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Abstract

Motivated by applications in quantitative photoacoustic imaging, we study inverse
problems to a semilinear radiative transport equation (RTE) where we intend to re-
construct absorption coefficients in the equation from single and multiple internal data
sets. We derive uniqueness and stability results for the inverse transport problem in
the absence of scattering (in which case we also derive some explicit reconstruction
methods) and in the presence of known scattering.
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1 Introduction

Let Ω ⊆ Rd (d ≥ 2) be a domain with boundary ∂Ω, and Sd−1 the unit sphere in Rd.
We define the phase space X := Ω × Sd−1 and the incoming boundary of the phase space
Γ− := {(x,v) | (x,v) ∈ ∂Ω × Sd−1 s.t. − ν(x) · v > 0}, ν(x) being the unit outer normal
vector at x ∈ ∂Ω. We are interested in the semilinear radiative transport equation:

v · ∇u+ (σa + σs)u(x,v) + σb〈u〉u(x,v) = σs(x)Ku(x,v), in X
u(x,v) = g(x,v), on Γ−

(1)

where 〈u〉 denotes the average of u(x,v) over the variable v, that is,

〈u〉 :=

∫
Sd−1

u(x,v)dv , (2)
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with dv being the normalized surface measure on Sd−1. The linear operator K is defined
through the relation

Ku(x,v) :=

∫
Sd−1

Θ(v,v′)u(x,v′)dv′, (3)

with the kernel Θ(v,v′) being symmetric and satisfying the normalization conditions∫
Sd−1

Θ(v,v′)dv′ =

∫
Sd−1

Θ(v,v′)dv = 1.

Transport equations such as (1) often appear in the literature as the mathematical mod-
els to describe radiative transfer processes in heterogeneous media. We are interested in
the application of this equation in modeling the propagation of near infra-red photons in
biological tissues [3, 4, 30]. In such a case, u(x,v) denotes the density of the photons at
position x traveling in direction v. The coefficients σa(x) and σs(x) are the usual single-
photon absorption and scattering coefficients respectively, and the kernel Θ(v,v′) describes
the probability of photons traveling in direction v′ getting scattered into direction v. The
coefficient σb(x) is called the two-photon absorption coefficient. It is used to model the
two-photon absorption process, that is, the phenomenon that an electron transfers to an
excited state after simultaneously absorbing two photons whose total energy exceed the
electronic energy band gap. Such two-photon absorption process can also be viewed as a
regular physical absorption process whose effective absorption strength, σb〈u〉, depends on
the local density of the photons. We refer interested readers to [8, 32] and references therein
for more details on the modeling of two-photon absorption in diffusive media.

In the rest of this paper, we study an inverse problem to the transport model (1) where
we intend to reconstruct the absorption coefficients σa and σb from internal data of the form

H(x) := σa(x)〈u〉(x) + σb(x)〈u〉2(x), x ∈ Ω̄ . (4)

Such inverse problems originate from applications in quantitative photoacoustic imaging
where internal data (4) can be obtained from photoacoustic measurements; see [6, 29] and
references therein for recent developments in the field. In the diffusive regime, that is,
when the transport model (1) is replaced with its diffusion approximation, it has been
shown in [8, 32] that one can reconstruct all three coefficients (σa, σb, σs) from a finite set of
internal data of the form (4). The objective of this work is to show that one can reconstruct
uniquely (σa, σb) in the semilinear transport equation (1) from two sets of internal data.

The inverse problem we described above is closely related to an inverse problem to the
linear transport equation:

v · ∇u+ (Σa + σs)u(x,v) = σs(x)Ku(x,v), in X
u(x,v) = g(x,v), on Γ−

(5)

with data of the form
H(x) := Σa(x)〈u〉(x), x ∈ Ω̄ . (6)

In fact, the semilinear transport equation (1) can be viewed as the linear transport equa-
tion (5) whose absorption coefficient Σa depends on the density 〈u〉 in a linear manner:
Σa = σa + σb〈u〉.
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Inverse problems to the radiative transport equation have been studied extensively in
the past two decades; see for instance [4] for a recent review on the topic. Most of existing
analytical and computational results are on the linear transport equation (5). These include,
but not limited to, problems where boundary data encoded in the map u|Γ− 7→ u|Γ+ and
alike are available [5, 7, 9, 12, 11, 13, 16, 18, 24, 26, 31, 35, 36, 38, 41, 43], as well as
problems where internal data of the type (6) [6, 29, 33, 40, 20, 39, 34] and alike [14, 28]
are available. Existing results, either analytical or computational, on nonlinear transport
models such as (1) are very limited; see [10, 27, 25] for some related results.

2 The forward problem

We start by establishing the well-posedness theory for the semilinear transport equation (1).
To setup the analysis, we denote by Lp(X) (resp. Lp(Ω)) the space of real-valued func-
tions whose p-th power are Lebesgue integrable on X (resp. Ω), and Hp(X) the space of
Lp(X) functions whose derivative in direction v is in Lp(X), i.e. Hp(X) = {f(x,v) : f ∈
Lp(X) and v · ∇f ∈ Lp(X)}. We denote by Lp(Γ−) the space of functions that are traces
of Hp(X) functions on Γ− under the norm ‖f‖Lp(Γ−) = (

∫
∂Ω

∫
Sd−1
x−
|n(x) · v||f |pdvdγ)1/p, dγ

being the surface measure on ∂Ω and Sd−1
x− = {v : v ∈ Sd−1 s.t. − ν(x) · v > 0}. It is

well-known [2, 15] that both Hp(X) and Lp(Γ−) are well-defined.

For a given set Y , we introduce the space of bounded functions on Y :

Fff (Y ) := {f ∈ L∞(Y ) | ∃f, f s.t. 0 < f ≤ f ≤ f < +∞ a.e.} .

Unless stated otherwise, we make the following assumptions on the domain Ω, the scat-
tering coefficient and the scattering phase function throughout the paper :

(A). (i) the domain Ω is bounded, convex and smooth; (ii) the scattering coefficient
σs(x) ∈ Fσs

σs
(Ω) for some constants σs and σs; and (iii) the scattering phase function

Θ(v,v′) ∈ Fθθ (Sd−1 × Sd−1) for some θ and θ.

With the convention that the surface measure dv on Sd−1 is normalized, we observe that
this assumption means that θ ≤ 1 while θ ≥ 1.

For any point (x,v) ∈ X, we use τ−(x,v) to denote the distance a particle starting from
x and traveling in the direction −v has to travel to reach the boundary of the domain. That
is:

τ−(x,v) := sup{s ∈ R | x− sv ∈ Ω} . (7)

Note that due to the assumption that Ω is convex, τ−(x,v) is uniquely determined for any
(x,v) ∈ X.

The following simple result on the linear transport equation (5) turns out to be useful.

Lemma 2.1. Let g ∈ L∞(Γ−) be given such that g := infΓ− g > 0 and u be the unique

solution to (5) with (Σa, σs,Θ). Assume that Σa ∈ FΣa
Σa

(Ω) for some Σa and Σa. Then,

under the assumptions in (A), there exists some constant c > 0 such that u ≥ c > 0.
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Proof. We first observe that with all the assumptions made, we have that u ≥ 0 from the
standard transport theory [15]. Let ũ be the solution to

v · ∇ũ(x,v) + (Σa + σs)ũ(x,v) = 0, in X
ũ(x,v) = g(x,v), on Γ− .

Then ũ can be found analytically as

ũ(x,v) = g(x− τ−(x,v)v,v) exp(−
∫ τ−(x,v)

0

(Σa + σs)(x− tv)dt),

where τ−(x,v) has been defined in (7). This expression implies, together with the facts that
Ω is bounded and g ≥ g, that ũ(x,v) ≥ c′ for some c′ > 0.

We then check that φ := u− ũ solves the linear transport equation

v · ∇φ+ (Σa + σs)φ = σs(x)Ku, in X
φ(x,v) = 0, on Γ− .

Using the fact that u ≥ 0 (and therefore σsKu ≥ 0), we conclude that this transport
equation has a solution φ ≥ 0. Therefore, u ≥ ũ. The final result then follows.

We are now ready study solutoin properties of the semilinear transport equation (1). For
physical reasons, we are only interested in non-negative solutions. We consider two types of
incoming boundary sources.

2.1 General bounded sources

For a given set of functions (σa, σb, σs,Θ), let g(x,v) ∈ L∞(Γ−) be the boundary source
for (1). We denote by g := inf(x,v)∈Γ− g(x,v) and g := sup(x,v)∈Γ− g(x,v). We assume that

g > 0, and, g ≤


inf
Ω

σa
σb
, when σs ≡ 0,

max
(

inf
Ω

σa
σb
, 2θ inf

Ω

σs(x)

σb(x)

)
, when σs 6= 0.

(8)

with θ being the constant introduced in Assumption (A). We can show that a non-negative
solution to (1) with such a g exists and is unique. Our main strategy of proof is to analyze
the fixed-point iteration: k ≥ 1

v · ∇uk + (σa + σs)u
k(x,v) + σb〈uk−1〉uk(x,v) = σs(x)Kuk(x,v), in X

uk(x,v) = g(x,v), on Γ−
(9)

using Kellogg’s uniqueness theory [23] for the Schauder Fixed-Point Theorem together with
the averaging lemma [19]. For the convenience of the readers, we recalled both results in
the Appendix A.

We now prove the existence and uniqueness of non-negative solutions to (1).
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Theorem 2.2. For any σa ∈ Fσa
σa

and σb ∈ Fσb
σb

, let g ∈ L∞(Γ−) be given as in (8).
Then, under the assumption (A), the transport equation (1) has a unique bounded solution
u ∈ L∞(X) that is non-negative: u(x,v) ≥ 0.

Proof. We first show the existence of non-negative solution by showing that a fixed point
exist for the iteration (9). We introduce a set of bounded functions:

M = {m ∈ L2(Ω) | 0 ≤ m(x) ≤ g a.e.} .

It is clear that M is convex, bounded and closed under the L2 topology.

For any given function m(x) ∈M, we introduce a linear transport equation:

v · ∇u+ (σa + σs)u(x,v) + σb(x)m(x)u(x,v) = σs(x)Ku(x,v), in X
u(x,v) = g(x,v), on Γ− .

(10)

This is simply the semilinear transport equation (1) with 〈u〉 replaced by m(x). Under the
assumptions we have made, we conclude from the standard transport theory [2, 15] that
this linear transport equation has a unique solution u(x,v) ∈ L∞(X). Moreover, u satisfies
0 ≤ u(x,v) ≤ g. This means also that 0 ≤ 〈u〉 ≤ g.

Therefore, the operator C : m 7→ 〈u〉, defined through the relation

C(m) := 〈u〉 (11)

with u being the solution to (10), maps M into a subset of it, that is, C(M) ⊆M. Mean-
while, we can also verify that C is a continuous operator onM. To see that, let u and ũ be
the solutions of (10) with m and m̃ respectively. Then w = ũ− u solves

v · ∇w + (σa + σs)w + σb(x)m(x)w = σs(x)Kw − (m− m̃)ũ, in X
w(x,v) = 0, on Γ− .

With the assumptions we have, especially the fact that m ≥ 0, this transport equation
admits a unique solution that satisfies the stability bound

‖w‖H1(X) := ‖u− ũ‖H1(X) ≤ c̃‖(m− m̃)ũ‖L2(X) ≤ c‖(m− m̃)‖L2(Ω)

for some constants c, c̃ > 0. The last inequality comes from the fact that ũ ∈ L∞(X). Using
this bound, together with the averaging lemma [19], that is, Theorem A.1, and the fact that
w|Γ− := u|Γ− − ũ|Γ− = 0, we conclude that 〈w〉 := 〈u〉 − 〈ũ〉 ∈ W 1/2,2(Ω) and

‖C(m)− C(m̃)‖W 1/2,2(Ω) := ‖〈u〉 − 〈ũ〉‖W 1/2,2(Ω) ≤ ‖u− ũ‖H1(X) ≤ c‖(m− m̃)‖L2(Ω).

This bound, combined with the Kondrachov embedding theorem [1], leads to the fact that
the operator M is a continuous compact operator from M to itself. The Schauder Fixed-
Point Theorem [17, 42] then implies that exists a fixed point m∗ ∈ M that C(m∗) = m∗.
Therefore, there exists a bounded non-negative solution to the transport equation (1).

We now use Kellogg’s theory [23], that is, Theorem A.2, to show uniqueness of the above
fixed point. To verify that the fixed point cannot live on ∂M, we observe that since σa > 0,
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the solution operator of (10) is a strict contraction even when m ≡ 0. Therefore 〈u〉 < g.
Meanwhile, Lemma 2.1 implies that 〈u〉 > 0. Therefore, C maps M into its interior M◦.
This shows that the fixed point of C cannot live on ∂M.

The remaining task is to show that the Frechét derivative of C does not have 1 as its
eigenvalue in M. Let u be the solution to (10) with function m(x), δm(x) a perturbation
of m such that m+ δm ∈M, and φ the solution to

v · ∇φ+ (σa + σs)φ(x,v) + σbmφ(x,v) = σsKφ− σbδm(x)u(x,v), in X
φ(x,v) = 0, on Γ− .

(12)

Then it is straightforward to verify that the Frechét derivative of C at m in the direction
δm is given as C ′[m](δm) = 〈φ〉. Assume now that C ′[m] indeed has 1 as its eigenvalue and
let 〈φ〉 6≡ 0 be the corresponding eigenfunction, i.e., C ′[m](〈φ〉) = 〈φ〉. Then the transport
equation (12) is equivalent to

v · ∇φ+ (σa + σs)φ(x,v) + σbmφ(x,v) = σsKφ− σb〈φ〉u(x,v), in X ,
φ(x,v) = 0, on Γ− .

Let σt(x) := σa(x)+σs(x)+σb(x)m(x) and R(x,v) := σsKφ−σb〈φ〉u(x,v). By the standard
method of characteristics, it is straightforward to check that φ satisfies

|φ(x,v)| =

∣∣∣∣∣
∫ τ−(x,v)

0

exp

[
−
∫ `

0

σt(x− sv)ds

]
R(x− `v,v)d`

∣∣∣∣∣
=

∣∣∣∣∣
∫ τ−(x,v)

0

σt(x− `v) exp

[
−
∫ `

0

σt(x− sv)ds

]
R(x− `v,v)

σt(x− `v)
d`

∣∣∣∣∣
≤
∫ τ−(x,v)

0

σt(x− `v) exp

[
−
∫ `

0

σt(x− sv)ds

]
sup

`∈(0,τ−(x,v))

∣∣∣∣R(x− `v,v)

σt(x− `v)

∣∣∣∣ d`
≤

(
1− exp

[
−
∫ τ−(x,v)

0

σt(x− sv)ds

])
sup

(y,v)∈X

|R(y,v)|
σt(y)

≤ β sup
(y,v)∈X

|R(y,v)|
σt(y)

, for some β < 1 .

(13)

When σs ≡ 0, we have

|R(x,v)| = σbu(x,v)|〈φ〉| ≤ σb u(x,v) sup
X
|φ|.

This, together with (13), gives that

|φ(x,v)| ≤ β sup
X

σbu(x,v)

σt
sup
X
|φ| ≤ βg sup

Ω

σb
σt

sup
X
|φ|. (14)

When g ≤ infΩ
σa
σb

, we have that |φ(x,v)| ≤ β supX |φ|, ∀ (x,v) ∈ X. Therefore φ ≡ 0.

6



When σs 6≡ 0 satisfies the assumption (A), we have

|R(x,v)| ≤ |σsKφ|+ |σbu(x,v)〈φ〉| ≤
(
σs + σbu(x,v)

)
sup
X
|φ|.

This, together with (13), gives that

|φ(x,v)| ≤ sup
X

σs + σbu(x,v)

σt
sup
X
|φ| ≤ sup

Ω

σs + σbg

σt
sup
X
|φ|. (15)

Therefore, when g ≤ infΩ
σa
σb

, we have that |φ(x,v)| ≤ β supX |φ|, ∀ (x,v) ∈ X, for some
β < 1. Therefore φ ≡ 0.

Meanwhile, we can also have

|R(y,v)| = |σsKφ− θσs〈φ〉+ θσs〈φ〉 − σbu〈φ〉| ≤ |σsKφ− θσs〈φ〉|+ |θσs〈φ〉 − σbu〈φ〉|
≤ ((1− θ)σs + |σs(y)θ − σb(y)u(y,v)|) sup |φ|.

This, together with (13), gives that

|φ(x,v)| ≤ sup
(y,v)∈X

((1− θ)σs + |σs(y)θ − σb(y)u(y,v)|)
σt

sup |φ|. (16)

Therefore, when g ≤ 2θ inf
Ω

σs(x)

σb(x)
, we have that |φ(x,v)| ≤ supΩ

σs
σt

supX |φ|, ∀ (x,v) ∈ X.

Therefore φ ≡ 0.

We have thus shown that 1 is not an eigenvalue of C ′[m] inM. Therefore, the fixed-point
of C in M is unique. This concludes the proof.

Remark 2.3. The above theory requires the smallness of the boundary source g(x,v) (as a
sufficient condition) for the solution to the transport equation (1) to be unique. This type
of smallness assumptions is common for nonlinear problems. Note that in the diffusive limit
when σs → +∞, the ratio σs/σb → +∞. This means that the smallness requirement is not
necessary anymore in the diffusive regime. This is exactly what happened in [32] where it
is shown that the diffusion approximation of (1) has a unique non-negative solution for any
given bounded non-negative boundary source.

The following fact about non-negative solutions to the transport equation (1) can be
proved using the same ideas of Lemma 2.1.

Corollary 2.4. For any σa ∈ Fσa
σa

and σb ∈ Fσb
σb

, let g ∈ L∞(Γ−) be given as in (8) and u
be the corresponding unique non-negative solution to (1). Then, under the assumption (A),
u ≥ c for some c > 0.

Proof. This result can be seen from two comparisons between solutions. Let w be the
solution to the linear transport equation

v · ∇w(x,v) + (σa + σs)w(x,v) + σbgw(x,v) = σsKu, in X
w(x,v) = g(x,v), on Γ− .

(17)
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Using the fact that u ≥ 0, we conclude that σsKu ≥ 0, and therefore w ≥ 0. Let φ := u−w.
Then φ solves

v · ∇φ+ (σa + σs)φ+ σb〈u〉φ = σb(g − 〈u〉)w, in X
φ(x,v) = 0, on Γ− .

(18)

The right-hand-side of the equation is clearly non-negative (since g ≥ 〈u〉 and w ≥ 0).
Therefore φ ≥ 0. This implies that u ≥ w.

Next, let w̃ be the solution to (17) with the right-hand-side removed, that is, w̃ solves

v · ∇w̃(x,v) + (σa + σs)w̃(x,v) + σbgw̃(x,v) = 0, in X
w(x,v) = g(x,v), on Γ−

Then, w̃ can be written as

w̃(x,v) = g(x− τ−(x,v)v,v) exp
(
−
∫ τ−(x,v)

0

(σa + σs + σbg)(x− tv)dt
)
.

We therefore have that w̃ ≥ c := ge−(σa+σs+gσb)diam(Ω) > 0. Let φ̃ := w− w̃, then φ̃ solves

v · ∇φ̃+ (σa + σs)φ̃+ σbgφ̃ = σsKu, in X

φ̃(x,v) = 0, on Γ− .

Non-negativity of σaKu then implies that φ̃ ≥ 0. This gives that w ≥ w̃. We are now able
to conclude that u ≥ w ≥ w̃ ≥ c > 0.

2.2 Collimated sources

We now consider the transport equation (1) with collimated illumination sources of the form:

g(x,v) = g(x)δ(v − v′), v′ ∈ Sd−1
x− , (19)

where g(x) ≥ 0 on ∂Ω. This is a type of illumination strategies that is practically important.

By analyzing again the fixed-point iteration (9), we can establish the following existence
and uniqueness of non-negative solutions to (1) with this new boundary source.

Theorem 2.5. For any σa ∈ Fσa
σa

, σb ∈ Fσb
σb

, and (σs,Θ) satisfying the assumptions in (A),

let µ := sup
x∈Ω

σs
σa + σs

and κ := sup
x∈Ω

σb
σa + σs

. Assume that g := sup
x∈∂Ω

g(x), µ and κ satisfy the

condition (
1 +

[
µ2θ/(1− µ) + µ

]
+ [µθ/(1− µ)2]

)
κg < 1.

Then the transport equation (1) with boundary source (19) has a unique solution u such that
0 ≤ 〈u〉 ≤ g.
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Proof. For any m(x) ≥ 0, let u be the solution to the following linear transport equation

v · ∇u+ (σa + σs)u(x,v) + σb(x)m(x)u(x,v) = σs(x)Ku(x,v), in X
u(x,v) = g(x)δ(v − v′), on Γ− .

(20)

We then define an operator C : m 7→ 〈u〉 as in (11), and introduce the following set of
functions

M = {m ∈ L∞(Ω) | 0 ≤ m(x) ≤ C(0)}, (21)

where C(0) is the angularly averaged solution to (20) with m = 0. It follows from linear
transport theory that C(M) ⊆M.

Let u1 and u2 be the solutions to (20) with m = m1 ∈M and m = m2 ∈M respectively.
Following the same notation as before, we define σt,i := σa + σs + miσb, i = 1, 2. We can
then write the solutions ui (1 ≤ i ≤ 2) as ui = ui,b + ui,s with

ui,b(x,v) = g(x− τ−(x,v)v)δ(v − v′) exp

(
−
∫ τ−(x,v)

0

σt,i(x− sv)ds

)
,

ui,s(x,v) =

∫ τ−(x,v)

0

exp

(
−
∫ l

0

σt,i(x− sv)ds

)
(σsKui)(x− lv,v)dl .

(22)

Following the definition of the operator K in (3), we have that

Kui,b(x
′,v) = Θ(v,v′)g(x′ − τ−(x′,v′)v′) exp

(
−
∫ τ−(x′,v′)

0

σt,i(x
′ − sv′)ds

)
≤ gθ.

where x′ := x − lv, l ∈ (0, τ−(x,v)). Meanwhile, using the same procedure as in (13), we
have that,

‖ui,s‖L∞(X) ≤

(
1− exp

[
−
∫ τ−(x,v)

0

σt,i(x− sv)ds

])
sup
x∈Ω

∣∣∣∣ σs(x)

σt,i(x)

∣∣∣∣ (‖ui,s‖L∞(X) + gθ)

≤ µ‖ui,s‖L∞(X) + µgθ .

This implies that
‖ui,s‖L∞(X) ≤ µgθ/(1− µ). (23)

Let us now verify that φ := u1 − u2 solves

v · ∇φ+ (σa + σs + σbm1)φ = σsKφ+ u2σb(m2 −m1), in X
φ(x,v) = 0, on Γ− .

In the same manner, we write φ = φb + φs with φb and φs given as

φb(x,v) =

∫ τ−(x,v)

0

exp

(
−
∫ l

0

σt,1(x− sv)ds

)
(σsKφb + u2,bσb(m2 −m1)) (x− lv,v)dl ,

φs(x,v) =

∫ τ−(x,v)

0

exp

(
−
∫ l

0

σt,1(x− sv)ds

)
(σsKφs + u2,sσb(m2 −m1)) (x− lv,v)dl .

9



Use the representation of u2,b, we obtain φb in the following form,

φb(x,v) = φb,b(x)δ(v − v′) + φb,s(x,v) ,

where |φb,b| ≤ κg‖m1 −m2‖L∞(Ω) with κ = supx∈Ω | σb
σa+σs

|, and

φb,s(x,v) =

∫ τ−(x,v)

0

exp

(
−
∫ l

0

σt,1(x− sv)ds

)
σsKφb,s(x− lv,v)dl

+ Θ(v,v′)

∫ τ−(x,v)

0

exp

(
−
∫ l

0

σt,1(x− sv)ds

)
σsφb,b(x− lv)dl .

(24)

Note that the second term on the right-hand-side is bounded by θgκµ‖m1 − m2‖L∞(Ω).
Therefore, we have

‖φb,s‖L∞(X) ≤ θgκµ‖m1 −m2‖L∞(Ω)/(1− µ) . (25)

Integrating (24) over Sd−1, and then using (25), we have,

|〈φb,s〉| ≤ µ‖φb,s‖L∞(X) +µκg‖m1−m2‖L∞(Ω) ≤
[
µ2θ/(1− µ) + µ

]
κg‖m1−m2‖L∞(Ω) . (26)

In a similar manner, we can estimate, using (23),

‖φs‖L∞(X) ≤ κ‖u2,s‖L∞(X)‖m1−m2‖L∞(Ω)/(1−µ) ≤ [µθ/(1−µ)2]κg‖m1−m2‖L∞(Ω) . (27)

The bounds in (26) and (27) now allow us to have

|〈φ〉| ≤ |〈φb〉|+ |〈φs〉|
≤ |φb,b|+ |〈φb,s〉|+ ‖φs‖L∞(X)

≤
(
1 +

[
µ2θ/(1− µ) + µ

]
+ [µθ/(1− µ)2]

)
κg‖m1 −m2‖L∞(Ω).

When the constant (1 +
[
µ2θ/(1− µ) + µ

]
+ [µθ/(1 − µ)2])κg < 1, the mapping C is a

contraction in L∞(Ω) norm, the Banach Fixed-Point Theorem [42] implies that the solution
is unique in M.

Remark 2.6. Unlike in the previous section, we are not able to use the Schauder Fixed-
Point Theorem in this proof due to the lack of compactness of the map C. One can make
additional assumptions on the smoothness of all the coefficients involved as well as the
physical domain Ω to recover such compactness. We did not pursue in this direction.

3 Inversion in non-scattering media

We start with the case of non-scattering media where σs(x) ≡ 0. In this case, the origi-
nal transport model (1) is simplified into a free transport equation which is essentially an
ordinary differential equation parameterized by the angular variable v. We can obtain an
explicit method for the reconstructions with either collimated sources or point sources. Sim-
ilar analysis for the linear transport equation can be found in [29]. Inversion in this setup
with a general bounded source will be treated in the next section as a special case.
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3.1 Inversion with collimated sources

With collimated sources, we can integrate the transport equation along direction v to get
the following integral representation of the transport solution, when σs ≡ 0:

u(x,v) = g(x− τ−(x,v)v,v) exp

(
−
∫ τ−(x,v)

0

(σa(x− sv) + σb〈u〉(x− sv))ds

)
. (28)

Let us assume that we have data generated from two collimated sources, gj(x,v) =
gj(x)δ(v−v′) (j = 1, 2), focused in the same direction v′ ∈ Sd−1 but with different strengths
g1 6= g2. Then the corresponding data are:

Hj(x) = σa(x)〈uj〉(x) + σb(x)〈uj〉2(x) , j = 1, 2

with uj satisfying

uj(x,v) = gj(x− τ−(x,v)v)δ(v − v′) exp

(
−
∫ τ−(x,v)

0

(σa(x− sv) + σb〈uj〉(x− sv))ds

)
.

We can integrate uj(x,v) over v ∈ Sd−1 to get,

〈uj〉(x) = gj(x− τ−(x,v′),v′) exp

(
−
∫ τ−(x,v′)

0

(σa(x− sv′) + σb〈uj〉(x− sv′))ds

)
. (29)

For any fixed x ∈ Ω, we introduce the notations x′ := x − τ−(x,v′)v′ ∈ ∂Ω, φj(s) :=
〈uj〉(x′ + sv′) , σ̃a(s) := σa(x

′ + sv′) and σ̃b(s) := σb(x
′ + sv′). Then (29) is equivalent to:

φj(t) = gj(x
′) exp

(
−
∫ t

0

(σ̃a(s) + σ̃b(s)φj(s))ds

)
(30)

with φj(0) = gj(x
′). Taking the logarithm of both sides of (30) and then differentiate with

respect to t, we obtain the following ODE for φj(t),

φ′j(t) = −(σ̃a(t) + σ̃b(t)φj(t))φj(t), t ∈ [0, τ−(x,v′)] . (31)

From the definition of the internal data (4), we notice that the right-hand-side of (31) is
exactly −Hj(x

′ + tv′). We can therefore reconstruct φj(t) from the datum Hj as

φ̃j(t) = gj(x
′)−

∫ t

0

Hj(x
′ + sv′)ds . (32)

Once we reconstructed {φ̃j(t)}2
j=1, we can reconstruct σ̃a and σ̃b from the data by solving

the following system of equations at any t ∈ [0, τ−(x,v′)]:

σ̃a(t)φ̃1(t) + σ̃b(t)φ̃
2
1(t) = H1(x′ + tv′),

σ̃a(t)φ̃2(t) + σ̃b(t)φ̃
2
2(t) = H2(x′ + tv′).

(33)
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This linear system, for the unknown coefficient pair (σa, σb), is uniquely invertible at t ∈
[0, τ−(x,v′)] if φ1(t) 6= φ2(t).

The following result shows that if the data {Hj}2
j=1 are consistent with the model, that

is, if the data are generated from the model with the true coefficients, then we can select the
illumination sources g1 and g2 to be sufficiently different to make the system (33) invertible.

Lemma 3.1. If g1 > g2 > 0, then φ1(t) > φ2(t), ∀t ∈ [0, τ−(x,v′)].

Proof. From (30) and the non-negativity of transport solutions, we conclude that gj > 0
implies gj ≥ φj(t) > 0. We check that z(t) := φ1(t)− φ2(t) satisfies

z′(t)

z(t)
= −(σ̃a(t) + σ̃b(t)(φ1(t) + φ2(t))) . (34)

This implies that

z(t) = z(0) exp

(
−
∫ t

0

(σ̃a(s) + σ̃b(s)(φ1(s) + φ2(s)))ds

)
. (35)

We then conclude that z(t) > 0 using the assumption that z(0) = φ1(0)− φ2(0) > 0.

To summarize, in order to reconstruct the coefficients σa and σb, we first reconstruct the
solutions (32) from the data. We then solve the linear system (33) to reconstruct (σa, σb).

3.2 Inversion with point sources

An explicit reconstruction method can also be developed in the case when point sources are
used to illuminate the media. Let gj(x,v) = gj(v)δ(x− x′) (j = 1, 2) with g1 6= g2 positive
constants. To be technically correct in the derivation below, we assume that σb vanishes in
the vicinity of x′ ∈ ∂Ω, that is, σb ≡ 0 in Bε(x

′)∩Ω for some ε > 0. In applications, this can
be done in a straightforward way by placing the illuminating point source a little away from
the surface of the media (which, mathematically, is equivalent to extending the domain Ω
to a slightly larger domain Ω′ with σb ≡ 0 in Ω′\Ω̄ ). We can then integrate the transport
equation along the direction of each ray out of the point source to have

〈uj〉(x) = gj(v) |n(x′) · v|
exp

(
−
∫ τ−(x,v)

0

(σa + σb〈uj〉)(x− sv)ds

)
|x− x′|d−1

, (36)

where v = x−x′
|x−x′| . The parameterization of the line segment between x and x′ is the same

as before: {x′ + sv | s ∈ (0, |x − x′|)}. Let φj(s) := 〈uj〉(x′ + sv), σ̃a(s) := σa(x
′ + sv),

σ̃b(s) := σb(x
′ + sv), and H̃j(s) := Hj(x

′ + sv), then we can write (36) as

φj(t) = gj(v) |n(x′) · v| t1−d exp

(
−
∫ t

0

(σ̃a + σ̃bφj)(s)ds

)
.
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Taking the derivative with respect to t, we obtain that

φ′j(t) =
1− d
t

φj(t)−
(
σ̃a + σ̃bφj

)
φj(t). (37)

We can then replace
(
σ̃a + σ̃bφj

)
φj(t) in the equation with the data Hj and integrate the

ODE, using the asymptotic behavior of φj(t) as t→ 0 from (36), to reconstruct the solution
φj:

φ̃j(t) =
1

td−1

(
gj(v)|n(x′) · v| −

∫ t

0

H̃j(s)s
d−1ds

)
. (38)

The remaining task is to reconstruct σ̃a and σ̃b from the system of equations:

σ̃a(t)φj(t) + σ̃b(t)φ
2
j(t) = H̃j(t), j = 1, 2. (39)

Use the similar argument as in Lemma 3.1, it can be shown that 0 < g1 < g2 is sufficient
to ensure uniqueness of the inversion when the corresponding data are consistent with the
model.

4 Inversion in media with known scattering

We now study the inverse problem of reconstructing the absorption coefficients σa and σb
from data H in scattering media with the scattering coefficient σs assumed known.

4.1 Stability of inversion

We start with the inverse problem of reconstructing the absorption coefficient Σa in the
linear transport equation (5) from internal data set of the form (6).

Let H be the internal datum (6) generated from the linear transport model (5) with the

absorption coefficient Σa ∈ FΣa
Σa

(Ω) and the boundary source g. For a given α > 0, we define
the set

Πα :=

{
(Σa, H, g) | Σa −

v · ∇Σa

Σa

+
v · ∇H
H

≥ α > 0,∀(v,x) ∈ X
}
.

Using the fact that H = Σa〈u〉, u being the solution to (5) with coefficient Σa and source g,
we see that Πα is equivalent to

Π′α :=

{
(Σa, H, g) | Σa +

v · ∇〈u〉
〈u〉

≥ α > 0,∀(v,x) ∈ X
}
.

We show next that we could stably reconstruct coefficients and data combinations (Σa, H, g)
in the class of Πα.

Theorem 4.1. Let H and H̃ be two data sets generated with coefficients Σa and Σ̃a respec-
tively from (5) in the form of (6) with boundary source g. Assume that there exists constants
α > 0 and 1 > β > 0 such that:
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(A′) (i) (Σa, H, g), (Σ̃a, H̃, g) ∈ Πα, and, (ii) Σa|∂Ω is know and Σa‖
gH

Σa|∂Ω

‖L∞(Γ−) ≤ β.

Then, under the assumtions in (A), the following stability holds for some constants c, c̃ > 0:

c̃‖H − H̃‖L2(Ω) ≤ ‖Σa − Σ̃a‖L2(Ω) ≤ c‖H − H̃‖L2(Ω). (40)

Proof. Let u and ũ be solutions to the transport equation (5) with coefficients Σa and Σ̃a

respectively. By Lemma 2.1, we have that g ≥ u, ũ ≥ ε > 0 for some ε.

Let w := u− ũ. Then we check that

H − H̃ = Σ̃a〈w〉+ (Σa − Σ̃a)〈u〉.

This leads to the following equality:

u

〈u〉
(H − H̃) = Σ̃a

u

〈u〉
〈w〉+ (Σa − Σ̃a)u. (41)

Therefore, we have that,

‖ u
〈u〉

(H − H̃)‖L2(X) ≤ ‖Σ̃a
u

〈u〉
〈w〉‖L2(X) + ‖(Σa − Σ̃a)u‖L2(X). (42)

We also observe that w ∈ L∞(X) solves the following transport equation:

v · ∇w + (Σ̃a + σs)w = σsKw(x,v)− (Σa − Σ̃a)u, in X
w(x,v) = 0, on Γ−.

We therefore deduce, from the standard transport theory [15], that

‖w‖L2(X) ≤ ‖(Σa − Σ̃a)u‖L2(X). (43)

The left-hand-side of (40) then follows from (42) and (43), together with the boundedness
of the coefficients and the corresponding solutions as well as the fact that ‖〈w〉‖L2(Ω) ≤
‖w‖L2(X).

Meanwhile, (41) also implies that

‖(Σa − Σ̃a)u‖L2(X) ≤ ‖
u

〈u〉
(H − H̃)‖L2(X) + ‖Σ̃a

u

〈u〉
〈w〉‖L2(X)

≤ Σa‖
u

〈u〉
‖L∞(X)

(
‖H − H̃

Σ̃a

‖L2(Ω) + ‖w‖L2(X)

)
≤ Σa‖

u

〈u〉
‖L∞(X)

(
‖H − H̃

Σ̃a

‖L2(Ω) + ‖(Σa − Σ̃a)u‖L2(X)

)
, (44)

where the last step comes from (43).

Let φ :=
u

〈u〉
. Then some simple algebra shows that φ solves the transport equation:

v · ∇φ+ (Σa + v · ∇ ln〈u〉+ σs)φ = σsKφ, in X

φ(x,v) =
gH

Σa|∂Ω

, on Γ−
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where the boundary condition comes from the assumption that Σa|∂Ω is know (which implies

that 〈u〉|∂Ω =
H

Σa|∂Ω

). The first assumption in (A′) means that Σa + v · ∇ ln〈u〉 ≥ α > 0.

Therefore, we can use the maximum principle, ensured by the assumption on the scattering
kernel Θ in (A), to conclude that

‖φ‖L∞(X) ≤ ‖
gH

Σa|∂Ω

‖L∞(Γ−). (45)

The bound in (44) then implies that

‖(Σa − Σ̃a)u‖L2(X) ≤ Σa‖
gH

Σa|∂Ω

‖L∞(Γ−)

(
‖H − H̃

Σ̃a

‖L2(Ω) + ‖(Σa − Σ̃a)u‖L2(X)

)
.

This bound, together with the second assumption in (A′), then implies that

‖(Σa − Σ̃a)u‖L2(X) ≤
β

1− β
‖H − H̃

Σ̃a

‖L2(Ω).

This gives the right-hand-side of the stability bound (40).

The above theorem shows that, in appropriate settings, the absorption coefficient in the
transport equation can be reconstructed stably with one interior datum H. This means
that if we think of the term σa + σb〈u〉 in the semilinear transport equation (1) as a single
absorption coefficient, we can reconstruct this coefficient from a single data. This simple
idea leads to a method to reconstruct σa and σb from two data sets. We now describe the
method.

We will need the following result.

Lemma 4.2. For a given set of (σa, σb) ∈ Fσa
σa

(Ω)×Fσb
σb

(Ω) and (σs,Θ) satisfying (A), there
exist two boundary sources g1 and g2 given as in (8) such that:

|〈u1〉 − 〈u2〉| ≥ ε, for some ε > 0

where u1 and u2 are solutions to (1) with g1 and g2 respectively.

Proof. Let g be such that

γmin
(σa
σb
, θ

σs(x)

σb(x)

)
≥ g, and g > 0, for some 0 < γ < 1. (46)

It is clear that g satisify (8). Let g1 6= g2 be given as in (46). Following Corollary 2.4, we
have 0 < ε′ ≤ u1 ≤ g1 and 0 < ε′ ≤ u2 ≤ g2 for some ε′ > 0. Let w := u1 − u2. Then w
solves

v · ∇w(x,v) + Σw =

∫
Sd−1

Σs(x,v,v
′)w, in X

w(x,v) = g1 − g2, on Γ− .
(47)
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where Σ(x,v) := σa + σb
〈u1〉+〈u2〉

2
+ σs, Σs(x,v,v

′) := σs(x)Θ(v,v′) − σb
u1+u2

2
. With the

assumptions in (A) and the fact that g1 and g2 satisfying (46), we can verify that σsθ ≥
Σs(x,v,v

′) ≥ (1 − γ)θσs > 0 and Σ −
∫
Sd−1

Σs(x,v,v
′)dv′ ≥ (1 − γ)σa > 0 (where γ is

given in (46)). Therefore, the solution to (47) satisfies the maximum principle. By selecting
g1 − g2 ≥ ε′′ for some ε′′ > 0, we have that w ≥ ε for some ε > 0 using Lemma 2.1.

Theorem 4.1 allows us to estimate the stability of reconstructing (σa, σb).

Corollary 4.3. Let (σa, σb) ∈ Fσa
σa

(Ω) × Fσb
σb

(Ω) and (σ̃a, σ̃b) ∈ Fσa
σa

(Ω) × Fσb
σb

(Ω) be two

sets of absorption coefficients, and H := (H1, H2) and H̃ := (H̃1, H̃2) the corresponding
data generated with g = (g1, g2). Assume that g is selected as in Lemma 4.2, and (Σj

a :=

σa + σb〈uj〉, Hj, gj) and (Σ̃j
a := σa + σ̃b〈ũj〉, H̃j, g̃j) (j = 1, 2) satisfy (A′). Then, under (A),

there exists constants c, c̃ > 0 such that

c̃‖H− H̃‖L2(Ω) ≤
∥∥∥∥(σaσb

)
−
(
σ̃a
σ̃b

)∥∥∥∥
L2(Ω)

≤ c‖H− H̃‖L2(Ω). (48)

Proof. The left inequality can be derived in the same manner as in Theorem 4.1. We define
wj := uj − ũj. Then some straightforward algebra leads us to the fact that

Hj − H̃j =
(

Σ̃j
a + σ̃b〈uj〉

)
〈wj〉+

[
(σa − σ̃a) + (σb − σ̃b)〈uj〉

]
〈uj〉.

With the boundedness of the coefficients as well as the solutions, we conclude that

‖Hj − H̃j‖L2(Ω) ≤ c′1‖wj‖L2(Ω) + c′2‖(σa − σ̃a) + (σb − σ̃b)〈uj〉‖L2(Ω). (49)

The next step is to verify that wj solves the linear transport equation:

v · ∇wj + (Σ̃j
a + σs)wj = K̃wj −

[
(σa − σ̃a) + (σb − σ̃b)〈uj〉

]
uj, in X

wj(x,v) = 0, on Γ−

with the scattering operator K̃ defined as

K̃wj :=

∫
Sd−1

[
σsΘ− σ̃buj

]
wj(x,v

′)dv′.

Following the same argument as in Lemma 4.2, this transport equation is uniquely invertible
with a stability bound

‖wj‖L2(X) ≤ c′3‖(σa − σ̃a) + (σb − σ̃b)〈uj〉‖L2(X). (50)

Therefore, we have, from (49) and (50), that

‖Hj − H̃j‖L2(Ω) ≤ c′4‖(σa − σ̃a) + (σb − σ̃b)〈uj〉‖L2(X). (51)
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With the selection of g1 and g2, we conclude from Lemma 4.2 that the matrix

P :=

(
1 〈u1〉
1 〈u2〉

)
is invertible with a bounded inverse at every point x ∈ Ω. The left-hand-side of (48) then
follows this fact and (51).

To get the second bound in (48), we notice that, by Theorem 4.1 (which requires the
assumptions we have made), we have the bound

‖Σj
a − Σ̃j

a‖L2(Ω) ≤ c′‖Hj − H̃j‖L2(Ω)

for some constant c′ > 0. This gives that∥∥∥∥∥
(

Σ1
a

Σ2
a

)
−

(
Σ̃1
a

Σ̃2
a

)∥∥∥∥∥
L2(Ω)

≤ c′′‖H− H̃‖L2(Ω) (52)

for some constant c′′ > 0. Meanwhile, we verify that

(
Σ1
a − Σ̃1

a

Σ2
a − Σ̃2

a

)
=

(
1 〈u1〉
1 〈u2〉

)(
σa − σ̃a
σb − σ̃b

)
−


u1

Σ̃1
a

(Σ1
a − Σ̃1

a)

u2

Σ̃2
a

(Σ2
a − Σ̃2

a)

+


σ̃b
Σ1
a

(H1 − H̃1)

σ̃b
Σ2
a

(H2 − H̃2)

 .

This leads, using again the fact that the matrix P has a bounded inverse, to the bound∥∥∥∥(σaσb
)
−
(
σ̃a
σ̃b

)∥∥∥∥
L2(Ω)

≤

∥∥∥∥∥
(

Σ1
a

Σ2
a

)
−

(
Σ̃1
a

Σ̃2
a

)∥∥∥∥∥
L2(Ω)

+ ‖H− H̃‖L2(Ω). (53)

The second bound of (48) then follows from (52) and (53).

4.2 Reconstruction with fixed-point iteration

We now consider a fixed-point iteration algorithm for the reconstruction of the absorption
coefficients. We again use the fact that if (σa, σb, u) solves the transport equation (1) to
generate datum H, then we can replace the term σa + σb〈u〉 in (1) with H/〈u〉 to obtain a
nonlinear transport equation for u:

v · ∇u(x,v) + (
H

〈u〉
+ σs)u(x,v) = σs(x)Ku(x,v), in X

u(x,v) = g(x,v), on Γ− .
(54)

For a given datum H, if we could solve this equation, we can reconstruct σa + σb〈u〉. Note
that we have some a priori bounds on 〈u〉 due to the a priori bounds we know on the
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coefficients. First, it is clear that the coefficient Σa to be reconstructed satisfies Σa ≥ H
g

.
Second, let us define

η(x) :=
H(x)

σa + σbg
.

Then the transport solution u that generated this datum H satisfies: 〈u〉 ≥ η. Let uHmax be
the solution to the linear transport equation (5) with Σa = H

g
. We then conclude, before

we perform any reconstruction, that the solution (54) that we are seeking has the property
that

η ≤ 〈u〉 ≤ 〈uHmax〉 .

Starting with a given u0, we define the following iteration for k ≥ 1:

v · ∇uk(x,v) + (
H

max(〈uk−1〉, η)
+ σs)uk(x,v) = σs(x)Kuk(x,v), in X

uk(x,v) = g(x,v), on Γ−

(55)

where the function max is applied point-wise to its arguments.

Let umin be the solutions to the linear transport equation (5) with absorption coefficient
σa + σbg. Here is an obvious observation on the iteration.

Lemma 4.4. Let {uk} be a sequence generated by (55) from an initial point u0 ≥ 0. Then
umin ≤ uk ≤ uHmax, ∀k ≥ 1.

Proof. We first observe that this iteration will generate a sequence {uk} such that 0 ≤ uk ≤
g, ∀k ≥ 1. Therefore H

g
≤ H

max(〈uk−1〉,η)
≤ H

η
= σa + σbg. By monotonicity of the solution to

the linear transport with respect to the absorption coefficient, we have umin ≤ uk ≤ uHmax,
∀k ≥ 1.

We introduce the following space of functions with bounded angular average:

U := {u ∈ L2(X) | 〈umin〉 ≤ 〈u〉 ≤ 〈uHmax〉 a.e.} (56)

This space is convex, bounded and closed under the L2 topology. We make the following
assumption:

(A′′) η ≤ 〈umin〉.

We can then show the following result.

Corollary 4.5. Let {uk} and {uk} be sequences generated from u0 = uHmax and u0 = umin

respectively. Then uk → u and uk → u a.e. as k →∞ for some u, u ∈ U .

Proof. For any sequence {uk} generated by (55), let us define ϕk := uk − uk−1. Then ϕk
solves

v · ∇ϕk + (
H

max(〈uk−1〉, η)
+ σs)ϕk = σs(x)Kϕk + F, in X

ϕk(x,v) = 0, on Γ−

(57)
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where

F :=
Huk−1

max(〈uk−1〉, η) max(〈uk−2〉, η)
[max(〈uk−1〉, η)−max(〈uk−2〉, η)] .

When we start the iteration with u0 ∈ U , the iteration remains in U . Therefore 〈uk−1〉,
〈uk−2〉 ≥ umin. With the assumption (A′′), we conclude that

max(〈uk−1〉, η)−max(〈uk−2〉, η) = 〈uk−1〉 − 〈uk−2〉 = 〈ϕk−1〉.

Therefore, in this case F := Huk−1

max(〈uk−1〉,η) max(〈uk−2〉,η)
〈ϕk−1〉. For the iteration (55) that starts

with umax, we have that ϕ0 ≤ 0. Therefore {ϕk} remains negative according to (57). This
means that {uk} is a decreasing sequence. The fact that it is also bounded from below by
umin then indicates that it converges to some u ∈ U . For the iteration (55) that starts with
umin, we have that ϕ0 ≥ 0. Therefore {ϕk} remains non-negative according to (57). This
means that {uk} is an increasing sequence. The fact that it is also bounded from above by
uHmax then indicates that it converges to some u ∈ U .

We are ready to show that the iteration (55) converges to a unique fixed point in U that
is the solution to the transport equation (54).

Theorem 4.6. Assume that the solution to (54) is such that ( H〈u〉 , H, g) ∈ Π′α for some α.

Assume further that Σa|∂Ω is known and Σa‖ gH
Σa|∂Ω

‖L∞(Γ−) ≤ β < 1 for some β. Then, under

the assumption (A), the iteration (55) converges to the unique solution of (54) in U .

Proof. Let {uk} be the sequence generated from the starting point u0 = umin. By Corol-
lary 4.5, uk → u. Moreover u solves

v · ∇u(x,v) + (
H

max(u, η)
+ σs)u = σs(x)Ku(x,v), in X

u(x,v) = g(x,v), on Γ− .

We then use the fact that 〈u〉 ∈ U and the assumption (A′′) to conclude that max(u, η) = u.
Therefore, u is a solution to (54).

Let {uk} be a sequence generated from an arbitrary starting point in U . Let φk := uk−uk.
Then, using the same argument on F in Corollary 4.5, we check that φk solves

v · ∇φk + (
H

max(〈uk−1〉, η)
+ σs)φk = σs(x)Kφk + F̃ 〈φk−1〉, in X

φk(x,v) = 0, on Γ−

(58)

with F̃ :=
H uk

max(〈uk−1〉,η) max(〈uk−1〉,η)
. This gives the bound:

‖φk‖L2(X) ≤ ‖F̃ 〈φk−1〉‖L2(X) ≤ ‖F̃‖L∞(X)‖φk−1‖L2(X)

≤ ‖ H

max(〈uk−1〉, η)
‖L∞(X)‖

uk−1

max(〈uk−1〉, η)
‖L∞(X)‖φk−1‖L2(X). (59)
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We first observe that ‖ H
max(〈uk−1〉,η)

‖L∞(X) ≤ Σa. To bound the term ‖ uk−1

max(〈uk−1〉,η)
‖L∞(X) =

‖ uk−1

〈uk−1〉
‖L∞(X), we observe that w =

uk
〈uk〉

solves the transport equation:

v · ∇w + (
H

max(〈uk−1〉, η)
+ v · ∇ ln〈uk〉+ σs)w = σs(x)Kw, in X

w(x,v) =
gH

Σa|∂Ω

, on Γ−

where the boundary condition for w comes from the assumption that Σa (and therefore the

density 〈uk〉|∂Ω =
H

Σa|∂Ω

) is known on the boundary of the domain. With the assumption

that ( H〈u〉 , H, g) ∈ Π′α, we have that H
max(〈uk−1〉,η)

+ v · ∇ ln〈uk〉 ≥ α
2
> 0 for sufficiently large

k. Therefore, we conclude from the maximum principle that ‖w‖L∞(X) ≤ ‖
gH

Σa|∂Ω

‖L∞(Γ−).

Therefore the bound in (59) can now be written as

‖φk‖L2(X) ≤ Σa‖
gH

Σa|∂Ω

‖L∞(Γ−)‖φk−1‖L2(X).

When Σa‖
gH

Σa|∂Ω

‖L∞(Γ−) ≤ β < 1, this bound gives that ‖φk‖L2(X) → 0. This means that uk

converges u.

The above calculation shows that the iteration (55) sequence start with any initial point
u0 ∈ U converges to a solution of (54) whose average leaves in U . This concludes the
proof.

The above result shows that in order to reconstruct the unknown absorption coefficients,
we could use the fixed-point iteration (55) to find u. We then reconstruct the total absorption
σa + σb〈u〉 from H/〈u〉. This procedure would allow us to reconstruct (σa, σb) from two
different data sets H1 and H2. When we have a better a priori information on the coefficient
to be reconstructed, we could modify η to further reduce the size of the space U . This will
in turn allow us to better reconstruct u.

When the media scatters isotropically, that is, when Θ(v,v′) ≡ 1, we could make some
of the assumptions we made in this section more explicit. The calculations are documented
in the Appendix B.

5 Concluding remarks

In this work, we analyzed an inverse problem for a semilinear radiative transport equation,
aiming at reconstructing two absorption coefficients of the transport equation from two in-
ternal data sets that are functionals of the transport solutions. We first established the
well-posedness of the forward problem under small boundary sources. We then derived sta-
bility results on the inverse problem in the simplified settings where the scattering coefficient
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is known (either σs ≡ 0 or σs > 0). We also developed a reconstruction method based on a
fixed-point iteration. Our results provide some mathematical understanding of quantitative
photoacoustic imaging of two-photon absorption in the transport regime, complementing
the results in [32] in the diffusive regime.

There are several interesting following up questions to the current work. For instance,
it would be useful if we can remove some of the restrictive assumptions on the size of the
gradient of the absorption coefficients to be reconstructed. Moreover, it would be of great
interests to generalize the analysis we have to reconstruct simultaneously the absorption and
the scattering coefficients triplet (σa, σb, σs) from three sets of internal data. Note that in
the case of linear transport equation, i.e. (1) without the semilinear term, the analysis in [6]
shows that one can reconstruct (σa, σs) as well as partial information in the scattering phase
function Θ(v,v′) with data encoded in the full operator Λ : g(x,v) 7→ H(x). Whether or
not one can reconstruct simultaneously σa and σs in the linear transport equation from a
finite number of internal data is still a largely open question right now; see some progresses
in [29, 20]. From application point of view, it is an interesting problem to see if one can
reconstruct all the coefficients in the problem from the albedo data Λ : u|Γ− 7→ uΓ+ . This
can probably be analyzed by combining the classical singular decomposition of Choulli and
Stefanov [11, 12] with the linearization idea introduced by Isakov and collaborators [21, 22,
37].
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A Averaging lemma and Kellogg’s theory

To improve the readability of the paper, we recall here two important results that we have
used to prove the main results of the paper.

The first result is the averaging lemma in transport theory, developed in [19]. It charac-
terizes the regularization effect of velocity averaging on the solution of transport equations.
With the same notations as in the main text, the result can be stated as follows.

Theorem A.1 (Averaging Lemma). For p ∈ (1,+∞), let u be a function defined in X such
that u ∈ Lp(X), v · ∇u ∈ Lp(X), and u|Γ− ∈ Lp(Γ−). Then 〈u〉 belongs to the Sobolev space
W s,p(Ω) with s = 1/2 if p = 2 and 0 < s < inf(p−1, 1− p−1) if p 6= 2. In addition, we have
the inequality

‖〈u〉‖W s,p(Ω) ≤ c
(
‖u‖Lp(X) + ‖v · ∇u‖Lp(X) + ‖u‖Lp(Γ−)

)
, (60)

for some constant c > 0.
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The second result we recall here is Kellogg’s uniqueness theory for the Schauder Fixed-
Point Theorem, developed in [23]. The theory provides a condition under which the Schauder
fixed point is unique.

Theorem A.2 (Kellogg 1976 [23]). Let M be a bounded convex open subset of a real Ba-
nach space, and F : M → M a compact continuous map which is continuously Fréchet
differentiable on M. If (i) for each m ∈ M, 1 is not an eigenvalue of F ′(m), and (ii) for
each m ∈ ∂M, m 6= F (m), then F has a unique fixed point in M.

B Inversion in isotropic media

We analyze here the inverse problem in Section 4 in the context of isotropic scattering. This
is again done by analyzing a fixed-point iteration for solving (54). For simplicity, in the
following we consider the boundary source g(x,v) ≡ g as a constant.

For any positive function m(x) > 0, we define a map C through the relation:

C(m) := 〈u〉,

where u solves the following linear transport equation with isotropic scattering:

v · ∇u(x,v) + (H/m+ σs)u(x,v) = σs(x)

∫
Sd−1

u(x,v)dv, in X

u(x,v) = g, on Γ− .
(61)

The map C is monotone increasing and is bounded from above by g in the space of positive
functions, under the assumptions in (A). We will show that C admits a unique fixed point
in appropriate sense.

Let η be defined as in Section 4 and satisfy the assumption (A′′), that is, C(η) ≥ η. We
define the function space

M = {m ∈ L2(Ω) | η ≤ m ≤ g a.e.} . (62)

Then C is monotone increasing and C(M) ⊂ M. Moreover, C is compact and continuous
on M in L2(Ω) topology. The existence of solution on C then follows from the Schauder
Fixed-Point Theorem.

To show the uniqueness of the fixed point of C, we first observe that the equation (61)
is equivalent to the following integral equation:

〈u〉(x) = Jmg +Km(σs〈u〉), (63)

where the integral operators Jm : Lp(Γ−) → Lp(Ω) and Km : Lp(Ω) → Lp(Ω), 1 ≤ p ≤ ∞,
are defined as follows:

Jmg = g

∫
Sd−1

Em(x, τ−(x,v),v)dv ,

Kmf =

∫
Sd−1

∫ τ−(x,v)

0

Em(x, l,v)f(x− lv)dldv ,

(64)
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with the path integral operator Em given as

Em(x, l,v) = exp

[
−
∫ l

0

(
H

m
+ σs)(x− sv)ds

]
.

We first show the result on the fixed point starting from g.

Lemma B.1. Let h := lim
n→∞

Cn(g). For any ψ ∈ L∞(Ω) such that ψ ≥ 0, the corresponding

integral operators Jh and Kh satisfy

Jhg ≥
h− µh
g − µh

g, Khψ ≤
g − h
g − µh

sup

[
ψ

H
h

+ σs

]
with µh = sup

[
σsh

H
h

+ σs

]
. (65)

Proof. We first observe that:

Khψ =

∫
Sd−1

∫ τ−(x,v)

0

Eh(x, l,v)ψ(x− lv)dldv

≤
∫
Sd−1

(1− Eh(x, τ−(x,v),v)) sup

[
ψ

(H
h

+ σs)

]
dv ≤

(
1− 1

g
Jhg

)
sup

[
ψ

(H
h

+ σs)

]
. (66)

The function h solves the integral equation h = Jhg +Kh(σsh). Therefore,

h ≤ Jhg +

(
1− 1

g
Jhg

)
sup

[
σsh

(H
h

+ σs)

]
, (67)

which means (
1− 1

g
sup

[
σsh

(H
h

+ σs)

])
Jhg ≥ h− sup

[
σsh

(H
h

+ σs)

]
. (68)

The proof is completed by bringing the above inequality into (66).

Lemma B.2. Assume that `Ω = diam(Ω) ≤ 1. Let h := lim
n→∞

Cn(g) and f be an arbitrary

element of M. We have that

|C(h)− C(f)| ≤ γ

[
κµf [1− (1− `Ω)

h− µh
g − µh

] +
g − h
g − µh

g

]
, (69)

where γ = sup
∣∣∣h−fh∧f

∣∣∣, κ = sup
H

h∨f
H

h∨f +σs
, µf = sup σsf

H
h∨f +σs

, and µh = sup σsh
H
h

+σs
with the nota-

tions h ∧ f := min(h, f) and h ∨ f := max(h, f).

Proof. We need to bound |C(h)− C(f)|. We first observe that

|C(h)− C(f)| ≤ |Jhg − Jfg|+ |Kh(σs(h− f))|+ |(Kh −Kf )(σsf)|
≡ A1 + A2 + A3 .
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Using the fact that |e−x − e−y| ≤ e−min(x,y)|x− y|, ∀x, y ∈ R, we have

|Eh(x, l,v)− Ef (x, l,v)| ≤ Eh∨f (x, l,v)

∣∣∣∣∫ l

0

H(h− f)

hf
(x− sv)ds

∣∣∣∣ .
Note that hf = (h ∨ f)(h ∧ f), we obtain the estimates for A1 and A2:

A1 = |Jhg − Jfg|

≤ g

∫
Sd−1

Eh∨f (x, τ−(x,v),v)

∣∣∣∣∣
∫ τ−(x,v)

0

H(h− f)

hf
(x− sv)ds

∣∣∣∣∣ dv
≤ g

∫
Sd−1

(∫ τ−(x,v)

0

Eh∨f (x, s,v)

∣∣∣∣H(h− f)

hf
(x− sv)

∣∣∣∣ ds
)
dv

≤ g sup

∣∣∣∣h− fh ∧ f

∣∣∣∣ ∫
Sd−1

(∫ τ−(x,v)

0

Eh∨f (x, s,v)

∣∣∣∣ H

h ∨ f
(x− sv)

∣∣∣∣ ds
)
dv ,

A2 = |Kh(σs(h− f))|

≤ Kh(σs(h ∧ f) sup

∣∣∣∣h− fh ∧ f

∣∣∣∣)
≤ Kh∨f (σs(h ∧ f) sup

∣∣∣∣h− fh ∧ f

∣∣∣∣)
≤ sup

∣∣∣∣h− fh ∧ f

∣∣∣∣ ∫
Sd−1

(∫ τ−(x,v)

0

Eh∨f (x, s,v) |σs(h ∧ f)(x− sv)| ds

)
dv ,

The above estimates imply that

A1 + A2 ≤ sup

∣∣∣∣h− fh ∧ f

∣∣∣∣ ∫
Sd−1

(∫ τ−(x,v)

0

Eh∨f (x, s,v)

∣∣∣∣ gHh ∨ f + σs(h ∧ f)

∣∣∣∣ (x− sv)ds

)
dv

≤ g sup

∣∣∣∣h− fh ∧ f

∣∣∣∣ (1− Eh∨f (x, τ−(x,v),v)) sup

H
h∨f + σs

h∧f
g

H
h∨f + σs

≤ g sup

∣∣∣∣h− fh ∧ f

∣∣∣∣ (1− Eh∨f (x, τ−(x,v),v)) .
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To estimate A3, we observe that:

A3 ≤ (Kh −Kf )(σsf)

≤
∫
Sd−1

∫ τ−(x,v)

0

Eh∨f (x, l,v)

∣∣∣∣∫ l

0

H(h− f)

hf
(x− sv)ds

∣∣∣∣σsf(x− lv)dldv

≤ γ

∫
Sd−1

∫ τ−(x,v)

0

Eh∨f (x, l,v)

(∫ l

0

H

h ∨ f
(x− sv)ds

)
σsf(x− lv)dldv

≤ γκ

∫
Sd−1

∫ τ−(x,v)

0

Eh∨f (x, l,v)

(∫ l

0

(
H

h ∨ f
+ σs)(x− sv)ds

)
σsf(x− lv)dldv

≤ γκµf

∫
Sd−1

∫ τ−(x,v)

0

Eh∨f (x, l,v)

(∫ l

0

(
H

h ∨ f
+ σs)(x− sv)ds

)
(
H

h ∨ f
+ σs)(x− lv)dldv

≤ γκµf

[
1− (1− `Ω)

∫
Sd−1

Eh∨f (x, τ−(x,v),v)dv

]
.

We can then use the fact that Eh∨f (x, l,v) ≥ Eh(x, l,v) and Lemma B.1 to obtain that,

|C(h)− C(f)|

≤ γ

[
g − g

∫
Sd−1

Eh∨f (x, τ−(x,v),v)dv + κµf [1− (1− `Ω)

∫
Sd−1

Eh∨f (x, τ−(x,v),v)dv]

]
≤ γ

[
g − g

∫
Sd−1

Eh(x, τ−(x,v),v)dv + κµf [1− (1− `Ω)

∫
Sd−1

Eh(x, τ−(x,v),v)dv]

]
≤ γ

[
κµf [1− (1− `Ω)

h− µh
g − µh

] +
g − h
g − µh

g

]
.

This completes the proof.

We are now ready to establish the uniqueness result. We define

α := sup
H/η

H/η + σs
and β := sup

σs
H/g + σs

.

Theorem B.3. Assume that `Ω := diam(Ω) ≤ 1. Let ψ be defined as

ψ =
1 + αβ − α`Ωβ

2

2− [1− (1− `Ω)α]β
g. (70)

When ψ ≤ η, the transport equation (54) admits a unique solution.

Proof. Let h := lim
n→∞

Cn(g) and f := lim
n→∞

Cn(η). It is clear that g ≥ h ≥ f ≥ η, h ∨ f = f

and h ∧ f = f . Let γ, κ, µf and µh be given as in Lemma B.2. Then we have

h− f
f
≤ γ

(
g

f

g − h
g − µh

+
1

f
κµf [1− (1− `Ω)

h− µh
g − µh

]

)
. (71)
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To obtain the uniqueness, it is sufficient to have

g

f

g − h
g − µh

+
1

f
κµf [1− (1− `Ω)

h− µh
g − µh

] ≤ 1 . (72)

The equal sign case is safely included. This is because if the equal sign holds at some point
z ∈ Ω, then we need, from the estimate in A1, that∫ τ−(z,v)

0

H(h− f)

hf
(z− sv)ds = 0 , (73)

for all v ∈ Sd−1. This means that h− f ≡ 0.

The inequality (72) is equivalent to:

tκ`Ωµh + (1− t)g ≤ tf + (1− t)h , (74)

with t = (g−µh)
2g−µh+κµf (1−`Ω)

∈ (0, 1). Using the definitions of the parameters, we have that

µf ≤ µh ≤ βg. This allows us to conclude that the left-hand-side of (74) is bounded by

tκ`Ωµh + (1− t)g ≤ 1 + κβ − κ`Ωβ
2

2− [1− (1− `Ω)κ]β
g ≤ ψ , (75)

since α = sup H/η
H/η+σs

≥ κ. Now we can use the assumptions ψ ≤ η and the facts that

η ≤ f ≤ h to deduce (74).

The next theorem gives the stability of the solution u with respect to changes in H.

Theorem B.4. Let ũ and û be the unique solutions to (54) with internal data H̃ and Ĥ
respectively but the same source function g ≡ g. Assume that `Ω := diam(Ω) ≤ 1 and there
exists a constant 0 ≤ r < 1, such that

ψ :=
1 + αβ − α`Ωβ

2

1 + r(1− β) + (1− `Ω)αβ
g ≤ 〈u〉, 〈û〉.

Then there exists a constant c > 0 that

‖〈ũ〉 − 〈û〉‖L∞(Ω) ≤ c‖H̃ − Ĥ‖L∞(Ω). (76)

Proof. For a given function m(x) > 0, let w̃ and ŵ be respectively the solution to the
transport equations

v · ∇w̃(x,v) + (H̃/m+ σs)w̃(x,v) = σs(x)

∫
Sd−1

w̃(x,v)dv, in X

w̃(x,v) = g on Γ−

(77)

and

v · ∇ŵ(x,v) + (Ĥ/m+ σs)ŵ(x,v) = σs(x)

∫
Sd−1

ŵ(x,v)dv, in X

ŵ(x,v) = g on Γ− .
(78)
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We define the maps C̃ and Ĉ via the relations:

C̃(m) := 〈w̃〉 and Ĉ(m) := 〈ŵ〉.

Then 〈ũ〉 = lim
n→∞

C̃n(g) and 〈û〉 = lim
n→∞

Ĉn(g). For convenience, we denote h := 〈ũ〉 and

f := 〈û〉. It is then straightforward to check that∣∣∣∣h− fh ∧ f

∣∣∣∣ =

∣∣∣∣∣ C̃(h)− Ĉ(f)

h ∧ f

∣∣∣∣∣ ≤
∣∣∣∣∣ C̃(h)− C̃(f)

h ∧ f

∣∣∣∣∣+

∣∣∣∣∣ C̃(f)− Ĉ(f)

h ∧ f

∣∣∣∣∣ . (79)

We first bound the first part on the right hand side. Following Lemma B.2, we define

γ = sup
∣∣∣h−fh∧f

∣∣∣, κ = sup
H̃j/(h∨f)

H̃j/(h∨f)+σs
, µh = sup σsh

H̃j/h+σs
, and µf = sup σsh

H̃j/(h∨f)+σs
. Then

0 ≤ µh, µf ≤ βgj and α ≥ κ. We obtain∣∣∣∣∣ C̃(h)− C̃(f)

h ∧ f

∣∣∣∣∣ ≤ γ

h ∧ f

[
κµf [1− (1− `Ω)

h− µh
gj − µh

] +
gj − h
gj − µh

gj

]
≤ γ

h ∧ f

[
αβ[gj − (1− `Ω)

h− βgj
(1− β)

] +
gj − h
1− β

]
.

When h, f ≥ ψ, it is easy to check that

1

h ∧ f

[
αβ[gj − (1− `Ω)

h− βgj
(1− β)

] +
gj − h
1− β

]
≤ r < 1 .

Hence ∣∣∣∣∣ C̃(h)− C̃(f)

h ∧ f

∣∣∣∣∣ ≤ r sup

∣∣∣∣h− fh ∧ f

∣∣∣∣ . (80)

To bound the second term on the right hand side of (79), we take m = f in both (77)
and (78) and take the difference φ = w̃ − ŵ. Simple algebra shows that φ satisfies the
following equation:

v · ∇φ(x,v) + (H̃/f + σs)φ(x,v) = σs(x)

∫
Sd−1

φ(x,v)dv − H̃ − Ĥ
f

ŵ, in X

φ(x,v) = 0, on Γ− .

By standard results from transport theory [15], there is a constant c > 0 that

‖φ‖L∞(Ω) ≤ c‖H̃ − Ĥ‖L∞(Ω).

Therefore, we have ∣∣∣∣∣ C̃(f)− Ĉ(f)

h ∧ f

∣∣∣∣∣ ≤ c

ψ
‖H̃ − Ĥ‖L∞(Ω).

Combining this with (80), we have the following stability bound:

‖h− f‖L∞(Ω) ≤
cg

(1− r)ψ
‖H̃j − Ĥj‖L∞(Ω) ≤

2c

1− r
‖H̃j − Ĥj‖L∞(Ω).

The proof is complete.
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