
valid to higher than linear orders of accuracy in the reduced order coordinates.

A Derivation of the Taylor Expansion of G in ε

Recall that starting with an arbitrary mth coordinate of the vector-valued function G(Y +
∆X), where Y = [Y (θi)

T , Y (θj)
T ]T and ∆X = [∆xTi ,∆x

T
j ]T (both 2n×1 column vectors),
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the Taylor expansion yields Equations (8) and (9), rewritten here for convenience:

Gm(Y + ∆X) = Gm(Y ) +G(1)
m (Y )∆X +

∞∑
k=2

1

k!

[
k
⊗ ∆XT

]
vec
(
G(k)
m (Y )

)
, (19)

where

G(k)
m =

∂vec
(
G

(k−1)
m

)
∂XT

∈ R2n(k−1)×2n. (20)

The goal is to arrive at the form in Equation (10):

G(θi, ψi, θj , ψj) = K(0)(θi, ψi, θj , ψj)+εK(1)(θi, ψi, θj , ψj)+ε2K(2)(θi, ψi, θj , ψj)+ . . . (21)

To begin, we substitute the Floquet eigenfunction for ∆xi,

∆xi = ψig
(1)(θi) + ψ2

i 2g
(2)(θi) + . . . , (22)

into Equation (19). For clarity, we will consider individual terms in Equation (19) and
later collect in powers of ε. The first term, Gm(Y ), is a scalar and is O(1) in ε This term is

equivalent to K(0). The second term contains G
(1)
m (Y ), a 1×2n vector that multiplies ∆X,

a 2n× 1 vector, therefore this term is a scalar, as expected. Written in terms of Equation
(22),

G(1)
m (Y )∆X = G(1)

m (Y )

[
ψig

(1)(θi) + ψ2
i g

(2)(θi) + . . .

ψjg
(1)(θj) + ψ2

j g
(2)(θj) + . . .

]
, (23)

where each g(k) is a 2n× 1 vector. If we then substitute the expansion for ψi,

ψi(t) ≈ εp(1)i (t) + ε2p
(2)
i (t) + ε3p

(3)
i (t) + . . . ,

into Equation (23), we arrive at a form where powers of ε are explicit:

G(1)
m (Y )∆X

= G(1)
m (Y )

(εp(1)i (t) + ε2p
(2)
i (t) + . . .

)
g(1)(θi) +

(
εp

(1)
i (t) + ε2p

(2)
i (t) + . . .

)2
g(2)(θi) + . . .(

εp
(1)
j (t) + ε2p

(2)
j (t) + . . .

)
g(1)(θj) +

(
εp

(1)
j (t) + ε2p

(2)
j (t) + . . .

)2
g(2)(θj) + . . .


= G(1)

m (Y )

(
ε

[
p
(1)
i (t)g(1)(θi)

p
(1)
j (t)g(1)(θj)

]
+ ε2

[
p
(2)
i (t)g(1)(θi) + p

(1)
i (t)2g(2)(θi)

p
(2)
j (t)g(1)(θj) + p

(1)
j (t)2g(2)(θj)

]
+ . . .

)
.

(24)

Although not explicitly written here, it is straightforward to derive expressions for the
higher-order terms in ε, especially using a symbolic math toolbox such as those found in
Python, MATLAB/Octave, Mathematica, and Maple (we opted to use Python’s Sympy
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[24]). Note that the first-order ε term above is equivalent to K(1) and this term only

depends on up to p
(1)
i .

We now turn to the next term in the Taylor expansion of G in Equation (19). This
term contains a tensor product ∆XT ⊗∆XT , which yields a 1×(2n)2 vector, and the vec(·)
operator applied to the second derivative of Gm, vec

(
G

(2)
m (Y )

)
, which yields a (2n)2 × 1

vector. Therefore, the second term is a scalar as expected. All powers of ε are contained
in the first term, so we unpack this term explicitly.

Let g
(k)
m denote the mth coordinate of the vector-valued function g(k) and Xm denote

the mth coordinate of ∆X for m = 1, . . . , 2n. Then

Xm =

{
ψig

(1)
m (θi) + ψ2

i g
(2)
m (θi) + . . . , for m = 1, . . . , n,

ψjg
(1)
m (θj) + ψ2

j g
(2)
m (θj) + . . . , for m = n+ 1, . . . , 2n.

The tensor product ∆XT ⊗∆XT can then be written,

∆XT ⊗∆XT

=
[
X2

1, X1X2, . . . , X
2
2n

]
=

[(
ψig

(1)
1 (θi) + ψ2

i g
(2)
1 (θi) + . . .

)2
,(

ψig
(1)
1 (θi) + ψ2

i g
(2)
1 (θi) + . . .

)(
ψig

(1)
2 (θi) + ψ2

i g
(2)
2 (θi) + . . .

)
, . . . ,(

ψjg
(1)
2n (θj) + ψ2

j g
(2)
2n (θj) + . . .

)2]
=

[({
εp

(1)
i (t) + ε2p

(2)
i (t) + . . .

}
g
(1)
1 (θi) +

{
εp

(1)
i (t) + ε2p

(2)
i (t) + . . .

}2
g
(2)
1 (θi) + . . .

)2

,({
εp

(1)
i (t) + ε2p

(2)
i (t) + . . .

}
g
(1)
1 (θi) +

{
εp

(1)
i (t) + ε2p

(2)
i (t) + . . .

}2
g
(2)
1 (θi) + . . .

)
×
({

εp
(1)
i (t) + ε2p

(2)
i (t) + . . .

}
g
(1)
2 (θi) +

{
εp

(1)
i (t) + ε2p

(2)
i (t) + . . .

}2
g
(2)
2 (θi) + . . .

)
, . . . ,({

εp
(1)
j (t) + ε2p

(2)
j (t) + . . .

}
g
(1)
2n (θj) +

{
εp

(1)
j (t) + ε2p

(2)
j (t) + . . .

}2
g
(2)
2n (θj) + . . .

)2
]
.

It is now possible to collect in powers of ε2. The order ε2 terms above, combined with
those in Equation (24) belong to the term K(2). Note that the K(2) term’s dependence on

ψi and ψj only appears in the functions p
(1)
i , p

(2)
i , p

(1)
j , and p

(2)
j .

In general, using a symbolic math toolbox, it is possible to verify up to the desired

order that the K(k) term only depends on terms p
(`)
i , p

(`)
j for ` ≤ k.
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B Numerical Integration

For N = 2, our theory requires the computation of the functions

p
(k)
i (η1, η2) =

∫ ∞
0

eκsf (k)(η1 − s, η2 − s)ds.

The above integral must be repeated for each ηi and ηj , where ηi and ηj are taken from a
grid of phase values. If M is the number of discretized points in the interval [0, T ], P is
the number of discretized points in the interval (∞, 0], and N is the number of oscillators,
then the total number of computations is proportional to P ×MN . This computation is
especially expensive if κ is small (requiring large P ), or if the functions f (k), containing the
underlying phase response curves (PRCs), isostable response curves (IPRCs), and Floquet
eigenfunctions require a fine temporal resolution to integrate (requiring M large). In the
case of the thalamic model, κ is small, roughly κ ≈ 0.023, and at least 20000 time units were
required to compute the PRC, IRC, and Floquet eigenfunctions to acceptable accuracy (in
contrast, the CGL model required fewer time units on the order of 2000). We typically
iterated Newton’s method until the magnitude of the derivative vector reduced to 1e− 10
or lower, which resulted in the magnitude of the difference between the final and initial
conditions of the periodic solutions to be on the order of 1e − 7. We used P = 25 ×M ,
so each integral calculation was relatively costly. We found that the ηi and ηj was best
sampled using M = 4000, i.e., a grid of 4000 × 4000 discretized phase values, so the
integral was computed 16 million times. We found Riemann integration to be efficient and
sufficiently accurate (we chose the integration mesh such that further refinements did not
visually affect the H-functions).

To speed up computations of the above integral, we transformed it to minimize repeat-
ing calculations in two variables. Letting u = η1 − s, a straightforward transformation
yields

eκη1
[∫ 0

−∞
e−κuf(u, η2 − η1 + u)du+

∫ η1

0
e−κuf(u, η2 − η1 + u)du

]
.

Note that the first integral depends only on the phase difference η2− η1, so it is computed
along only one dimension, and the total number of computations is proportional to P ×
M × (N − 1). The second integral does not solely depend on the phase difference η2 − η1,
and must be computed in two dimensions. However, the computation is not on the entire
grid of η1, η2 points, but on a triangular half of the domain because the upper integral
limit varies as a function of η1. The number of computations for the second integral is
proportional to MN/2. The total number of calculations P ×M × (N − 1) +MN/2, which
is a significant reduction compared to the original integral.

Finally, we vectorized and computed each integral independently for any given η1, η2, al-
lowing us to parallelize the integral computation. The parallelization uses the pathos multi-
processing module to allow more robust serialization, and not the standard multiprocessing

module. Assuming that the PRC, IRPC, and Floquet eigenfunctions have been computed,
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Table A1: Thalamic model parameter values

Parameter Value

C 1µF/cm2

Ek −90mV
ENa 50mV
Et 0mV
El −70mV
Esyn 0mV
gl 0.05mS/cm2

gk 5mS/cm2

gNa 3mS/cm2

gsyn 0− 0.25mS/cm2

α 3
β 2
σT 0.8
VT −20mV
Iapp 3.5µA/cm2

solving for p
(k)
i up to order 4 with M = 4000 takes approximately 45 minutes for the tha-

lamic model on 8 cores. Solving p
(k)
i for the CGL model only requires M = 200 and takes

roughly 5-10 minutes on two cores.

C Thalamic Model

The remaining equations for the Thalamic model are

IL(V ) = gL(V − EL), INa = gNahm
3
∞(V )(V − ENa),

IK = 0.75gK(1− h)4(V − EK), IT = gTrp
2
∞(V )(V − ET),

and

ah(V ) = 0.128 exp(−(V + 46)/18), bh(V ) = 4/(1 + exp(−(V + 23)/5)),

m∞(V ) = 1/(1 + exp(−(V + 37)/7)), h∞(V ) = 1/(1 + exp((V + 41)/4)),

r∞(V ) = 1/(1 + exp((V + 84)/4)), p∞(V ) = 1/(1 + exp(−(V + 60)/6.2)),

τh(V ) = 1/(ah(V ) + bh(V )), τr(V ) = 28 + exp(−(V + 25)/10.5).

Please see Table A1 for the parameters.
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