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Abstract

Error bound analysis, which estimates the distance of a point to the solution set of an opti-
mization problem using the optimality residual, is a powerful tool for the analysis of first-order
optimization algorithms. In this paper, we use global error bound analysis to study the iteration
complexity of a first-order algorithm for a linearly constrained nonconvex minimization problem.
we develop a global dual error bound analysis for a regularized version of this nonconvex prob-
lem by using a novel “decomposition” technique. Equipped with this global dual error bound,
we prove that a suitably designed primal-dual first order method can generate an ǫ-stationary
solution of the linearly constrained nonconvex minimization problem within O(1/ǫ2) iterations,
which is the best known iteration complexity for this class of nonconvex problems.

1 Introduction

Consider the following linearly constrained optimization problem:

minimize f(x)

subject to Ax = b, x ∈ P,
(1.1)

where P = {x | Gx � h} is a polyhedral set in R
n, A ∈ R

m×n and G ∈ R
l×n are two given matrices.

The objective function f is assumed to be smooth but possibly nonconvex, whose gradient is
Lipschitz-continuous (with a Lipschitz constant Lf ). Also, we assume that f is bounded from below
over the feasible set {x | Ax = b, x ∈ P}. Problem (1.1) appears in many practical applications,
such as resource allocation [19], rate maximization in wireless communication [17], clustering [1,5],
non-negative matrix factorization [7] and distributed optimization [9, 21].

A popular approach to solve (1.1) is using a primal-dual first order method which alternately
updates primal and dual iterates via inexact gradient steps [4,9]. Such methods are well suited for
large scale optimization problems involving big data. However, the convergence analysis of this type
of primal-dual first order methods is a well known difficult problem especially if f is nonconvex.
One particularly effective technique to tackle this problem is to use error bound analysis [6,14,16])
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which uses the optimality residuals of (1.1) to estimate the distance of a point to the solution set
of (1.1). This approach has been successful in the convergence rate analysis of first-order methods
for convex f [10,13,15] as well as in a nonconvex setting [22]. One weakness of these works is that
the convergence rate is “local” (meaning linear convergence is only guaranteed when the iterates
are close to the solution set), and dependent on the error bound constant which is either unknown
or difficult to estimate. The “localness” of the convergence result is due to the error bound being
only shown to hold locally around the solution set of the problem.

1.1 Related works

There are many studies of error bound analysis in the optimization literature [14,16]. For instance,
in [15], authors prove the “local” linear convergence of the dual ascent algorithm for a family of
convex problems with polyhedral constraints in the absence of strong convexity. In reference [13],
authors use “local” error bounds to show the linear convergence of block coordinate descent for a
family of convex problem, while in [10], authors show the linear convergence of ADMM algorithm
using an error bound approach, again without strong convexity.

Recently, [22] used “local” dual error bound to deal with nonconvex problems and prove the
convergence of a smoothed proximal augmented Lagrangian method. Papers such as [20] also use
the error bound to analyze second-order optimization methods.

For nonconvex problem, there are some recent papers focusing on iteration complexity of first-
order algorithms. In [11], the authors propose a quadratic penalty accelerated inexact proximal
point method withO(1/ǫ3) iteration complexity for finding an ǫ-stationary solution of a linearly con-
strained nonconvex composite problem. Recently, the authors of [12] propose an inexact proximal-
point penalty method for constrained optimization problems, with nonconvex composite objec-
tive function and convex constraints, achieving an iteration complexity O(1/ǫ2.5), which is by far
the best result for nonconvex problems with convex constraints. In contrast to the double-loop
method [11,12], a single-loop perturbed proximal primal-dual algorithm is proposed in [8], and the
authors analyze its asymptotic convergence, though no iteration complexity analysis is given.

1.2 Our contributions

Our contributions are as follows:

1. We develop a novel technique to establish a global dual error bound for a regularized version
of problem (1.1). This technique allows us to estimate the distance to the solution set from
any point rather than just points near the solution set. Compared to [22], we remove the
slater condition, strict complementarity assumption and the compactness assumption of the
feasible set.

2. Using the global dual error bound analysis, we can explicitly compute the parameters of the
smoothed prox-ALM algorithm proposed in [22]. We also show that the iteration complexity
of the algorithm is B/ǫ2, where B > 0 is a global constant. Compared to the iteration
complexity in [12], our complexity bound is lower by a factor of 1/

√
ǫ for linearly constrained

problems. Though the results of [12] are for a more general setting, problem (1.1) is an
important special case and our iteration complexity achieves the optimal order O(1/ǫ2) for
this type of nonconvex optimization problems.
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Remark. Note that most double-loop algorithms for constrained nonconvex problems are based
on the proximal framework, requiring at least O(1/ǫ2) outer iterations and a number of inner
iterations that also grows with 1/ǫ. Hence the iteration complexity of the double-loop algorithms
for nonconvex problems usually need more than O(1/ǫ2) iterations to generate an ǫ-stationary
solution. To achieve the optimal complexity O(1/ǫ2), we need to consider single-loop algorithms
with constant step sizes and establish their convergence using global error bounds.

2 Preliminaries

In this section, we give the notations and main definitions. Then we introduce the algorithm
discussed in this paper and state our main result.

2.1 Notations

First, we list some notations used in this paper as follows.

1. [·]+ means the projection to the set P .

2. For a matrix M, σmax(M) and σmin(M) are the largest and smallest singular values of M
respectively.

3. dist(v, S) means the Euclidian distance from a point v to a set S.

4. [l] = {1, 2, · · · , l}.

5. For a vector v, vi means the i-th component of v. For a set S, vS ∈ R
|S| is the vector

containing all components vi’s with i ∈ S.

2.2 Our main assumptions

In this paper, we make the following assumptions:

Assumption 2.1 (a) f is a smooth function and ∇f(x) is Lf -Lipschitz continuous, i.e., for any
x, x′ ∈ P , we have

‖∇f(x)−∇f(x′)‖ < Lf‖x− x′‖.

(b) f is bounded from below in the feasible set {x ∈ P | Ax = b}, i.e.,

f(x) > f > −∞, x ∈ {x ∈ P | Ax = b}

for some constant f .

Let γf = −Lf . Then in view of Assumption 2.1(a), f is γf -weakly convex, i.e., we have

〈∇f(x)−∇f(x′), x− x′〉 ≥ γf‖x− x′‖2.

In other words, for arbitrary fixed v ∈ R
n, the function f(x) + p

2‖x − v‖2 is a strongly convex
function with modulus (p+ γf ) = (p− Lf ) if p > Lf .
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2.3 Stationary solution set of (1.1)

By the linearity of the constraints, an optimal solution x∗ of Problem (1.1) must satisfy the following
Karush-Kuhn-Tucker (KKT) conditions:

∇f(x∗) +AT y∗ +GTµ∗ = 0 (2.1)

Ax∗ − b = 0, (2.2)

Gx∗ � h, (2.3)

µ∗ � 0, (2.4)

µ∗
i (Gx∗ − h)i = 0, i ∈ [l], (2.5)

where y∗, µ∗ are the Lagrangian multipliers corresponding to the equality and inequality constraints
of (1.1). For nonconvex problems, it is NP-hard to get a global minimum of (1.1). However, with
good initialization, a KKT solution is usually good enough for practical applications. In this paper,
we focus on finding such a KKT solution of Problem (1.1) using a first-order algorithm.

Definition 2.2 Let X∗ be the stationary solution set of Problem (1.1). Specifically, x∗ ∈ X∗ if
there exist some y∗, µ∗ such that the conditions (2.1) hold with y∗, µ∗. Also let U∗ be the primal-dual
solution set of (1.1), i.e., U∗ is the set of all pairs (x∗, y∗) satisfying (2.1) with some µ∗.

Next, we define the ǫ-stationary solution of (1.1) as in [11]. Let ι(x) be the indicator function
of the set P , i.e. , ι(x) = 0 if x ∈ P and ι(x) = ∞ otherwise.

Definition 2.3 A primal-dual vector (x, y) is said to be an ǫ-stationary solution of (1.1) if ‖Ax−
b‖ ≤ ǫ and there exists a vector v ∈ ∇f(x) + AT y + ∂ι(x) with ‖v‖ ≤ ǫ. Here ∂ι(x) is the
sub-differential set of ι(·) at x.

2.4 Primal-dual first order algorithms for (1.1)

The augmented Lagrangian function Lρ(x; y) of (1.1) is given by:

Lρ(x; y) = f(x) + yT (Ax− b) +
ρ

2
‖Ax− b‖2.

The augmented Lagrangian method (ALM) for solving (1.1) is given as follows (see [3]):

Algorithm 1 ALM

1: Let ρ > 0;
2: Initialize x0, y0;
3: for t = 0, 1, 2, . . . , do
4: xt+1 = argminx∈P Lρ(x; y

t);
5: yt+1 = yt + ρ(Axt+1 − b).
6: end for

The ALM is known to converge when f is convex and satisfies some mild assumptions ( [10]).
However, the sub-problem

xt+1 = argmin
x∈P

Lρ(x; y
t) (2.6)

4



is usually hard to solve. Moreover, it is shown by a counter-example in [18] that ALM may not
converge if f is nonconvex. Therefore, a suitable modification for ALM is needed for convergence.
One such modification is to replace the exact minimization step (2.6) by a linearized-proximal
step which performs a gradient descent to the augmented function, while the dual update is kept
unchanged (i.e., still use the constraint residual to update the dual variable). This modified ALM
is shown to be convergent if P = R

n in [9]. The iteration complexity is proved to be O(1/ǫ2).
However, a numerical experiment in [22] shows that this modified ALMmay not converge if P 6= R

n.
Recently, authors of [22] propose a “smoothed prox-ALM”, which is proved to converge under some
regularity assumptions for the case where P is a bounded box. The iteration complexity is also
shown to be O(1/ǫ2).

Let
K(x, z; y) = Lρ(x; y) +

p

2
‖x− z‖2, (2.7)

where p > Lf is a positive constant. Note that K(x, z; y) is strongly convex of x with modulus
γK = (p + γf ) = (p − Lf ) and ∇xK(x, z; y) is Lf + ρσ2

max(A) + p-Lipschitz-continuous of x. The
smoothed prox-ALM algorithm [22] is given as follows.

Algorithm 2 S-prox-ALM

1: Let ρ > 0, α > 0, 0 < β ≤ 1 and 1
Lf+ρσ2

max(A)+p > c > 0;

2: Initialize x0, z0, y0;
3: for t = 0, 1, 2, . . . , do
4: yt+1 = yt + α(Axt − b);
5: xt+1 = [xt − c∇xK(xt, zt; yt+1)]+;
6: zt+1 = zt + β(xt+1 − zt).
7: end for

Notice that {zt} in the S-prox-ALM algorithm is an auxiliary sequence, defined as an exponen-
tially weighted average sequence of {xt} .

2.5 Convergence result

In the analysis of [22], authors assume that P is compact and require both the Slater condition and
the strict complementarity condition for the convergence analysis. In this paper, we remove these
assumptions and prove that we can obtain an ǫ-stationary solution within O(1/ǫ2) iterations using
the S-prox-ALM algorithm.

We state our main convergence result, which will be proved in the next two sections.

Theorem 2.4 Let p ≥ 3Lf , ρ ≥ 0 and c < 1/(Lf + ρσ2
max(A) + p). Then there exist α′, β′ > 0

(depending on Lf , A,G, p, ρ, c only) such that for all α < α′, β < β′ the following results hold:

1. Every limit point of {xt, yt} generated by Algorithm 2 is a KKT point of (1.1);

2. There exists a constant B > 0 only depending on p, ρ, c, α, β, Lf , A,G, f , f(x0), such that for
any ǫ > 0, we can find an ǫ-stationary solution within B/ǫ2 iterations. In other words, for
any t > 0, we can find ans ∈ {0, 1, · · · , t − 1} such that (xs+1, ys+1) is a

√
B/

√
t-stationary

solution of (1.1).
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Note that if we choose p = 3Lf and ρ = Lf , then the constant B depends on Lf , A,G, f , f(x0)
only. The proof of Theorem 2.4 and the explicit representation of α′, β′ will be given in the next
section.

3 Convergence Analysis

In this section, we use a “proximal-primal-dual” framework and a novel global dual error bound to
analyze the convergence of the Algorithm 2.

3.1 A potential function

We define

x(y, z) = argmin
x∈P

K(x, z; y)

x̄∗(z) = arg min
x∈P,Ax=b

{

f(x) +
p

2
‖x− z‖2

}

,

P (z) = min
x∈P,Ax=b

{f(x) + p

2
‖x− z‖2} (3.1)

d(y, z) = min
x∈P

K(x, z; y). (3.2)

The proof of Theorem 2.4 relies on the following potential function:

φt = φ(xt, yt, zt) = K(xt, zt; yt)− 2d(yt, zt) + 2P (zt).

We will prove that φt decreases sufficiently after each iteration of Algorithm 2, provided that c, α, β
are chosen sufficiently small. We start with the following basic descent estimate.

Lemma 3.1 Let us choose p, c, α, β satisfying

p ≥ 3Lf , c < 1/(Lf + ρσ2
max(A) + p), α <

c(p− Lf )
2

4σ2
max(A)

, β < 1/30.

Then for any t > 0, we have

φt − φt+1 ≥ 1

4c
‖xt − xt+1‖2 + α‖Ax(yt+1, zt)− b‖2 + p

3β
‖zt − zt+1‖2 − 6pβ‖x(yt+1, zt)− x̄∗(zt)‖2.

Remark. It is just the inequality (3.24) of [22] and the proof can be seen in [22]. Though in [22],
authors assume that P is a bounded box, it is not hard to check this inequality holds for any
convex, closed set P . For completeness, we will give the proof in appendix A.

3.2 The global error bound

Notice that in Lemma 3.1, there is a negative term ‖x(yt+1, zt) − x̄∗(zt)‖2. In order to prove that
φt is decreasing, we need to bound the term ‖x(yt+1, zt)− x̄∗(zt)‖2. Notice that if ‖Ax(yt+1, zt)−
b‖ = 0, we have x(yt+1, zt) = x̄∗(zt). Therefore, it is natural to consider whether we can use
‖Ax(yt+1, zt) − b‖ to bound ‖x(yt+1, zt) − x̄∗(zt)‖. Fortunately, it is indeed true. We have the
following global dual error bound:
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Lemma 3.2 If p > Lf , then we have

‖x(y, z)− x̄∗(z)‖ < σ̄5‖Ax(y, z) − b‖, for any y, z,

where σ̄5 > 0 depends only on the constants L = (Lf +ρσ2
max(A)+p), γ = −Lf +p and the matrices

A, G.

Note that compared to Lemma 3.6 in [22], Lemma 3.2 holds globally. Hence, this result is
stronger. The constant σ̄5 is computable and only depends on the parameters p, ρ and Lf , A,G.
The explicit estimate of σ̄5 along with the proof of Lemma 3.2 will be given in the next section.

3.3 Convergence proof

Equipped with the global dual error bound Lemma 3.2, we prove that the potential function φt

decreases sufficiently after each iteration, provided that β is chosen to be sufficiently small.

Lemma 3.3 Suppose p, c, α, β are chosen to satisfy the conditions in Lemma 3.1 and we further
let

β <
α

12pσ̄2
5

.

Then for any t, we have

φt − φt+1 ≥ 1

4c
‖xt − xt+1‖2 + α

2
‖Ax(yt+1, zt)− b‖2 + p

3β
‖zt − zt+1‖2. (3.3)

Proof By Lemma 3.2, we have

6pβ‖x(yt+1, zt)− x̄∗(zt)‖2 ≤ 6p · α

12pσ̄2
5

· σ̄2
5‖Ax(yt+1, zt)− b‖2

=
α

2
‖Ax(yt+1, zt)− b‖2.

Hence, substituting the above inequality to Lemma 3.1 we have

φt − φt+1 ≥ 1

4c
‖xt − xt+1‖2 + α

2
‖Ax(yt+1, zt)− b‖2 + p

3β
‖zt − zt+1‖2. (3.4)

Next we prove that φt is bounded from below.

Lemma 3.4 For any t > 0,
φt ≥ f.

Proof We have

φt = P (zt) + (K(xt, zt; yt)− d(yt, zt)) + (P (zt)− d(yt, zt))

≥ P (zt)

≥ f,

where the second step follows from the definition of d(yt, zt) (cf. (3.2)), and the weak duality
P (zt) ≥ d(yt, zt), while the last step is due to the boundedness f over the feasible set {x ∈ P |
Ax = b} (see Assumption 2.1 and (3.1)).
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Now we can prove the main theorem.

Proof of Theorem 2.4: We first prove the first part of the main theorem. For x, y, z, we let F
be a map such that

F (x, y, z) = (x+, y+, z+)

is the next iteration point of Algorithm 2. It is straightforward to check that the map F is continuous
and if (x, y, z) is a fixed point of F

F (x, y, z) = (x, y, z),

then (x, y) ∈ U∗ is a pair of primal-dual stationary solution of (1.1). Suppose that

(xt, yt, zt) → (x̄, ȳ, z̄) along a subsequence t ∈ T .

Notice that by Lemma 3.3 and Lemma 3.4, we have

‖xt − xt+1‖ → 0, ‖Ax(yt+1, zt)− b‖ → 0, ‖zt − zt+1‖ → 0.

This further implies
‖(xt+1, yt+1, zt+1)− (xt, yt, zt)‖ → 0. (3.5)

Therefore, we obtain

‖F (x̄, ȳ, z̄)− (x̄, ȳ, z̄)‖ = lim
t→∞, t∈T

‖(xt, yt, zt)− F (xt, yt, zt)‖

= lim
t→∞, t∈T

‖(xt+1, yt+1, zt+1)− F (xt, yt, zt)‖

= 0,

where the first step is due to the continuity of F and the second step follows from (3.5). Hence,
(x̄, ȳ) ∈ X∗, that is, each limit point (x̄, ȳ) is a primal-dual stationary solution of (1.1).

Next we prove that the iteration complexity is O(1/ǫ2). We need the following “primal” error
bound, whose proof was given in Lemma 3.6 of [22] (see also Lemma A.1 in Appendix A).

Lemma 3.5 For any t ≥ 0, we have

c(p− Lf )

1 + c(p − Lf )
‖xt+1 − x(yt+1, zt)‖ ≤ ‖xt+1 − xt‖. (3.6)

For t > 0, we have φt ≥ f . It follows that

t−1
∑

s=0

(φs − φs+1) = φ0 − φt ≤ φ0 − f.

Hence, there exists an s ∈ {0, · · · , t− 1} such that

φs − φs+1 ≤ (φ0 − f)/t. (3.7)

Let
C = (φ0 − f) ·max{4c, 2/α, 3β/p}.
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Then it follows from Lemma 3.3 and (3.7) that

‖xs − xs+1‖2 < C/t, ‖Ax(ys+1, zs)− b‖2 < C/t, ‖xs+1 − zs‖2 < C/t. (3.8)

According to Algorithm 2, we have

xs+1 = argmin
x

{

〈∇xK(xs, zs; ys+1), x− xs〉+ 1

c
‖x− xs‖2 + ι(x)

}

.

The corresponding optimality condition is given by

0 ∈ ∇xK(xs, zs; ys+1) +
2

c
(xs+1 − xs) + ∂ι(xs+1).

Letting

v = ∇xK(xs+1, zs; ys+1)−∇xK(xs, zs; ys+1)− 2

c
(xs+1 − xs)− ρAT (Axs+1 − b)− p(xs+1 − zs),

we can rewrite the above optimality condition as

v ∈ ∇xK(xs+1, zs; ys+1)− ρAT (Axs+1 − b)− p(xs+1 − zs) + ∂ι(xs+1).

Recalling the definition (2.7) of K(x, z; y), we have

∇xK(xs+1, zs; ys+1) = ∇f(xs+1) +AT ys+1 + ρAT (Axs+1 − b) + p(xs+1 − zs). (3.9)

Therefore, the optimality condition can be further simplified as

v ∈ ∇f(xs+1) +AT ys+1 + ∂(ι(xs+1)). (3.10)

We now proceed to estimate the size of v. By using the triangle inequality and then using the
inequalities (3.8) and (3.6), we have

‖Axs+1 − b‖ ≤ ‖Ax(ys+1, zs)− b‖+ ‖A(xs+1 − x(ys+1, zs))‖

≤
√
C√
t
+ σmax(A)

1 + c(p− Lf )

c(p − Lf )

√
C√
t

=

√
B1C√
t

, (3.11)

where B1 =
(

1 + σmax(A)
1+c(p−Lf )
c(p−Lf )

)2
.

Furthermore, similar to (3.9), we have

∇xK(xs, zs; ys+1) = ∇f(xs) +AT ys+1 + ρAT (Axs − b) + p(xs − zs),

which can be combined with (3.9) to obtain

∇xK(xs+1, zs; ys+1)−∇xK(xs, zs; ys+1) = ∇f(xs+1)−∇f(xs) + (ρATA+ pI)(xs+1 − xs).

This further implies

‖∇xK(xs+1, zs; ys+1)−∇xK(xs, zs; ys+1)− 2

c
(xs+1−xs)‖ ≤ (Lf +p+ρσ2

max(A)+2/c)‖xs+1 −xs‖,

9



where we used the Lipschitz continuity of ∇f(x) (see Assumption 2.1). Then we have

‖v‖ ≤ (Lf + p+ ρσ2
max(A) + 2/c)‖xs − xs+1‖+ ρ‖Axs+1 − b‖+ p‖xs+1 − zs‖

≤ (Lf + p+ ρσ2
max(A) + 2/c)

√
C√
t
+ ρσmax(A)

√
B1C√
t

+ p

√
C√
t

≤
√

B2C/
√
t,

where the second inequality follows from inequalities (3.8), (3.11), and

B2 = ((Lf + p+ ρσmax(A)
2 + 2/c) + ρσmax(A)

√

B1 + p)2.

Notice that B1, B2 > 0. Then the result holds for v and B = Cmax{B1, B2} and (xs+1, ys+1) is a√
B/

√
t-stationary solution.

Remark. Note that if we take p = 3Lf , ρ = Lf , then the stepsizes need to satisfy the following:

1. c < 1/(4Lf + Lfσ
2
max(A));

2. α <
cL2

f

σmax(A)2 ;

3. β < min{1/30, α
12pσ̄2

5

}.

Since σ̄5 is computable and only depends on p = 3Lf , ρ = Lf , A,G,Lf , and the stepsizes c, α, β
only depend on Lf , A,G, it follows that the stepsizes are computable and only depend on A,G,Lf .
Moreover, according to the proof of the second part of the main theorem, the constant B in the
iteration complexity bound only depends on φ0 − f , Lf , A,G.

4 A Global Error Bound

Notice that the key in the proof of the iteration complexity analysis (Theorem 2.4) is the global
dual error bound in Lemma 3.2 for the following strongly convex problem (assuming p > Lf ):

minimize f(x) + ρ
2‖Ax− b‖2 + p

2‖x− z‖2

subject to Ax = b, x ∈ P.
(4.1)

In this section, we use a decomposition technique to prove this dual error bound for a general
strongly convex problem:

minimize g(x)

subject to Ax = b, x ∈ P,
(4.2)

where g is a strongly convex function with modulus γ and g is smooth with a Lipschitz-continuous
gradient of constant L. We define

L(x; y) = g(x) + yT (Ax− b),

x(y) = argmin
x∈P

L(x; y); (4.3)

d(y) = min
x∈P

L(x; y),

x∗ = arg min
x∈P,Ax=b

g(x),

p∗ = g(x∗).
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We will prove the following general theorem in this section.

Theorem 4.1 For any ỹ ∈ R
m, we have

‖x(ỹ)− x∗‖ ≤ σ5‖Ax(ỹ)− b‖,

where σ5 > 0 only depends on L, γ, A, G.

Before proving Theorem 4.1, we remark that Lemma 3.2 is a direct corollary of Theorem 4.1.
In fact, for any z ∈ R

n, let

g(x) = f(x) +
ρ

2
‖Ax− b‖2 + p

2
‖x− z‖2.

Then g is strongly convex with modulus γ = −Lf + p > 0 and smooth with a gradient that is
Lipschitz continuous with constant L = Lf +ρσ2

max(A)+p. Then Lemma 3.2 holds with a constant
σ̄5 that depends on p, ρ, Lf , and matrices A, G.

We first sketch the main ideas of the proof of Theorem 4.1. Let

r̃ = Ax(ỹ)− b, (4.4)

x∗(r) = arg min
x:Ax−b=r,x∈P

g(x), (4.5)

where (4.5) is feasible if and only if r ∈ AP − b.
To proceed, we write down the KKT conditions of problems (4.3) and (4.5). The KKT condition

of problem (4.3) are

∇g(x(y)) +AT y +GTµ(y) = 0, (4.6)

µi(y) ≥ 0, for all i

x(y) ∈ P,

µi(y)(Gx(y) − h)i = 0, for all i.

When r ∈ AP − b, the KKT conditions for (4.5) are

∇g(x∗(r)) +AT y +GTµ = 0, (4.7)

Ax∗(r)− b = r,

Gx∗(r) � h,

µ � 0,

µi(Gx∗(r)− h)i = 0, i ∈ [l]

The following lemma shows that problem (4.5) is always feasible for r = Ax(y)− b with arbitrary
y.

Lemma 4.2 For any y, problem (4.5) is always feasible with r = Ax(y)− b. Moreover, we have

x(y) = x∗(r), x∗(0) = x∗

for r = Ax(y)− b.
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Proof Notice that if we add the condition Ax(y)− b = r to the KKT system (4.6), we just attain
the KKT system (4.7).

It means that (x(y), y) are the solution to the KKT system of problem (4.5). Due to the strong
convexity, the primal solution of the problem (4.5) is unique. Hence, we have x(y) = x∗(r). The
claim x∗(0) = x∗ follows directly from the definition.

Lemma 4.3 Let r̃ = Ax(ỹ)− b ∈ AP − b. Then for any s ∈ [0, 1] and r = sr̃, the problem (4.5) is
feasible, i.e., sr̃ ∈ AP − b. Hence, x∗(r) is well-defined for r = sr̃, s ∈ [0, 1].

Proof In fact, since x∗(r̃) satisfies Ax∗(r̃)− b = r̃, x∗(r̃) ∈ P and x∗ satisfies Ax∗ − b = 0, x∗ ∈ P ,
we have

A(sx∗(r̃) + (1− s)x∗)− b = s(Ax∗(r̃)− b) + (1− s)(Ax∗ − b)

= sr̃ (4.8)

= r,

where (4.8) is because Ax∗ = b. Moreover, sx∗(r̃) + (1 − s)x∗ ∈ P since P is convex. Hence
sx∗(r̃) + (1 − s)x∗ is feasible to the problem (4.5) with r = sr̃ and r ∈ AP − b. Then since g(x) is
strongly convex, argminx∈P,Ax=b g(x) must have a solution. Hence, x∗(r) is well-defined.

Let Y ∗(r) be the dual solution set of the problem (4.5). For arbitrary ỹ ∈ R
m, the idea of the proof

is to find finite scalar 0 = η0 < η1 < η2 < · · · < ηR = 1 and ri = ηir̃, such that

‖x∗(ri)− x∗(ri−1)‖ ≤ σ5‖ri − ri−1‖.

Then summing up this inequality from 1 to R and using the fact that

R
∑

i=1

‖(ri − ri−1)‖ =
R
∑

i=1

(ηi − ηi−1)‖r̃‖ (4.9)

= ηR‖r̃‖
= ‖A(x(ỹ)− x∗)‖
= ‖Ax(ỹ)− b‖

and

‖x(ỹ)− x∗‖ = ‖x∗(rR)− x∗(r0)‖ ≤
R
∑

i=1

‖x∗(ri)− x∗(ri−1)‖,

we attain the desired result. Therefore, the decomposition step is the key to the whole proof.

4.1 The proof of Theorem 4.1

To prove Theorem 4.1, we need a series of lemmas. The following is the well known Hoffman bound
which estimates the distance from a point to a polyhedral set by the amount of infeasibility.

Proposition 4.4 Let C1 ∈ R
m1×n, C2 ∈ R

m2×n and b1 ∈ R
m1 , b2 ∈ R

m2 , then the distance from
a point

S = {x | C1x � b1, C2x = b2}
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is bounded by
dist(x̄, S)2 ≤ θ(‖(C1x̄− b1)+‖2 + ‖C2x̄− b2‖2),

where (·)+ means the projection to the nonnegative orthant and θ is a positive constant depending
on C1 and C2 only.

Here we call θ as the Hoffman constant of the linear system. The Hoffman constant θ is computable.
The proof of Proposition 4.4 and the estimate of θ can be found in Lemma 3.2.3 of [6]. The following
lemma shows the continuity of x∗(r) as a map of r.

Lemma 4.5 x∗(r) is continuous of r for r ∈ AP − b. In other words, for any r ∈ AP − b and a
sequence {vi} ⊆ AP − b with vi → r, we have x∗(vi) → x∗(r).

Proof First, we prove that x∗(vi) is bounded . We prove it by contradiction. Assume that
‖x∗(vi)‖ → ∞. Then by the coerciveness of g, we have g(x∗(vi)) → ∞. On the other hand, let
xi be the projection of x∗(r) to the set {x | Ax − b = vi, x ∈ P}. Then, by Hoffman bound
(Proposition 4.4), we know that ‖x∗(r)−xi‖ <

√
θ‖r−vi‖ → 0. Hence, g(xi) → g(x∗(r)), implying

{g(xi)} is bounded. Since g(x∗(vi)) → ∞, it follows that for i large enough, g(xi) < g(x∗(vi)).
This is a contradiction to the definition of x∗(vi). Therefore, {x∗(vi)} is bounded. Next, we prove
x∗(vi) → x∗(r) by contradiction. Assume the contrary that x∗(vi) is a sequence that does not
converge to x∗(r). Since {x∗(vi)} is bounded, passing to a subsequence if necessary, we assume
that x∗(vi) → x̄ ∈ P and x̄ 6= x∗(r). Since the active set of any x∗(vi) is a subset of [l], there exists
a subsequence of {x∗(vi)} that has a common active set A, i.e., we have the KKT conditions:

∇g(x∗(vi)) +AT y +GTµ = 0

Ax∗(vi)− b = vi

(Gx∗(vi))j = hj , j ∈ A
Gx∗(vi) � h,

µj = 0, j ∈ A
µj ≥ 0, j /∈ A.

Define T = {AT y+GTµ | µj ≥ 0, j ∈ A; µj = 0, j /∈ A}. Note that T is a finitely generated cone,
hence it is closed (seeProposition 3.2.1(a) in [2]). Taking limit in the KKT system, we have

−∇g(x̄) ∈ T and Ax̄− b = r.

Consequently, we see that x̄ satisfies the KKT conditions of the problem

min
Ax−b=r,x∈P

g(x).

By strong convexity, the solution of the above problem is unique, hence, x̄ = x∗(r), which is a
contradiction. This completes the proof.

We define a set-valued function (also called multifunction) for r ∈ AP − b:

M(r) = {(y, µ) | (x∗(r), y, µ) is a primal-dual solution of (4.5)}, (4.10)

which maps a vector r to a set in R
m × R

l.
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Definition 4.6 A is said to be an active set of r if there exists a w = (y, µ) ∈ M(r) such that

∇g(x∗(r)) +AT y +GTµ = 0

Ax∗(r)− b = r

(Gx∗(r))− h)j = 0, j ∈ A
(Gx∗(r)− h)j ≤ 0, j /∈ A

µj ≥ 0, j ∈ A
µj = 0, j /∈ A.

Moreover, we say r and r′ share a common active set A if A is an active set of both r and r′.

We will then state some properties of M(·), which will be used to prove the dual error bound.

Lemma 4.7 Suppose r, r′ share a common active set A. Then there exist w ∈ M(r) and w′ ∈
M(r′) with the same active set A such that

dist(M(r′),M(r)) + ‖x∗(r)− x∗(r′)‖ ≤ ‖w − w′‖+ ‖x∗(r)− x∗(r′)‖ ≤ σ5‖r − r′‖ (4.11)

for some σ5 > 0 which depends only on L, γ, A, G.

Proof LetA be the active set shared by r and r′. Then, by definition, there exist w = (y, µ) ∈ M(r)
and w′ = (y′, µ′) ∈ M(r′) such that the KKT conditions for x∗(r) and x∗(r′) can be written as

AT y +GTµ = −∇g(x∗(r))

Ax∗(r)− b = r

µj = 0, j /∈ A
µj ≥ 0, j ∈ A

(Gx∗(r)− h)j = 0, j ∈ A
Gx∗(r)− h � 0.

and

AT y′ +GTµ′ = −∇g(x∗(r′))

Ax∗(r′)− b = r′

µ′
j = 0, j /∈ A

µ′
j ≥ 0, j ∈ A

(Gx∗(r′)− h)j = 0, j ∈ A
Gx∗(r′)− h � 0.

Notice that w′ = (y′, µ′) satisfies the linear system

AT y +GTµ = −∇g(x∗(r))

µj = 0, j /∈ A
µj ≥ 0, j ∈ A

14



approximately, it follows from the Hoffman bound (Proposition 4.4) that

‖w′ − w‖2 + ‖x∗(r)− x∗(r′)‖2 ≤ θ‖∇g(x∗(r))−∇g(x∗(r′))‖2 + ‖x∗(r)− x∗(r′)‖2

≤ (θL2 + 1)‖x∗(r)− x∗(r′)‖2

≤ θL2 + 1

γ
〈∇g(x∗(r))−∇g(x∗(r′)), x∗(r)− x∗(r′)〉, (4.12)

for some θ which depends only on A, G, A, where the second step follows from the Lipschitz
continuity of ∇g(x), and the last step is due to the strong convexity of g.

Notice that the KKT conditions imply

∇g(x∗(r)) = −AT y −GTµ, ∇g(x∗(r′)) = −AT y′ −GTµ′, A(x∗(r)− x∗(r′)) = r − r′

and
µ′
Ā = µĀ = 0, (Gx∗(r′)− h)A = (Gx∗(r′)− h)A = 0.

The latter implies
(µ′ − µ)Ā = 0, (G(x∗(r)− x∗(r′)))A = 0

so that

〈GT (µ′−µ), x∗(r)−x∗(r′)〉 = 〈(µ′−µ)A, (G(x∗(r)−x∗(r′)))A〉+〈(µ′−µ)Ā, (G(x∗(r)−x∗(r′)))Ā〉 = 0.

Hence, we have

〈∇g(x∗(r))−∇g(x∗(r′)), x∗(r)− x∗(r′)〉 = = 〈AT (y′ − y) +GT (µ′ − µ), x∗(r)− x∗(r′)〉
= 〈y − y′, A(x∗(r)− x∗(r′))〉
= 〈y − y′, r − r′〉.

Combining this with (4.12), we obtain

‖w′ − w‖2 + ‖x∗(r)− x∗(r′)‖2 ≤ θL2 + 1

γ
‖y − y′‖‖r − r′‖

≤ θL2 + 1

γ
‖w − w′‖‖r − r′‖

≤ θL2 + 1

γ
(‖w − w′‖2 + ‖x∗(r)− x∗(r′)‖2)1/2‖r − r′‖,

further implying

(‖w′ − w‖2 + ‖x∗(r)− x∗(r′)‖2)1/2 ≤ θL2 + 1

γ
‖r − r′‖.

Finally, we have

dist(M(r′),M(r)) + ‖x∗(r)− x∗(r′)‖ ≤ ‖w′ − w‖+ ‖x∗(r)− x∗(r′)‖
≤

√
2(‖w′ − w‖2 + ‖x∗(r)− x∗(r′)‖2)1/2

≤
√
2(θL2 + 1)

γ
‖r − r′‖.
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Notice that θ depends only on A,G,A. Since A ⊆ [l] has only finitely many choices, we can take
θ̄ to be the maximum Hoffman constant for all linear systems (defined by the subset S ∈⊆ [l]) of
the form

AT y +GTµ = −∇g(x∗(r))

µj = 0, j /∈ S
µj ≥ 0, j ∈ S.

Then we have

dist(M(r′),M(r)) + ‖x∗(r)− x∗(r′)‖ ≤ ‖w − w′‖+ ‖x∗(r)− x∗(r′)‖ ≤ σ5‖r − r′‖

where

σ5 =

√
2(θ̄L2 + 1)

γ

which depends only on L, γ, A, G. The estimation of θ̄ will be discussed in Section 4.2.

Lemma 4.7 can be considered a kind of Lipschitzian property of the multifunction M(r). The
following lemma states some additional continuity property of M(·).

Lemma 4.8 The multifunction M(·) has the following properties:

(a) M(r) is a closed set for any r ∈ AP − b.

(b) Suppose that {vi} ⊆ AP − b is a sequence converging to r ∈ AP − b and for any i, vi shares
a common active set with r′. Then r shares a common active set with r′.

(c) If r ∈ AP − b and {vi} ⊆ AP − b with vi → r. If A is an active set of any vi, then A is also
an active set of r.

Proof The proof of first claim is straightforward by checking the KKT conditions and using the
fact a finitely generated cone is closed (see Proposition 3.2.1(a) in [2]). We now prove the second
claim. Since the choice for A is finite, there exists a sub-sequence of {vi} sharing a common active
set A with r′. To simplify notation, let us denote this subsequence still by {vi}. Let

T = {AT y +GTµ | µj ≥ 0, j ∈ A;µj = 0, j /∈ A}.

Then by the definition of A and M(·), we have

−∇g(x∗(vi)) ⊆ T

for any i. Notice that T is a finitely generated cone, hence T is closed (see Proposition 3.2.1(a)
in [2]). On the other hand, by Lemma 4.5, we have

x∗(r) = lim
i→∞

x∗(vi).

It follows from the closeness of T and the continuity of x∗(·) (Lemma 4.5) that

−∇g(x∗(r)) = − lim
i→∞

∇g(x∗(vi)) ∈ T.
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By definition of T , there exists a (y, µ) satisfying the following system

∇g(x∗(r)) +AT y +GTµ = 0,

Ax∗(r)− b = r,

(Gx∗(r))j − h = 0, j ∈ A
(Gx∗(r)− h)j ≤ 0, j /∈ A

µj ≥ 0, j ∈ A
µj = 0, j /∈ A,

which proves the desired result. The third claim is just a direct corollary of the second claim. In
fact, letting r′ = v1 in the second claim, we attain that A is a common active set of v1 and r. This
implies that A is an active set of r.

The following lemma shows that for a fixed r ∈ AP − b, the set of all vectors in AP − b sharing a
common active set with r is a closed set.

Lemma 4.9 For any r ∈ AP − b, the set Q(r){r′ ∈ AP − b | r and r’ share a common active set}
is closed.

Proof First, since the image of a polyhedral under a linear transformation is still a polyhedral (see
exercise 3.9(b) in [2]), the set AP − b is closed. Suppose that a sequence {vi} ⊆ AP − b satisfies
that vi → v and vi shares a common active set with r. Since AP − b is closed , it follows that
v ∈ AP − b. Then by Part (b) in Lemma 4.8, v shares a common active set with r. Hence, Q(r) is
closed.

We are now ready to prove the following proposition which is the key for the global error bound.
It enables us to decompose the line segment from 0 to r̃ to finitely many local pieces and the error
bound holds in each piece.

Proposition 4.10 For any r̃ be given by (4.4), there exists a sequence 0 = η0 < η1 < · · · < ηR = 1
such that for any i ∈ {0, 1, · · · , R− 1}, ηir̃ and ηi+1r̃ share a common active set.

Proof We set η0 = 0 and then construct ηi recursively. If we have already defined ηi−1 < 1, we
define ηi to be the largest η ∈ [ηi−1, 1] such that ηr̃ shares a common active set with ηi−1r̃. We
first need to verify that this “largest” η exists. In fact, by Lemma 4.9, the set

Q(ηi−1r̃) := {r | r shares a common active set with ηi−1r̃}

is closed. Hence, Q(ηi−1r̃) ∩ {r = ηr̃ | η ∈ [ηi−1, 1]} is compact. Therefore, the “largest” η exists.
Next, we need to prove that if ηi−1 < 1, we have ηi > ηi−1. Equivalently, we need to show

that there exists an η ∈ (ηi−1, 1] such that ηi−1r̃ shares a common active set with ηr̃. In fact, let
{λj} ⊆ (ηi−1, 1] be an arbitrary sequence satisfying λj → ηi−1 and λj > ηi−1. Then there exists a
subsequence λjk such that λjk r̃ shares a common active set A with λj1 r̃. By Lemma 4.8(c), ηi−1r̃
shares a common active set with λj1 r̃. Hence, A is also an active set of ηi−1r̃. Therefore there
exists an η ∈ (ηi−1, 1] such that ηr̃ sharing a common active set with ηi−1r̃(here η = λj1). Thus,
ηi > ηi−1.

Finally, We need to prove that there exists an R < ∞ such that ηR = 1. Let ri = ηir̃. We prove
by contradiction. Assume that ηi < 1 for any positive integer i. Since the choice for an active set

17



is finite, there exist ηi1 < ηi2 < ηi3 such that ri1 , ri2 , ri3 share a common active set A. Clearly,
ηi3 > ηi2 ≥ ηi1+1. However, if r

i1 , ri3 share a common active set, then by the definition of ηi1+1 we
should have ηi1+1 ≥ ηi3 . This is a contradiction.

Now we are ready to finish the proof of Theorem 4.1.
Proof of Theorem 4.1.

By Proposition 4.10, we can define ri = ηir̃, i = 0, 1, ..., R − 1, R, so that ri+1 and ri share a
common active set for i = 0, · · · , R−1. It follows from Lemma 4.7 that, for 1 ≤ i ≤ R−1, we have

‖x∗(ri)− x∗(ri−1)‖ ≤ σ5‖ri − ri−1‖. (4.13)

Notice that by the definition of ri, we have

R
∑

i=1

‖(ri − ri−1)‖ =

R
∑

i=1

(ηi − ηi−1)‖r̃‖ (4.14)

= ηR‖r̃‖ (4.15)

= ‖A(x(ỹ)− x∗)‖ (4.16)

= ‖Ax(ỹ)− b‖ (4.17)

and

‖x(ỹ)− x∗‖ = ‖x∗(rR)− x∗(r0)‖ ≤
R
∑

i=1

‖x∗(ri)− x∗(ri−1)‖, (4.18)

where we use the triangle inequality in the last inequality. Summing inequality (4.13) from 1 to R,
and using (4.17) and (4.18), we finish the proof.

4.2 Stepsize estimate

According to [6], we can compute Hoffman’s error bound constant θ as follows: Let

M =

[

AT GT

0 I

]

.

Then
θ̄ = max

M̄∈B(M)
σ2
max(M̄ )/σ4

min(M̄ ),

where B(M) is the set of all sub-matrices of M with full row rank. Note that

σ5 =

√
2(θ̄L2 + 1)

γ
=

√
2(θ̄(Lf + ρσmax(A) + p)2 + 1)

−Lf + p
.

Thus, the stepsizes satisfying

c < 1/(4Lf + Lfσ
2
max(A)), α <

cL2
f

σ2
max(A)

, β < min{1/30, α

12pσ2
5

}

are computable and, according to Theorem 2.4, will ensure the convergence of the S-prox-ALM
algorithm.
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Appendices

A Proof of Lemma 3.1

In this section, we prove Lemma 3.1. To do this , we need a series of lemmas which are proved
in [22]. The first lemma states some primal error bounds.

Lemma A.1 (Error Bounds) Suppose p > Lf , ρ > 0 are fixed. Then there exist positive con-
stants σ1, ..., σ4 > 0 (independent of y and z such that the following error bounds hold:

‖xt+1 − xt‖ ≥ σ1‖xt − x(yt+1, zt)‖, (A.1)

‖xt+1 − xt‖ ≥ σ2‖xt+1 − x(yt+1, zt)‖, (A.2)

‖y − y′‖ ≥ σ3‖x(y, z) − x(y′, z)‖, (A.3)

‖zt − zt+1‖ ≥ σ4‖x̄∗(zt)− x̄∗(zt+1)‖, (A.4)

‖zt − zt+1‖ ≥ σ4‖x(yt+1, zt)− x(yt+1, zt+1)‖, (A.5)

for any y, y′. where σ1 = cγK = c(p − Lf ), σ2 = σ1/(1 + σ1), σ3 = γK/σmax(A) = (−Lf +
p)/σmax(A), σ4 = γK/p = (−Lf + p)/p.

As in [22], we have the following three descent lemmas.

Lemma A.2 (Primal Descent) For any t, if c < 1/(Lf + ρσ2
max(A) + p),

K(xt, zt; yt)−K(xt+1, zt+1; yt+1) ≥ 1

2c
‖xt − xt+1‖2 + p

2β
‖zt − zt+1‖2 − α‖Axt − b‖2.

Lemma A.3 (Dual Ascent) For any t, we have

d(yt+1, zt+1)− d(yt, zt) ≥ α(Axt − b)T (Ax(yt+1, zt)− b) +
p

2
(zt+1 − zt)T (zt+1 + zt − 2x(yt+1, zt+1))

Lemma A.4 (Proximal Descent) For any t ≥ 0, there holds

P (zt+1)− P (zt) ≤ p(zt+1 − zt)T (zt − x̄∗(zt)) +
p

2σ4
‖zt − zt+1‖2. (A.6)

Remark. Note that in [22], P represents a bounded box. However, as stated in the remark after
Lemma 3.6 in [22], the lemmas above hold for any closed convex set P .

We now use the above lemmas to prove Lemma 3.1.
Proof of Lemma 3.1 Recall the definition of potential function

φt = K(xt, zt; yt)− 2d(yt, zt) + 2P (zt).

19



Combining the above lemmas, we have

φt − φt+1

≥
(

1

2c
‖xt+1 − xt‖2 − α‖Axt − b‖2 + p

2β
‖zt − zt+1‖2

)

+2
(

α(Axt − b)T (Ax(yt+1, zt)− b) + p(zt+1 − zt)T (zt+1 + zt − 2x(yt+1, zt+1))
)

+2

(

p(zt+1 − zt)T (x̄∗(zt)− zt)− p

2σ4
‖zt+1 − zt‖2

)

=

(

1

2c
‖xt+1 − xt‖2 − α‖Axt − b‖2 + p

2β
‖zt − zt+1‖2

)

+ 2α(Axt − b)T (Ax(yt+1, zt)− b)

+p(zt+1 − zt)T
(

(zt+1 − zt)− 2(x(yt+1, zt+1)− x̄∗(zt))
)

− p

2σ4
‖zt − zt+1‖2

=

(

1

2c
‖xt+1 − xt‖2 − α‖Axt − b‖2 + p

2β
‖zt − zt+1‖2

)

+ 2α(Axt − b)T (Ax(yt+1, zt)− b)

+p(zt+1 − zt)T
(

(zt+1 − zt)− 2(x(yt+1, zt+1)− x(yt+1, zt)) + 2(x(yt+1, zt)− x̄∗(zt))
)

− p

2σ4
‖zt − zt+1‖2. (A.7)

Let ζ be an arbitrary positive scalar, and by the fact that

‖(zt+1 − zt)/ζ + ζ(x(yt+1, zt)− x̄∗(zt))‖2 ≥ 0,

we have

2(zt+1 − zt)T (x(yt+1, zt)− x̄∗(zt)) ≥ −‖zt − zt+1‖2/ζ − ζ‖x(yt+1, zt)− x̄∗(zt)‖2.
Using Cauchy-Schwarz inequality and the error bound (A.5) in Lemma A.1, we have

−2(zt+1 − zt)T (x(yt+1, zt+1)− x(yt+1, zt)) ≥ −‖zt − zt+1‖‖x(yt+1, zt+1)− x(yt+1, zt)‖

≥ − 1

σ4
‖zt − zt+1‖2.

Substituting these two inequalities into (A.7), we have

φt − φt+1

≥ 1

2c
‖xt+1 − xt‖2 −

(

α‖Axt − b‖2 − 2α(Axt − b)T (Ax(yt+1, zt)− b) + α‖Ax(yt+1, zt)− b‖2
)

+α‖Ax(yt+1, zt)− b‖2 +
(

p

2β
+ p− p

σ4
− p

ζ
− p

2σ4

)

‖zt − zt+1‖2

−pζ‖x(yt+1, zt)− x̄∗(zt)‖2.
By completing the square, we further obtain

φt − φt+1 ≥ 1

2c
‖xt+1 − xt‖2 − α‖A(x(yt+1, zt)− xt)‖2 + α‖Ax(yt+1, zt)− b‖2

+

(

p

2β
+ p− p

σ4
− p

ζ
− p

2σ4

)

‖zt − zt+1‖2 − pζ‖x(yt+1, zt)− x̄∗(zt)‖2

(ii)
=

(

1

2c
− ασ2

max(A)

c2(p − Lf )2

)

‖xt − xt+1‖2 + α‖Ax(yt+1, zt)− b‖2

+

(

p

2β
+ p− p

σ4
− p

ζ
− p

2σ4

)

‖zt − zt+1‖2 − pζ‖x(yt+1, zt)− x̄∗(zt)‖2, (A.8)
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where (i) is due to the error bound (A.1) in Lemma A.1 and equality (ii) is due to the definition of
σ1 in Lemma A.1. If we let

α < α′ =
c(p− Lf )

2

4σ2
max(A)

, (A.9)

then
1

2c
− ασ2

max(A)

c2(p− Lf )2
>

1

4c
. (A.10)

Moreover, according to the definition of σ4 in Lemma A.1, since p ≥ 3Lf , we have

σ4 > 1/2.

Then letting ζ = 6β and combining the condition that β < 1/30, we have

p/ζ = p/(6β), p− p/σ4 − p/(2σ4) ≥ p/(6β). (A.11)

Therefore,
(

p

2β
+ p− p

σ4
− p

ζ
− p

2σ4

)

≥ (1/2 − 1/6 − 1/6)p/β ≥ p/(6β). (A.12)

Combining (A.8), (A.10) and (A.12), we finish the proof of Lemma 3.1.
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