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COMBINATORICS-BASED APPROACHES TO CONTROLLABILITY

CHARACTERIZATION FOR BILINEAR SYSTEMS

GONG CHENG∗, WEI ZHANG∗, AND JR-SHIN LI∗

Abstract. The control of bilinear systems has attracted considerable attention in the field of
systems and control for decades, owing to their prevalence in diverse applications across science
and engineering disciplines. Although much work has been conducted on analyzing controllability
properties, the mostly used tool remains the Lie algebra rank condition. In this paper, we develop
alternative approaches based on theory and techniques in combinatorics to study controllability of
bilinear systems. The core idea of our methodology is to represent vector fields of a bilinear sys-
tem by permutations or graphs, so that Lie brackets are represented by permutation multiplications
or graph operations, respectively. Following these representations, we derive combinatorial char-
acterization of controllability for bilinear systems, which consequently provides novel applications
of symmetric group and graph theory to control theory. Moreover, the developed combinatorial ap-
proaches are compatible with Lie algebra decompositions, including the Cartan and non-intertwining
decomposition. This compatibility enables the exploitation of representation theory for analyzing
controllability, which allows us to characterize controllability properties of bilinear systems governed
by semisimple and reductive Lie algebras.

Key words. Bilinear systems, Lie groups, graph theory, symmetric groups, representation
theory, Cartan decomposition

1. Introduction. Bilinear systems, a class of nonlinear systems, emerge nat-
urally as mathematical models to describe the dynamics of numerous processes in
science and engineering. Prominent examples include the Bloch system governing the
dynamics of spin- 12 nuclei immersed in a magnetic field in quantum physics [11, 19, 20],
the compartmental model describing the movement of cells and molecules in biology
[22, 8, 21], and the integrate-and-fire model characterizing the membrane potential of
a neuron under synaptic inputs and injected current in neuroscience [7, 10]. The preva-
lence of bilinear systems has been actively promoting the research in control theory
and engineering concerning the analysis and manipulation of such systems for decades.
The initial investigation into control problems involving bilinear systems traces back
to the year of 1935, when the Greek mathematician Constantin Carathéodory studied
optimal control of bilinear systems presented in terms of Pfaffian forms by using calcu-
lus of variations and partial differential equations [5]. However, research in systematic
analysis of fundamental properties of bilinear control systems was not prosperous until
the early 1970s, when leading control theorists, such as Brockett, Jurdjevic, and Suss-
mann, developed geometric control theory for introducing techniques in Lie theory
and differential geometry to classical control theory [4, 2, 16, 13, 3, 12].

One of the most remarkable results in geometric control theory is the Lie algebra
rank condition (LARC), which establishes an equivalence between controllability of
control-affine systems defined on smooth manifolds and Lie algebras generated by the
vector fields governing the system dynamics [2, 14, 15]. In our recent work, based
on the LARC, we developed a necessary and sufficient controllability condition for
bilinear systems by using techniques in symmetric group theory [27]. In particular,
we introduced a monoid structure on symmetric groups so that Lie bracket operations
are compatible with monoid operations. This then resulted in a characterization
of controllability in terms of elements in “symmetric monoids” for bilinear systems,
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which also offered an alternative to the LARC and further shed light on interpreting
geometric control theory from an algebraic perspective.

In this paper, we propose a combinatorics-based framework to analyze controlla-
bility of bilinear systems defined on Lie groups by adopting techniques in symmetric
group theory and graph theory. Specifically, the main idea is to associate such sys-
tems with permutations or graphs, so that Lie bracket operations of the vector fields
governing the system dynamics can be represented by permutation multiplications
and edge operations on the graphs. This combinatorics approach immediately leads
to the characterizations of controllability in terms of permutation cycles and graph
connectivity. In particular, we identify the classes of bilinear systems, for which con-
trollability has equivalent symmetric group and graph representations. A prominent
example is the system defined on SO(n), the special orthogonal group, for which we
reveal a correspondence between permutation cycles in the symmetric group and trees
in the graph associated with these systems. It is worth noting that, different from
our previous work on the symmetric group method [27], the correspondence between
Lie bracket operations and permutation multiplications established in this paper do
not require any monoid structure on symmetric groups. On the other hand, the ap-
plication of graph theory in the developed combinatorics-based framework offers a
distinct viewpoint to the field of control theory. Specifically, in the existing literature,
graphs are naturally used in the context of networked and multi-agent systems, e.g.,
for describing the coupling topology and deriving structural controllability conditions
[23, 24, 25], while, in this work, we establish a non-trivial relationship between graph
connectivity and controllability for a single bilinear system.

Moreover, a great advantage of the developed framework is its compatibility with
various Lie algebra decomposition techniques in representation theory. In particular,
we illustrate the application of these methods to systems of which the underlying Lie
algebras are semisimple or reductive, while in these cases, the correspondence between
Lie bracket operations and permutation multiplications as well as graph operations
is elusive due to their complicated algebraic structures. In this work, we exploit the
Cartan and non-intertwining decompositions to decompose the system Lie algebras
into simple components, so that the combinatorics-based controllability analysis is
equivalently carried over to these components.

This paper is organized as follows. In Section 2, we provide the preliminaries
relevant to our developments, including the LARC for systems on Lie groups and a
brief review of the Lie algebra so(n). In Section 3, we establish the symmetric group
and graph-theoretic methods based upon the study of bilinear systems on SO(n).
In Section 4, we introduce the notions and tools of Cartan and non-intertwining
decompositions for decomposing the system Lie algebras into simpler components,
which enables and facilitates the generalization of the combinatorics-based framework
to broader classes of bilinear systems. A brief review of the basics of symmetric groups
and Lie algebra decompositions can be found in the appendices.

2. Preliminaries. To prepare for our development of the combinatorial con-
trollability conditions, in this section, we briefly review the Lie algebra so(n) and the
LARC for right-invariant bilinear systems. Meanwhile, we introduce the notations we
use throughout this paper.

2.1. The Lie Algebra Rank Condition. The LARC has been the most rec-
ognizable tool, if not unique, for analyzing controllability of bilinear systems since the
1970s. It establishes a connection between controllability and the Lie algebra gener-
ated by the vector fields governing the system dynamics. In this paper, we primarily
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focus on the bilinear system evolving on a compact and connected Lie group of the
form,

(2.1) Ẋ(t) = B0X(t) +
(

m
∑

i=1

ui(t)Bi

)

X(t), X(0) = I,

where X(t) ∈ G is the state on a compact and connected Lie group G, I is the identity
element of G, Bi are elements in the Lie algebra g of G, and ui(t) ∈ R are piecewise
constant control inputs. For any subset Γ ⊆ g, we use Lie (Γ) to denote the Lie
subalgebra generated by Γ, i.e., the smallest vector subspace of g containing Γ that is
closed under the Lie bracket defined by [C,D] := CD−DC for C,D ∈ g. With these
notations, the LARC for the system in (2.1) can be stated as follows.

Theorem 2.1 (LARC). The system in (2.1) is controllable on G if and only if
Lie (Γ) = g, where Γ = {B0, B1, . . . , Bm}.

Proof. See [2].

2.2. Basics of the Lie Algebra so(n). The Lie algebra so(n) is a vector space
of dimension n(n − 1)/2, which consists of all n-by-n real skew-symmetric matrices.
In particular, if we use Ωij to denote the skew-symmetric matrix with 1 in the (i, j)-th
entry, −1 in the (j, i)-th entry, and 0 elsewhere, then the set B = {Ωij ∈ Rn×n : 1 6

i < j 6 n} forms a basis of so(n), which we refer to as the standard basis of so(n).
The following lemma then reveals the Lie bracket relations among elements in B.

Lemma 2.2. The Lie bracket of Ωij and Ωkl satisfies the relation [Ωij ,Ωkl] =
δjkΩil + δilΩjk + δjlΩki + δikΩlj, where δ is the Kronecker delta function defined by

δmn =

{

1, if m = n;

0, otherwise.

Proof. The proof follows directly from computations.

The relations in Lemma 2.2 can also be equivalently expressed as [Ωij ,Ωkl] 6= 0
if and only if i = k, i = l, j = k, or j = l. This algebraic structure facilitates
controllability characterization of the bilinear system governed by the vector fields
represented in the standard basis B, which is the main focus of the next section.

3. Combinatorics-Based Controllability Analysis for Bilinear Systems.

In this section, we introduce a combinatorics-based framework to characterize control-
lability of bilinear systems. Within this framework, we adopt tools in two subfields of
combinatorics - the symmetric group theory and graph theory, and build connections
of Lie brackets of vector fields to permutation multiplications in symmetric groups
and operations on graph edges, respectively. Such connections enable us to charac-
terize controllability in terms of permutation cycles and graph connectivity. Here, we
will investigate bilinear systems defined on SO(n), given by

(3.1) Ẋ(t) = Ωi0j0X +
(

m
∑

k=1

ui(t)Ωikjk

)

X, Ωikjk ∈ B, X(0) = I.

as building blocks to establish this framework. Furthermore, we will show that owing
to the special algebraic structure of so(n) presented in Lemma 2.2, the symmet-
ric group and the graph-theoretic approach, when applied to (3.1), give an equiva-
lent characterization of controllability through an interconnection between symmetric
groups and graphs.
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3.1. The Symmetric Group Method for Controllability Analysis. In this
section, we introduce the symmetric group method for analyzing controllability of the
system in (3.1). In this approach, a subset of vector fields in B is represented using
a permutation in Sn, the symmetric group of n letters. Through this representation,
we connect the Lie brackets of vector fields to permutation multiplications, so that
controllability is determined by the length of permutation cycles. For a brief summary
of symmetric groups and permutations, see Appendix A.

3.1.1. Mapping Lie Brackets to Permutations. To establish a relation from
Lie brackets to permutation multiplications, we first define a relation between subsets
of B and permutations in Sn by

(3.2) ι : P(B)→ Sn, ι({Ωi0j0 ,Ωi1j1 , . . . ,Ωimjm}) = (i0j0)(i1j1) · · · (imjm).

Because every permutation can be decomposed into a product of transpositions (2-
cycles), the relation ι is surjective so that every subset of B admits a permutation
representation.

To see how Lie bracket operations are related to permutation multiplications by
ι, we illustrate the idea using two elements Ωij ,Ωkl ∈ B. On the Lie algebra level, if
[Ωij ,Ωkl] 6= 0, then Lemma 2.2 implies that {i, j} and {k, l} have a common index.
Without loss of generality, we may assume j = k and i 6= l, so that [Ωij ,Ωjl] = Ωil.
Meanwhile, on the symmetric group level, we have ι({Ωij ,Ωjl}) = (ij)(jl) = (ijl), so
the permutation multiplication increases the cycle length by 1, from the 2-cycle factors
(ij) and (jk) to a 3-cycle (ijk). However, if [Ωij ,Ωkl] = 0, then {i, j} ∩ {k, l} = ∅,
and ι({Ωij ,Ωkl}) = (ij)(kl) is a product of two disjoint cycles. The phenomenon that
elements in B with non-vanishing Lie brackets relating to a cycle with increased length
extends inductively to larger subsets of B. To be more specific, if Γ ⊂ B contains m
elements such that the iterated Lie brackets of them are non-vanishing, then ι(Γ) is
an (m+ 1)-cycle. This observation immediately motivates the use of cycle length to
examine controllability of systems on SO(n) in (3.1). Before we state and prove our
main theorem, let us first illustrate the symmetric group method by two examples.

Example 3.1. Consider a system evolving on SO(5), given by

(3.3) Ẋ(t) =
(

4
∑

i=1

ui(t)Ωi,i+1

)

X(t), X(0) = I,

and let Γ = {Ωi,i+1 : i = 1, . . . , 4} denote the set of control vector fields. The corre-
spondence between Lie brackets in Γ and permutation multiplications in S5 follows

(3.4)

[Ω12,Ω23] = Ω13 ↔ (12)(23) = (123),

[Ω23,Ω34] = Ω24 ↔ (23)(34) = (234),

[Ω34,Ω45] = Ω35 ↔ (34)(45) = (345),

[Ω12, [Ω23,Ω34]] = Ω14 ↔ (12)(234) = (1234),

[Ω23, [Ω34,Ω45]] = Ω25 ↔ (23)(345) = (2345),

[Ω12, [Ω23, [Ω34,Ω45]]] = Ω15 ↔ (12)(2345) = (12345).

Note that successively Lie bracketing elements in Γ results in Ω13, Ω14, Ω15, Ω24, Ω25,
and Ω35, together with the 4 elements in Γ, we have 10 linearly independent vector
fields. Because so(5) is a 10-dimensional Lie algebra, we conclude Lie (Γ) = so(5),
which implies that the system in (3.3) is controllable on SO(5) by the LARC. On the
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other hand, (3.4) also shows ι(Γ) = (12345), a cycle of maximum length in S5. This
suggests that controllability of systems on SO(n) can be characterized by cycles of
maximum length in the corresponding symmetric group.

Example 3.2. Consider another system evolving on SO(5) driven by three con-
trols, given by

(3.5) Ẋ(t) =
(

u1(t)Ω12 + u2(t)Ω23 + u3(t)Ω45

)

X(t), X(0) = I.

In this case, the single Lie brackets,

[Ω12,Ω23] = Ω13 ↔ (12)(23) = (123),

[Ω12,Ω45] = 0 ↔ (12)(45),

[Ω23,Ω45] = 0 ↔ (23)(45),

and the double Lie brackets,

[Ω13,Ω12] = [[Ω12,Ω23],Ω12] = Ω23 ↔ (12)(23)(12) = (13),

[Ω23,Ω13] = [Ω23, [Ω12,Ω23]] = Ω12 ↔ (23)(12)(23) = (13),

[Ω13,Ω45] = [[Ω12,Ω23],Ω45] = 0 ↔ (12)(23)(45) = (123)(45),

result in a Lie subalgebra of dimension 4. Therefore, this system is not controllable
on SO(5). On the other hand, for Γ = {Ω12,Ω23,Ω45}, the computations above also
show ι(Γ) = (123)(45), which is not a single cycle of maximum length in S5.

Examples 3.1 and 3.2 together verify the observation that cycles with the maxi-
mum length characterize controllability of bilinear systems on SO(n), which we will
prove in the next section.

Remark 3.3. Note that the relation ι introduced in (3.2) is not a well-defined
function, because, for a given Γ ⊆ B, ι(Γ) depends on the ordering of the elements in
Γ. If, say, Γ = {Ω12,Ω14,Ω23,Ω24,Ω34}, then different element orderings,

{Ω12,Ω14,Ω23,Ω24,Ω34} ↔ (12)(14)(23)(24)(34) = (14)

{Ω14,Ω12,Ω24,Ω23,Ω34} ↔ (14)(12)(24)(23)(34) = (1234)

could result in different permutations. Nevertheless, we can verify that for any Γ ⊆ B,
there always exists a subset Σ ⊆ Γ such that ι relates Σ to permutations with the
same (maximal) orbits, albeit different orderings of the elements in Σ. For example,
for the subset Σ = {Ω12,Ω23,Ω34} of Γ, ι(Σ) is always a 4-cycle with its orbit being
{1, 2, 3, 4}, regardless of its element orderings. The existence of such a subset will be
clear once we develop a graph visualization of the permutations in Section 3.2.

3.1.2. Controllability Characterization in Terms of Permutation Cy-

cles. Leveraging the technique of mapping Lie brackets to permutations developed in
the previous section, we are able to characterize controllability of systems on SO(n)
in terms of permutation cycles as shown in the following theorem.

Theorem 3.4. The control system defined on SO(n) of the form

(3.6) Ẋ(t) =
(

Ωi0j0 +
m
∑

k=1

uk(t)Ωikjk

)

X(t), X(0) = I,

(same system as (3.1)) where Γ := {Ωikjk} ⊆ B for k = 0, . . . ,m, is controllable if
and only if there is a subset Σ ⊆ Γ such that ι(Σ) is an n-cycle, where ι is the relation
defined in (3.2).
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Proof. By the LARC, the system in (3.6) is controllable on SO(n) if and only if
Lie (Γ) = so(n). Therefore, it is equivalent to showing that Lie (Σ) = so(n) if and
only if ι(Σ) is an n-cycle for some Σ ⊆ Γ.

(Sufficiency): Suppose there exists a subset Σ ⊆ Γ such that ι(Σ) is an n-cycle.
Because an n-cycle can be decomposed into a product of at least n− 1 transpositions,
this implies m > n − 1. Hence, it suffices to assume that the cardinality of Σ is
n − 1, and, without loss of generality, let Σ = {Ωi1j1 , . . . ,Ωin−1jn−1

}, Because ι(Σ)
is an n-cycle, it follows that the index set {i1, j1, . . . , in−1, jn−1} = {1, . . . , n}. Note
that the set {i1, j1, . . . , in−1, jn−1} contains repeated elements. Next, we prove the
sufficiency by induction.

When n = 3, suppose there exists a subset Σ = {Ωij ,Ωkl} ⊂ Γ and that ι(Σ) =
(ij)(kl) is a 3-cycle, so we must have one of the following: i = k, j = k, i = l, or
j = l. Consequently, [Ωij ,Ωkl] ∈ B\Σ, so {Ωij ,Ωkl, [Ωij ,Ωkl]} spans so(3). Therefore,
the system in (3.6) is controllable on SO(3).

Now let us assume that for n > 4, a system defined on SO(n− 1) in the form of
(3.6) is controllable if there is Σ ⊆ Γ such that ι(Σ) is an (n− 1)-cycle. Let Σ ⊆ Γ be
a set of n − 1 elements such that ι(Σ) = (in−1jn−1)(in−2jn−2) · · · (i1j1) is a cycle of
length n, then for every integer 1 6 k 6 n−1, there exists some 1 6 l 6 n−1 such that
{ik, jk}∩ {il, jl} 6= ∅. Consequently, there are n− 2 transpositions of the form (ikjk),
k = 1, . . . , n−1, such that their product is a cycle of length n−1. Without loss of gen-
erality, we may assume that ι(Σ\{Ωin−1jn−1

}) = (in−2jn−2) · · · (i1j1) is a (n−1)-cycle
with the nontrivial orbit {i1, j1, . . . , in−2, jn−2} = {1, . . . , n − 1}. By the induction
hypothesis, the system in (3.6) is controllable on SO(n − 1) ⊂ SO(n). Equivalently,
any Ωij ∈ B such that 1 6 i < j 6 n − 1 can be generated by iterated Lie brackets
of the elements in Σ\{Ωin−1jn−1

}. Because ι(Σ) = (in−1jn−1)ι(Σ\{Ωin−1jn−1
}) is a

n-cycle, we must have in−1 ∈ {1, . . . , n − 1} and jn−1 = n. Therefore, Ωkn can be
generated by the Lie brackets [Ωkin−1

,Ωin−1jn−1
] for any k = 1, . . . , n−1. As a result,

the system in (3.6) is controllable on SO(n).
(Necessity): Because the system in (3.6) is controllable, Lie (Γ) = so(n). Then,

there exists a subset Σ of Γ such that Lie (Σ) = so(n) and Σ contains no redundant
elements, i.e., the elements that can be generated by Lie brackets of the other elements
in Σ. Without loss of generality, we assume Σ = {Ωi1j1 , . . . ,Ωiljl}, where l 6 m.
By Lemma 2.2, for any Ωab,Ωcd ∈ Σ, if [Ωab,Ωcd] 6= 0, then there must exist a
bridging index, i.e., we must have one of the following cases: a = c, a = d, b = c,
or b = d. This, together with Lie (Σ) = so(n), implies that the index set J of Σ
is J = {i1, j1, . . . , il, jl} = {1, . . . , n}, and that for any Ωikjk ∈ Σ, there exists some
Ωisjs ∈ Σ with s 6= k such that {ik, jk}∩{is, js} 6= ∅. Moreover, because Σ contains no
redundant elements, ι(Σ) = ι(Ωiljl) · · · ι(Ωi1j1) is a cycle whose orbit contains every
element in {1, . . . , n}, namely, it is a cycle of length n. In addition, the cardinality of
Σ is n− 1.

Remark 3.5. Following the above proof, it requires at least n− 1 controls for the
system on SO(n) in (3.6) to be fully controllable and, on the other hand, for ι(Σ),
Σ ⊆ Γ, to reach a cycle of length n.

Similar to the case in Theorem 3.4 for controllable systems, the controllable sub-
manifold for an uncontrollable system also depends on the permutation related to
a subset of Γ. To be more specific, the cycle decomposition of such a permutation
determines the involutive distribution of the submanifold.

Corollary 3.6. Given a system evolving on SO(n) in the form of (3.1), let Ξ
be a minimal subset of Γ, such that Lie (Ξ) = Lie (Γ). If ι(Ξ) = σ1 · σ2 · · ·σl so
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that each σk, 1 6 k 6 l, are pairwise disjoint cycles with the nontrivial orbits Ok,
then the controllable submanifold of the system is the Lie subgroup of SO(n) with

the Lie algebra Lie (Γ) =
⊕l

k=1 span {Ωij : i, j ∈ Ok}. Conversely, if Lie (Γ) =
⊕l

k=1 span {Ωij : i, j ∈ Ok} for some Ok ⊂ {1, 2, . . . , n}, then ι(Ξ) = σ1 ·σ2 · · ·σl and
σk are that disjoint cycles with nontrivial orbits Ok.

Proof. Let Ξ be a minimal subset of Γ such that Lie (Ξ) = Lie (Γ) and Ξ does
not contain redundant elements. First, let σ = ι(Ξ) ∈ Sn be a cycle with nontrivial
orbit O, then Theorem 3.4 implies Lie (Ξ) = span {Ωij : i, j ∈ O, i < j}. Next,
if σ = σ1 · · ·σl is a permutation as a product of disjoint cycles σ1, . . . , σl with l >
2, then there exists a partition {Ξ1, . . . ,Ξl} of Ξ such that ι(Ξk) = σk for each
k = 1, . . . , l. Let Ok denotes the nontrivial orbit of σk for each k = 1, . . . , l, then
Lie (Ξk) = {Ωij : i, j ∈ Ok, i < j} and the sets O1, . . . ,Ol are pairwise disjoint subsets
of {1, . . . , n}. Hence, Lie (Ξi) ∩ Lie (Ξj) = {0} holds for all i 6= j, and consequently,
we have Lie (Ξ) = Lie (Ξ1)⊕ · · · ⊕ Lie (Ξl), where ⊕ denotes the direct sum of vector
spaces. By the Frobenius Theorem [26], Lie (Ξ) is completely integrable, and that
the set of all its maximal integral manifolds forms a foliation F of SO(n). Since the
initial condition of the system in (3.6) is the identity matrix I, the leaf of F passing
through I is the controllable submanifold of the system in (3.6). The converse is
obvious following a very similar argument.

According to Theorem 3.4 and Corollary 3.6, mapping the control vector fields in
Γ to permutations provides not only an alternative approach to effectively examine
controllability of systems defined on SO(n), but also a systematic procedure to char-
acterize the controllable submanifold when the system is not fully controllable. Let
us now revisit a previous example and see how permutations help determine system
controllability.

Example 3.7 (Controllable Submanifold). Recall Example 3.2, where the system
in (3.5) is not controllable and there exist no subsets of Γ = {Ω12,Ω23,Ω45} such that
ι(Γ) is a 5-cycle. In addition, the controllable submanifold is the integral manifold
of the involutive distribution ∆ = Lie {Ω12X,Ω23X,Ω13X,Ω45X} = span {ΩijX :
i, j ∈ {1, 2, 3} or i, j ∈ {4, 5}}, which can be identified by the nontrivial orbits of
ι(Γ) = (1, 2, 3)(4, 5). On the other hand, for each X ∈ SO(5), the complement
∆⊥

X = span {ΩijX : i = 1, 2, 3, j = 4, 5} of the distribution evaluated at X contains
the bridging elements required for full controllability of this system.

3.2. The Graph-Theoretic Method for Controllability Analysis. Graphs
appear naturally in the research of networked systems, especially in modeling multi-
agent systems and analyzing structural controllability [23, 24, 25]. However, most
graph-theoretic methods were dedicated to studying networked control systems in
existing literature and were not invented and applied for understanding fundamental
properties of a single bilinear system. Here, we use graphs to represent the structure
of Lie algebras and then characterize controllability of bilinear systems by graph
connectivity. In contrast to the symmetric group method presented in Section 3.1, this
graph-theoretic method establishes a correspondence between Lie bracket operations
of vector fields and operations on the edges of graphs.

3.2.1. Mapping Lie Brackets to Graphs. A graph G, conventionally denoted
by a 2-tuple, G = (V,E), consists of a vertex set V and an edge set E. For the purpose
of analyzing controllability of the system on SO(n), we are particularly interested in
simple graphs, i.e., undirected graphs with no loops or multiple edges, of n vertices.
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Here, we denote the collection of such graphs G. Without loss of generality, we further
assume that every graph in G has the same vertex set V = {v1, . . . , vn}. Following
these notations, we define a map

(3.7) τ : P(B)→ G by τ(Γ) = (V,EΓ) := GΓ,

where P(B) denotes the power set of B, i.e., the set consisting of all subsets of B and
EΓ = {vivj : Ωij ∈ Γ}. Some basic properties of τ are summarized in the following
proposition.

Proposition 3.8 (Properties of τ).
(i) The map τ defined in (3.7) is bijective.
(ii) For any Γ ⊆ B, |Γ| = |EΓ| holds, where | · | denote the cardinality of a set.
(iii) Let Kn denote the complete graph of n vertices, i.e., the graph whose vertices

are pairwise adjacent, then τ(B) = Kn.

Proof. Note that (i) and (ii) directly follow from the definition of τ . For (iii), the
edge set of τ(B) satisfies EB = {vivj : Ωij ∈ B} = {vivj : 1 6 i < j 6 n} = {vivj :
i, j = 1, . . . , n}, and hence we conclude τ(B) = Kn.

The property (i) in Proposition 3.8 reveals a one-to-one correspondence between
the subsets of B and the graphs in G, which enables the representation of Lie bracket
operations by graph operations as follows.

Algebraically, for any Ωij ,Ωjk ∈ B, Lemma 2.2 implies [Ωij ,Ωjk] = Ωik 6= 0, so
that Lie {Ωij ,Ωjk} = span{Ωij ,Ωjk,Ωik}. Graphically, by the definition of τ , the
two edges τ(Ωij) = vivj and τ(Ωjk) = vjvk share a common vertex vj , and the edge
τ([Ωij ,Ωjk]) = τ(Ωik) = vivk intersects with τ(Ωij) and τ(Ωjk) at endpoints vi and
vk, respectively. Therefore, the three edges τ(Ωij), τ(Ωjk), and τ([Ωij ,Ωjk]) form
a triangle, or equivalently, τ({Ωij ,Ωjk, [Ωij ,Ωjk]}) = {vivj , vjvk, vivk} = K3. This
observation, as summarized in the following lemma, reveals the relationship between
first-order Lie brackets and graph operations for three standard basis elements of
so(n), which lays the foundation for the graph-theoretic controllability analysis of
bilinear systems.

Lemma 3.9. If Ωij ,Ωkl ∈ B satisfy [Ωij ,Ωkl] 6= 0, then
(i) the two edges τ(Ωij) and τ(Ωkl) are incident (i.e., they share a common

vertex);
(ii) the three edges τ(Ωij), τ(Ωkj), and τ([Ωij ,Ωkl]) form a triangle.

To graphically characterize higher-order Lie brackets among arbitrary collections
of standard basis elements of so(n), we introduce the notion of triangular closure for
graphs, which generalizes the action of “forming triangles” in Lemma 3.9.

Definition 3.10 (Triangular Closure). Let G = (V,E) be a graph, and {Gm =
(V,Em) : m = 0, 1, . . .} be an ascending chain of graphs, i.e., Gm ⊆ Gm+1 for any
m = 0, 1, . . . , satisfying

(i) G0 = G, i.e., E0 = E.
(ii) For any m > 0, vivj ∈ Em+1 if and only if vivj ∈ Em or there exists some

vertex vk ∈ V such that vivk, vkvj ∈ Em.
Then the union of all Gm, denoted Ḡ =

⋃∞
m=1 G

m, or equivalently, Ḡ = (V, Ē) =
(V,

⋃∞
m=1 E

m), is called the triangular closure of G. Moreover, a graph G is called
triangularly closed if G = Ḡ.

Note that for a finite graph G, i.e., G has finitely many vertices and edges, the
ascending chain of graphs G = G0 ⊆ G1 ⊆ · · · in Definition 3.10 stabilizes in finite
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steps, that is, there exists a nonnegative integer m such that Gm = Gm+1 = · · · ,
which then implies Ḡ = Gm. In particular, for a graph with n vertices, since it has at
most n(n − 1)/2 edges, its triangular closure can be obtained in at most n(n − 1)/2
steps.

Remark 3.11. For readers familiar with graph theory, Definition 3.10 is mathe-
matically equivalent to the standard definition of transitive closure, and the equiva-
lence will become transparent in the proof of Theorem 3.18. The triangular closure we
introduce here imitates the computations of graded Lie brackets/algebras in a more
natural way, so that all orders of Lie brackets can be calculated in a graph.

Recall from Lemma 3.9 that given a subset Γ ⊆ B and its associated graph
G = τ(Γ), taking first-order Lie brackets of the elements in Γ corresponds to adding
edges that connect the endpoints of incident edges in G. Applying this procedure to
G = G0, as defined in Definition 3.10, exactly results in G1. Inductively, successively
Lie bracketing the elements in Γ up to order m will generate the graph Gm, as shown
below.

Theorem 3.12. Given a subset Γ ⊆ B, let Γ0 ⊆ Γ1 ⊆ · · · be an ascending chain
of subsets of B such that Γ0 = Γ, Γ1 = [Γ0,Γ0]

⋃

Γ0, . . . , Γm+1 = [Γm,Γm]
⋃

Γm, . . . ,
where [Γm,Γm] = {[A,B] : A,B ∈ Γm}. Then Gm = τ(Γm) holds for all m = 0, 1, . . .

Proof. This follows immediately from the definitions of Gm and Γm.

Recall that for any finite G ∈ G, Gm stabilizes to Ḡ in finite steps. Meanwhile,
by Theorem 3.12, Γm also stabilizes to a subset Γ̂ ⊆ B which must satisfy Ḡ = τ(Γ̂).
Intuitively, Γ̂ is supposed to contain all the elements that can be generated by the
iterated Lie brackets of the elements in Γ, because Ḡ is the largest graph generated
by G. This conclusion is then rigorously verified in the following corollary.

Corollary 3.13. Let Γ be a subset of B and G = τ(Γ) be the graph associated
with Γ. If Γ̂ ⊆ B satisfies τ(Γ̂) = Ḡ, then Lie (Γ) = span (Γ̂).

Proof. Let m be a nonnegative integer satisfying Gm = Ḡ, then Theorem 3.12
implies that Γ̂ = Γm, hence Γr = Γ̂ holds for all r > m. Consequently, by the
definition of Lie (Γ), we have Lie (Γ) = span (

⋃∞
i=0 Γ

i) = span (Γm) = span (Γ̂).

For the purpose of controllability analysis, the subsets of B generating the whole
Lie algebra so(n) is of great interest. Therefore, we characterize such subsets by their
associated graphs below, which is also a special case of Corollary 3.13.

Corollary 3.14. Consider a subset Γ ⊆ B with the associated graph G = τ(Γ),
then Lie (Γ) = so(n) if and only if Ḡ = Kn.

Proof. (Sufficiency): Let Γ̂ ⊆ B satisfy Ḡ = τ(Γ̂) = Kn, then the properties
(i) and (iii) in Proposition 3.8 imply Γ̂ = B. Consequently, Lie (Γ) = span (Γ̂) =
span (B) = so(n) by Corollary 3.13.

(Necessity): If Lie (Γ) = so(n), then there exists some nonnegative integer m such
that Γm = B. By Theorem 3.12, we obtain Ḡ ⊇ Gm = τ(Γm) = Kn. On the other
hand, because of Ḡ ⊆ Kn, we conclude Ḡ = Kn.

Furthermore, Corollary 3.14 sheds light on a graph representation of controllabil-
ity, which in turn can be characterized in terms of graph connectivity. In the following
section, we will rigorously investigate this observation.

3.2.2. Controllability Characterization in Terms of Graph Connectiv-

ity. The relationship between Lie brackets and graph operations developed in Sec-
tion 3.2.1 enables us to employ graph theory techniques to analyze controllability of
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systems on SO(n) as in (3.1). In particular, motivated by the connection between a
Lie subalgebra and its associated graph presented in Corollary 3.14, controllability
can be analyzed through the notion of triangular closure defined in Definition 3.10.

Proposition 3.15. The bilinear system in (3.1) is controllable on SO(n) if and
only if τ(Γ) = Kn, where τ is defined as in (3.7), Γ = {Ωi0j0 , . . . ,Ωimjm}, and Kn is
a complete graph of n vertices.

Proof. By the LARC shown in Theorem 2.1, the system in (3.1) is controllable
on SO(n) if and only if Lie (Γ) = so(n), which is equivalent to τ(Γ) = Kn by Corol-
lary 3.14.

Using the following two examples, we will verify Proposition 3.15 and draw a
parallel between examining the LARC and generating triangular closure of the graph
associated with the considered system. This comparison in turn illuminates a graphic
visualization of the algebraic procedure of generating Lie algebras for the set of drift
and control vector fields.

Example 3.16. Consider the system on SO(4) given by

(3.8) Ẋ(t) = (u1Ω12 + u2Ω23 + u3Ω13 + u4Ω34)X(t), X(0) = I.

Applying τ to the set of the control vector fields Γ results in its associated graph
G = (V,E) as follows,

Γ = {Ω12,Ω23,Ω13,Ω34}
τ
←→ {v1v2, v2v3, v1v3, v3v4} = E.

Because the first order Lie brackets [Ω23,Ω34] = Ω24 and [Ω13,Ω34] = Ω14 are not
in Γ, we have Γ1 = Γ ∪ {Ω24,Ω14}. Correspondingly, according to Corollary 3.13,
G1 = (V,E1) can be obtained by applying τ to Γ1, i.e.,

Γ1 = Γ ∪ {Ω24,Ω14}
τ
←→ {v2v4, v1v4} ∪ E = E1.

Notice that span (Γ1) = so(4) and simultaneously G1 = Ḡ = K4, which concludes
controllability of the system in (3.8) from both algebraic and graph-theoretic per-
spectives. The graphs G and G1 are shown in Figure 3.1. In particular, the two red
edges in G1, which are not in G, correspond to the elements in [Γ,Γ].

v1 v2

v3v4

v1 v2

v3v4

G G1

99K

Fig. 3.1. The graph G associated with the system (3.8) in Example 3.16 and its triangular

closure G1. Note that the red edges in G1 correspond to the vector fields generated by the first-order

Lie brackets of the control vector fields in Γ.

Example 3.16 presents a controllable system whose associated graph has a com-
plete triangular closure, which in turn validates the sufficiency of Proposition 3.15.
The necessity is illustrated using the following example through an uncontrollable
system.

Example 3.17. Consider the system on SO(5) driven by three control inputs, given
by

(3.9) Ẋ(t) = (u1Ω12 + u2Ω23 + u3Ω34)X(t), X(0) = I,
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and let Γ = {Ω12,Ω23, Ω34} denote the set of control vector fields. Some straightfor-
ward calculations yield the Lie algebra Lie (Γ) = span {Ω12,Ω23,Ω34,Ω13,Ω14,Ω24},
which has dimension 6. Therefore, the system in (3.9) is not controllable, since
dim so(5) = 10. Using the graph-theoretic approach, Figure 3.2 shows the proce-
dure of generating H̄ from H = τ(Γ). In particular, H̄ = H2 shown in Figure 3.2 is
not complete, which verifies the necessity of Proposition 3.15.

H H1 H2

v1

v2

v3

v4v5

v1

v2

v3

v4v5

v1

v2

v3

v4v5

99K 99K

Fig. 3.2. The graph visualization of Lie bracketing control vector fields of the system in (3.9)
in Example 3.17. Specifically, the graph H is associated with the set of control vector fields, H1

visualizes the first-order Lie brackets, and H2 is the triangular closure of H. Note that the red edges

correspond to the vector fields in Γ generated by Lie brackets.

It is worth noting that the graph G in Figure 3.1 associated with the controllable
system in (3.8) is connected, but the graph H in Figure 3.2 associated with the
uncontrollable system in (3.9) is not. This observation inspires the characterization
of controllability for systems on SO(n) by graph connectivity.

Theorem 3.18. The system in (3.1) is controllable on SO(n) if and only if τ(Γ)
is connected, where Γ = {Ωi0j0 , . . . ,Ωimjm} and τ(Γ) is the graph associated with Γ.

Proof. Owing to Proposition 3.15, it suffices to prove that the triangular closure
of τ(Γ) is complete if and only if τ(Γ) is connected.

(Sufficiency): Suppose that G = τ(Γ) = (V,E) is connected, then there is a path
in G from vi to vj for any vi, vj ∈ V , say viw1w2 · · ·wkvj with w1, . . . , wk ∈ V .
Therefore, we have viw2 ∈ E1, . . . , viwk ∈ Ek−1 and vivj ∈ Ek ⊆ Ē. Since vi, vj ∈ V
are chosen arbitrarily, we conclude that the triangular closure Ḡ contains all edges vivj ,
hence Ḡ = Kn. In addition, this process of generating Ḡ is illustrated in Figure 3.3
with the case of k = 5.

vi

w1

w2

w3
w4

w5

vj

Fig. 3.3. Illustration of the proof of sufficiency of Theorem 3.18.

(Necessity): We assume that the triangular closure Ḡ of G = τ(Γ) is complete. If
there exists an edge vivj not in G, since vivj is in Ḡ = (V, Ē), we may then assume
vivj ∈ Ek and vivj 6∈ Ek−1 for some positive integer k. Hence, by Definition 3.10,
there is some vertex w1 such that viw1, w1vj ∈ Ek−1, i.e., there exists a path viw1vj in
Gk−1 connecting vi and vj . Repeating this procedure results in a path in G connecting
vi and vj , which implies the connectivity of G, and hence the proof is done.
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Remark 3.19. In addition to controllability characterization, Theorem 3.18 high-
lights a crucial property of the map τ , that is, Lie (Γ) = so(n) for some Γ ⊆ B if and
only if τ(Γ) is connected, which is an equivalent formulation of Theorem 3.18.

Because a connected graph with n vertices contains at least n − 1 edges, The-
orem 3.18 also identifies the minimum number of control inputs for the system in
(3.1) to be controllable, as identified using the symmetric group method presented in
Theorem 3.4 and Remark 3.5.

Corollary 3.20. If a system on SO(n) in (3.1) is controllable, then the number
of control inputs m is at least n− 2, i.e., m > n− 2.

Although Theorem 3.18 is developed to examine controllability, it also helps es-
tablish some general facts in graph theory from the control systems perspective. In
the following, we present one such result that is related to triangular closures. This
property also plays an important role in characterizing controllable submanifolds for
uncontrollable systems by connected component of the graph associated with the
control system.

Lemma 3.21. The triangular closure Ḡ of a graph G is a disjoint union of its
complete components.

Proof. The proof is a direct application of the proof of Theorem 3.18 to each
connected component of G.

By the above Lemma 3.21, we can adopt our main result in Theorem 3.18 to study
an uncontrollable system by taking the triangular closure of its associated graph,
which is the union of the triangular closures of all connected components.

Theorem 3.22. The controllable submanifold of the system in (3.1) is determined
by the connected components of its associated graph.

Proof. Let Γ ⊆ B be the set of vector fields governing the dynamics of the system
in (3.1), G = τ(Γ) be the graph representation of Γ, and Ḡ denote the triangular
closure of G. Since connected components of G determine the complete components
of Ḡ, it suffices to show that the controllable submanifold of the system is determined
by the complete components of Ḡ.

According to the Frobenius Theorem [26], the controllable submanifold of the sys-
tem in (3.1) is the maximal integral submanifold of Lie (Γ) passing through the identity
matrix I. Hence, by Lemma 3.21, because of the completeness of each component of Ḡ,
the set τ−1(Ḡ) ⊆ B is closed under Lie bracket, which implies span τ−1(Ḡ) = Lie (Γ).
Therefore, we conclude that Lie (Γ), and thus its maximal integral submanifold, is
determined by Ḡ.

Theorem 3.22 further reveals a one-to-one correspondence between the Lie alge-
bra generated by a subset of B and the triangular closure of its associated graph in G.
Leveraging this one-to-one correspondence, we are able to give an explicit character-
ization of controllable submanifolds for uncontrollable systems in terms of connected
components of their associated graphs.

Example 3.23 (Controllable Submanifold). Consider two bilinear systems defined
on SO(6) in the form of (3.1) governed by the vector fields Γ1 = {Ω12,Ω23,Ω45,Ω46}
and Γ2 = {Ω13,Ω23,Ω46,Ω56}, respectively. Figure 3.4 shows their associated graphs
G1 = τ(Γ1) and G2 = τ(Γ2), neither of which is connected. Therefore, by Theo-
rem 3.12, both systems are not controllable on SO(6). On the other hand, we notice
that G1 = G2. So by Theorem 3.22, the two systems have the same controllable
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submanifold. Specifically, the controllable submanifold is the Lie subgroup of SO(6)
with the Lie algebra

Lie (Γ1) = Lie (Γ2) = span {Ωij : 1 6 i < j 6 3} ⊕ span {Ωij : 4 6 i < j 6 6}.

Moreover, both G1 and G2 contain two complete components with the vertex sets
U = {v1, v2, v3} and W = {v4, v5, v6}, which are also the vertex sets of the connected
components of G1 (or G2). It then follows that the Lie algebra of the controllable
submanifold, span {Ωij : vi, vj ∈ U} ⊕ span {Ωij : vi, vj ∈ W}, can be explicitly
characterized by the vertex sets of the complete components of G1 and G2, as well as
the connected components of G1 and G2.

v1

v2 v3

v4

v5v6

v1

v2 v3

v4

v5v6
G1 G1

99K

v1

v2 v3

v4

v5v6

v1

v2 v3

v4

v5v6
G2 G2

99K

Fig. 3.4. The graphs and their triangular closures associated with the systems in Example 3.23.
Specifically, the graphs G1 and G2 on the left are associated with the systems governed by Γ1 and

Γ2, respectively, and their triangular closures G1 and G2 are on the right. Red edges correspond to

vector fields generated by Lie brackets.

Furthermore, the developed method of characterizing controllability in terms of
graph connectivity is not constrained to systems defined on Lie groups. In particular,
as shown in the following example, it can be applied to study formation control of
multi-agent systems defined on graphs. From an algebraic perspective, it is equivalent
to using the graph-theoretic method to analyze the Lie algebra generated by symmetric
matrices.

Example 3.24 (Formation Control). In this example, we consider formation
control of a multi-agent system, which concerns with the question of coordinat-
ing the system to a consensus state. For such a purpose, the dynamics of each
agent in a network of N agents with the coupling topology given by the graph
G = (V,E), V = {v1, . . . , vN}, is generally represented by

(3.10) ẋi(t) =
∑

j∈V (i)

uij(xj − xi), 1 6 i 6 N,

where xi(t) ∈ Rn denotes the state of the i-th agent, V (i) = {1 6 j 6 N : vivj ∈ E}
denotes the set of neighboring agents of i, and uij = uji are the external inputs that
control the reciprocal interaction between the i-th and j-th agents [6].
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We will first formulate the dynamic law in (3.10) into a matrix form, and then
apply our analysis on a Lie algebra associated with it. To do this, let

Aij := Eii + Ejj − Eij − Eji

be an N -by-N symmetric matrix with zero row and column sums, and let X ∈ RN×n

denote a matrix whose row vectors are the states of the agents:

X =







x⊺

1
...

x⊺

N






.

Then, we can rewrite (3.10) into the following matrix form,

(3.11) Ẋ =
∑

vivj∈E

uijAijX.

The formation controllability of the multi-agent system in (3.11) is determined by
the LARC [6]. Thus, to study this system, we need to know the algebraic structure
of matrices {Aij}. Observe that for Bijk = −(Ωij + Ωjk + Ωki) and distinct indices
1 6 i, j, k, l,m 6 N , we have

(3.12)

[Aij , Ajk] = Bijk,

[Bijk, Aij ] = 2(Aik −Ajk),

[Bijk , Ail] = −Aij +Ajl +Aik −Akl,

[Bijk, Bijl] = Bikl +Bjkl,

[Bijk, Bilm] = Bjlm +Bkml = Blkj +Bmjk.

Therefore, the Lie algebra g := Lie {Aij} has a decomposition, g = g1 ⊕ g−1, with
g1 = span {Bijk} and g−1 = span {Aij}. As a consequence, by the LARC, con-
trollability of system (3.11) depends on whether the set Γ := {Aij : (i, j) ∈ E}
generates the Lie algebra g. Similar to bilinear systems on SO(n), we can adopt
a graph-theoretic method for g by associating one part of g, i.e., g−1, to a graph,
which in the case of this example, coincides with the graph on which the system is
defined. To be more specific, for a complete graph KN and its set of edges E, we
may define a map τ : Γ → E, which sends Aij ∈ Γ to vivj ∈ E, so that the image
of Γ is exactly the graph G. Following the correspondence τ , for two adjacent edges
vivj and vjvk, since Lie {Aij , Ajk} = Lie {Aij , Ajk, Aki} = span {Aij , Ajk, Aki, Bijk},
the triangle with edges vivj , vjvk, vkvi in G represents the Lie subalgebra spanned by
{Aij , Ajk, Aki, Bijk}. More generally, by the algebraic relations in (3.12), any trian-
gularly closed subgraph of KN is associated with a subalgebra of g. Therefore, the
Lie (sub)algebra generated by Γ can be represented by the triangular closure of G;
and if G is connected, then its triangular closure is complete, which suggests that
Lie (Γ) contains all Aij ’s, so we have Lie (Γ) = g. In conclusion, the controllability of
system (3.10), and equivalently, system (3.11), is determined by graph connectivity
of G.

By now, we have conducted a detailed investigation into controllability of bilinear
systems on SO(n) governed by the standard basis elements of so(n). Before we extend
the scope of our investigation to general bilinear systems, we show that, in contrast
to Corollary 3.20, a driftless bilinear system on SO(n) can be controllable using only
two control inputs, for all n > 0.

14



Example 3.25. Recall that by Corollary 3.20, driftless bilinear systems on SO(n)
with control vector fields in the standard basis of so(n) require at least n−1 inputs to
be controllable. However, this conclusion may not hold for general systems governed
by vector fields not in the standard basis. For example, the following system with two
control inputs

(3.13) Ẋ(t) =
[

u1(t)C1 + u2(t)C2

]

X(t), X(0) = I,

where C1 = Ω12 and C2 =
∑n−1

i=1 Ωi,i+1, is controllable on SO(n). To see this, we
will show Ω1k ∈ Lie ({C1, C2}) for any 2 6 k 6 n by induction. At first, note that
Ω13 = [C1, C2] ∈ Lie ({C1, C2}). Next, we assume Ω12,Ω13, . . . ,Ω1k ∈ Lie ({C1, C2})
for some 3 6 k < n, which is the induction hypothesis. Consequently, we have
[Ω1k, C2] = Ω2k − Ω1,k−1 + Ω1,k+1 and [Ω1k, C1] = Ω2k, which implies Ω1,k+1 =
[Ω1k, C2] − [Ω1k, C1] + Ω1,k−1 ∈ Lie ({C1, C2}). By induction, we conclude Ω1k ∈
Lie ({C1, C2}) for any 2 6 k 6 n. This result implies Lie (Σ) ⊆ Lie ({C1, C2}),
where Σ = {Ω1k : 1 6 k 6 n}. Obviously τ(Σ) is a connected graph, and hence by
Theorem 3.18, Lie (Σ) = so(n), and the the system in (3.13) is thus controllable.

3.3. Equivalence Between the Symmetric Group and Graph-Theoretic

Methods. In Sections 3.1 and 3.2, we developed two combinatorics-based methods
to analyze controllability of bilinear systems. Both methods connect the Lie brack-
ets of vector fields to operations on combinatorial objects. We will show next that
an equivalence exists between the symmetric group and the graph-theoretic method
when systems on SO(n) are concerned. We first illustrate this equivalence through a
controllable system on SO(4).

Example 3.26. Let us revisit the system in (3.8) in Example 3.16, governed by the
set of vector fields Γ = {Ω12,Ω23,Ω13,Ω34}. We have shown therein that this system
is controllable on SO(4) by using the graph-theoretic method; and for the symmetric
group method, we may choose Σ1 = {Ω12,Ω13,Ω34} ⊂ Γ so that ι(Σ1) = (1342) is
a 4-cycle. However, Σ1 is not the only subset that is related to a 4-cycle, and, for
example, one can easily verify that ι also relates the subsets Σ2 = {Ω13,Ω23,Ω34}
and Σ3 = {Ω12,Ω23,Ω34} to 4-cycles as ι(Σ2) = (13)(23)(34) = (1342) and ι(Σ3) =
(12)(23)(34) = (1234). Moreover, it is worth noting that Σ1, Σ2, and Σ3 are the
only subsets of Γ that are related to 4-cycles. Meanwhile, and more importantly,
their graph representations τ(Σ1), τ(Σ2), and τ(Σ3) coincide with all three spanning
trees of the graph τ(Γ) associated with the system (see Table 3.1). On the other
hand, from the aspect of Lie algebra, we observe that Σi is a minimal subset of Γ
generating Lie (Γ) for each i = 1, 2, 3, that is, Σ′ = Σi for any Σ′ ⊆ Σi satisfying
Lie (Σ′) = Lie (Γ). This observation sheds light on the general result: given a system
on SO(n) governed by the set of vector fields Γ, if Σ is a minimal subset of Γ with
Lie (Σ) = Lie (Γ), then ι(Σ) is an n-cycle if and only if τ(Σ) is a spanning tree of τ(Γ).

Theorem 3.27. Consider a bilinear system on SO(n) as in (3.1) and let Γ ⊆ B
denote the set of vector fields governing the system dynamics. Suppose Σ ⊆ Γ is a
minimal subset such that ι(Σ) = σ ∈ Sn is an n-cycle (i.e., Σ has no proper subset that
is also related to an n-cycle via ι), then its associated graph τ(Σ) is a spanning tree of
τ(Γ), and the system is therefore controllable. Conversely, for a controllable system,
any spanning tree T of the connected graph τ(Γ) corresponds to a subset Σ′ = τ−1(T ),
such that Σ′ ⊆ Γ is minimal and that ι(Σ′) is an n-cycle in Sn.

Proof. From group theory we know that a minimal Σ with ι(Σ) being an n-cycle
should consist of n − 1 transpositions, and that the union of the orbits of all n − 1
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Set of control vector fields Graph Permutation in S4

Γ = {Ω12,Ω23,Ω13,Ω34}

v1 v2

v3v4

ι(Γ) = (12)(23)(13)(34) = (234)

Σ1 = {Ω12,Ω13,Ω34}

v1 v2

v3v4

ι(Σ1) = (12)(13)(34) = (1342)

Σ2 = {Ω13,Ω23,Ω34}

v1 v2

v3v4

ι(Σ2) = (13)(23)(34) = (1342)

Σ3 = {Ω12,Ω23,Ω34}

v1 v2

v3v4

ι(Σ3) = (12)(23)(34) = (1234)

Table 3.1

A comparison between two methods analyzing controllability: the symmetric groups method and

the graph-theoretic method. Note that the graphs associated with Σ1, Σ2 and Σ3 are spanning trees
of the associated graph of Γ, and that any tree is related to a 4-cycle in the symmetric group S4.

transpositions is the orbit of σ. This means the graph τ(Σ) has n vertices and n− 1
edges. Since a graph with n vertices and n − 1 edges is both connected and acyclic,
and since τ(Σ) covers all n vertices of τ(Γ), we conclude that τ(Σ) is the spanning
tree of τ(Γ).

On the other hand, for a subset Σ′ ⊆ Γ satisfying that τ(Σ′) is a spanning tree
of τ(Γ), we must have |Σ′| = n − 1. Since a decomposition of an n-cycle needs at
least n − 1 transpositions, if ι(Σ′) is an n-cycle, then Σ′ is obviously minimal. The
following claim shows that ι(Σ′) is indeed an n-cycle, regardless of the ordering of
elements in Σ′.

Claim. A tree consisting of k edges in the connected graph τ(Γ) in Theorem 3.27
is related to a (k + 1)-cycle via ι, regardless of the ordering of transpositions.

Proof of Claim. Let us consider a tree T with k edges in τ(Γ), and prove the claim
by induction. It is trivial for k = 1; and for k = 2, say T = vj1vj2vj3 , then ι sends T
to either (j1j2j3) or (j1j3j2), depending on the orderings of (j1j2) and (j2j3). Assume
the claim is true for k = l− 1 for some l ∈ Z+; and for a tree T with k = l edges, we
can choose a subtree T ′ of T that consists of l − 1 edges. Without loss of generality,
we may assume T ′ has vertices {v1, . . . , vl} and that T has an additional vertex vl+1

and an additional edge v1vl+1. Let {σ1, . . . , σl−1} be a set of transpositions such that
each σi is related to a distinct edge in T ′ by ι, and let ρ = (1, l + 1) denote the
transposition related to the additional edge v1vl+1 in T . Our goal is to show that the
permutation

(3.14) σi1 · · ·σitρσit+1
· · ·σil−1

is an (l + 1)-cycle. Note that for any 1 6 i, j1, j2 6 l, we have the following law of
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commutation:

(3.15) (i, l+ 1)(j1j2) =

{

(j1j2)(i, l + 1) if neither j1 or j2 equals to i;

(j1j2)(j2, l + 1) if j1 = i.

Therefore, we can rewrite the permutation (3.14) as σi1 · · ·σil−1
ρ′, where ρ′ = (jp, l+1)

for some 1 6 jp 6 l. By our assumption, σi1 · · ·σil−1
is an l-cycle: σi1 · · ·σil−1

=
(j1j2 · · · jl), so finally we have

σi1 · · ·σitρσit+1
· · ·σil−1

= σi1 · · ·σil−1
ρ′ = (j1j2 · · · jl)(jp, l + 1)

= (j1 · · · jp, l + 1, jp+1 · · · jl),

which is an (l+1)-cycle. It is clear that the ordering of transpositions is irrelevant in
our proof. �

Therefore, a spanning tree τ(Σ′) consisting of n− 1 edges is related to an n-cycle
in Sn via ι, which finishes our proof.

Given a controllable system on SO(n), Theorem 3.27 reveals the relation between
n-cycles and spanning trees of the associated graph. In particular, for such a system
governed by the set Γ ⊆ B of vector fields, this theorem supplements Theorem 3.18
by explicitly describing the subsets of Γ that are related to n-cycles using graphs.
The following corollary then summarizes all the symmetric group and graph-theoretic
characterizations of controllability for systems on SO(n).

Corollary 3.28. Consider a bilinear system defined on SO(n) as in (3.1), and
let Γ denote the set of vector fields governing the system dynamics. The following are
equivalent:

(1) The system is controllable on SO(n).
(2) τ(Γ) is a connected graph.
(3) For any minimal subset Σ ⊆ Γ generating so(n), ι(Σ) is an n-cycle and τ(Σ)

is a spanning tree of τ(Γ).

In the remainder of this section, we will focus on uncontrollable systems. Re-
call Theorem 3.22 that the controllable submanifold for an uncontrollable system on
SO(n) is determined by the connected components of its associated graph. Mean-
while, according to Corollary 3.6, by applying the method of symmetric groups, the
controllable submanifold can also be characterized by the nontrivial orbits of ι(Ξ)
for a minimal subset Ξ ⊆ Γ generating Lie (Γ). To see that the two methods are
equivalent and to extend Theorem 3.27 to uncontrollable cases, we first introduce the
concept of spanning forests, which generalizes the notion of spanning trees to dis-
connected graphs. Given a (disconnected) graph, its spanning forest is a maximal
acyclic subgraph, or equivalently, a subgraph consisting of a spanning tree in each
connected component of the graph [1]. Following this definition, we will show that
the minimal subset Ξ ⊆ Γ in Corollary 3.6 corresponds to a spanning forest of τ(Γ),
so that the controllable submanifold can also be equivalently described by the con-
nected components of the spanning forest. This result is illuminated in the following
example.

Example 3.29. Consider a bilinear system on SO(6) in the form of (3.1) governed
by the set of vector fields Γ = {Ω12,Ω14,Ω23,Ω24,Ω34,Ω56}. As shown in Table 3.2,
ι(Γ) is disconnected with two components, and hence this system is not controllable on
SO(6). To describe its controllable submanifold, we choose a spanning forest τ(Ξ1) of
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Set of control vector fields Graph
Permutation in S6 and
its nontrivial orbits

Γ =
{ Ω12,Ω14,Ω23,

Ω24,Ω34,Ω56

}

v1

v2 v3

v4

v5v6

ι(Γ) = (12)(14)(23)(24)(34)(56)

= (14)(56)

Orbits = {1, 4}, {5, 6}

Ξ1 = {Ω14,Ω24,Ω34,Ω56} v1

v2 v3

v4

v5v6

ι(Ξ1) = (14)(24)(34)(56)

= (1432)(56)

Orbits = {1, 2, 3, 4}, {5, 6}

Ξ2 = {Ω12,Ω24,Ω34,Ω56} v1

v2 v3

v4

v5v6

ι(Ξ2) = (12)(24)(34)(56)

= (1243)(56)

Orbits = {1, 2, 3, 4}, {5, 6}

Table 3.2

A comparison between the symmetric group method and the graph-theoretic method for an

uncontrollable system on SO(6). Both graphs associated with subsets Ξ1 and Ξ2 are spanning forest
of the associated graph of Γ.

the associated graph τ(Γ) with Ξ1 = {Ω14,Ω24,Ω34,Ω56}. Note that the permutation
ι(Ξ1) = (14)(24)(34)(56) = (1432)(56) has two nontrivial orbits: O1 = {1, 2, 3, 4}
and O2 = {5, 6}, each corresponds to a connected component of the graph τ(Γ), or
equivalently, a summand in the decomposition of the Lie algebra of the controllable
submanifold:

Lie (Γ) = span {Ωij : i, j ∈ O1} ⊕ span {Ωij : i, j ∈ O2}.

Now suppose we choose a different spanning forest τ(Ξ2) which corresponds to
another subset Ξ2 = {Ω12,Ω24,Ω34,Ω56} ⊆ Γ. Note that the permutation ι(Ξ2) =
(1243)(56) is different from ι(Ξ1), but both have the same orbits. The graphs and
permutations associated with Γ and its subsets Ξ1 and Ξ2 are also listed in Table 3.2.

In general, for a spanning forest F of τ(Γ), we know by Theorem 3.27 that each
tree Ti consisting of ni vertices in F is related to an ni-cycle via ι, which characterizes
a summand of the decomposition of Lie (Γ). So by applying Theorem 3.27 to each
(maximal) tree in the forest F , we have the following Corollary 3.30, which describes
the relation between the associated graphs and permutations for an uncontrollable
bilinear system.

Corollary 3.30. Given an uncontrollable bilinear system defined on SO(n) in
the form of (3.1) governed by the set of vector fields Γ. Let F be a spanning forest
of τ(Γ) and if we denote Ξ = τ−1(F ), then Ξ is a minimal subset of Γ with the same
generating Lie algebra and the controllable submanifold of the system is determined
by the nontrivial orbits of ι(Ξ).
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Proof. For a spanning forest F of τ(Γ), let T1, . . . , Tl be (maximal) trees in F s.t.
F = T1 ⊔ · · · ⊔Tl, where Ti = (Vi, Ei) with |Vi| = ni, |Ei| = ni− 1. By Theorem 3.27,
each Ti is related to an ni-cycle ι(Ξi) ∈ Sni

for Ξi = τ−1(Ti), and the orbit of
ι(Ξi) determines the Lie (sub)algebra gi := Lie (Ξi). Therefore, distinct orbits of
ι(Ξ) consist of the orbits of each ι(Ξ1), . . . , ι(Ξl), which determines the Lie algebra
generated by Γ: Lie (Γ) = Lie (Ξ) = gi ⊕ · · · ⊕ gl. Since the controllable submanifold
is determined by the Lie subalgebra Lie (Γ) = Lie (Ξ), we conclude that it is also
determined by distinct orbits of ι(Ξ), for Ξ = τ−1(F ).

4. Combinatorics-Based Controllability Analysis via Lie Algebra De-

compositions. Utilizing the algebraic structure of so(n), we have developed combi-
natorial methods that identified vector fields in the standard basis of so(n), as well as
vector fields generating structured Lie algebras, e.g., the multi-agent system described
in Example 3.24, with transpositions in Sn and edges of n-vertices graphs. It was also
shown that such identifications lead to an equivalence between the two methods for
analyzing controllability of systems on SO(n) as defined in (3.1).

However, in many cases, the system Lie algebra may be too complicated to asso-
ciate each of its elements to a permutation or a graph edge, so that the combinatorial
methods cannot be directly applied. This dilemma can be resolved through the de-
composition of the Lie algebra into components with simpler algebraic structures
such that the combinatorial methods can be applied to each component. This idea
allows us to generalize the combinatorial framework to bilinear systems defined on
boarder classes of Lie groups. To this end, we adopt techniques in representation
theory, including the Cartan and non-intertwining decomposition. Some basics of
representation theory can be found in Appendix B.

4.1. Cartan Decomposition in Symmetric Group Method. The Cartan
decomposition, named after the influential French mathematician Élie Cartan, pro-
vides a major tool for understanding the algebraic structures of semisimple Lie groups
and Lie algebras. Its generalized form, the root space decomposition, decomposes a
Lie algebra into a direct sum of vector subspaces, called the root spaces, as introduced
in Appendix B. However, each root space is not necessarily a Lie subalgebra, i.e., Lie
bracket operations may not be closed in the root spaces. This nature of the Cartan
(root space) decomposition then disables the use of the graph-theoretic method since
it violates the “triangle rule” shown in Lemma 3.9 (ii). As a result, here we pursue
and generalize the symmetric group method to analyze controllability of systems with
its vector fields living in the root spaces of semisimple Lie algebras.

In representation theory, the Lie algebra sl(3,C), which consists of 3× 3 complex
matrices with vanishing trace, serves as a primary example to illustrate the Cartan
decomposition of semisimple Lie algebras. Therefore, to illustrate our idea, we con-
sider the driftless bilinear system evolving on the Lie group SL(3,C) consisting of
3× 3 complex matrices with determinant 1, given by

(4.1) Ż(t) =
(

m
∑

j=1

uj(t)Bj

)

Z(t),

where the state Z(t) ∈ SL(3,C), the control vector fields Bj ∈ Γ ⊆ B′′ := {Hk, Xl, Yl :
k = 1, 2; l = 1, 2, 3}, the basis of sl(3,C) with

H1 =





1 0 0
0 −1 0
0 0 0



 , H2 =





0 0 0
0 1 0
0 0 −1



 ,
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X1 =





0 1 0
0 0 0
0 0 0



 , X2 =





0 0 0
0 0 1
0 0 0



 , X3 =





0 0 1
0 0 0
0 0 0



 ,

Y1 =





0 0 0
1 0 0
0 0 0



 , Y2 =





0 0 0
0 0 0
0 1 0



 , Y3 =





0 0 0
0 0 0
1 0 0



 ,

and the control inputs uj(t) ∈ C.
One can easily check that the two Lie subalgebras k1 = Lie {H1, X1, Y1} and

k2 = Lie {H2, X2, Y2}, when considered as Lie algebras over R, are isomorphic to so(3).
As discussed in Section 3.1, controllability of systems on SO(3) can be characterized
by permutation cycles in S3. This suggests that we can characterize controllability
of systems on SL(3,C) by two copies of S3. Formally, we want to establish a map
ι : P(B′′)→ S3⊕S3, where ⊕ denotes the direct sum of groups, so that non-vanishing
Lie brackets correspond to cycles with increased length. In this case, we define an
element σ = (σ1, σ2) in S3 ⊕ S3 to be a cycle if both σ1 and σ2 are cycles in S3,
and the length of σ is defined to be the sum of the length of σ1 and σ2. Here is one
possible definition of ι:

H1 7→ (e, e), H2 7→ (e, e),

X1 7→ ((12), e), X2 7→ (e, (12)), X3 7→ ((12), (12)),

Y1 7→ ((23), e), Y2 7→ (e, (23)), Y3 7→ ((23), (23)),

where e denotes the identity of S3. Following this definition of ι, we can check that
if B1, B2 ∈ B′′ satisfy [B1, B2] 6= 0, then the length of ι([B1, B2]) is greater than or
equal to the length of both ι(B1) and ι(B2). Moreover, if neither B1 nor B2 is equal
to H1 or H2, then the length of ι([B1, B2]) is strictly greater than the length of both
ι(B1) and ι(B2). This relation between Lie brackets of elements in B′′ and length of
cycles in S3 ⊕ S3 allows us to draw the following conclusion:

Proposition 4.1. The system in (4.1) is controllable on SL(3,C) if and only if
there exists a subset Σ of Γ = {B1, . . . , Bm} such that ι(Σ) is a 6-cycle in S3 ⊕ S3.

From the perspective of representation theory, the basis B′′ induces the Cartan
decomposition of the Lie algebra sl(3,C), in which the 2-dimensional Cartan subal-
gebra is spanned by H1 and H2. Moreover, the Weyl group of sl(3,C) is S3. The
above facts provide another explanation for requiring two copies of S3 in the charac-
terization of controllability for systems on SL(3,C) governed by vector fields in B′′.
Notice that the concepts of Cartan subalgebras and Weyl groups are well-defined for
all semisimple Lie algebras, not only for SL(3,C). Also, Weyl groups are all finite
groups and thus subgroups of some symmetric groups. As a result, it is possible
to extend the symmetric-group characterization of controllability to systems defined
on general semisimple Lie groups. To be more specific, consider the bilinear system
defined on a semisimple Lie group G of the form,

(4.2) Ẋ =
(

m
∑

i=1

uiBi

)

X, X(0) = I,

where Bi are elements in the Lie algebra g of G. Moreover, let g = h ⊕ k be the
Cartan decomposition of g with h being the Cartan subalgebra and W be the Weyl
group of g. We further assume that Bi ∈ h or Bi ∈ k for every i = 1, . . . ,m, then the
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above discussion leads to the following conjecture for systems defined on semisimple
Lie groups.

Conjecture 4.2. The system in (4.2) is controllable on G if and only if there ex-
its Σ ⊆ Γ such that ι(Σ) is a cycle of maximal length in Wh, where Γ = {B1, . . . , Bm}
is the set of control vector fields, h = dim h, and Wh denotes the direct sum of h copies
of W .

Recall that the central idea of the symmetric group approach to controllability
analysis is to map elements with non-vanishing Lie brackets to cycles with increased
length. However, all elements in the Cartan subalgebra have vanishing Lie brackets.
The intuition behind the above conjecture comes from the need of appropriately rep-
resenting these elements using permutations by mapping elements in different root
spaces to permutation cycles in different components of the direct sum of h copies of
symmetric groups, where h denotes the dimension of the Cartan subalgebra. More-
over, because the interaction between elements in and outside the Cartan subalgebra
is characterized by the Weyl group, which is a subgroup of a symmetric group, the
symmetric group method applies directly.

4.2. Non-Intertwining Decomposition in Graph-Theoretic Method. In
the case that the Lie algebra generated by drift and control vector fields of a bilinear
system can be decomposed into components that are Lie subalgebras, we will see
that the graph-theoretic method applies more naturally for controllability analysis.
One decomposition of this type is the non-intertwining decomposition, through which
a Lie algebra is decomposed into a direct sum of Lie subalgebras so that elements
from different Lie subalgebras have vanishing Lie brackets. The non-intertwining
decomposition generalizes the notion of block diagonalization for matrices.

Definition 4.3. For a given Lie algebra g, we call a decomposition g = g1⊕· · ·⊕
gm non-intertwining if [gi, gj ] = 0 for any Lie subalgebras gi, gj, 1 6 i 6= j 6 m.

For example, every reductive Lie algebra admits a non-intertwining decomposi-
tion, and many familiar Lie algebras are reductive, such as the algebra of n×n complex
matrices gl(n,C) and the algebra of n×n skew-symmetric complex matrices so(n,C)
[17]. If a Lie algebra admits a non-intertwining decomposition, then we will be able
to associate each of its components with a graph. The subsequent question is whether
graph representation developed in Section 3.2 remains valid to characterize controlla-
bility. The answer to this question can be illustrated by a system defined on SO(4)
whose Lie algebra so(4) can be decomposed into a direct sum of two non-intertwining
copies of so(3), as shown in the following example.

Example 4.4. Let B′ = {A1, A2, A3, B1, B2, B3} be a non-standard basis of so(4),
where

(4.3)
A1 =

Ω23 +Ω14

2
, A2 =

Ω13 − Ω24

2
, A3 =

Ω12 +Ω34

2
,

B1 =
Ω13 +Ω24

2
, B2 =

Ω14 − Ω23

2
, B3 =

Ω12 − Ω34

2
.

The Lie brackets of the elements in B′ satisfy [Ai, Aj ] = Ak, [Bi, Bj ] = Bk for any
ordered 3-tuple (i, j, k) = (1, 2, 3), (2, 3, 1) or (3, 1, 2), and [Ai, Bj] = 0 for any 1 6

i, j 6 3. As a result, so(4) admits a non-intertwining decomposition as so(4) =
Lie {A1, A2, A3} ⊕ Lie {B1, B2, B3}.

We note that the Lie bracket relations among elements in {A1, A2, A3}, as well
as {B1, B2, B3}, are the same as the Lie bracket relations among elements in the
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standard basis of so(3). In other words, both Lie {A1, A2, A3} and Lie {B1, B2, B3}
are isomorphic to so(3), so K3 becomes the suitable graph representation for each set.
Moreover, because [Ai, Bj ] = 0 for any i, j = 1, 2, 3, the graph representation for the
non-standard basis B′ = {A1, A2, A3} ⊔ {B1, B2, B3} is a disjoint union of two copies
of K3, as shown in Figure 4.1, instead of the complete graph K4 associated with the
standard basis of so(4).

v1

v2v3

τ ′(A1)τ ′(A3)

τ ′(A2)

w1

w2w3

τ ′(B1)τ ′(B3)

τ ′(B2)

Fig. 4.1. The graphs associated with the sets {A1, A2, A3} and {B1, B2, B3} in Example 4.4.

This example illuminates how the graph representation of controllability devel-
oped in Section 3.2 can be extended to the bilinear system governed by vector fields
generating a non-intertwining Lie algebra, after modifying the definition of τ in (3.7)
accordingly.

Proposition 4.5. Consider a bilinear system on SO(4) governed by the vector
fields in B′, given by

(4.4) Ẋ(t) =
(

m
∑

i=1

uiCi

)

X(t), X(0) = I,

with Γ = {C1, . . . , Cm} ⊆ B′. Given a graph map τ ′ : P(B′) → G′, where G′ denotes
the collection of subgraphs of K3 ⊔K3, satisfying

τ ′(Ai) = vivi+1 and τ ′(Bi) = wiwi+1,

with the index taken modulo 3, the system in (4.4) is controllable if and only if τ ′(Γ) =
K3 ⊔K3, or equivalently, if and only if each component of τ ′(Γ) is connected in K3.

Proof. The above result becomes obvious once we verify the following properties
of τ ′ (c.f. Lemma 3.9), which are straightforward.

(1) τ ′(B′) = K3 ⊔K3;
(2) For distinct C1, C2 ∈ B′, their Lie bracket [C1, C2] 6= 0 if and only if the two

edges τ ′(C1) and τ ′(C2) have a common vertex;
(3) The edges τ ′(C1), τ

′(C2) and τ ′([C1, C2]) form a triangle if [C1, C2] 6= 0, or
equivalently,

τ ′({C1, C2, [C1, C2]}) = K3,

for any C1, C2 ∈ B′ such that [C1, C2] 6= 0.

In addition, recall from Corollary 3.20 that three control inputs are enough to
have a controllable driftless system on SO(4) governed by the vector fields in the
standard basis; or equivalently, three edges can form a connected graph with four
vertices. However, for systems in the form of (4.4), they require at least four control
inputs to be controllable on SO(4). From the graph aspect, this is because both
components of τ(Γ) require at least two edges to be connected.
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Example 4.4 further illustrates that for bilinear systems evolving on SO(n) gov-
erned by non-standard basis vector fields, i.e., vector fields that are not in the form of
standard basis elements, in so(n), controllability may not be characterized by using
one complete graph Kn. Taking the system in (4.4) as an example, because the Lie
algebra of its state-space can be decomposed into a direct sum of two non-intertwining
components, its graph representation also requires two components. This finding elu-
cidates that the number of components of the graph associated with a bilinear system
is determined by the number of summands in the non-intertwining decomposition of
the underlying Lie algebra of the system.

Theorem 4.6. Given a bilinear system

(4.5) Ẋ(t) =
(

m
∑

i=1

ni
∑

j=1

uijBij

)

X(t), X(0) = I,

defined on a Lie group G whose Lie algebra g admits a non-intertwining decomposition
as g = g1 ⊕ · · · ⊕ gm, where Bij ∈ Bi and Bi is a basis of gi for each i. Suppose each
Bi is associated with a connected graph Gi such that a subset Σi ⊆ Bi generates gi if
and only if its associated graph τ(Σi) is a connected subgraph of Gi, then the system
in (4.5) is controllable on G if and only if τ(Γi) is connected for every i = 1, . . . ,m,
where Γi = {Bij : j = 1, . . . , ni}.

Proof. By the assumption, τ(Γi) is connected if and only if Lie (Γi) = gi for each
i = 1, . . . ,m. Together with the non-intertwining property between each pair of gi
and gj , the connectivity of τ(Γi) for all i is equivalent to

Lie (Γ) =
m
⊕

i=1

Lie (Γi) =
m
⊕

i=1

gi = g,

where Γ =
⋃m

i=1 Γi. The proof is then concluded by applying the LARC.

Remark 4.7 (Symmetric Group Method for Systems Governed by Non-intertwin-
ing Lie Algebras). We find it worthwhile to mention that the symmetric group method
also applies to bilinear systems with their underlying Lie algebras admitting a non-
intertwining decomposition, through a properly defined ι. For instance, in Exam-
ple 4.4, since both {Ai} and {Bi} in (4.3) are isomorphic to the standard basis in
so(3), the symmetric group method extends to the systems in (4.4) as well, by associ-
ating each component in the decomposition to a copy of S3 and defining ι(Ai, Bj) =
(

(i, i + 1), (j, j + 1)
)

, with the index taken modulo 3. Consequently, the system in
(4.4) is controllable if and only if ι relates Γ to two disjoint 3-cycles in S3 ⊕ S3.

5. Summary. In this paper, we develop a combinatorics-based framework to
characterize controllability of bilinear systems evolving on Lie groups, in which Lie
bracket operations of vector fields are represented by operations on permutations in a
symmetric group and edges in a graph. Through such representations, we obtain the
tractable and transparent combinatorial characterizations of controllability in terms
of permutation cycles and graph connectivity. This framework is established by first
considering bilinear systems on SO(n), and we show that, in this case, the permutation
and graph representations are equivalent. Then, by exploiting techniques in repre-
sentation theory, we extend our investigation into a more general category of bilinear
systems via proper decompositions of the underlying Lie algebras of the systems. In
particular, we illustrate the application of the developed combinatorial methods to
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bilinear systems whose underlying Lie algebras admit the Cartan or non-intertwining
decomposition. The presented methodology not only provides an alternative to the
LARC, but also advances geometric control theory by integrating it with techniques
in combinatorics and representation theory. As a final remark, compared to known
graph-theoretic methods mostly developed for networked or multi-agent systems, our
framework proposes novel applications of graphs to the study of bilinear control sys-
tems.

Appendix A. Symmetric Groups and Permutations.

In this appendix, we give a brief review of the symmetric group theory. For a
thorough discussion on symmetric groups, the reader can refer to any standard algebra
textbook, for example [18]. Let Xn be a finite set of n elements, and without loss of
generality, we may assume Xn = {1, · · · , n}. A permutation σ of Xn is a bijection
from Xn onto itself, and is denoted by

σ =

(

1 2 · · · n
i1 i2 · · · in

)

if σ(1) = i1, . . . , σ(n) = in for distinct i1, . . . , in ∈ Xn. A permutation that switches
only two elements is called a transposition, and is denoted by σ = (i1i2) if i1 6= i2 and
σ fixes all other indices except for σ(i1) = i2 and σ(i2) = i1. More generally, an r-
cycle denoted by σ = (i1i2 · · · ir) is a permutation that satisfies σ(i1) = i2, σ(i2) = i3,
. . . , σ(ir) = i1 and fixes all other indices. It can be shown that any permutation can
be decomposed uniquely into disjoint cycles (cycles that have no common indices).
For example, when n = 4, the permutation

(

1 2 3 4
2 3 4 1

)

can be represented by a single 4-
cycle (1234); while the permutation

(

1 2 3 4
3 4 1 2

)

is the composition of two transpositions
(2-cycles): (13)(24). Given a permutation σ of Xn and an integer i, 1 6 i 6 n, the
orbit of i is formed under the cyclic group generated by σ. So for σ = (1234), the orbit
of 2 is {σi(2) : i ∈ N} = {2, σ(2), σ2(2), σ3(2)} = {1, 2, 3, 4}; and for σ = (13)(24), the
orbit of 2 is {σi(2) : i ∈ N} = {2, σ(2)} = {2, 4}. The symmetric group Sn is defined
as the group of permutations on Xn, with its group operation being the composition
of bijections.

Appendix B. Basics of Representation Theory.

Representation theory is a branch of algebra which studies structure theory by
representing elements in an algebraic object, such as a group, a module, or an algebra,
using linear transformations of vector spaces. In this appendix, we will review some
basic concepts and results in the representation theory of Lie algebras that are used in
this paper. Detailed discussions of Lie representation theory can be found in [9, 17].

To study the algebraic structure of a Lie algebra, let us introduce some related
definitions.

Definition B.1.
• A Lie algebra g is said to be abelian if

[g, g] := span {[X,Y ] : X,Y ∈ g} = 0.

• A subspace h of g is a Lie subalgebra of g if [h, h] ⊆ h. In other words, h is
a Lie algebra itself w.r.t. [·, ·].

• A Lie subalgebra h 6 g is an ideal in g if [h, g] ⊆ h.
• The Lie algebra g is said to be simple if it is nonabelian and has no proper

nonzero ideals, and semisimple if it has no nonzero abelian ideals.
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It can be shown that every semisimple Lie algebra g can be decomposed into a
direct sum of simple Lie algebras which are ideals in g. Moreover, this decomposition is
unique, and the only ideals of g are the direct sums of some of these simple Lie algebras.
For example, each special orthogonal Lie algebra so(n) = {Ω ∈ Rn×n : Ω+Ω⊺ = 0}, as
we use extensively in this paper, is simple except for n = 4, while so(4) is semisimple
but not simple: as shown in Example 4.4, so(4) = so(3)⊕ so(3).

The study of algebraic structures of semisimple Lie algebras plays a central role
in representation theory. One of the most dominant results is the Cartan decompo-
sition that traces back to the work of Élie Cartan and Wilhelm Killing in the 1880s,
which generalizes the notion of singular value decomposition for matrices. Given a
semisimple Lie algebra g, its Cartan subalgebra h is a maximal abelian subalgebra of g
such that adH is diagonalizable for all H ∈ h, where adXY = [X,Y ] for all X,Y ∈ g.
Moreover, the dimension of h is called the rank of g. Let h∗ denote the dual space of
h, i.e., the space of linear functionals on h, then a nonzero element α ∈ h is called a
root of g if there exists some X ∈ g such that adHX = α(H)X for all H ∈ h∗, and
gα := {X ∈ g : adHX = α(H)X, ∀H ∈ h} is a vector space called the root space of g,
which can be shown to be one-dimensional. Let R denote the set of roots of g, then R
is finite and spans h∗. With the above notations, the root space decomposition, which
generalizes the classical Cartan decomposition, is defined as

g = h⊕
(

⊕

α∈R

gα

)

.

A major tool to study the properties of R is the Weyl group, which is defined as
follows: Let α ∈ R be a root and sα : h∗ → h∗ denote the reflection about the
hyperplane in h∗ orthogonal to α, i.e., sα(β) = β − 2〈β,α〉

〈α,α〉 α for all β ∈ h∗, where
〈·, ·〉 is an inner product on h, then the Weyl group W of R is the subgroup of the
orthogonal group O(h∗) of h∗ generated by all sα for α ∈ R. It can be shown that W
is a finite group and hence a subgroup of a symmetric group by Cayley’s theorem.
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