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Abstract

In this work, we present an adaptive unfitted finite element scheme that combines the aggregated finite
element method with parallel adaptive mesh refinement. We introduce a novel scalable distributed-memory
implementation of the resulting scheme on locally-adapted Cartesian forest-of-trees meshes. We propose a
two-step algorithm to construct the finite element space at hand by means of a discrete extension operator
that carefully mixes aggregation constraints of problematic degrees of freedom, which get rid of the small
cut cell problem, and standard hanging degree of freedom constraints, which ensure trace continuity on
non-conforming meshes. Following this approach, we derive a finite element space that can be expressed as
the original one plus well-defined linear constraints. Moreover, it requires minimum parallelization effort,
using standard functionality available in existing large-scale finite element codes. Numerical experiments
demonstrate its optimal mesh adaptation capability, robustness to cut location and parallel efficiency, on
classical Poisson ℎ𝑝-adaptivity benchmarks. Our work opens the path to functional and geometrical error-
driven dynamic mesh adaptation with the aggregated finite element method in large-scale realistic scenarios.
Likewise, it can offer guidance for bridging other scalable unfitted methods and parallel adaptive mesh
refinement.

Keywords: Unfitted finite elements · Algebraic multigrid · Adaptive mesh refinement · Forest of trees · High
performance scientific computing

1. Introduction

Adaptive mesh refinement and coarsening (AMR) using adaptive tree-based meshes is attracting growing
interest in large-scale simulations of physical problems modelled with partial differential equations (PDEs).
Research over the past few years has demonstrated that tree-based AMR enables efficient data storage and
mesh traversal, fast computation of mesh hierarchy and cell adjacency and extremely scalable partitioning and
dynamic load balancing. Although several cell topologies have been studied [1, 2], attention has centred around
quadrilateral (2D) or hexahedral (3D) adaptive meshes endowed with standard isotropic 1:4 (2D) and 1:8 (3D)
refinement rules. They form tree structures that are commonly known as quadtrees or forest-of-quadtrees or
-octrees, when the former are patched together. There is ample literature concerning single-octree meshes and
extensions to forest-of-octrees [3, 4]. State-of-the art in these techniques is available at the open source parallel
forest-of-octrees meshing engine p4est [3].

In the context of parallel adaptive finite element (FE) solvers, forest-of-trees have been an essential component
in many large-scale application problems [5–8]. As they provide multi-resolution by local mesh adaptation,
they are convenient, among others, in the following three scenarios: (1) a priori mesh refinement, when the
boundary value problem (BVP) exhibits local features that must be captured with high resolution, but are known
in advance, see e.g. [5, 8]; (2) a posteriori mesh refinement, driven by error estimators [9], for solutions of BVPs
whose local features are not known or spatially evolve over time [6]; and (3) to control geometric approximation
errors of static or moving boundaries and interfaces, in combination with unfitted FE methods [10].

In spite of their scalable multi-resolution capability, practical integration of forest-of-trees in large-scale FE
codes is hindered by the fact that, in general, they are non-conforming meshes. In particular, they contain
the widely known hanging vertices, edges, and faces (VEFs), occurring at the interface of neighbouring cells
with different refinement levels. Mesh non-conformity increases implementation complexity of FE methods,
especially, when they are conforming. In this case, degrees of freedom (DOFs) lying on hanging VEFs cannot
have an arbitrary value, they must be constrained to guarantee trace continuity across cell interfaces. Set up
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(during FE space construction) and application (during FE assembly) of hanging DOF constraints have been
thoroughly studied [11, 12]. Several large-scale FE software packages also provide state-of-the-art treatment of
hanging DOFs [13, 14]. They accommodate to standard practice of constraining the processor-local portion of
the mesh to the cells the processor owns and a single layer of adjacent off-processor cells, the so-called ghost
cells; it is well-established that hanging DOF constraints do not expand beyond a single layer of ghost cells, see
e.g. [14] for comprehensive and rigorous demonstration.

While research is mature on generic parallel tree-based adaptive FE methods, enabling applications in
arbitrarily complex geometries has been vastly overlooked. Usage of body-fitted meshes (i.e. those whose faces
conform to the domain boundary) is not a choice in large-scale parallel computations, due to the bottleneck in
generating and partitioning large unstructured meshes. On the other hand, unfitted (also known as embedded or
immersed) FE methods blend exceptionally well with adaptive tree-based meshes. However, to the authors’ best
knowledge, this line of research has been barely explored. The main advantage of unfitted methods is that, instead
of requiring body-fitted meshes, they embed the domain of interest in a geometrically simple background grid
(usually a uniform or an adaptive Cartesian grid), which can be generated much more efficiently. Unfortunately,
unfitted FE methods also suffer from well-known drawbacks, above all, the so-called small cut cell problem. The
intersection of a background cell with the physical domain can be arbitrarily small, with unbounded aspect ratios.
This leads to severely ill-conditioned systems of algebraic linear equations, if no specific strategy alleviates this
issue [15].

Many different unfitted methodologies have emerged that cope with the small cut cell problem (see, e.g., the
cutFEM method [16], the Finite Cell Method [17], the AgFEM method [18], and some variants of the XFEM
method [19]). They have also been useful for many multi-phase and multi-physics applications with moving
interfaces (e.g. fracture mechanics [20], fluid–structure interaction [21], free surface flows [22]), in applications
with varying domain topologies (e.g. shape or topology optimization [23], or in applications where the geometry
is not described by CAD data (e.g. medical simulations based on CT-scan images [24]). However, fewer works
have addressed scalable parallel unfitted methods, which are essential for realistic large-scale applications.
Notable exceptions are the works in [25, 26], that design tailored preconditioners for unfitted methods. Recent
parallelization strategies [27] have taken a different path, by considering enhanced FE formulations that lead
to well-conditioned system matrices, regardless of cut location. As a result, they are amenable to resolution
with state-of-the-art large-scale iterative linear solvers such as algebraic multigrid (AMG), for which there are
highly-scalable parallel implementations in renowned scientific computing packages such as PETSc [28]. This
approach yields superior scalability, e.g. in [27], a distributed-memory implementation of the aggregated finite
element method (FEM), referred to as AgFEM, scales up to 16K cores and up to nearly 300M DOFs, on the
Poisson equation in complex 3D domains, discretised with uniform meshes.

This paper aims to fill the gap between parallel adaptive tree-based meshing and robust and scalable unfitted
FE techniques. We restrict the scope of our work to AgFEM [18], although other enhanced unfitted formulations,
such as the CutFEM method [16], could also be considered. AgFEM is based on a discrete extension operator
from well-posed to ill-posed DOFs. The definition of this operator relies on aggregating cells on the boundary
to remove basis functions associated with badly cut cells and, thus, eliminate ill-conditioning issues. The
formulation enjoys good numerical properties, such as stability, condition number bounds, optimal convergence,
and continuity with respect to data; detailed mathematical analysis of the method is included in [18] for elliptic
problems and in [29] for the Stokes equation. Conversely, cell aggregation locally increases the characteristic
size of the resulting aggregated mesh, which has an impact on the constant (not order) in the convergence
of the method, even though such constant has experimentally been observed to be similar to the one of the
non-aggregated FEM [18]. In this work, we demonstrate that AgFEM is also amenable to parallel tree-based
meshes and optimal error-driven ℎ-adaptivity in practical large-scale FE applications. We refer to the resulting
method as ℎ-AgFEM. Furthermore, since ℎ-AgFEM is capable of adding mesh resolution wherever it is needed,
it is not hindered by the local accuracy issue mentioned above.

The outline of this work is as follows. We detail first, in Section 2, a possible way to construct conforming
AgFE spaces on top of non-conforming (adaptive) meshes. The main challenge is to combine the linear
constraints arising from both hanging and problematic DOFs. We propose a two-tier approach that generates first
the hanging DOF constraints and then modifies them with the AgFEM constraints. We show that this technique
yields unified linear constraints that have no circular dependencies. Furthermore, distributed-memory extension
of the method can be implemented using common functionality of large-scale FE software packages. In our
case, we have implemented the method in the large-scale FE software package FEMPAR [30], which exploits the
highly-scalable forest-of-tree mesh engine p4est. In the numerical tests of Section 3, we consider the Poisson
equation as model problem on several complex geometries and ℎ𝑝-FEM standard benchmarks. We demonstrate
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similar accuracy and optimal convergence as with standard body-fitted ℎ-FEM and consistent robustness and
scalability, using out-of-the-box AMG solvers from the PETSc project. We draw the main conclusions of our
work in Section 4. Finally, we supplement the paper contents with an exhaustive step-by-step derivation of
AgFE spaces, in Appendix A, and with the proof that AgFE spaces on nonconforming meshes retain the good
numerical properties ensured on uniform meshes, in Appendix B.

2. The aggregated unfitted finite element method on non-conforming adaptive meshes

Our goal is to define conforming, continuous Galerkin (CG), AgFE spaces on top of non-conforming adaptive
meshes. In this section, we introduce notation and concepts necessary to construct such spaces. We start with a
typical immersed boundary setup on a non-conforming mesh in Section 2.1; for scalability reasons, we restrict
ourselves to the particular case of (non-conforming) forest-of-trees meshes. We continue with the description
of the cell aggregation scheme in Section 2.2, which is the cornerstone of AgFEM. As stated in Section 1,
our two-level strategy to construct AgFE spaces is (1) generation of DOF constraints enforcing conformity
on hanging VEFs, followed by (2) generation of DOF aggregation constraints, judiciously combined with the
previous ones. To mirror our approach in this text, we define first standard conforming Lagrangian FE spaces in
Section 2.3, then we lay out aggregated counterparts in Section 2.4. At first, we look at the sequential version
of these spaces; distributed-memory extension is covered in Section 2.5.

2.1. Embedded boundary setup. Let Ω ⊂ R𝑑 be an open bounded polygonal domain, with 𝑑 ∈ {2, 3} the
number of spatial dimensions, in which our PDE problem is posed. As usual, in the context of embedded
boundary methods, let Ωart be an artificial or background domain with a simple shape that includes the physical
one, i.e. Ω ⊂ Ωart, as in Figure 1a. We assume that Ωart can be easily meshed using, e.g. Cartesian grids or
unstructured 𝑑-simplexes. Let Tℎ represent a partition of Ωart into cells, with ℎ𝑇 the characteristic size of a
cell 𝑇 ∈ Tℎ and ℎ � max𝑇 ∈Tℎ ℎ𝑇 . Any 𝑇 ∈ Tℎ is the image of a differentiable homeomorphism Φ𝑇 over a
set of admissible open reference 𝑑-polytopes [30], such as 𝑑-simplexes or 𝑑-cubes. Let F𝑇 denote the disjoint
𝑑 − 1-skeleton of 𝑇 ∈ Tℎ, e.g. F𝑇 is composed of vertices, edges and faces for 𝑑 = 3. Hereafter, we abuse
terminology and refer to F𝑇 as the set of VEFs of 𝑇 ∈ Tℎ. We assume that Tℎ is non-conforming. In particular,
we allow that

Assumption 2.1. For any two cells 𝑇,𝑇 ′ ∈ Tℎ, satisfying 𝑇 ∩ 𝑇 ′ ≠ ∅, there exists 𝑓 ∈ F𝑇 and 𝑓 ′ ∈ F𝑇 ′ such
that: (i) 𝑓 = 𝑓 ′ = 𝑇 ∩ 𝑇 ′; or (ii) 𝑓 = 𝑇 ∩ 𝑇 ′ and 𝑓 ( 𝑓 ′, or vice versa.

In other words, any pair of intersecting VEFs in Tℎ are either identical or one is a proper subset of the other.
We notice that meshes satisfying (i) everywhere are conforming. On the other hand, a hanging VEF is any VEF
𝑔 ∈ F𝑇 satisfying 𝑔 ⊂ 𝑓 and 𝑓 = 𝑇 ∩ 𝑇 ′ in (ii), while 𝑓 ′ is referred to as the owner VEF of 𝑔, see Figure 1c.
Typical examples of hanging VEFs in, e.g. 2D, are cell vertices lying in the middle of an edge of a coarser cell.

(a) (b) (c)

Figure 1. We define in (a) a simple artificial domain Ωart, which includes the physical one Ω. In (b),
the background mesh Tℎ meets the 2:1 balance condition. It is partitioned into well-posed TW

ℎ , ill-posed
T I
ℎ and exterior TO

ℎ cells (we assume 𝜂0 = 1, i.e. well-posed iff interior and ill-posed iff cut). In (c), we
illustrate Assumption 2.1 (ii) with a hanging vertex 𝑔, a hanging edge 𝑓 and their owner edge 𝑓 ′.

As outlined in Section 1, we restrict ourselves to the family of (non-conforming) forest-of-trees meshes. This
kind of meshes are derived from recursive application of standard isotropic 1:2𝑑 refinement rules on a (possibly
unstructured) initial coarse mesh. By construction, they satisfy Assumption 2.1. We choose forest-of-trees,
because they are a well-established approach for parallel scalable adaptive mesh generation and partitioning [3];
in particular, we aim to exploit a recent highly-scalable parallel FE framework that supports ℎ-adaptivity on
forest-of-trees [14].
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For FE applications, mesh non-conformity hardens the construction of conforming FE spaces and the
subsequent steps in the simulation. For the sake of alleviating this extra complexity, we follow common
practice [3, 13] of enforcing the 2:1-balance or 1-irregularity condition, that prescribes, at most, 2:1 size
relations between neighbouring cells, see Figure 1b. 2:1 balance ensures that hanging DOF constraints are
single-level or direct, i.e. hanging DOFs are not constrained by other hanging DOFs [14, Proposition 3.6].
Furthermore, in a distributed-memory environment, any hanging DOF constraint can be locally applied, as each
subdomain holds a single layer of ghost cells [14, Proposition 4.1]. Although the exposition from Sections 2.3
to 2.5 assumes the mesh is a 2:1 balanced forest-of-trees mesh (with isotropic refinements), all concepts
introduced there can be generalised to other families of non-conforming meshes, such as anisotropic solvable
meshes [31].

We introduce now the immersed boundary setting on top of the artificial domain Ωart. For the sake of
simplicity and without loss of generality, the boundary of the physical domain 𝜕Ω is represented by the zero
level-set of a known scalar function 𝜑ls, namely 𝜕Ω � {𝒙 ∈ R𝑑 : 𝜑ls(𝒙) = 0}. The problem geometry could be
described by other means, e.g. from 3D CAD data, by providing techniques to compute the intersection between
cell edges and surfaces. In any case, the following exposition does not depend on the way geometry is handled.

Let now the physical domain be defined as the set of points where the level-set function is negative, namely
Ω � {𝒙 ∈ R𝑑 : 𝜑ls(𝒙) < 0}. For any cell 𝑇 ∈ Tℎ, let us also define the quantity 𝜂𝑇 � |𝑇 ∩ Ω|/|𝑇 |, where
| · | denotes the measure (area or volume), and a user-defined parameter 𝜂0 ∈ (0, 1]. In order to isolate badly
cut cells, we classify cells of Tℎ in terms of 𝜂𝑇 and 𝜂0. A cell 𝑇 ∈ Tℎ is: (1) well-posed, if 𝜂𝑇 ≥ 𝜂0; (2)
ill-posed, if 𝜂0 > 𝜂𝑇 > 0; or (3) exterior, if 𝜂𝑇 = 0, i.e. 𝑇 ∩ Ω = ∅, see Figure 1b. We remark that, for 𝜂0 = 1,
well-posed cells coincide with interior cells 𝑇 ⊂ Ω, whereas ill-posed ones are cut. In the general case, 𝜂0 ≠ 1,
well-posed cells can also be cut cells with a large enough portion inside the physical domain; the distinction
between interior and cut cells is no longer relevant. The set of well-posed (resp. ill-posed and exterior) cells
is represented with TW

ℎ and its union ΩW =
⋃

𝑇 ∈TW
ℎ
𝑇 ⊂ Ω (resp. (T I

ℎ ,ΩI) and (TO
ℎ ,ΩO)). We also have that

{TW
ℎ ,T I

ℎ ,TO
ℎ } is a partition of Tℎ. We let T act

ℎ � TW
ℎ ∪ T I

ℎ and Ωact � ΩW ∪ ΩI denote the so-called active
triangulation and domain.

2.2. Cell aggregation. AgFE spaces are grounded on a cell aggregation map that assigns a well-posed cell to
every ill-posed cell. We refer to this map as the root cell map 𝑅 : Tℎ → TW

ℎ ; it takes any cell 𝑇 ∈ Tℎ and returns
a cell 𝑅(𝑇) ∈ TW

ℎ , referred to as the root cell. In order to define this map, we consider a partition of Tℎ, denoted
by T ag

ℎ , into non-overlapping cell aggregates 𝐴𝑇 . Each aggregate 𝐴𝑇 is a connected set, composed of several
ill-posed cells and only one well-posed root cell 𝑇 . Aggregates forming T ag

ℎ are built with a cell aggregation
scheme [18] described in Figure 2.

The scheme builds the aggregates incrementally from the (well-posed) root cells, by attaching facet-connected
ill-posed cells to them, until all ill-posed cells are aggregated. We recall that facets refer to edges in 2D or
faces in 3D. For non-conforming meshes, facet connections comprise those among cells of same or different
size. Frequently, an ill-posed cell is facet-connected to several aggregates. Therefore, a criterion is needed to
choose among the aggregating candidates. Previous work on uniform meshes [18] adopt a rule that minimises
the distance between ill-posed and root cell barycentres. In this way, we keep the characteristic length of the
aggregates as small as possible to improve AgFEM’s accuracy . Here, in order to consider the effect of the
different cell sizes, it is more adequate to minimise the relative distance between ill-posed and root cell nodes:

Definition 2.2 (Closest root cell criterion). Given an ill-posed cell𝑇 ∈ Tℎ and the set of aggregating candidates

L(𝑇) = {𝑇 ′ ∈ Tℎ : 𝑇 ′ is already aggregated and ∃ a facet 𝐹 ∈ F𝑇 or 𝐹 ∈ F𝑇 ′ with 𝐹 = 𝑇 ∩ 𝑇 ′, 𝐹 ∩Ω ≠ ∅},
that is, L is the set of aggregated cells connected to 𝑇 through a conforming or hanging facet 𝐹. The closest
aggregating candidate 𝑇∗ satisfies

𝑑 (𝑇,𝑇∗) = min
𝑇 ′∈L(𝑇 )

𝑑 (𝑇,𝑇 ′)
with

𝑑 (𝑇,𝑇 ′) �
max𝛾∈F0

𝑅 (𝑇 ′) , 𝛿∈F0
𝑇
‖𝒙𝛾 − 𝒙 𝛿 ‖∞

max𝛾,𝛾′∈F0
𝑅 (𝑇 ′)

‖𝒙𝛾 − 𝒙𝛾′ ‖∞
,

for any 𝑇 ′ ∈ L(𝑇), where F 0
𝑇 denotes the set of vertices of 𝑇 , 𝑅(𝑇) the root of 𝑇 , 𝒙� the coordinates of vertex �

and ‖ · ‖∞ denotes the infinity norm.

When there is more than one closest aggregating candidate 𝑇∗, we simply choose the one whose root cell has
higher global cell index. The output of the cell aggregation scheme is the root cell map 𝑅 and it can be readily
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applied to arbitrary spatial dimensions. We observe that, by construction of the scheme, maximum aggregate
size is bounded above by a constant times the maximum cell size in the mesh [18]. Moreover, in order to assure
that aggregates are always connected sets, we assume Tℎ is defined, such that 𝑇 ∩Ω is connected, for any 𝑇 ∈ Tℎ.
Connected aggregates are convenient for the numerical analysis in Appendix B, as they allow one to use the
Deny-Lions lemma to prove approximability properties.

(a) (b) (c)

Figure 2. Close-up to the top left corner of Figure 1b describing the cell aggregation scheme [18] in
three steps. The initial aggregates are well-posed cells; their root cells are assigned to be themselves.
Next, we incrementally attach ill-posed cells. An ill-posed cell, when facet-connected to an aggregate,
is attached to the closest root cell, in the sense of Definition 2.2. Arrows in (a) and (b) point ill-posed
cells to all possible candidates; selected candidates are pointed by continuous arrows, non-selected with
discontinuous ones. The black thin lines represent the boundaries of the aggregates. From one step to
the next one, some of the lines between adjacent cells are removed. This means that the adjacent cells
have been merged into the same aggregate. The procedure leads to T ag

ℎ , represented in (c).

2.3. Standard Lagrangian conforming finite element spaces. Our aim now is to present our notation to
describe conventional conforming FE spaces on top of tree-based meshes; they are referred to as standard or
std, in contrast to the aggregated spaces presented later in Section 2.4. We aim at solving a PDE problem in the
physical domain Ω, subject to boundary conditions on 𝜕Ω. We assume Dirichlet conditions on ΓD ⊂ 𝜕Ω. For
unfitted meshes, it is not obvious to impose Dirichlet conditions in the approximation space in a strong manner.
In consequence, we will assume weak imposition of Dirichlet boundary conditions on ΓD.

Our starting point is the typical CG FE space, denoted by Vncf
ℎ , in which we enforce continuity across

conforming VEFs, i.e. those meeting Assumption 2.1 (i). As usual in FEM, Vncf
ℎ is grounded on defining cell-

wise functional spaces V(𝑇), a canonical basis for a set of local DOFs, a geometrical ownership of the local
DOFs by the cell VEFs and a local-to-global map to glue together local DOFs that lie in the same geometrical
position. For the sake of simplicity and without loss of generality, we assume the local spaces V(𝑇) are
scalar-valued Lagrangian FEs, of the same order 𝑞 everywhere. Extension to vector-valued or tensor-valued
Lagrangian FEs is straightforward; it suffices to apply the same approach component by component. We denote
by Σ the set of global DOFs in T act

ℎ associated to Vncf
ℎ .

When T act
ℎ is non-conforming, it is clear that Vncf

ℎ yields discontinuous approximations across hanging
VEFs. Therefore, the resulting FE space is non-conforming (i.e. it is not a subspace of its infinite-dimensional
counterpart) and, thus, not suitable for CG methods. To recover global (trace) continuous FE approximations,
values of DOFs lying only on hanging VEFs cannot be arbitrary, they must be linearly constrained. In practice,
this means to restrict Vncf

ℎ into a conforming FE subspace Vstd
ℎ .

In order to introduce Vstd
ℎ , let Σ � {ΣF,ΣH} denote a partition into free and hanging DOFs; the latter

refers to the subset of global DOFs lying only on hanging VEFs. We let now MH
𝜎 denote the subset of DOFs

constraining 𝜎 ∈ ΣH, referred to as the set of master DOFs of 𝜎. Recalling Assumption 2.1 (ii), we observe
that, given 𝜎 ∈ ΣH, lying on a hanging VEF 𝑓 of a cell 𝑇 , its constraining DOFs are located in the closure of
their owner VEF 𝑓 ′ of a coarser cell 𝑇 ′ [14, Proposition 3.6]. Setup and resolution of hanging DOF constraints
for Lagrangian FE spaces is well-established knowledge [11] and, for conciseness, not reproduced here.

Finally, we introduce the standard conforming FE space. Given 𝑣ℎ =
∑

𝜎∈Σ 𝑣𝜎ℎ 𝜙
𝜎 ∈ Vncf

ℎ , we let

Vstd
ℎ � {𝑣ℎ ∈ Vncf

ℎ : 𝑣𝜎ℎ =
∑︁

𝜎′∈MH
𝜎

𝐶H
𝜎𝜎′𝑣

𝜎′
ℎ for any 𝜎 ∈ ΣH}, (1)

where 𝐶H
𝜎𝜎′ = 𝜙

𝜎′ (𝒙𝜎) and 𝜙𝜎′ is the global shape function of Vncf
ℎ associated with 𝜎′. Note that 𝐶H

𝜎𝜎′ ≠ 0,
by definition of 𝜎 ∈ ΣH and MH

𝜎 . We observe that Vstd
ℎ ⊂ Vncf

ℎ is conforming, in particular, 𝑣ℎ ∈ C0(Ωact).
2.4. Aggregated Lagrangian finite element spaces. The spaceVstd

ℎ , introduced in Section 2.3, is conforming,
but leads to arbitrarily ill-conditioned systems of linear algebraic equations, unless an extra technique is used
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to remedy it. This is the main motivation to introduce AgFE spaces (see, e.g. [18, 29]). The main idea is to
remove from Vstd

ℎ ill-posed DOFs, associated with small cut cells, by constraining them as a linear combination
of DOFs with local support in a well-posed cell. For this purpose, we assign each ill-posed DOF to a well-posed
cell, via the root cell map 𝑅. Following this, we extrapolate the value at the ill-posed DOF, in terms of the DOF
values at the root cell. Thus, the problem is posed in terms of well-posed DOFs only, recovering the ill-posed
DOFs with a discrete extension operator.

In this section, we derive an AgFE space Vag
ℎ as a subspace of Vstd

ℎ . We focus on laying out the key aspect
to combine the new linear constraints, arising from ill-posed DOF removal, with those already restricting Vstd

ℎ ,
to enforce conformity. For the sake of completeness, we refer to Appendix A for a rigorous description of
the extension operator with combined constraints and the proof that Vag

ℎ is well-defined, e.g. it does not have
cycling constraint dependencies. Besides, we demonstrate, in Appendix B, (cut-independent) well-posedness
and condition number estimates of the linear system arising from this AgFE method on the Poisson problem
defined in (3).

In order to construct Vag
ℎ , we start by recalling the partition of DOFs associated to Vstd

ℎ into free DOFs and
hanging constrained DOFs. The first and most crucial step is to further distinguish, on top of this partition,
among well-posed and ill-posed DOFs. To this end, we must define sets of the form ΣX,Y, where X ∈ {W, I}
refers to well-posed or ill-posed and Y ∈ {F,H} refers to free or hanging. We refer to Figure 3 for an illustration
of this classification. The key to combine the constraints is to define well-posed free DOFs ΣW,F as those with
local support in (at least one) a well-posed cell. Specifically, we let ΣW,H ⊂ ΣH denote the set of hanging DOFs
that are located in TW

ℎ , i.e. they are a local DOF of (at least one) well-posed cell. Then, ΣW,F ⊂ ΣF is defined
as follows.

Definition 2.3. Given 𝜎 ∈ ΣF, then 𝜎 ∈ ΣW,F is a well-posed free DOF, if and only if it meets one of the
following: (i) 𝜎 is located in TW

ℎ or (ii) 𝜎 does not meet condition (i), but 𝜎 ∈ MH
𝜎′ for some 𝜎′ ∈ ΣW,H, i.e. 𝜎

is outside TW
ℎ , but constrains a well-posed hanging DOF 𝜎′.

� Ω � Ωart \Ω • ΣW,F • ΣW,H × ΣI,F × ΣI,H

(a) Correct partition of Σ for Vag
ℎ . Free DOF 𝜎 is marked

as well-posed, even though it is surrounded by ill-posed
cells, because it constrains the well-posed hanging DOF
𝜎′. Hence, it is well-posed due to Definition 2.3 (ii).

(b) Incorrect partition of Σ for Vag
ℎ . Free DOF 𝜎 is marked

as ill-posed. If its root cell is pointed by the dashed arrow,
then 𝜎′ constrains 𝜎. In parallel, 𝜎′ is a hanging DOF
constrained by 𝜎. Thus, we have an unsolvable circular
constraint dependency.

Figure 3. Classification of Σ into {ΣW,F,ΣW,H,ΣI,F,ΣI,H} on a portion of a mesh where 𝜂0 = 1,
i.e. well/ill-posed cell iff interior/cut cell. The key to combine hanging and aggregation DOF constraints
is to mark DOFs meeting Definition 2.3 (ii) as well-posed, as in (a). In this way, we circumvent any
possible circular constraint dependencies, such as the one described in (b).

This definition eliminates any situation with circular constraint dependencies, as shown in Figure 3b and
detailed in Appendix A. Furthermore, it is backed by the numerical analysis in Appendix B. We observe that
ΣW,F includes free DOFs surrounded by ill-posed cells that constrain well-posed hanging DOFs, see Figure 3a.
If we let ΣI,Y � ΣY \ ΣW,Y, then it becomes clear that {ΣW,F,ΣW,H,ΣI,F,ΣI,H} is a partition of Σ. In contrast
to free DOFs in ΣW,F, any 𝜎 ∈ ΣI,F is liable to have arbitrarily small local support and, following the AgFEM
rationale, must be constrained by DOFs in ΣW,F. It follows that, in the AgFE space, free DOFs are reduced to
free well-posed DOFs, i.e. ΣW,F, whereas constrained DOFs are ΣC � {ΣW,H,ΣI,F,ΣI,H}. In Appendix A we
show that any 𝜎 ∈ ΣC can be resolved with direct constraints, i.e. linear constraints of the same form as those
in (1), in terms of well-posed free DOFs, only. As a result, the (sequential) aggregated or ag. FE space can be
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readily defined as

Vag
ℎ � {𝑣ℎ ∈ Vncf

ℎ : 𝑣𝜎ℎ =
∑︁

𝜎′∈M𝜎

𝐶𝜎𝜎′𝑣𝜎
′

ℎ for any 𝜎 ∈ ΣC}, (2)

where M𝜎 is the set of DOFs constraining 𝜎 ∈ ΣC and 𝐶𝜎𝜎′ is the constraining coefficient for 𝜎′ ∈ M𝜎; we
refer to (14) and (15) for their respective full expressions. It is clear that Vag

ℎ ⊂ Vstd
ℎ ⊂ Vncf

ℎ . For the sake of
brevity, further aspects, such as the definition of the resulting shape basis functions or finite element assembly
operations are not covered. In the end, constraints supplementing Vag

ℎ are of multipoint linear type, in the same
way as those of Vstd

ℎ ; they have been extensively covered in the literature, see, e.g. [12, 27]. With regards to the
implementation, we remark that the set up of Vag

ℎ can also potentially reuse data structures and methods devoted
to the construction of Vstd

ℎ or, more generally, any other FE space endowed with linear algebraic constraints.

2.5. Distributed-memory extension. After defining AgFEM in a serial context, we briefly discuss its extension
to a domain decomposition (DD) setup for implementation in a distributed-memory computer. We start by
setting up the partition of the mesh into subdomains: Let S be a partition of Ωart into subdomains obtained by
the union of cells in the background mesh Tℎ, i.e. for each cell 𝑇 ∈ Tℎ, there is a subdomain 𝑆 ∈ S such that
𝑇 ⊂ 𝑆. We denote by T L(𝑆)

ℎ the set of local cells in subdomain 𝑆 ∈ S; naturally, {T L(𝑆)
ℎ }𝑆∈S forms a partition

of Tℎ, see Figure 4. We assume that S is easy to generate. This is a reasonable assumption in our embedded
boundary context, where Ωart can be easily meshed with e.g. tree-based Cartesian grids, which are amenable to
load-balanced partitions grounded on space-filling curves [3].

T L(𝑆𝑖)
ℎ T TG(𝑆𝑖)

ℎ 𝑆1 𝑆2 • Σ
W,F
L • Σ

W,H
L × Σ

I,F
L × Σ

I,H
L

(a) Partial view of T L(𝑆1)
ℎ ∪ T TG(𝑆1)

ℎ . (b) Partial view of T L(𝑆2)
ℎ ∪ T TG(𝑆2)

ℎ .

Figure 4. Classification of cells and local DOFs assuming a partition of the mesh portion in Figure 3
into two subdomains. Light-shaded cells are not actually in the scope of 𝑆𝑖 , 𝑖 = 1, 2. The arrow in (a)
points at a free DOF, whose well-posed status can only be known by nearest-neighbour exchange, see
Remark 2.4; indeed, it has local support in a well-posed 𝑆2-cell that is not in T L(𝑆1)

ℎ ∪ T TG(𝑆1)
ℎ .

In a parallel, distributed-memory environment, each subdomain 𝑆 is mapped to a processor. Thus, each
processor holds in memory a portion T L(𝑆)

ℎ of the global mesh Tℎ. Naturally, local FE integration in 𝑆 is
restricted to cells in T L(𝑆)

ℎ . However, to correctly perform the parallel FE analysis, the processor-local portion
of Tℎ is usually extended with adjacent off-processor cells, a.k.a. ghost cells. Ghost cells are essential to generate
the global DOF numbering, in particular, to glue together DOFs in processors that represent the same global
DOF. For constrained spaces, they are also needed to locally solve DOF constraints that expand beyond T L(𝑆)

ℎ .
Standard practice in large-scale FE codes is to constrain the ghost cell set to a single layer of ghost cells. Here,
we refer to them as the true ghosts, given by T TG(𝑆)

ℎ � {𝑇 ∈ Tℎ \ T L(𝑆)
ℎ : 𝑇 ∩ 𝑆 ≠ ∅}. This layer suffices to

glue together global DOFs among processors for non-constrained spaces. However, it is not necessarily enough
to meet the requirements of constrained ones.

Our goal in this section is to identify the minimum set of ghost cells that we must attach to T L(𝑆)
ℎ in order

to define the 𝑆-subdomain restriction of Vag
ℎ into 𝑆, which leads to the distributed version of Vag

ℎ . Hereafter,
all quantities refer to a given subdomain 𝑆, and we drop the subindex 𝑆 unless needed for clarity. We assume
our initial distributed-memory setting considers processors holding T L

ℎ ∪ T TG
ℎ locally. Besides, each processor

holds a subdomain restriction of the root cell map 𝑅, such that it leads to the same aggregates as the ones
obtained with the sequential method; see [27] for details on the distributed-memory cell aggregation scheme.
We let now ΣL denote the set of (𝑆-subdomain) local DOFs, i.e. those located in T L

ℎ . As in the sequential
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version of AgFEM, we have that {ΣW,F
L ,Σ

W,H
L ,Σ

I,F
L ,Σ

I,H
L } forms a partition of ΣL, as shown in Figure 4. Hence,

ΣC
L � {ΣW,H

L ,Σ
I,F
L ,Σ

I,H
L } is the subset of (𝑆-subdomain) local constrained DOFs.

For the sake of parallel performance and efficiency, we want to design our parallel algorithms and data
structures, concerning the setup of Vag

ℎ , in such a way that they maximise local work, while minimising inter-
processor communication. In our context, this amounts to ensure that, given 𝜎 ∈ ΣC

L , we can resolve its full
constraint dependency locally, in the scope of the processor. In other words, any constraining DOF 𝜎′ ∈ M𝜎

must be found in the processor-local portion of Tℎ. In order to see how we can fulfil this requirement with Vag
ℎ ,

we recover first two particular cases, already addressed in previous literature:

(1) Vag
ℎ does not have ill-posed DOFs, i.e. Vag

ℎ ≡ Vstd
ℎ : We recall, from Section 2.3, that constraining

DOFs of hanging DOFs are located on their coarser cells around. As all coarser cells around T L
ℎ are

in T L
ℎ ∪ T TG

ℎ , all constraint dependencies of hanging DOFs in T L
ℎ do not expand beyond T L

ℎ ∪ T TG
ℎ ,

i.e. all hanging DOF constraints in T L
ℎ can be resolved in T L

ℎ ∪ T TG
ℎ , see [14, Proposition 4.1].

(2) Vag
ℎ does not have hanging DOFs, i.e. Vag

ℎ is defined on a conforming mesh: In general, given 𝜎 ∈ Σ
I,F
L ,

the subdomain, where its root cell is located, is different from the current subdomain. In particular, the
root cell can be outside T L

ℎ ∪ T TG
ℎ , as in Figure 5a. This means that the constraint dependency of 𝜎

propagates away from T L
ℎ ∪ T TG

ℎ . In order to cancel the constraint associated to 𝜎, we need to attach
the missing root cell to T L

ℎ ∪ T TG
ℎ [27]. We let TRG

ℎ denote the set of all missing remote root cells.

𝑆3 𝑆2 𝑆1 • Free • Hanging × Ill-posed

(a) Conforming mesh. The value at 𝜎 is constrained by
the nodal values of root cell 𝑇 , which belongs to 𝑆3. As a
result, to resolve the constraint, it is necessary to send to
𝑆1 data from 𝑇 .

(b) Non-conforming mesh. In contrast with (a), 𝑇 touches
a coarser cell. Therefore, to fully resolve the constraint
it is necessary to send to 𝑆1 data from 𝑇 and its coarser
neighbour.

Figure 5. An ill-posed DOF 𝜎 is constrained by a root cell 𝑇 in 𝑆3, which is not a neighbour of 𝑆1.

When both hanging and aggregation DOF constraints are present, the key difference with respect to sce-
nario (2) is that root cells may be in contact with coarser cells. This means that root cells may have hanging
DOFs, which are cancelled by DOFs located at their coarser cells around, as pointed out in scenario (1). There-
fore, apart from missing root cells, TRG

ℎ must also contain all missing coarser cells around the root cells relevant
to 𝑆, see Figure 5b. Specifically, if 𝜎 is located in T L

ℎ ∪T TG
ℎ , then both the root cell, to which is mapped to, and

its coarser cells around should be in the processor-local portion of Tℎ. For uniform meshes, algorithms in charge
of importing data associated with these missing cells are covered in [27]. They are grounded on the so-called
parallel direct and inverse path reconstruction schemes, which only need nearest-neighbour communication
patterns. For non-conforming meshes, it suffices to modify them such that they account for non-conforming
adjacency in the path reconstruction and also import missing coarser cells around roots into the processor. We
stress the fact that this approach does not involve any mesh reconfiguration and repartition, e.g. it keeps the
space-filling curve partition, which is essential for performance purposes. It also has little impact on overall
parallel performance and scalability and it can be easily implemented in distributed-memory FE codes, as
evidenced in Section 3.

In conclusion, if we increment the ghost cell layer with TRG
ℎ as explained above, then we can correctly

identify within the processor all constraining DOFs that are located beyond T L
ℎ . It follows that we can resolve all

hanging and aggregation DOF constraints inT L
ℎ without any extra interprocessor communication, thus achieving

our parallel performance target of maximizing local work, while minimising inter-processor communication.
Another relevant outcome is that we can accommodate to ΣL the same rationale detailed in Appendix A to
solve the mixed constraints; all subsequent steps, to derive expressions for (unified aggregation and hanging)
sets of master DOFs and constraining coefficients, follow exactly the sequential AgFEM counterpart, using the
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corresponding subdomain definitions. It leads to the definition of the distributed version of Vag
ℎ and will not be

reproduced here to keep the presentation short.

Remark 2.4. We observe the following detail: In order to determine whether a free DOF 𝜎 ∈ ΣL is well- or
ill-posed, i.e. whether 𝜎 ∈ Σ

W,F
L or 𝜎 ∈ Σ

I,F
L , the processor needs to know the set of cells, where 𝜎 has local

support. However, a processor may not know the full set, based solely on local information, i.e. T L
ℎ ∪T TG

ℎ . This
scenario is illustrated in Figure 4a. Fortunately, to let the processor know the complete set of cells, it suffices
to combine the local information with a single nearest-neighbour communication. This result is backed by [14,
Proposition 4.3], where an analogous issue is described, when trying to recover all the processors where 𝜎 has
local support, instead of its well- or ill-posed cell status.

3. Numerical experiments

Our purpose in this section is to assess numerically the behaviour of ℎ-AgFEM. We start with a description of
the model problem in Section 3.1. We consider a Poisson equation with non-homogeneous Dirichlet boundary
conditions and a Nitsche-type variational form. We introduce next the experimental benchmarks in Section 3.2,
composed of several manufactured problems defined in a set of complex geometries. After this, we jump into
the numerical experiments themselves. We describe and discuss the results of two sets of experiments, namely
convergence tests in Section 3.3 and weak-scaling tests in Section 3.4.

3.1. Model problem. Numerical examples consider the Poisson equation with non-homogeneous Dirichlet
boundary conditions. After scaling with the diffusion term, the equation reads: find 𝑢 ∈ 𝐻1(Ω) such that

− Δ𝑢 = 𝑓 , in Ω, 𝑢 = 𝑔, on ΓD � 𝜕Ω, (3)

where 𝑓 ∈ 𝐻−1(Ω) is the source term and 𝑔 ∈ 𝐻1/2(𝜕Ω) is the prescribed value on the Dirichlet boundary.
In the numerical tests, we study both Vstd

ℎ and Vag
ℎ , see Sections 2.3 and 2.4, as possible choices of Vx

ℎ . As
stated in Section 2.3, we consider weak imposition of boundary conditions, since unfitted methods do not easily
accommodate prescribed values in a strong sense. As usual in the embedded boundary community, we resort
to Nitsche’s method to circumvent this problem [16–18]. We observe that this approach provides a consistent
numerical scheme with optimal convergence rates (even for high-order FEs). According to this, we approximate
(3) with the variational formulation: find 𝑢ℎ ∈ Vx

ℎ such that a(𝑢ℎ, 𝑣ℎ) = b(𝑣ℎ) for all 𝑣ℎ ∈ Vx
ℎ , with

a(𝑢ℎ, 𝑣ℎ) �
∫
Ω

∇𝑢ℎ · ∇𝑣ℎ dΩ +
∫
𝜕Ω

(𝜏𝑢ℎ𝑣ℎ − 𝑢ℎ (𝒏 · ∇𝑣ℎ) − 𝑣ℎ (𝒏 · ∇𝑢ℎ)) dΓ, and

b(𝑣ℎ) �
∫
Ω

𝑣ℎ 𝑓 dΩ +
∫
𝜕Ω

(𝜏𝑣ℎ𝑔 − (𝒏 · ∇𝑣ℎ) 𝑔) dΓ,
(4)

with 𝒏 being the outward unit normal on 𝜕Ω. We note that forms a(·, ·) and b(·) include the usual terms,
resulting from the integration by parts of (3), plus additional terms associated with the weak imposition of
Dirichlet boundary conditions with Nitsche’s method. For further details, we refer to Appendix B.2, where we
prove well-posedness of Problem (4) considering Vag

ℎ as the discretisation space.
Coefficient 𝜏 > 0 denotes a mesh-dependent parameter that has to be large enough to ensure coercivity of

a(·, ·). It is prescribed with the same rationale given in [27, Section 4.2]. For Vag
ℎ , we have that 𝜏 = 𝛽agℎ−1

𝑇

for all 𝑇 ∈ T I
ℎ , where ℎ𝑇 is the cell characteristic size and 𝛽ag is a user-defined constant parameter. Numerical

experiments take 𝛽ag = 25.0; this value is enough for having a well-posed problem in all cases considered in
Section 3.3. When using Vstd

ℎ , the value in a generic ill-posed cell takes the form

𝜏 = 𝛽std𝜆max
𝑇 , for all 𝑇 ∈ T I

ℎ , (5)

where 𝛽std = 2.0 and 𝜆max
𝑇 is the maximum eigenvalue of the generalised eigenvalue problem: find 𝜇𝑇 ∈ Vstd

ℎ |𝑇
and 𝜆𝑇 ∈ R such that∫

𝑇∩Ω
∇𝜇𝑇 · ∇𝜉𝑇 dΩ = 𝜆𝑇

∫
𝑇∩𝜕Ω

(∇𝜇𝑇 · 𝒏) (∇𝜉𝑇 · 𝒏) dΓ, for all 𝜉𝑇 ∈ Vstd
ℎ |𝑇 , for all 𝑇 ∈ T I

ℎ .

We notice that 𝜏 computed as in (5) can be arbitrarily large, as the measure of the cut Ω ∩ 𝑇 , 𝑇 ∈ T I
ℎ , tends to

zero. This means that, in contrast with Vag
ℎ , strongly ill-conditioned systems of linear equations may arise with

Vstd
ℎ , depending on the position of the cut.
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3.2. Experimental setup. The model problem is defined on five different 2D and 3D non-trivial domains
shown in Figure 6: (a) a planar “pacman" shape, (b) a popcorn flake with a wedge removed, (c) a hollow block,
(d) a 3-by-3 array of (c) and (e) a spiral. These geometries appear often in the literature to study robustness and
performance of unfitted FE methods (see, e.g. [16, 18]). The artificial domain Ωart, on top of which the mesh is
generated, is the cuboid [−1, 1]𝑑 , 𝑑 = 2, 3, for cases (a-c), [0, 1]3 for case (d) and [−1, 1]2 × [0, 2] for case (e).

(a) Pacman (b) Popcorn

(c) Hollow block (d) H. b. array (e) Spiral

Figure 6. Geometries and numerical solution to the problems studied in the examples. (a-b) consider
the Fichera corner problem in (6), whereas (c-e) the multiple “shock" in (7).

As illustrated in Figure 6, for geometries (a-b), the source term and boundary conditions of the Poisson
equation are defined, such that the PDE has the exact solution

𝑢(𝑟, 𝜃) = 𝑟𝛼 sin𝛼𝜃, 𝑟 =
√︃
𝑥2 + 𝑦2, 𝜃 = arctan 𝑦/𝑥, 𝛼 = 2/3,

(𝑥, 𝑦) ∈ Ω ⊂ R2, 𝑧 = 0 in 2D, (𝑥, 𝑦, 𝑧) ∈ Ω ⊂ R3 in 3D.
(6)

The same applies to (c-e), but seeking a different exact solution given by

𝑢(𝑟) =
∑︁
𝑖=1,3

arctan 𝜏𝑖 (𝑟 − 𝑟 𝑖0),

𝑟 = | |𝒙 − 𝒙𝑖0 | |2, 𝒙 = (𝑥, 𝑦, 𝑧) ∈ Ω ⊂ R3,

(7)

where ‖ · ‖2 denotes the Euclidean norm and

𝜏1 = 60, (𝑥1
0, 𝑦

1
0, 𝑧

1
0) = (−1,−1, 1), 𝑟1

0 = 2.5,
𝜏2 = 80, (𝑥2

0, 𝑦
2
0, 𝑧

2
0) = (1, 1,−1), 𝑟2

0 = 1.75, and
𝜏3 = 120, (𝑥3

0, 𝑦
3
0, 𝑧

3
0) = (0.5,−3,−3), 𝑟3

0 = 4.5.

Problems (6) and (7) correspond to adapted versions of two classical hp-FEM benchmarks, namely, the Fichera
corner and “shock" problems (see, e.g. [32]). Derivatives of solution 𝑢 in (6) are singular at the 𝑟 = 0 axis;
in particular, 𝑢 ∈ 𝐻1+ 2

3 (Ω). Recalling a priori error estimates, it is well known that the rate of convergence
of the standard FE method with uniform ℎ-refinements, when applied to this case, is bounded by regularity
only. Specifically, the energy-norm error1 satisfies ‖𝑢 − 𝑢ℎ ‖𝑎 ≤ 𝐶ℎ−2/3‖𝑢‖

𝐻
1+ 2

3 (Ω) . However, by combining a
posteriori error estimation and ℎ-adaptive refinements, optimal rates of convergence can be restored [32]. On

1Recall that, for the unit-diffusion Poisson equation, the energy norm is given by ‖𝑢‖2
𝑎 =

∫
Ω
|∇𝑢 |2 dΩ.
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the other hand, problem (7) is characterised by three intersecting shocks. The solution to the problem is smooth,
but it sharply varies in the neighbourhood of the shocks. In this case, ℎ-adaptive standard FEM does not affect
rates of convergence, but potentially yields meshes that minimise the number of cells required to achieve a given
discretisation error.

The variety of shapes and benchmarks considered here aims to show (i) the capability of ℎ-AgFEM of
retaining the same benefits ℎ-adaptivity brings, when combined with standard FEM, while being able (ii) to deal
with complex and diverse 2D and 3D domains in a robust manner and (iii) to yield remarkable parallel efficiency
with state-of-the-art out-of-the-box scalable iterative linear solvers for symmetric positive definite matrices. In
order to do this, we confront numerical results obtained with Vag

ℎ against those of Vstd
ℎ . In the plots, the two

spaces are labelled as aggregated (or ag.) and standard (or std.). All examples run on background Cartesian
grids, with standard isotropic 1:4 (2D) and 1:8 (3D) refinement rules; they are commonly referred to as quad-
or octrees in 2D or 3D, resp. Apart from that, continuous FE spaces composed of first order Lagrangian finite
elements are employed.

In the numerical experiments, we perform convergence tests using three different remeshing strategies
(uniform refinements, Li and Bettess (LB) and Oñate and Bugeda (OB) [33, 34]) in a parallel, distributed-
memory environment. We also assess robustness to cut location and assess sensitivity to the well-posedness
threshold 𝜂0. Finally, we perform a weak scalability analysis for some selected ag. cases; Table 1 summarises
the main parameters and computational strategies used in the numerical examples.

We carry out the numerical experiments at the Marenostrum-IV (MN-IV) supercomputer, hosted by the
Barcelona Supercomputing Centre. Concerning the software, an MPI-parallel implementation of the ℎ-AgFEM
method is available at FEMPAR [30]. FEMPAR is linked against p4est v2.2 [3], as the octree Cartesian grid
manipulation engine, and PETSc v3.11.1 [28] distributed-memory linear algebra data structures and solvers. To
show that Vag

ℎ leads to systems, that are amenable to well established scalable linear solvers for standard FE
analysis on body-fitted meshes, we resort to the broad suite of linear solvers available in the PETSc library [28].
In particular, we use a conjugate gradient (CG) method, preconditioned by a smoothed-aggregation AMG
scheme called GAMG. The preconditioner is set up in favour of reducing, as much as possible, the deviation from
its default configuration, as in [27]. We do this in order to show that AgFEM blends well with common AMG
solvers, whereas std. unfitted FEM does not. Both solver and preconditioner are readily available through the
Krylov Methods KSP module of PETSc. In order to advance convergence tests down to low global energy-
norm error values, without being polluted by the linear solver accuracy, convergence of GAMG is declared when
‖r‖2/‖b‖2 < 10−9 within the first 500 iterations, where r � b − Axcg is the unpreconditioned residual.

Description Considered methods/values

Model problem Poisson equation (Nitsche’s formulation)
Problem geometry 2D: Pacman shape; 3D: Popcorn flake,

Hollow block, Hollow block array and spiral
AMR benchmark Fichera corner and multiple-shock problem [32]
Remeshing strategy Uniform, Li and Bettess [33], and Oñate and Bugeda [34]
Experimental computer environment Parallel (distributed-memory)
Mesh topology Single quad- or octree
Parallel mesh generation and partitioning tool p4est library [3]
Well-posed cut cell criterion 𝜂0 = 0.25
FE spaces Aggregated Vag

ℎ and standard Vstd
ℎ

Cell type Hexahedral cells
Interpolation Piece-wise bi/trilinear shape functions
Linear solver Preconditioned conjugate gradients
Parallel preconditioner Smoothed-aggregation GAMG
GAMG stopping criterion ‖r‖2/‖b‖2 < 10−9

Coef. in Nitsche’s penalty term for Vag
ℎ 𝛽 = 25.0

Table 1. Summary of the main parameters and computational strategies used in the numerical examples.

3.3. Convergence tests. Convergence tests in relative energy-norm error are carried out with three different
mesh refinement strategies. The first one is uniform ℎ-refinements, in pursuance of both exposing the behaviour
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of AgFEM, in absence of hanging node constraints, and the limited regularity of the Fichera corner problem.
The remaining two are error-driven; they are distinguished by different optimality criteria on the elemental error
indicator 𝛾𝑇 , for any 𝑇 ∈ Tℎ. It is not in the scope of this work to design a posteriori error estimation techniques
for AgFEM, although there are some works with other unfitted FE methods that explore this question [10].
Hence, since the target problems have known analytical solution, 𝛾𝑇 is taken as the energy norm of the local
true error 𝑒 = 𝑢 − 𝑢ℎ, that is,

𝛾𝑇 = ‖𝑒‖ 𝑎 |𝑇∩Ω = ‖𝑢 − 𝑢ℎ ‖ 𝑎 |𝑇∩Ω , 𝑇 ∈ Tℎ .
Error-driven mesh adaptation seeks an optimal mesh with an iterative procedure. In the examples below,
optimality is declared when the global absolute discretisation error, measured in energy norm, ‖𝑒‖𝑎 is below a
prescribed quantity 𝛾, i.e.

‖𝑒‖𝑎 ≤ 𝛾, 𝛾 > 0. (8)
(8) is referred to as the acceptability criterion.

The process starts with an initial guess of the optimal mesh. After finding the approximate solution and
the exact cell-wise error distribution, a new mesh is defined with a remeshing strategy. This step consists in
comparing each 𝛾𝑇 to a given threshold, commonly known as the optimality criterion, which is later defined.
Depending on the result of the comparison, a different remeshing flag is assigned to the cell. If 𝛾𝑇 is above
the threshold, 𝑇 is marked for refinement. Otherwise, 𝑇 is left unmarked or, optionally, marked for coarsening,
when 𝛾𝑇 falls well below the threshold. Following this, the mesh is transformed, according to the cell-wise
remeshing flags, and partitioned. Next, a new FE space is created, by distributing DOFs on top of the new
mesh and computing the nonconforming DOF constraints and, if using Vag

ℎ , also the ill-posed DOF constraints.
After FE integration and assembly, the resulting linear system is solved and the cell-wise error distribution is
updated. If the current mesh complies with the acceptability criterion of (8), the process is stopped, otherwise
it goes back to the application of the optimality criterion.

As mentioned before, two different optimality criteria (thresholds for refinement) are studiedThe first one,
the LB [33, 35] criterion, establishes that the error distribution in an optimal mesh (denoted with *) is uniform,
that is

‖𝑒∗‖𝑇 ∗∩Ω =
𝛾√
𝑀∗ , 𝑇∗ = 1, . . . , 𝑀∗,

where 𝑀∗ is the number of cells in the optimal mesh. At each mesh adaptation step, this quantity is estimated
as

𝑀∗ = 𝛾−𝑑/𝑚
(
𝑀∑︁
𝑇 =1

‖𝑒‖𝑑/(𝑚+𝑑/2)
𝑇

) (𝑚+𝑑/2)/𝑚
,

with 𝑑 the space dimension, 𝑚 the degree of the interpolation (in second-order elliptic problems) and 𝑀 the
number of cells of the current iteration. On the other hand, the OB [34] criterion considers that the distribution
of error density in an optimal mesh is uniform, that is

‖𝑒∗‖𝑇 ∗∩Ω =
𝛾Ω

1/2
𝑇 ∗∩Ω

Ω1/2 , 𝑇∗ = 1, . . . , 𝑀∗,

where Ω is the measure of the domain and Ω𝑇 ∗∩Ω is the measure of 𝑇∗ ∩ Ω. While the former criterion has
been proved [35] to provide standard body-fitted FE meshes satisfying (8) with the least number of elements,
the latter scales the threshold in terms of the size of the (ill-posed) cell. One of the goals of the following
experiments is to see how both strategies perform in the context of unfitted FEs. Note that, with respect to
standard body-fitted FEM, both remeshing strategies are almost applied verbatim to an unfitted FE setting; the
only difference being that the local quantities in cut cells are computed in the interior part only, in the same way
as for the local integration of the weak form stated in (4).

Convergence tests with uniform ℎ-refinements follow the usual procedure, whereas error-driven tests are
controlled with a finite sequence of decreasing error objectives 𝛾𝑖 , 𝑖 > 1. For each 𝑖 > 1, the iterative procedure
described above is carried out to find the mesh that complies with the acceptability criterion of (8) with 𝛾 = 𝛾𝑖 .
If subscript 𝛾𝑖 refers to the quantities obtained at the last mesh iteration, at the end of the procedure we can
extract the pair ( ‖𝑒‖𝑎,𝛾𝑖

‖𝑢‖𝑎,𝛾𝑖
, 𝑁

𝛾𝑖
dofs

)
,

that is, a point of the convergence test curve. Figure 7 depicts some meshes found with this iterative procedure,
using the LB acceptability criterion.
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Figure 7. Pacman-Fichera, hollow-shock and spiral-shock examples: optimal meshes obtained with the
LB criterion for the convergence test.

We carry out all convergence tests for a fixed number of threads (MPI tasks). We employ six MN-IV
high-memory nodes and map each core to a different MPI task. Therefore, the experiments are launched in
6 · 48 = 288 processors. The partition of the mesh considers 288 subdomains and is defined to seek an equal
distribution of the number of cells among processors (p4est default setting). The well-posedness threshold for
aggregation 𝜂0 (see Section 2.2) is prescribed to 0.25 in what follows.

Let us now start the discussion of the numerical results obtained with convergence tests. As shown in
Figure 8 ℎ-AgFEM behaviour consistently mirrors the one of std. ℎ-FEM. This includes that (1) ℎ-AgFEM
always produces more optimal meshes, in terms of the error, than its non-adaptive version; and (2) optimal
convergence rates are retained, even for the ℎ-AgFEM Fichera problems, where convergence in the non-adaptive
version is limited by regularity.

Although the std. method is slightly more accurate than its ag. counterpart for the Fichera problems with
uniform refinements, the usual behaviour is that they are very similar in terms of accuracy. Another outcome
observed is that the LB criterion is clearly more cost-efficient, in terms of mesh size, than the OB one for both
std. and ag. variants. This is also reported in [36] with std. ℎ-FEM.

However, as expected, the linear solver does not manage to generate a solution in most of std. FE cases.
Either the preconditioner cannot be generated or it is not positive definite (thus, incompatible with the conjugate
gradient method). Both issues are directly related to the severe ill-conditioning of matrices obtained with the
std. method, as extensively reported in previous works [18, 27]. On the other hand, when using the ag. method,
GAMG is fully robust and converges towards the solution at the 10−9 tolerance.

Despite poor robustness of the solver with the std. method, available results in Figure 9 are enough to clearly
identify higher growth rates in number of iterations for std. matrices, than for ag. ones. This exposes that,
among the two methods, only ℎ-AgFEM is potentially scalable, as the number of iterations mildly grows with
the size of the problem; even for ℎ-AgFEM points in Figure 9 with the largest number of DOFs, convergence
is declared in almost twenty iterations. We have verified that, in this context, the solver achieves single-digit
reduction of the residual norm in 2-3 iterations, at most. Textbook multigrid efficiency is attained when the
solver uses a modest number of point smoothing steps and convergence nearly advances at one digit in reduction
of the residual norm per iteration [28]. We have checked the former is satisfied, by inspecting PETSc log data,
whereas the latter is broadly fulfilled in AgFEM experiments. Therefore, GAMG on ℎ-AgFEM matrices is not
only robust, but also efficient.

A final experiment with convergence tests looks at the sensitivity of AgFEM to the well-posedness threshold
𝜂0. As it is shown in Figure 10, low values of 𝜂0 may not bypass the small cut-cell problem and hinder GAMG
solvability, as shown in the 3D parallel examples. Conversely, high values of 𝜂0 do not affect robustness, but
increase solver iterations and reduce (local) accuracy. This is most likely an effect of excessive well-posed-to-
ill-posed DOF extrapolation. As a result, optimal 𝜂0 values may be found in the middle of the [0, 1] range. This
means that, while enforcing a minimum amount of aggregation is required to guarantee robustness, superfluous
aggregation deteriorates solver efficiency. This effect is particularly prominent in ℎ-adaptivity; setting 𝜂0 = 1
on uniform meshes leads to decent results, as demonstrated in a previous work [27].

3.4. Weak scaling. The starting point of weak scaling tests is the parallel convergence test setup of the previous
section. As explained, a single convergence test case results in a set of pairs{( ‖𝑒‖𝑎,𝛾𝑖

‖𝑢‖𝑎,𝛾𝑖
, 𝑁

𝛾𝑖
dofs

)}
𝛾𝑖>1

,

associated with a finite sequence of decreasing target error values 𝛾𝑖 , 𝑖 > 1. Each test corresponds to an
individual curve, e.g. the LB-ag curve for the Pacman-Fichera test case in Figure 8a. Other quantities can be
extracted from the test, e.g. the size of the global triangulation 𝑁𝛾𝑖

cells. In Section 3.3, each pair was obtained for
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Figure 8. Convergence tests in parallel environment for 288 tasks.

a fixed number of processors 𝑃 = 288. Naturally, as 𝑁𝛾𝑖
cells increases with 𝑖, so does the size of the local portion

of the triangulation 𝑛𝛾𝑖cells, owned by each processor.
Given

{
𝑁

𝛾𝑖
cells

}
𝑖>1 associated with a convergence test, a weak scaling one can be derived by adjusting the

number of processors 𝑃𝑖 for each 𝛾𝑖 , such that 𝑛𝛾𝑖cells remains approximately constant for all 𝑖 > 1. This can be
achieved, by e.g. prescribing

𝑃𝑖 = 𝑃1

⌊
𝑁

𝛾𝑖
cells

𝑁
𝛾1
cells

⌋
, 𝑖 > 1,

where 𝑃1 is a fixed initial number of processors and b·c is the floor function; given a real number 𝑥, b𝑥c is
the greatest integer less than or equal to 𝑥. From here, the weak scaling test consists merely in repeating the
convergence test, taking 𝑃𝑖 processors for each 𝛾𝑖 . In this way, by keeping the local size of the mesh 𝑛𝛾𝑖cells
constant, we can straightforwardly study how ℎ-AgFEM scales with global size of the problem.2 Table 2
gathers the sequences

{
𝑃𝑖

}
𝑖>1 obtained following this procedure for the two test cases that will be studied in

this section, namely, the Popcorn-Fichera and Hollow-Shock problems for the AgFEM method with the LB
remeshing criterion and 𝜂0 = 0.25.

In weak scaling tests, we monitor wall clock times spent in the main phases of (i) the AgFEM method and
(ii) the linear solver. We additionally get (iii) the number of GAMG solver iterations. As finding the optimal
mesh for each 𝛾𝑖 , 𝑖 > 1 is an iterative AMR process, we only report these quantities for the optimal mesh (last
iteration). In the FE simulation loop, the starting control point is right after generating and partitioning the
optimal mesh. From here, and following the order of the simulation pipeline, we report the time consumed in
relevant AgFEM-related phases

(1) parallel cell aggregation, i.e. generation of the distributed-memory root cell map 𝑅 (Section 2.2),
(2) import data from missing remote root (and their coarse neighbour) cells, i.e. import TRG

ℎ (Section 2.5),
(3) setup of the distributed Vstd

ℎ space (Section 2.3), accounting for hanging DOF constraints,

2We have checked that, using this approach, the local size of the problem (local number of DOFs) increases monotonically, though
mildly, for 𝑖 > 1. Thus, this conservative approach allows us to examine how the problem scales, avoiding cumbersome strategies to
balance DOFs.
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Figure 9. GAMG solver iterations in parallel environment for 288 number of tasks.

Popcorn-Fichera LB-ag with 𝜂0 = 0.25 and 𝑛cells ≈ 15.5𝑘

𝑃 2 8 19 52 132 349 883
𝑁cells 31k 130k 301k 800k 2,025k 5,354k 13,553k

Hollow-shock LB-ag with 𝜂0 = 0.25 and 𝑛cells ≈ 21.0𝑘

𝑃 6 17 29 107 194 790 1,484
𝑁cells 126k 369k 612k 2,261k 4,083k 16,662k 31,221k

Table 2. Number of subdomains and total cells in the background mesh for the cases considered in the
weak scaling tests of Figure 11. For each case, local mesh size, given by 𝑛cells, remains quasi-constant
with the number of subdomains 𝑃.

(4) setup of the distributed Vag
ℎ space on top of Vstd

ℎ (Sections 2.4 and 2.5), with mixed hanging and
aggregation DOF constraints.

This is followed (and completed) by gathering the time spent in the linear solver setup and run stages, as well
as the number of solver iterations needed to find the approximate solution to the problem on the optimal mesh.
The convergence criterion is the same as the one of the previous section, i.e. ‖r‖2/‖b‖2 < 10−9.

To allocate the MPI tasks in the MN-IV supercomputer, we resort to the default task placement policy of Intel
MPI (v2018.4.057) with partially filled nodes. For each point of the test, the number of nodes 𝑁 𝑖 is selected as
𝑁 𝑖 =

⌈
𝑃𝑖/48

⌉
, where d·e is the ceiling function; given a real number 𝑥, d𝑥e is the smallest integer more than or

equal to 𝑥. If 𝑃𝑖 is not multiple of 48, the placement policy fully populates the first 𝑁 − 1 nodes with 48 MPI
tasks per node; the remaining 𝑃𝑖 − 48(𝑁 − 1) MPI tasks are mapped to the last node.

Figure 11 gathers all the quantities surveyed in weak scaling tests. All main phases of the ℎ-AgFEM
method exhibit remarkable scalability (Figures 11a and 11b). The results are also qualitatively similar for both
geometries. Concerning solver performance in Figures 11c-11f, although times and iterations do not scale as
well as ℎ-AgFEM-specific phases, results are still sound. Different system matrix conditioning could explain the
slight differences between the two problems in solver performance. In any case, growth rate is mild, compared



THE AGGREGATED UNFITTED FINITE ELEMENT METHOD ON PARALLEL TREE-BASED ADAPTIVE MESHES 16

10−3

10−2

101 102 103

|𝑢
−
𝑢
ℎ
| 𝐻

1/
|𝑢|

𝐻
1

DOFs1/𝑑

(a) Pacman-F. conv. in parallel

10−3

10−2

10−1

101 102 103

|𝑢
−
𝑢
ℎ
| 𝐻

1/
|𝑢|

𝐻
1

DOFs1/𝑑

slope 1:1
slope 2:1
𝜂0 = 1/1
𝜂0 = 1/2
𝜂0 = 1/4
𝜂0 = 1/8
𝜂0 = 1/16
𝜂0 = 1/32

(b) Popcorn-F. conv. in parallel

10−2

10−1

100

101 102 103

|𝑢
−
𝑢
ℎ
| 𝐻

1/
|𝑢|

𝐻
1

DOFs1/𝑑

(c) Block-s. conv. in parallel

0

10

20

30

101 102 103

Pe
ts

c
gA

M
G

ite
ra

tio
ns

DOFs1/𝑑

(d) Pacman-F. GAMG iterations

0

10

20

30

40

50

60

101 102 103

Pe
ts

c
gA

M
G

ite
ra

tio
ns

DOFs1/𝑑

(e) Popcorn-F. GAMG iterations

0

10

20

30

40

50

60

70

80

101 102 103

Pe
ts

c
gA

M
G

ite
ra

tio
ns

DOFs1/𝑑

(f) Block-s. GAMG iterations

Figure 10. ℎ-AgFEM sensitivity to 𝜂0 with the LB criterion. Recall that 𝜂0 = 0.25 is the reference
value in previous experiments (see Figures 8-9).

to growth of problem size. For instance, in the Hollow-shock example, total solver wall clock time (setup plus
run) scales from 0.55 to 2.34 s, while the problem size scales from 126,232 to 16,619,828 cells. This means
the total solver time increases by a factor of 4.3𝑥, whereas the problem size by a factor of 131.7𝑥. On the other
hand, solver degradation is likely not fully attributed to ℎ-AgFEM; see, e.g. the results in [27], showing that
GAMG loses parallel efficiency even when dealing with body-fitted meshes.

4. Conclusions

In this work, we have introduced the aggregated finite element method on parallel adaptive tree-based meshes,
referred to as ℎ-AgFEM. The main difficulty is to establish how to combine hanging DOF constraints, arising
from mesh non-conformity, with aggregation ones, which are needed to get rid of the small cut cell problem,
in the definition of the discrete extension operator from well-posed to ill-posed DOFs. We have followed a
two-level strategy, grounded on building the aggregated FE space on top of an existing conforming FE space.

As main contributions of the paper, we have shown that (a) our approach allows one to define a unified
AgFE space accounting for both type of constraints, without circular constraint dependencies; the key point
is to mark as ill-posed DOFs those without local support in a well-posed cell. We have also described how,
(b) by carefully extending the layer of ghost cells, a distributed-memory version of ℎ-AgFEM can be easily
incorporated into existing large-scale FE codes. With numerical experimentation on the Poisson problem, we
have studied the behaviour of ℎ-AgFEM. It (c) enjoys the same benefits of standard ℎ-FEM on body-fitted
meshes. In particular, it restores optimal rates of convergence, implied by order of approximation alone, and it
is amenable to standard mesh optimality criteria. Likewise, it also (d) inherits good properties from AgFEM on
uniform meshes, above all robustness with respect to cut location. We have also demonstrated (e) good parallel
performance of a distributed-memory implementation of ℎ-AgFEM; the main outcome is that it can efficiently
exploit well-known AMG preconditioners available in, e.g. PETSc. Finally, we have (f) carried out a complete
numerical analysis that supports the design of the method and the numerical results.

We have successfully managed to bridge unfitted methods and parallel non-conforming tree-based meshes
for the first time. ℎ-AgFEM has the potential to grow and tackle large-scale multi-phase and multi-physics
FE applications on arbitrarily complex geometries, aided by functional and geometrical error-driven mesh
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Figure 11. AgFEM weak scaling tests up to 1,484 MPI tasks, as specified in Table 2.

adaptation. As future work, it also remains to extend ℎ-AgFEM to high-order FE approximations and, more
generally, ℎ𝑝-adaptivity.

Appendix A. Derivation of the AgFE space Vag
ℎ

In this appendix, our goal is to show that any constrained DOF 𝜎 ∈ ΣC of the AgFE space Vag
ℎ given in (2),

can be resolved with direct constraints. This means that it is composed by linear constraints of the same form
as those in (1), i.e. in terms of well-posed free DOFs, only. For this purpose, we go over each subset of ΣC and
characterise the subsets of ΣW,F constraining them, as well as the coefficients of the linear constraints. We also
argue that the resulting constraint dependency graph, drawn in Figure 12, has no cyclic constraint dependencies.
The discussion leads to the definition of an aggregated FE space Vag

ℎ that is a subspace of Vstd
ℎ with the same

structure, i.e. restricted with linear constraints.
According to this, given 𝜎 ∈ ΣC,

(1) if 𝜎 ∈ ΣW,H, then MH
𝜎 is formed by DOFs located in VEFs of coarser neighbour cells around 𝜎, see

Section 2.3. As Tℎ meets the 2:1 balance condition, constraining DOFs of hanging DOFs are free
DOFs [14, Proposition 4.1], i.e.

𝜎 ∈ ΣH ⇒ MH
𝜎 ⊂ ΣF. (9)
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Figure 12. Constraint dependency graph of the AgFE space Vag
ℎ . The set of global DOFs Σ is

partitioned into {ΣW,F,ΣW,H,ΣI,F,ΣI,H}. Subsets ΣW,H, ΣI,F and ΣI,H are all constrained by ΣW,F with
a dependency graph represented by dashed blue edges marked with a C. Dashed blue edges link a
constrained subset with the subsets where its masters belong to. We observe that the graph has no
cycles.

Recalling Definition 2.3 (ii), it follows that master DOFs of 𝜎 are necessarily contained in the set of
well-posed free DOFs, i.e.

𝜎 ∈ ΣW,H ⇒ MH
𝜎 ⊂ ΣW,F. (10)

Therefore, linear constraints of 𝜎 ∈ ΣW,H remain unchanged in the new AgFE space.
(2) If 𝜎 ∈ ΣI,F, then we assume that we have composed the root cell map 𝑅 : T act

ℎ → TW
ℎ , introduced in

Section 2.2, with a map between ill-posed free DOFs ΣI,F and ill-posed cells T I
ℎ . In other words, we

assign first each ill-posed free DOF to one of its surrounding ill-posed cells. The chosen cell is then
mapped onto a well-posed cell via 𝑅. Thus, the outcome of this composition is a map 𝐾 : ΣI,F → TW

ℎ ,
that assigns an ill-posed free DOF to a well-posed cell; see formal definitions in, e.g. [18, 27]. Given
𝜎 ∈ ΣI,F, let us denote by MAA

𝜎 the subset of DOFs �̃� located in 𝐾 (𝜎), such that 𝜙 �̃� (𝒙𝜎) ≠ 0. We
refer to MAA

𝜎 as the set of “direct” AgFEM master DOFs of 𝜎 ∈ ΣI,F. As usual in AgFE methods, given
𝑣ℎ ∈ Vstd

ℎ and 𝜎 ∈ ΣI,F, we enforce the constraint

𝑣𝜎ℎ =
∑︁

�̃�∈MAA
𝜎

𝐶AA
𝜎�̃�𝑣

�̃�
ℎ , with 𝐶AA

𝜎�̃� � 𝜙
�̃� (𝒙𝜎), (11)

that is, we linearly extrapolate the nodal value of an ill-posed DOF with the values at the local DOFs of
its root cell. In general, MAA

𝜎 is composed of both free and hanging DOFs, i.e. some DOFs in the root
cell can be hanging; the latter are not master DOFs, in the strict sense, and we need to remove them,
i.e. rewrite (11) in terms of well-posed free DOFs, only. For that purpose, we introduce the partition
MAA

𝜎 = {MAF
𝜎 ,MAH

𝜎 }, with MAF
𝜎 �MAA

𝜎 ∩ ΣF, MAH
𝜎 �MAA

𝜎 ∩ ΣH. Since the image of 𝐾 is in TW
ℎ ,

it is clear that MAF
𝜎 ⊂ ΣW,F and MAH

𝜎 ⊂ ΣW,H. We also have that

𝜎 ∈ ΣI,F ⇒ MAA
𝜎 ⊂ ΣW,F ∪ ΣW,H. (12)

Recalling the first case, i.e.𝜎 ∈ ΣW,H, the set of DOFs that are masters ofMAH
𝜎 is given by

⋃
𝜎′∈MAH

𝜎
MH

𝜎′

and, by (10), it is included inΣW,F. If the previous property didn’t hold, thenΣI,F∩
(⋃

𝜎′∈MAH
𝜎

MH
𝜎′

)
≠ ∅

and it could be possible that 𝜎 ∈ ⋃
𝜎′∈MAH

𝜎
MH

𝜎′, i.e. 𝜎 could (circularly) constrain itself, as in the
situation depicted in Figure 3b.

Hence, the “true” set of master DOFs of 𝜎 ∈ ΣI,F is MA
𝜎 �MAF

𝜎 ∪
(⋃

𝜎′∈MAH
𝜎

MH
𝜎′

)
; note that the

two set members of MA
𝜎 are not necessarily disjoint, but MA

𝜎 ⊂ ΣW,F. Besides, recalling that hanging
DOFs are constrained by free DOFs on top of VEFs of coarser neighbour cells, MA

𝜎 are composed of
DOFs located in root cells and (neighbouring) coarser cells around them.

After cancelling hanging DOFs, we can derive an analogous expression to (11), in terms of well-posed
free DOFs only. The value of the AgFEM constraint, for 𝜎 ∈ ΣI,F and �̃� ∈ MA

𝜎 , is

𝐶A
𝜎�̃� �


𝐶AA

𝜎�̃� if �̃� ∈ MAF
𝜎 , only

𝐶AA
𝜎�̃� + ∑(

𝜎′∈MAH
𝜎 s.t. �̃�∈MH

𝜎′
) 𝐶AA

𝜎𝜎′𝐶
H
𝜎′ �̃� if �̃� ∈ MAF

𝜎 ∩
(⋃

𝜎′∈MAH
𝜎

MH
𝜎′

)
∑(

𝜎′∈MAH
𝜎 s.t. �̃�∈MH

𝜎′
) 𝐶AA

𝜎𝜎′𝐶
H
𝜎′ �̃� if �̃� ∈ ⋃

𝜎′∈MAH
𝜎

MH
𝜎′, only.

(13)
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We refer to Figure 13 for an illustration of the three types of �̃� ∈ MA
𝜎 in (13).

Figure 13. Close-up of Figure 3a. Assuming that the top right ill-posed DOF is mapped to the well-
posed cell pointed by the dashed arrow, we mark with letters and classify all DOFs �̃� ∈ MA

𝜎 , as they are
distinguished in (13). In this sense, (a) shows �̃� ∈ MAF

𝜎 , only; (b) shows �̃� ∈ MAF
𝜎 ∩

(⋃
𝜎′∈MAH

𝜎
MH

𝜎′

)
;

(c) shows �̃� ∈ ⋃
𝜎′∈MAH

𝜎
MH

𝜎′ , only. We observe that DOFs (c) are only in neighbouring coarser cells.

(3) If 𝜎 ∈ ΣI,H, then 𝜎 cannot be constrained as in the previous case, i.e. hanging DOF constraints have to
be imposed first, to preserve conformity. According to this, 𝜎 can be constrained by either well-posed
or ill-posed free DOFs, i.e. MH

𝜎 ⊂ ΣW,F ∪ΣI,F; this is an immediate consequence of (9). If we consider
now a partition of MH

𝜎 into well-posed and ill-posed master DOFs and use case 𝜎 ∈ ΣI,F to remove
ill-posed master DOFs, we deduce that

MH
𝜎 =

(
MH

𝜎 ∩ ΣW,F
)
∪

(
MH

𝜎 ∩ ΣI,F
)
=

(
MH

𝜎 ∩ ΣW,F
)
∪ ©«

⋃
𝜎′∈MH

𝜎∩ΣI,F

MA
𝜎′

ª®¬ ⊂ ΣW,F,

i.e. we can compute the constraints in terms of well-posed free DOFs only; again the two sets in the
right-hand side are not necessarily disjoint. After cancelling the AgFEM constraints of 𝜎′ ∈ MH

𝜎∩ΣI,F,
the constraint coefficient for 𝜎 ∈ ΣI,H and 𝜎′ ∈ MH

𝜎 becomes

𝐶HA
𝜎𝜎′ �


CH

𝜎𝜎′ if 𝜎′ ∈ (MH
𝜎 ∩ ΣW,F) , only

CH
𝜎𝜎′ + ∑

( �̃�∈MA
𝜎 s.t. 𝜎′∈MH

�̃�) 𝐶
A
𝜎�̃�𝐶

H
�̃�𝜎′ if

(MH
𝜎 ∩ ΣW,F) ∩ (⋃

𝜎′∈MH
𝜎∩ΣI,F MA

𝜎′

)∑
( �̃�∈MA

𝜎 s.t. 𝜎′∈MH
�̃�) 𝐶

A
𝜎�̃�𝐶

H
�̃�𝜎′ otherwise.

The last step to derive the AgFE space is to gather the previous cases, combining hanging and aggregation
DOF constraints, into a unified form equivalent to (11). Given 𝜎 ∈ ΣC, the set of master DOFs is

M𝜎 �


MH

𝜎 if 𝜎 ∈ ΣW,H

MA
𝜎 if 𝜎 ∈ ΣI,F(MH
𝜎 ∩ ΣW,F) ∪ (⋃

𝜎′∈MH
𝜎∩ΣI,F MA

𝜎′

)
if 𝜎 ∈ ΣI,H.

(14)

By definition, M𝜎 ⊂ ΣW,F, for all 𝜎 ∈ ΣC, i.e. all constraints can be solved by free well-posed DOFs and, thus,
there are no cyclic constraint dependencies; see also the constraint dependency graph represented in Figure 12.
On the other hand, the constraint coefficient for 𝜎 ∈ ΣC and 𝜎′ ∈ M𝜎 is

𝐶𝜎𝜎′ �


CH

𝜎𝜎′ if 𝜎 ∈ ΣW,H

CA
𝜎𝜎′ if 𝜎 ∈ ΣI,F

CHA
𝜎𝜎′ if 𝜎 ∈ ΣI,H.

(15)

With these notations, the (sequential) aggregated or ag. FE space Vag
ℎ obeys to the form stated in (2).

Appendix B. Numerical analysis

In this appendix, we prove that both the condition number of (a) the mass matrix associated to the AgFE
space defined in (2) and (b) the linear system arising from (4) are bounded. The bounds do not depend on the cut
location (but they do depend on the well-posedness threshold 𝜂0). We use the notation 𝐴 . 𝐵 (resp. 𝐴 & 𝐵) to
represent 𝐴 ≤ 𝐶𝐵 (resp. 𝐴 ≥ 𝐶𝐵) for a positive constant 𝐶 > 0 independent of the interface-mesh intersection
or the mesh cells sizes.

B.1. Mass matrix condition number. In order to bound the condition number of the mass matrix, we seek
to show the equivalence, for functions in Vag

ℎ , between the 𝐿2(Ω)-norm and the Euclidean norm of well-posed
free DOFs. We devote the next paragraphs to introduce necessary definitions and preliminary results. Given
𝑢ℎ ∈ Vag

ℎ , let us denote the nodal vector of well-posed free DOFs by u. For a given 𝑇 ∈ Tℎ and VEF 𝑓 , the
cell- or VEF-wise coordinate vector is represented with u𝑇 or u 𝑓 and its characteristic sizes by ℎ𝑇 or ℎ 𝑓 . First,
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we rely on the maximum and minimum eigenvalues of the local mass matrix in the physical cell 𝑇 or any of its
VEFs 𝑓 ∈ F𝑇 :

𝜆minℎ
𝑑𝑋
𝑋 ‖u𝑋 ‖2

2 ≤ ‖𝑢ℎ ‖2
𝐿2 (𝑋 ) ≤ 𝜆maxℎ

𝑑𝑋
𝑋 ‖u𝑋 ‖2

2, for 𝑢ℎ ∈ V(𝑇), (16)
with 𝑋 = 𝑇 or 𝑋 = 𝑓 ∈ F𝑇 and ‖ · ‖2 denoting the Euclidean norm. The values of 𝜆min, 𝜆max > 0 only depend
on the order of the FE space and can be computed for different orders on 𝑛-cubes or 𝑛-simplices [37]. By
combining (16) for 𝑇 and one of its VEFs, we deduce the bound

‖𝑢ℎ ‖2
𝐿2 (𝑇 ) & ℎ

𝑑−𝑑 𝑓

𝑓 ‖𝑢ℎ ‖2
𝐿2 ( 𝑓 ) > 0, for 𝑢ℎ ∈ V(𝑇), 𝑓 ∈ F𝑇 . (17)

We observe that (17) can be applied to any 𝑇 ∈ TW
ℎ and corresponding VEFs, because we are integrating on the

whole objects. If we consider integration on the cut portion of the cell Ω ∩ 𝑇 , (16) also holds, up to a positive
constant that depends on the well-posedness threshold 𝜂0. This is a consequence of the following result.

Lemma B.1. Given a well-posed cell 𝑇 ∈ TW
ℎ and 𝑢ℎ ∈ V(𝑇), there exists 𝐶 (𝜂0) > 0, dependent on the

well-posedness threshold 𝜂0, such that ‖𝑢ℎ ‖2
𝐿2 (Ω∩𝑇 ) ≥ 𝐶 (𝜂0)‖𝑢ℎ ‖2

𝐿2 (𝑇 ) .

Proof. Since we consider a well-posedness threshold 0 < 𝜂0 ≤ 1, any cell 𝑇 ∈ TW
ℎ can be either (i) (full)

interior or (ii) cut. For case (i), the bound trivially holds. For case (ii), given any polynomial defined in the cell,
in particular, any shape function, we must have that

∫
Ω∩𝑇 𝑝(𝑥)2 ≥ 𝐶 (𝜂0)

∫
𝑇
𝑝(𝑥)2 > 0, for a bounded, strictly

positive, constant 𝐶 (𝜂0) that depends on 𝜂0. If this were not the case, then we would have that 𝑝(𝑥) vanishes in
Ω ∩ 𝑇 , with |Ω ∩ 𝑇 | ≠ 0. As 𝑝(𝑥) is a polynomial, the only possibility is that 𝑝 ≡ 0 in 𝑇 . Hence, the bound
also holds for case (ii). �

Remark B.2. We observe that we generally do not have an analogous bound to that of Lemma B.1 for 𝑓 ∈ F𝑇 ,
with 𝑇 ∈ TW

ℎ , because | 𝑓 ∩Ω| can be arbitrarily small.

Now, we consider the partition ΣW,F � {ΣW,F
int ,Σ

W,F
ext }, where Σ

W,F
int groups DOFs that satisfy Definition 2.3

(i) and Σ
W,F
ext those that satisfy Definition 2.3 (ii). We prove next two lemmas that, along with Lemma B.1, allow

one to compute a lower bound of the 𝐿2(Ω)-norm of functions in Vag
ℎ by the Euclidean norm of DOFs in Σ

W,F
ext .

Letting Σ 𝑓 denote the set of local DOFs in 𝑓 ∈ F𝑇 , we show, in the first lemma, that for any 𝜎 ∈ Σ
W,F
ext , located

atop a coarse VEF 𝑓C, we can find a hanging VEF 𝑓H of a well-posed cell, with the same dimension of and
owned by 𝑓C.

Lemma B.3. Given 𝜎 ∈ Σ
W,F
ext , there exists 𝜎′ ∈ ΣW,H, such that 𝜎 ∈ MH

𝜎′, and there exist VEFs 𝑓C ∈ 𝑇 and
𝑓H ∈ 𝑇 ′, with 𝑇 ∈ T I

ℎ and 𝑇 ′ ∈ TW
ℎ , such that 𝜎 ∈ Σ 𝑓C

, 𝜎′ ∈ Σ 𝑓H
and dim( 𝑓C) = dim( 𝑓H).

Proof. We use Figure 14 to illustrate the proof. Given 𝜎 ∈ Σ
W,F
ext , by Definition 2.3 (ii), there exists 𝜎′ ∈ ΣW,H,

such that 𝜎 ∈ MH
𝜎′. Note that 𝜎 and 𝜎′ are related by a nontrivial constraint, by definition of MH

𝜎′ (see
Section 2.3). In addition, by recalling how hanging DOFs and its constraining DOFs are related [14, Proposition
3.6], there exist 𝑓C ∈ F𝑇 , with 𝑇 ∈ T I

ℎ , and 𝑓H ∈ F𝑇 ′, with 𝑇 ′ ∈ TW
ℎ , such that 𝑓C is the owner VEF of 𝑓H,

𝜎 ∈ Σ 𝑓C
and 𝜎′ ∈ Σ 𝑓H

. If dim( 𝑓H) = dim( 𝑓C), the result follows immediately. Otherwise, let us denote by
T rr(𝑇 )
ℎ the mesh resulting from applying the 1:2𝑑 isotropic refinement rule once to 𝑇 . 𝑇 and 𝑇 ′ only differ

by one level of refinement, by the 2:1 balance assumption, and T rr(𝑇 )
ℎ ∪ 𝑇 ′ forms a conforming mesh, by the

construction of the refinement rule. It follows that 𝑓H is one of the VEFs on the boundary of T rr(𝑇 )
ℎ . As 𝑓C is

the only VEF of 𝑇 that contains 𝑓H and the refinement rule implies a nontrivial partition of all VEFs of 𝑇 , there
exists 𝑓 ′H ( 𝑓C, such that dim( 𝑓 ′H) = dim( 𝑓C), 𝑓H ( 𝑓 ′H and 𝑓 ′H ∈ F𝑇 ′. Clearly, 𝑓 ′H is also a hanging VEF of Tℎ,
with 𝑓C as owner and 𝜎′ ∈ Σ 𝑓 ′

H
. �

Figure 14. A 2D example to illustrate the proof of Lemma B.3.

The fact that 𝑓C and 𝑓H in Lemma B.3 have the same dimension is key to prove the following bound.
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Lemma B.4. Given 𝜎 ∈ Σ
W,F
ext , atop a VEF 𝑓C ∈ F𝑇 , with 𝑇 ∈ T I

ℎ , we have the bound

‖𝑢ℎ ‖2
𝐿2 ( 𝑓H) & ℎ

𝑑 𝑓C
𝑓C

‖u 𝑓C
‖2

2, for 𝑢ℎ ∈ Vag
ℎ ,

where 𝑓H is a hanging VEF, owned by 𝑓C, 𝑓H ∈ F𝑇 , 𝑇 ∈ TW
ℎ , such that dim( 𝑓C) = dim( 𝑓H).

Proof. First we see that, by Lemma B.3, we can find 𝑓H satisfying the hypotheses. As seen in (1) of Section 2.3,
we have that hanging DOF linear constraints, defined for DOFs in 𝑓H, lead to the relation u 𝑓H

= Cu 𝑓C
, where

the coefficients of C are given by 𝜙𝜎′ (𝒙𝜎) with 𝜎 ∈ Σ 𝑓H
and 𝜎′ ∈ Σ 𝑓C

. Coefficients 𝜙𝜎′ (𝒙𝜎) of C can be
computed in a reference cell 𝑇 , by generating the mesh T rr(𝑇 )

ℎ and evaluating the shape functions of 𝑇 at its
nodes. Since shape functions are pointwise bounded,

��𝜙𝜎′ (𝒙𝜎)
�� is bounded above, independently of mesh size

and cuts. Using the above relation, we have that

‖𝑢ℎ ‖2
𝐿2 ( 𝑓H) = u𝑇

𝑓H
M 𝑓Hu 𝑓H

= u𝑇
𝑓C

C𝑇 M 𝑓HCu 𝑓C
= 𝜆 u𝑇

𝑓C
M 𝑓Cu 𝑓C

,

where M 𝑓 denotes the local FE mass matrix on VEF 𝑓 and, in the last equality, we consider the generalized
eigenvalue problem C𝑇 M 𝑓HCu 𝑓C

= 𝜆 M 𝑓Cu 𝑓C
. Since C𝑇 M 𝑓HC, M 𝑓C are symmetric and M 𝑓C is positive definite

(due to (16)), the eigenvalues of the above problem are real. Moreover, the same argument in the proof of
Lemma B.1 ensures that, if a polynomial vanishes in 𝑓H, it must also vanish in 𝑓C. Therefore, we have that the
smallest eigenvalue must be strictly positive, i.e. 𝜆min > 0. It suffices to combine this result with (16) applied
on M 𝑓C to see that ‖𝑢ℎ ‖2

𝐿2 ( 𝑓H) & 𝜆min ℎ
𝑑 𝑓C
𝑓C

u𝑇
𝑓C

u 𝑓C
> 0. �

We need now some auxiliary definitions: Given 𝜎 ∈ ΣW,F, we let S𝜎 � {𝜎′ ∈ ΣC : 𝜎 ∈ M𝜎′} denote
the set of DOFs constrained by 𝜎 (either by mesh nonconformity or aggregation), the global shape function
associated to 𝜎, after solving constraints, is given by 𝜙𝜎 � 𝜙𝜎 +∑

𝜎′∈S𝜎
𝐶𝜎′𝜎𝜙

𝜎′ and we let T 𝜎
ℎ � {𝑇 ∈ Tℎ :

supp(𝜙𝜎) ∩ 𝑇 ≠ 0} denote the set of cells where 𝜙𝜎 has local support. We observe that

0 < 𝐾min ≤ |𝐶𝜎′𝜎 | ≤ 𝐾max, (18)

where the bounds are independent of the size of the physical cell ℎ𝑇 or cut location; this result has already
been argued in Lemma B.4 for hanging DOF constraints and [18, Lemma 5.1] for aggregation DOF constraints.
Apart from that, we define ℎ𝜎 � max𝑇 ∈T𝜎

ℎ
ℎ𝑇 . We note that the ℎ𝑇 in the definition of ℎ𝜎 differ by a bounded

value, that depends on the 2:1 0-balance restriction and the maximum aggregation distance, i.e. ℎ𝜎 = 𝐶 (𝑇)ℎ𝑇 ,
for any 𝑇 ∈ T 𝜎

ℎ .
We are now in position to show the sought-after equivalence between the 𝐿2 norm of functions in Vag

ℎ and
the Euclidean norm of its nodal values.

Proposition B.5. Given 𝑢ℎ ∈ Vag
ℎ , the following bound holds:

‖u‖2
𝜎 . ‖𝑢ℎ ‖2

𝐿2 (Ω) . ‖u‖2
𝜎 ,

for ‖u‖2
𝜎 �

∑
𝜎∈ΣW,F ℎ𝑑𝜎𝑢

2
𝜎 , with 𝑢𝜎 the nodal value of 𝜎 ∈ ΣW,F.

Proof. The upper bound straightforwardly follows from considering triangular inequality repeatedly and the
fact that |𝐶𝜎′𝜎 | is bounded above (see (18)). For the lower bound, we use the results above. First, we see that,
by Lemma B.1,

‖𝑢ℎ ‖2
𝐿2 (Ω) ≥ ‖𝑢ℎ ‖2

𝐿2 (ΩW) =
∑︁

𝑇 ∈TW
ℎ

‖𝑢ℎ ‖2
𝐿2 (Ω∩𝑇 ) &

∑︁
𝑇 ∈TW

ℎ

‖𝑢ℎ ‖2
𝐿2 (𝑇 ) .

Then, by (16), we have the bound for ΣW,F
int , that is,∑︁

𝑇 ∈TW
ℎ

‖𝑢ℎ ‖2
𝐿2 (𝑇 ) &

∑︁
𝑇 ∈TW

ℎ

ℎ𝑑𝑇 ‖u𝑇 ‖2
2 ≥

∑︁
𝜎∈ΣW,F

int

ℎ𝑑𝜎𝑢
2
𝜎 .

On the other hand, we let FC denote all the set of VEFs 𝑓C, that contain at least one DOF of ΣW,F
ext . Using

Lemma B.3, we pick for each 𝑓C ∈ FC a hanging VEF 𝑓H of the same dimension of 𝑓C, with 𝑓H touching a
well-posed cell. We denote the set of all 𝑓H by FH. By (17) and Lemma B.4, we obtain a bound for ΣW,F

ext :∑︁
𝑇 ∈TW

ℎ

‖𝑢ℎ ‖2
𝐿2 (𝑇 ) &

∑︁
𝑓H∈FH

ℎ
𝑑−𝑑 𝑓H
𝑓H

‖𝑢ℎ ‖2
𝐿2 ( 𝑓𝐻 ) &

∑︁
𝑓C∈FC

ℎ𝑑𝑓C ‖u 𝑓C
‖2

2 &
∑︁

𝜎∈ΣW,F
ext

ℎ𝑑𝜎𝑢
2
𝜎 .
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Combining the two bounds together, we get

‖𝑢ℎ ‖2
𝐿2 (Ω) &

∑︁
𝜎∈ΣW,F

ℎ𝑑𝜎𝑢
2
𝜎 & ‖u‖2

𝜎 .

�

Note that the constants in Proposition B.5 depend on the well-posedness threshold via Lemma B.1, but are
independent on the cut location. The following result is a direct consequence of Proposition B.5.

Corollary B.6. The mass matrix M related to the aggregated FE space Vag
ℎ is bounded by 𝑘 (M) ≤ 𝐶, for a

positive constant 𝐶 > 0 independent on cut location.

B.2. Well-posedness of the unfitted FE Problem (4). Our goal now is to prove coercivity and continuity of
the bilinear form in (4). To this end, let us assume that we bound the maximum level of refinement for any
triangulation Tℎ built recursively as a forest-of-trees; this is the case in practice, since available memory is
limited. Hence, there exists ℎmin > 0 such that min𝑇 ∈Tℎ ℎ𝑇 ≥ ℎmin > 0. We begin with a trace inequality that
is key to prove coercivity:

Given𝑇 ∈ T I
ℎ and𝑇1, . . . , 𝑇𝑚𝑇

∈ TW
ℎ ,𝑚𝑇 ≥ 1, the set of constraining well-posed cells (i.e. those constraining

at least one DOF of 𝑇), we let

Ωact
𝑇 �

(
𝑇 ∪

𝑚𝑇⋃
𝑖=1
𝑇𝑖

)
and Ω𝑇 � Ω ∩Ωact

𝑇 .

Note that 𝑚𝑇 is bounded, due to the 2:1 0-balance restriction and the fact that the number of neighbour cells is
bounded. In case that 𝑇 ∈ TW

ℎ , the definitions above become Ωact
𝑇 = 𝑇 and Ω𝑇 = Ω ∩ 𝑇 .

Lemma B.7. Given 𝑢ℎ ∈ Vag
ℎ and 𝑇 ∈ T act

ℎ , there exists 𝐶 (𝜂0) > 0, such that

‖𝒏 · ∇𝑢ℎ ‖2
𝐿2 (ΓD∩𝑇 ) ≤ 𝐶 (𝜂0)ℎ−1

𝑇 ‖∇𝑢ℎ ‖2
𝐿2 (Ω𝑇 ) .

Proof. We note first that |Γ ∩ 𝑇 | |𝑇 |−1 ≤ 𝐶ℎ−1
𝑇 ; it can be proven for piecewise smooth boundaries for a constant

that depends on the curvature of the surface patches and the maximum number of patches intersecting a cell.
Combining this bound with the fact that constraints are bounded (cf. (18)), we can readily use the ideas of the
proof in [18, Lemma 5.6], followed by Lemma B.1, to prove the result:

‖𝒏 · ∇𝑢ℎ ‖2
𝐿2 (ΓD∩𝑇 ) . ℎ

−1
𝑇 ‖∇𝑢ℎ ‖2

𝐿2 (Ωact
𝑇
) . 𝐶 (𝜂0)ℎ−1

𝑇 ‖∇𝑢ℎ ‖2
𝐿2 (Ω𝑇 ) .

�

We let now V(ℎ) � Vag
ℎ + 𝐻2(Ω) ∩ 𝐻1

0 (Ω) and define the following mesh dependent norms for 𝑣 ∈ V(ℎ):
|||𝑣 |||2ℎ � ‖∇𝑣‖2

𝐿2 (Ω) +
∑︁

𝑇 ∈Tact
ℎ

𝛽𝑇 ℎ
−1
𝑇 ‖𝑣‖2

𝐿2 (ΓD∩𝑇 ) ,

|||𝑣 |||2V(ℎ) � |||𝑣 |||2ℎ +
∑︁

𝑇 ∈Tact
ℎ

ℎ𝑇 ‖𝒏 · ∇𝑣‖2
𝐿2 (ΓD∩𝑇 ) .

Remark B.8. By Lemma B.7, norms |||·|||ℎ and |||·|||V(ℎ) are equivalent in Vag
ℎ .

In what follows, we assume thatΩ has smoothing properties. Then we have the Discrete Poincaré-type inequality
(see, e.g. [18, Lemma 5.8])

‖𝑣‖𝐿2 (Ω) . |||𝑣 |||ℎ, for any 𝑣 ∈ V(ℎ). (19)

Theorem B.9. The aggregated unfitted FE problem in (4) satisfies the following bounds:
i) Coercivity:

𝑎(𝑢ℎ, 𝑢ℎ) & |||𝑢ℎ |||2ℎ, for any 𝑢ℎ ∈ Vag
ℎ , (20)

ii) Continuity:
𝑎(𝑢, 𝑣) . |||𝑢 |||V(ℎ) |||𝑣 |||V(ℎ) , for any 𝑢, 𝑣 ∈ V(ℎ), (21)

if 𝛽𝑇 > 𝐶 (𝜂0), for some positive constant 𝐶 (𝜂0). In this case, there exists one and only one solution of (4).

Proof. The proof is analogous to [18, Theorem 5.7]. Hence, we omit details. In order to show coercivity, given
𝑢ℎ ∈ Vag

ℎ , since we have that

𝑎(𝑢ℎ, 𝑢ℎ) = |||𝑢ℎ |||2ℎ − 2
∫
ΓD

𝑢ℎ (𝒏 · ∇𝑢ℎ)dΓ,
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it suffices to show that 2
∫
ΓD
𝑢ℎ (𝒏 · ∇𝑢ℎ)dΓ . |||𝑢ℎ |||2ℎ. For a (well- or ill-posed) cut cell 𝑇 , usage of the

Cauchy-Schwarz inequality, Young’s inequality and Lemma B.7 leads to

2
∫
ΓD∩𝑇

𝑢ℎ (𝒏 · ∇𝑢ℎ)dΓ ≤ 𝛼𝑇𝐶 (𝜂0)ℎ−1
𝑇 ‖𝑢ℎ ‖2

𝐿2 (ΓD∩𝑇 ) + 𝛼−1
𝑇 ‖∇𝑢ℎ ‖2

𝐿2 (Ω𝑇 )

For tree-based meshes, the number of neighbouring cells is bounded and the cell sizes ℎ𝑇 of 𝑇 ∈ Ω𝑇 differ by
a bounded value, that depends on the 2:1 0-balance restriction and the maximum aggregation distance, one can
take 𝛼𝑇 > 0 large enough, but uniform with respect to ℎ𝑇 and cut location, such that:

2
∫
ΓD

𝑢ℎ (𝒏 · ∇𝑢ℎ)dΓ ≤
∑︁

𝑇 ∈Tact
ℎ

𝛼𝑇𝐶 (𝜂0)ℎ−1
𝑇 ‖𝑢ℎ ‖2

𝐿2 (ΓD∩𝑇 ) +
1
2
‖∇𝑢ℎ ‖2

𝐿2 (Ω)

Therefore,

𝑎(𝑢ℎ, 𝑢ℎ) ≥ 1
2
‖∇𝑢ℎ ‖2

𝐿2 (Ω) +
∑︁

𝑇 ∈Tact
ℎ

(𝛽𝑇 − 𝛼𝑇𝐶 (𝜂0))ℎ−1
𝑇 ‖𝑢ℎ ‖2

𝐿2 (ΓD∩𝑇 )

For, e.g. 𝛽𝑇 > 2𝛼𝑇𝐶 (𝜂0), 𝑎(𝑢ℎ, 𝑢ℎ) is a norm. By construction, the lower bound for 𝛽𝑇 is independent of
the ℎ𝑇 and the intersection of ΓD and T act

ℎ , but it depends on the well-posedness threshold 𝜂0, which is a
user-defined value. It proves the coercivity property in (20). Thus, the bilinear form is non-singular. The
continuity in (21) can be readily proved by repeated use of the Cauchy-Schwarz inequality. Since the problem
is finite-dimensional and the corresponding linear system matrix is non-singular, there exists one and only one
solution of this problem. �

The linear system matrix that arises from problem (4) can be defined as

𝐴𝜎𝜎′ � 𝑎(𝜙𝜎 , 𝜙𝜎′), for 𝜎, 𝜎′ ∈ ΣW,F,

and we have that u · Au = 𝑎(𝑢ℎ, 𝑢ℎ), for any 𝑢ℎ ∈ Vag
ℎ . We can now use Proposition B.5 and Theorem B.9

to show that we have the same bound as the body fitted problem for the linear system matrix. This comes as a
consequence of the following:

Proposition B.10. Given 𝑢ℎ ∈ Vag
ℎ , the following bound holds:

‖u‖2
𝜎 . 𝑎(𝑢ℎ, 𝑢ℎ) . ℎ−2

min‖u‖2
𝜎 .

Proof. The lower bound readily follows from coercivity in (20), (19) and the lower bound of Proposition B.5:

𝑎(𝑢ℎ, 𝑢ℎ) & |||𝑢ℎ |||2ℎ & ‖𝑢ℎ ‖2
𝐿2 (Ω) & ‖u‖2

𝜎

For the upper bound, we first see that the boundary term of |||·|||ℎ is bounded by ‖u‖2
𝜎 . Indeed, by scaling

arguments and the equivalence of norms for finite-dimensional spaces, we have that

‖𝑢ℎ ‖2
𝐿2 (ΓD∩𝑇 ) . ℎ

𝑑−1
𝑇 ‖u𝑇 ‖2

2,

where u𝑇 gathers both free and constrained DOFs. Adding up for all cells, invoking the fact that the number of
neighbour cells and constraint coefficients are bounded (see (18)), we obtain:∑︁

𝑇 ∈Tact
ℎ

𝛽𝑇 ℎ
−1
𝑇 ‖𝑢ℎ ‖2

𝐿2 (ΓD∩𝑇 ) . ℎ
−2
min‖u‖2

𝜎 . (22)

On the other hand, using a standard inverse inequality and the upper bound of Proposition B.5, which also holds
for Ωact, we get

‖∇𝑢ℎ ‖2
𝐿2 (Ω) ≤ ‖∇𝑢ℎ ‖2

𝐿2 (Ωact) . ℎ
−2
min‖𝑢ℎ ‖2

𝐿2 (Ωact) . ℎ
−2
min‖u‖2

𝜎 . (23)
Combining continuity of the bilinear form (4), in (21), with Remark B.8, (22) and (23), we get the sought-after
upper bound:

𝑎(𝑢ℎ, 𝑢ℎ) . |||𝑢ℎ |||2V(ℎ) . |||𝑢ℎ |||2ℎ . ℎ−2
min‖u‖2

𝜎 .

�

By recalling Corollary B.6, we obtain the following condition number bound.

Corollary B.11. The condition number of the linear system matrix A, associated to Problem (4), preconditioned
by the mass matrix M, related to the aggregated FE space Vag

ℎ , satisfies the bound 𝑘 (M−1A) ≤ 𝐶ℎ−2
min, for a

positive constant 𝐶 > 0 independent on cut location.
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A priori error estimates can be proved following the same steps in [18, Section 5.6] and, for conciseness, are
not covered here. The key arguments, leading to the estimates, are standard FE arguments, the results above and
the fact that the nodal interpolator of a continuous function 𝑢 in C0(Ω), defined as Iℎ (𝑢) �

∑
𝜎∈ΣW,F 𝑢(𝒙𝜎)𝜙𝜎 ,

is bounded above, since constraints are also bounded above (see (18)).
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