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A HELLAN-HERRMANN-JOHNSON-LIKE METHOD FOR THE

STREAM FUNCTION FORMULATION OF THE STOKES

EQUATIONS IN TWO AND THREE SPACE DIMENSIONS

PHILIP L. LEDERER

Abstract. We introduce a new discretization for the stream function formulation of
the incompressible Stokes equations in two and three space dimensions. The method is
strongly related to the Hellan-Herrmann-Johnson method and is based on the recently
discovered mass conserving mixed stress formulation [J. Gopalakrishnan, P.L. Lederer,
J. Schöberl, IMA Journal of numerical Analysis, 2019] that approximates the velocity
in an H(div)-conforming space and introduces a new stress-like variable for the ap-
proximation of the gradient of the velocity within the function space H(curl div). The
properties of the (discrete) de Rham complex allows to extend this method to a stream
function formulation in two and three space dimensions. We present a detailed sta-
bility analysis in the continuous and the discrete setting where the stream function ψ
and its approximation ψh are elements of H(curl) and the H(curl)-conforming Nédélec
finite element space, respectively. We conclude with an error analysis revealing optimal
convergence rates for the error of the discrete velocity uh = curl(ψh) measured in a
discrete H1-norm. We present numerical examples to validate our findings and discuss
structure-preserving properties such as pressure-robustness.

Stokes equations, Hellan-Herrmann-Johnson, Stream function formulation, incom-
pressible flows.

1. Introduction

In this work we present a new discretization of the stream function formulation of
the Stokes equations in two and three space dimensions. To this end, let Ω ⊂ R

d with
d = 2, 3 be a bounded simply connected domain with a Lipschitz boundary ∂Ω. The
Stokes problem is given by: Find u : Ω → R

d and p : Ω → R such that

−ν∆u +∇p = f in Ω,(1a)

div(u) = 0 in Ω,(1b)

u = 0 on ∂Ω,(1c)

where f : Ω → R
d is a given body force and ν ∈ R

+ is the constant kinematic viscosity.
Here, u denotes the velocity of the considered fluid and p is the corresponding (kinematic)
pressure. Note, that we only consider homogeneous Dirichlet boundary conditions in this
work (see also comment below). Following [21, 7], the property div(u) = 0 motivates to
define the stream function formulation of the Stokes equations given by: Find ψ : Ω →
R

d(d−1)/2 such that in two dimensions we have

−ν∆2ψ = curl(f) in Ω,(2a)

ψ =
∂ψ

∂n
= 0 on ∂Ω,(2b)
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and in three dimensions

−ν∆2ψ = curl(f) in Ω,(3a)

div(ψ) = 0 in Ω,(3b)

ψ × n = curl(ψ)× n = 0 on ∂Ω.(3c)

Then we have the relation curl(ψ) = u. One of the main attractions of deriving a discrete
method for (2) and (3) instead of (1) lies on the hand: Whereas standard mixed finite
element methods for the Stokes equations usually enforce the incompressibility constraint
only in a weak sense, the discrete velocity solution obtained from a stream function
formulation is always exactly divergence-free. This structure preserving property helps
for example in the case of convection dominated flows (when we consider the full Navier-
Stokes equations, see [35, 14, 15]) and further allows to derive pressure independent
velocity error estimates. Such estimates are called pressure robust, see [37, 10, 38,
27, 31], and are of great interest particularly in the case of vanishing viscosity where
an inaccurate pressure approximation might induce a blow up of the velocity. These
findings were also extended to the definition of pressure robust error estimators, see
[32] and [29]. In the latter work the authors presented a residual estimator with the
help of the stream function formulation which implicitly lead to pressure robustness.
Finally, the stream function formulation recently got popular for the approximation of
incompressible fluids on surfaces, see [47].

In the derivation of the above equations it was crucial that the domain is simply
connected. In a more general setting, the equations and boundary conditions are much
more evolved since the potential ψ is not uniquely defined any more, see fore example
in [7] for a detailed discussion. The approximation of the fourth order problem (2) (also
known as biharmonic problem) requires finite elements of higher regularity. To overcome
this problem, it is common to reformulate the biharmonic problem to the directly related
stream function vorticity formulation. Many authors have studied this problem, see for
example [48, 22, 1, 8, 43]. We also want to cite the very recent work [36] an the references
therein for a further discussion on the connection of the stream function and stream
function vorticity formulation and the occurring boundary conditions. Regarding our
choice of homogeneous Dirichlet boundary conditions in this work we want to mention,
that this is a non trivial case as it was discussed in detail in [2]. Therein the authors
show, that one might loose optimal convergence when mixed finite element methods
including the vorticity are used. However, we want to emphasize that the methods
proposed in this work are of optimal order. In [6, 5, 4], the authors focused on the pure
stream function formulation (in two space dimensions) given by (2) and derived a finite
difference scheme for the approximation of the bi-Laplacian operator. A mixed finite
element method was derived in [13]. Due to the huge success of discontinuous Galerkin
methods (DG) for elliptic problems, the techniques were also applied to fourth order
problems, see [52, 20, 41, 42, 29].

We particularly want to mention the works [25, 26, 28, 16], since they play a key role
in the derivation of the methods introduced in this work. Therein the authors derived
a mixed method, also known as the Hellan-Herrmann-Johnson method (HHJ), by in-
troducing an auxiliary variable to approximate the matrix valued symmetric gradient.
This has many advantages as it results for example in a reduced coupling in the finite
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element system matrix compared to a DG formulation and that no second order differ-
ential operators have to be explicitly implemented in the finite element code. In [21],
the authors showed that this techniques can also be used to approximate the stream
function formulation and presented a detailed analysis. Nevertheless, the authors claim
that the extension to the three dimensional case is not straight forward.

This work is dedicated to fill this gap. To this end we first introduce a modified (ro-
tated) version of the HHJ-method in two dimensions which can then be easily extended
to the three dimensional setting. This is possible since the new modified HHJ-method
can be interpreted as a discrete stream function formulation of the mass conserving
mixed stress formulation (MCS) defined in [24, 23, 30]. The MCS method approximates
the discrete velocity uh in an H(div)-conforming finite element space and the discrete
pressure in the appropriate (L2-conforming) space of piece wise polynomials. This leads
to exactly divergence-free velocity approximations, i.e. div(uh) = 0. The properties of
the discrete de Rham complex then motivates to define a discrete stream function ψh in
an H(curl)-conforming finite element space such that curl(ψh) = uh, which leads to the
resulting modified HHJ-method.

Finally note, that there exists a similar connection between the (standard) HHJ-
method and the tangential-displacement and normal-normal-stress continuous mixed
finite element method for elasticity [45, 44, 46] which motivated the definition of the
methods within this work.

The paper is organized as follows. In Section 2 we define the basic notation and
symbols that we shall use throughout this work. In Section 3 we discuss the classical
weak formulation and a new weak formulation with reduced regularity of the stream
function formulation, and present a detailed stability analysis. Section 4 is dedicated
to the derivation of the new modified HHJ-method in two and three space dimensions.
The technical details needed to prove discrete stability and convergence of the error in
appropriate norms are included in Section 5. In Section 6 we present a simple post
processing for a pressure discretization. We conclude the work with Section 7 where we
present numerical examples to illustrate the theory.

2. Preliminaries

Let C∞
c (Ω) denote the set of infinitely differentiable compactly supported real-valued

functions on Ω and let (C∞
c )′(Ω) denote the space of distributions as usual. In this work

we include the range in the notation, hence

C∞
c (Ω,Rd) = {u : Ω → R

d : ui ∈ C∞
c (Ω)}

C∞
c (Ω,Rd×d) = {u : Ω → R

d×d : uij ∈ C∞
c (Ω)},

represent the vector valued and matrix-valued versions of C∞
c (Ω) = C∞

c (Ω,R). This
notation is extended in an obvious fashion to other function spaces as needed.

Depending on the type of the function, the gradient ∇ is to be understood from the
context as an operator that results in either a vector whose components are [∇φ]i = ∂iφ
(where ∂i is the partial derivative ∂/∂xi) for φ ∈ C∞

c
′(Ω,R) or a matrix whose entries are

[∇φ]ij = ∂jφi for φ ∈ C∞
c

′(Ω,Rd). Similarly, the “curl” is given as any of the following
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three differential operators

curl(φ) = (−∂2φ, ∂1φ)T, for φ ∈ C∞
c

′(Ω,R) and d = 2,

curl(φ) = −∂2φ1 + ∂1φ2, for φ ∈ C∞
c

′(Ω,R2) and d = 2,

curl(φ) = ∇× φ for φ ∈ C∞
c

′(Ω,R3) and d = 3,

where (·)T denotes the transpose. Finally, we define the div(φ) as either
∑d

i=1 ∂iφi for

vector-valued φ ∈ C∞
c

′(Ω,Rd), or the row-wise divergence
∑d

j=1 ∂jφij for matrix-valued

φ ∈ C∞
c

′(Ω,Rd×d).
We denote by L2(Ω,R) the space of square-integrable functions on Ω and by Hm(Ω,R)

the standard Sobolev space of orderm. In particular we further use the spaceH1
0 (Ω,R

d) =
{v ∈ H1(Ω,Rd) : v|∂Ω = 0}. With t̃ = d(d − 1)/2 and the above (weak) differential op-
erators we then further define the Sobolev spaces

H(div,Ω) = {v ∈ L2(Ω,Rd) : div(v) ∈ L2(Ω)},
H(curl,Ω) = {v ∈ L2(Ω,Rd) : curl(v) ∈ L2(Ω,Rt̃)}.

Similarly as before, we denote by H0(div,Ω) = {v ∈ H(div,Ω) : v · n|∂Ω = 0} and
H0(curl,Ω) = {v ∈ H(div,Ω) : v× n|∂Ω = 0}, where n denotes the outward unit normal
vector on ∂Ω. On the above spaces we use the standard symbols for the norms, but we
will omit the domain Ω to simplify the notation, i.e. while ‖ · ‖L2 is the L2-norm on Ω
we denote by ‖ · ‖H1 , ‖ · ‖H(div) and ‖ · ‖H(curl) the norms on Ω of the spaces H1, H(div)
and H(curl), respectively. Other non standard spaces and definitions are defined later
in the work when they appear in a proper context.

Finally, in this work we use A ∼ B to indicate that there are constants c, C > 0 that
are independent of the mesh size h (defined in Section 4) and the viscosity ν such that
cA ≤ B ≤ CA. We also use A . B when there is a C > 0 independent of h and ν such
that A ≤ CB. In the same manner we also define the symbol &.

3. The continuous setting

3.1. Weak formulations of the Stokes equations. Defining the spaces

X := H1
0 (Ω,R

d), and Q := {q ∈ L2(Ω,R) :

∫

Ω

q dx = 0},

and assuming regularity f ∈ L2(Ω,R), the weak formulation of (1) is given by: Find
(u, p) ∈ X ×Q such that

∫

Ω

ν∇u : ∇v dx−
∫

Ω

div(v)p dx =

∫

Ω

f · v ∀v ∈ X(4a)

∫

Ω

div(u)q dx = 0 ∀q ∈ Q.(4b)

In the recent work [30], a new weak formulation of the Stokes equations was derived
that used a weaker regularity assumption of the velocity space. The idea is motivated
by introducing te auxiliary variable σ := ν∇u. Defining the trace of a matrix tr τ :=
∑d

i+1 τii and the deviator dev τ := τ − (tr τ/d) Id we have

dev σ = dev ν∇u = ν∇u− ν

d
tr∇u Id = ν(∇u− 1

d
div(u) Id) = ν∇u,
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since div(u) = 0. By that we can reformulate equations (1) as

ν−1 dev σ −∇u = 0 in Ω,(5a)

div(σ)−∇p = −f in Ω,(5b)

div(u) = 0 in Ω,(5c)

u = 0 on ∂Ω.(5d)

To derive a variational formulation of equation (5), we define the velocity space V :=
H0(div,Ω) and the matrix valued function spaces

H(curl div) := {τ ∈ L2(Ω,Rd×d) : div(τ) ∈ V ′},
Σ := {τ ∈ H(curl div) : tr τ = 0}.

Note, that a proper norm on H(curl div) is defined by ‖τ‖2H(cd) := ‖τ‖2L2 + ‖ div(τ)‖2V ′ ,

where V ′ denotes the dual space and ‖ · ‖V ′ the corresponding dual space norm. The
definition of the space Σ is motivated by the distributional divergence of an arbitrary
function τ ∈ Σ given by

〈div(τ), ϕ〉V = −
∫

Ω

τ : ∇ϕ dx ∀ϕ ∈ C∞
c (Ω,Rd).

Hence, by a density argument of smooth functions in H0(div,Ω), a weak formulation of
(5a) is given by ν−1

∫

Ω
σ : τ + 〈div(τ), u〉V = 0, where 〈·, ·〉V denotes the duality bracket

on V ′ × V . For more details we refer to chapter 4 in [30]. Using similar arguments for
the other lines of (5), the mass conserving mixed stress formulation (MCS) then reads
as: Find (σ, u, p) ∈ V × Σ×Q such that

∫

Ω

1

ν
σ : τ dx+ 〈div(τ), u〉V = 0 ∀τ ∈ Σ,(6a)

〈div(σ), v〉V +

∫

Ω

div(v)p dx = −
∫

Ω

f · v dx ∀v ∈ V,(6b)

∫

Ω

div(u)q dx = 0 ∀q ∈ Q.(6c)

where we used that dev = Id for functions in Σ. Uniqueness and existence of (6) in
V × Σ×Q (with the corresponding natural norms) was proven in Section 4.3.1 in [30].
Note, that the velocity solution u ∈ V of equation (6) has a reduced regularity in contrast
to the velocity solution of the standard weak formulation of the Stokes equation given
by (4).

Remark 1. The homogeneous Dirichlet boundary conditions (5d) were implicitly split
into a normal and a tangential part. Whereas the homogeneous normal Dirichlet val-
ues are incorporated as essential boundary conditions in the space V = H0(div,Ω), the
homogeneous tangential Dirichlet values are included as natural boundary conditions in
(6a), see also Section 4.3 in [30].

3.2. The stream function formulation.



6 P. L. LEDERER

3.2.1. The standard weak formulation. In this section we summarize the findings of Sec-
tion 5.2 in [21] to derive the standard variational stream function formulations of the
Stokes problem. By the incompressibility constraint div(u) = 0, the velocity solution
u of the Stokes equation (1) can be expressed as the curl of a scalar-valued (d = 2) or
vector-valued (d = 3) potential ψ called the stream function, i.e. curl(ψ) = u. To this
end we define for d = 2

Ψ := {φ ∈ H2(Ω,R) : φ|∂Ω = 0,
∂φ

∂n

∣

∣

∣

∂Ω
= 0},

and for d = 3

Ψ := {φ ∈ L2(Ω,R3) : div(φ) ∈ H1(Ω,R), curl(φ) ∈ H1
0 (Ω,R

3), φ× n|∂Ω = 0}.
The stream function can be characterized as the unique solution of the weak problem:
Find ψ ∈ Ψ such that

∫

Ω

∆ψ : ∆φ dx =

∫

Ω

f · curl(φ) ∀φ ∈ Ψ.(7)

According to Theorem 5.5 and Lemma 5.1 in [21], equation (7) has an unique solution
such that curl(ψ) = u is the unique solution of the standard variational formulation of
the Stokes equation (4). In contrast to (3), the weak formulation (7) does not directly
include the constraint div(ψ) = 0 in three space dimensions, as this follows implicitly
due to the choice of Ψ, see Lemma 5.1 in [21].

3.2.2. A weak formulation with reduced regularity. In the following we derive a new
weak formulation for the stream function formulation that is motivated by the MCS
formulation given by equation (6).

We start with the case d = 3. As discussed in the previous section, the solution of the
MCS formulation given by equation (6), fulfills the weaker regularity u ∈ H0(div,Ω).
From the properties of the de Rham complex, see for example in [9], the divergence
constraint div(u) = 0 then motivates the existence of a vector potential ψ ∈ H0(curl,Ω)
such that curl(ψ) = u. Similarly as before, we then further introduce a new variable
σ ∈ Σ such that σ = ”∇ curl(ψ)” (see equation (5a)) in a weak sense since the gradient
is not well-defined for curl(ψ). For an arbitrary τ ∈ Σ this leads to

∫

Ω

1

ν
σ : τ dx+ 〈div(τ), curl(ψ)〉V = 0.

Note, that the duality pair is well defined for the function curl(ψ) since

div(curl(φ)) = 0, and curl(φ) · n = div∂Ω(φ× n) = 0 ∀φ ∈ H0(curl),(8)

where div∂Ω is the surface divergence, see Section 2.1 in [9]. This shows that curl(φ) ∈
H0(div,Ω) = V for all φ ∈ H0(curl), hence 〈div(τ), curl(ψ)〉V is well defined. Similarly,
we derive a weak formulation of the momentum equation (5b) by testing with a function
curl(φ) with φ ∈ H0(curl) to get

〈div(σ), curl(φ)〉V = −
∫

Ω

f · curl(φ) dx,

where we used integration by parts and that curl(∇p)) = 0, hence the pressure integral
disappeared. Finally, to uniquely determine the vector potential ψ, we introduce a
gauging as it is also known for mixed formulation of the Maxwell’s equations, see for
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example in [40]. To this end we demand that ψ is orthogonal on gradient fields which
mimics the conditions div(ψ) = 0 in (3). Introducing the spaces

W := H0(curl,Ω) and S := H1
0 (Ω,R),(9)

we then have the weak formulation: Find (ψ, σ, λ) ∈ W × Σ× S such that
∫

Ω

1

ν
σ : τ dx+ 〈div(τ), curl(ψ)〉V = 0 ∀τ ∈ Σ,(10a)

〈div(σ), curl(φ)〉V +

∫

Ω

φ · ∇λ = −
∫

Ω

f · curl(φ) dx ∀φ ∈ W,(10b)

∫

Ω

ψ · ∇µ dx = 0 ∀µ ∈ S.(10c)

Remark 2. Similarly as for the solution of (6), the homogeneous Dirichlet boundary
conditions in (10) are split into a normal and a tangential part, see Remark 1. The
homogeneous normal condition u · n = curl(φ) · n = 0 is incorporated as an essential
boundary condition in the space W , see equation (8), whereas the boundary condition
u× n = curl(φ)× n = 0 is induced as a natural boundary condition in (10a).

Theorem 1. Let d = 3. There exists an unique solution (ψ, σ, λ) ∈ W × Σ × S of the
weak formulation (10) such that

‖σ‖H(cd) + ‖ψ‖H(curl) + ‖∇λ‖L2 . ‖f‖L2.

Further, the velocity solution u := curl(ψ) ∈ V is the solution of (6).

Proof. The proof is based on the standard theory of mixed problems, see [9]. Continu-
ity of the bilinear forms follows immediately with the Cauchy Schwarz inequality, the
continuity of the duality bracket and that for all φ ∈ W there holds the estimate

‖ curl(φ)‖2V = ‖ curl(φ)‖2L2 + ‖ div(curl(φ))‖2L2 = ‖ curl(φ)‖2L2 ≤ ‖φ‖2H(curl).

We continue with the kernel ellipticity. To this end let (σ, λ) ∈ Σ× S such that

〈div(σ), curl(φ)〉V +

∫

Ω

φ · ∇λ = 0 ∀φ ∈ W.(11)

In a first step we bound the norm of λ: Since ∇S ∈ W , equation (11) shows

‖∇λ‖2L2 =

∫

Ω

∇λ · ∇λ dx = −〈div(σ), curl(∇λ)〉V = 0,

thus λ = 0 (due to the zero boundary conditions of λ). Next, let u ∈ V be arbitrary.
Then, using a regular decomposition of u there exist functions θ, z ∈ H1

0 (R
d) such that

u = curl(θ) + z and

‖θ‖H1 + ‖z‖H1 . ‖u‖V .
Many authors have stated such decomposition results under various assumptions on
the domain Ω. Under the current assumptions we refer for example to [19]. With the
decomposition result we then get

‖ div(σ)‖V ′ = sup
u∈V

〈div(σ), u〉V
‖u‖V

∼ sup
θ,z∈H1

0
(Ω,Rd)

〈div(σ), curl(θ) + z〉V
‖z‖H1 + ‖θ‖H1

.
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Since H1
0 (Ω,R

d) ⊂ W , equation (11) and λ = 0 implies that 〈div(σ), curl(θ)〉V = 0. By
the definition of the distributional divergence and the Cauchy Schwarz inequality this
then finally leads to

‖ div(σ)‖V ′ ∼ sup
z∈H1

0
(Ω,Rd)

〈div(σ), z〉V
‖z‖H1

= sup
z∈H1

0
(Ω,Rd)

−
∫

Ω
σ : ∇z dx
‖z‖H1

≤ ‖σ‖L2,

thus in total ‖σ‖2H(cd) + ‖∇λ‖2L2 .
∫

Ω
σ : σ dx, which proves kernel ellipticity.

It remains to prove the inf-sup condition. To this end let φ ∈ W be arbitrary. Then,
as before, we use a regular decomposition (now in H0(curl)) of φ to find functions
θ ∈ H1

0 (Ω,R) and z ∈ H1
0 (Ω,R

d) such that φ = ∇θ + z and

‖∇z‖L2 ≤ c1‖ curl(φ)‖L2 and ‖∇θ‖L2 ≤ c2‖φ‖W ,(12)

where c1 > 0 and c2 > 0 are two constants. With the triangle inequality we then also
have ‖∇θ‖2L2 + ‖∇z‖2L2 ∼ ‖φ‖2W . Next, we use Lemma 12 of [30] which states that for
every u ∈ V there exists a σ ∈ Σ such that 〈div(σ), u〉V ≥ c3‖u‖2V , with a constant
c3 > 0, and ‖σ‖H(cd) . ‖u‖V . Since curl(φ) ∈ V , this gives for σ1 =

c1
c3
σ and λ = θ, the

estimate

〈div(σ1), curl(φ)〉V +

∫

Ω

φ · ∇λ dx =
c3
c1
〈div(σ), curl(φ)〉V +

∫

Ω

φ · ∇θ dx

≥ c1‖ curl(φ)‖2L2 +

∫

Ω

∇θ · ∇θ dx+
∫

Ω

z · ∇θ dx

≥ ‖∇z‖2L2 + ‖∇θ‖2L2 − ‖∇z‖L2‖∇θ‖L2 & ‖φ‖2W ,
where we used the Cauchy Schwarz inequality, the left equation of (12) and the Young
inequality for the last term. The continuity estimates ‖σ1‖H(cd) . ‖ curl(φ)‖L2 and the
right equation of (12) (for λ = θ) then shows

〈div(σ1), curl(φ)〉V +

∫

Ω

φ · ∇λ dx & ‖φ‖W (‖σ1‖H(cd) + ‖∇λ‖L2),

thus the inf-sup condition is proven and we conclude the proof of the existence and
continuity result.

Now let (σMCS, uMCS, pMCS) ∈ Σ × V × Q be the solution of equation (6), and set
u := curl(ψ) ∈ V . As (6c) gives div(uMCS) = 0, it follows that the pair (σMCS, uMCS)
is uniquely defined by testing equation (6b) only with divergence free test functions
v ∈ V 0 := {v ∈ V : div(v) = 0}. Since the pair (σMCS, u) is also a solution of (6b) (on
V 0), we have that u = uMCS by the uniqueness of the solution of equation (6). �

For the case d = 2, a similar formulation can be derived. Now, the de Rham complex
motivates the existence of a scalar potential ψ ∈ H1

0 (Ω,R) such that curl(ψ) = u. Note,
that ψ is already uniquely defined thus no further gauging is needed. With the same
observations as for the three dimensional case, we then have the weak formulation: Find
(ψ, σ) ∈ S × Σ such that

∫

Ω

1

ν
σ : τ dx+ 〈div(τ), curl(ψ)〉V = 0 ∀τ ∈ Σ,(13a)

〈div(σ), curl(φ)〉V = −
∫

Ω

f · curl(φ) dx ∀φ ∈ S.(13b)
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Theorem 2. Let d = 2. There exists a unique solution (ψ, σ) ∈ S × Σ of the weak
formulation (13) such that

‖σ‖H(cd) + ‖ψ‖H(curl) . ‖f‖L2 .

Further, the velocity solution u := curl(ψ) ∈ V is the solution of (6).

Proof. The proof follows with the same steps as in the proof of Theorem 1. �

4. A Hellan-Herrmann-Johnson like method for the stream function

formulation

In this section we present a new discretization of the weak formulation for the stream
function with reduced regularity, see equation (10) and (13). In two space dimensions
the method can be interpreted as a rotated version of the Hellan-Herrmann-Johnson
(HHJ) formulation for fourth order problems, see [25, 26, 28, 16, 3].

We start with some preliminaries for the discrete setting. Let T be a shape regular
quasi uniform triangulation (partition) of the domain Ω, which consists of triangles and
tetrahedrons in two and three dimensions, respectively. We denote by h the maximum
of the diameters of all elements in T . Since T is quasi uniform we have h ≈ diam(T )
for any T ∈ T . The set of element interfaces and boundaries is given by F . On each
facet F ∈ F we denote by J·K the usual jump operator. For facets on the boundary the
jump operator is just the identity.

For readability, we use again the symbol n for the outward unit normal vector on
the element boundaries and on facets on the global boundary. Then, the normal and
tangential trace of a smooth enough function φ : Ω → R

d is defined by

φn := φ · n and φt := φ− φnn.

Note, that this definition gives a scalar normal trace and vector valued tangential trace.
In two dimensions we further define by t the unit tangent vector that is obtained by
rotating n anti-clockwise by 90 degrees (thus t = n⊥), so that φt = (φ · t)t. In a similar
manner for a smooth enough function φ : Ω → R

d×d we set

φnn = φ : (n⊗ n) = nTφn and φnt = φn− φnnn,

which reads as a scalar “normal-normal component” and a vector-valued “normal-
tangential component”. In two dimensions we may write φnt = (tTφn)t.

Next, let T ∈ T be arbitrary, then we define by Pk(T,R) scalar-valued polynomials
of total order k on T . On the triangulation we then correspondingly set Pk(T ,R) :=
∪T∈T Pk(T,R). These definitions are extended to vector and tensor valued polynomials
as before.

Finally, let ω ⊂ Ω be an arbitrary subset, then we use (·, ·)ω for the L2-inner product
on ω and by || · ||2ω := (·, ·)ω the corresponding norm.
4.1. The HHJ-method in two dimensions.

In this section we summarize the derivation of the HHJ-method for the stream function
formulation as it is described in Section 4.1 in [21]. In this section we only consider the
case d = 2.

The idea of the HHJ formulation is, similarly as in the derivation of the MCS for-
mulation (6), motivated by rewriting the fourth order problem of the stream function
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formulation (7) as a mixed system. To his end we introduce the space

Σhhj := {σ ∈ L2(Ω,Rd×d) : σ = σT, σ|K ∈ H1(T,Rd×d) ∀T ∈ T , JσnnK = 0 ∀F ∈ F},
and define the symmetric tensor σ := ∇2ψ ∈ Σhhj where ψ ∈ Ψ is the stream function.
Then, with the introduction of the symmetric bilinear form

a(σ, τ) :=
1

ν

∫

Ω

σ : τ dx,

and the bilinear form

bhhj(σ, φ) :=−
∑

T∈T

∫

T

σ : ∇2φ dx+
∑

F∈F

∫

F

σnnJ(∇φ)nK ds(14)

=
∑

T∈T

∫

T

div(σ) · ∇φ dx−
∑

F∈F

∫

F

JσntK · (∇φ)t ds,

an equivalent formulation of equation (7) is given by: Find (σ, ψ) ∈ Σ×Ψ such that

a(σ, τ) + bhhj(τ, ψ) = 0 ∀τ ∈ Σhhj,

bhhj(σ, φ) = −
∫

Ω

f · curl(φ) dx ∀φ ∈ Ψ.

In order to derive the discrete HHJ method we now define the approximation spaces

Sk
h := Pk(T ,R) ∩ S and Σhhj,k−1

h := Pk−1(T ,Rd×d) ∩ Σhhj,(15)

then the HHJ method is given by: Find (σh, ψh) ∈ Σhhj,k−1
h × Sk

h such that

a(σh, τh) + bhhj(τh, ψh) = 0 ∀τh ∈ Σhhj,k−1
h ,(16a)

bhhj(σh, φh) = −
∫

Ω

f · curl(φh) dx ∀φh ∈ Sk
h.(16b)

Whereas this method gives optimal convergence orders, it is not clear how it can be
extended to the three dimensional case. As stated in [21], “the obvious reason is, that
the conditions determining the vector potential are more intricate than those defining the
two-dimensional stream function”.

4.2. A HHJ-like method. We now introduce a new discrete method for the discretiza-
tion of equation (10) and (13).

We start with the case d = 2. In contrast to the previous section where σhhj was the
symmetric hessian of ψ, we now aim to approximate the matrix σ = ”∇ curl(ψ)”. For
the approximation of σ ∈ Σ ⊂ H(curl div) we follow the works [24, 23, 30] and define
the discrete stress space

Σk
h := {σh ∈ Pk(T ,Rd×d) : tr(σh) = 0,J(σh)ntK = 0,

(σh)nt ∈ Pk−1(F,Rd−1) ∀F ∈ F}.
Note, that the discrete space Σk

h is slightly non-conforming with respect to H(curl div).
Now let Sk

h be as in (15) and define the velocity space as

V k
h := Pk(Ω,Rd) ∩H0(div,Ω),

which is the well knownH(div)-conforming Brezzi-Douglas-Marini space, see for example
in [9]. In [24, 30] the authors motivated the definition of a discrete duality bracket which
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mimics 〈div(σ), v〉H0(div) in the case where σ ∈ Σk
h 6⊂ H(curl div). Following these ideas,

we define for all σh ∈ Σk
h and all vh ∈ V k

h the bilinear form

b(σh, vh) :=−
∑

T∈T

∫

T

σ : ∇vh dx+
∑

F∈F

∫

F

(σh)ntJ(vh)tK ds

=
∑

T∈T

∫

T

div(σh) · vh dx−
∑

F∈F

∫

F

JσnnK · (vh)n ds.

Similarly as in the continuous setting, the properties of the discrete de Rham complex
now give curl(Sk

h) ⊂ V k−1
h . Thus for a function φh ∈ Sk

h and a σh ∈ Σk
h, the discrete

duality bracket then reads as

b(σh, curl(φh)) :=−
∑

T∈T

∫

T

σh : ∇ curl(φh) dx+
∑

F∈F

∫

F

(σh)ntJcurl(φh)tK ds(17)

=
∑

T∈T

∫

T

div(σh) · curl(φh) dx−
∑

F∈F

∫

F

J(σh)nnK curl(φh)n ds.(18)

Comparing this to the definition of the bilinear form bhhj(·, ·), see equation (14), we

realize that b(·, ·) reads, simply said, as a rotated version: Whereas a σhhj,k
h ∈ Σhhj

h is
“normal-normal” continuous and ∇φh is tangential continuous, we are now in the setting
where σh ∈ Σk

h is “normal-tangential” continuous and curl(φh) is normal continuous.
With respect to the weak formulation (13) we now define the discrete method: Find
(σh, ψh) ∈ Σk−1

h × Sk
h such that

a(σh, τh) + b(τh, curl(ψh)) = 0 ∀τh ∈ Σk−1
h ,(19a)

b(σh, curl(φh)) = −
∫

Ω

f · curl(φh) dx ∀φh ∈ Sk
h.(19b)

Remark 3. Note, that on one edge F ∈ F the normal-tangential components of func-
tions in Σk−1

h are polynomials of order k− 2, whereas the normal-normal components of

functions in Σhhj,k−1
h are polynomials of order k − 1 resulting in less coupling degrees of

freedom.

Considering the close relation of equation (10) and equation (13) in the continuous
setting, the derivation of the two dimensional (rotated) HHJ-like method motivates to
extend it also to the three dimensional case. Following [9], the tangential continuous
Nédélec finite element space is given by

W k
h := Pk(Ω,Rd) ∩H0(curl,Ω),

with the property curl(W k
h ) ⊂ V k−1

h . Similarly as in the continuous setting, let the
gauging bilinear form be given by

bg(φh, λh) =

∫

Ω

φh · ∇λh dx ∀φh ∈ W k
h , ∀λh ∈ Sk+1

h .
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Then, the three dimensional modified HHJ method is given by: Find (σh, ψh, λh) ∈
Σk−1

h ×W k
h × Sk+1

h such that

a(σh, τh) + b(τh, curl(ψh)) = 0 ∀τh ∈ Σk−1
h ,(20a)

b(σh, curl(φh)) + bg(φh, λh) = −
∫

Ω

f · curl(φh) dx ∀φh ∈ W k
h ,(20b)

bg(ψh, µh) = 0 ∀µh ∈ Sk+1
h .(20c)

Remark 4. Whereas the discrete velocity of a standard mixed finite element approx-
imation of the Stokes equations might only be discretely divergence-free, the velocity
uh := curl(ψh), where ψh is the solution of (20), is exactly divergence-free, see also
Remark 7.

Remark 5. Testing the second equation of (20) with the test function φh = ∇λh shows,
that the Lagrangian multiplier λh equals zero, thus is only needed to prove discrete sta-
bility of the system. As discussed in the next section, discrete stability can also be proven
on the space

W k,⊥
h := {φh ∈ W k

h :

∫

Ω

φh · ∇µh dx = 0 ∀µh ∈ Sk+1
h }.(21)

Then we have the problem: Find (σh, ψh) ∈ Σk−1
h ×W k,⊥

h such that

a(σh, τh) + b(τh, curl(ψh)) = 0 ∀τh ∈ Σk−1
h ,(22a)

b(σh, curl(φh)) = −
∫

Ω

f · curl(φh) dx ∀φh ∈ W k,⊥
h .(22b)

Note, that the solutions σh and ψh of (20) and (22) are identical. For the implemen-

tation of (22), the corresponding finite element code needs a basis of W k,⊥
h . This can be

achieved if the finite element spaces are constructed with respect to the discrete de Rham
complex. For the high order moments see for example in [53]. We also want to mention,

that W k,⊥
h has less coupling degrees of freedoms compared to W k

h , thus the factorization
step to solve the corresponding linear system is faster.

5. A stability analysis in mesh dependent norms

In this section we present a stability and error analysis of the HHJ-like method in-
troduced in the last chapter. The analysis is based on using mesh dependent norms as
for example in [3] and [51]. We only proof the three dimensional case since it is more
challenging due to the gauging bilinear form. The two dimensional case follows with
similar techniques.

In contrast to the continuous stability analysis of Section 3.2.2, we aim to use the
L2-norm on the discrete space Σk

h and use again ‖∇ · ‖L2 on Sk
h. For the stream function
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and the velocity space we define for all φh ∈ W k
h and uh ∈ V k

h the norms

|φh|21,curl,h :=
∑

T∈T

‖∇ curl(φh)‖2T +
∑

F∈F

1

h
‖Jcurl(φh)tK‖2F ,

‖φh‖21,curl,h := ‖φh‖2L2 + |φh|21,curl,h,

‖uh‖21,h :=
∑

T∈T

‖∇uh‖2T +
∑

F∈F

1

h
‖J(uh)tK‖2F .

Note, that the norm ‖φh‖21,curl,h reads as a discrete H1(curl)-like norm, and that for
uh = curl(ψh) we have |ψh|1,curl,h = ‖uh‖1,h. For the stability proof we will need the
following decomposition and norm equivalence results.

Lemma 1. Let σh ∈ Σk−1
h be arbitrary. There holds the norm equivalence

‖σh‖2L2 ∼
∑

T∈T

‖σh‖2T +
∑

F∈F

h‖(σh)nt‖2F .

Proof. This follows by standard scaling arguments and was proven in [24]. �

Lemma 2. Let φh ∈ W k
h , then there exists a λh ∈ Sk+1

h and a wh ∈ W k
h such that

φh = ∇λh + wh and

‖∇λh‖L2 . ‖φh‖L2 and ‖wh‖L2 . ‖ curl(φh)‖L2 .(23)

Further, there holds the norm equivalence

|φh|21,curl,h + ‖∇λh‖L2 ∼ ‖φh‖21,curl,h.(24)

Proof. The first part of the lemma is well known in the literature but the proof is
presented for completeness. First, we solve the problem: Find λh ∈ Sk+1

h such that
∫

Ω

∇λh · ∇µh dx =

∫

Ω

φh · ∇µh dx ∀µh ∈ Sk+1
h .

Solveability of this problem is given by the standard theory, see for example [12], and
there holds the regularity estimate ‖∇λh‖L2 . ‖φh‖L2 . Now, since wh := φh−∇λh ∈ W k

h

is L2-orthogonal on ∇Sk+1
h (by definition), the estimate ‖wh‖L2 . ‖ curl(φh)‖L2 follows

by curl(∇λh) = 0 and a Friedrichs-type inequlity for the H(curl)-space, see for example
[40].

We continue with the proof of (24). The left side can be bounded by the right side
by applying the estimate for λh in (23). For the other direction, the triangle inequality,
and the right estimate in (23) gives

‖φh‖2L2 ≤ ‖∇λh‖2L2 + ‖wh‖2L2 . ‖∇λh‖2L2 + ‖ curl(φh)‖2L2.

With uh := curl(φh) ∈ V k−1
h , a discrete Friedrichs-like inequality on V k−1

h , as in [11],
gives

‖ curl(φh)‖2L2 = ‖uh‖2L2 . ‖uh‖21,h = ‖φh‖21,curl,h,
from what we conclude the proof. �

To show discrete stability, we again apply the standard theory of mixed problems,
see [9]. To this end we prove continuity, kernel ellipticity and inf-sup stability in the
following.
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Lemma 3 (Continuity). There holds the continuity estimate

a(σh, τh) .
1

ν
‖σh‖L2‖τh‖L2 ∀σh, τh ∈ Σk−1

h

b(σh, curl(φh)) . ‖σh‖L2‖φh‖1,curl,h ∀σh ∈ Σk−1
h , ∀φh ∈ W k

h

bg(φh, µh) . ‖φh‖1,curl,h‖∇µh‖L2 ∀φh ∈ W k
h , ∀µh ∈ Sk+1

h .

Proof. The continuity of a(·, ·) and bg(·, ·) follows by the Cauchy-schwarz inequality. For
b(·, ·) we use the first representation in (17), the Cauchy-Schwarz inequality on each
element T and F separately, and the norm equivalence Lemma 1. �

Lemma 4 (Kernel ellipticity). Let (σh, λh) ∈ Σk−1
h × Sk+1

h be an element in the kernel
of the constraints, i.e. b(σh, curl(φh)) + bg(φh, λh) = 0 for all φh ∈ W k

h . There holds the
estimate

‖σh‖2L2 + ‖∇λh‖2L2 . νa(σ, σ).

Proof. Since ‖σh‖2L2 = νa(σ, σ), we only prove the estimate for λh. Now let φh := ∇λh ∈
W k

h . As curl(φh) = 0, the definition of the bilinear form b(·, ·) gives

‖∇λh‖2L2 =

∫

Ω

∇λh · ∇λh dx =

∫

Ω

φh · ∇λh dx

=
∑

T∈T

∫

T

σh : ∇ curl(φh) dx−
∑

F∈F

∫

F

(σh)ntJcurl(φh)tK ds = 0,

which implies (due to the boundary conditions) that λ = 0, and the lemma is proven. �

Lemma 5 (inf-sup). There holds the stability estimate

sup
06=σh∈Σ

k−1

h

06=λh∈S
k+1

h

b(σh, curlφh) + bg(φh, λh)

‖σh‖L2 + ‖∇λh‖L2

& ‖φh‖1,curl,h ∀φh ∈ W k
h .

Proof. Let φh ∈ W k
h be arbitrary and set uh := curl(φh) ∈ V k−1

h . Since div uh = 0,
Lemma 6.5 (and the norm equivalence (6.5)) in [24] shows, that there exists a function
σh ∈ Σk−1

h such that ‖σh‖L2 . ‖uh‖1,h and b(σ, uh) ≥ c1‖uh‖21,h, where c1 > 0 is a

fixed constant. Now let λh ∈ Sk+1
h and wh ∈ W k

h be the decomposition functions given
by Lemma 2, such that ‖wh‖L2 ≤ c2‖ curl(φh)‖L2. As in the proof of Lemma 2, a
Friedrichs-like inequality further gives ‖uh‖L2 ≤ c3‖uh‖1,h, thus

‖wh‖L2 ≤ c2‖ curlφh‖L2 ≤ c2c3‖uh‖1,h.(25)

Now with σ̃h := c2c3
c1
σh we get

b(σ̃h, curl(φh)) + bg(φh, λh) = b(σ̃h, uh) +

∫

Ω

φh · ∇λh dx

= b(σ̃h, uh) +

∫

Ω

|∇λh|2 − wh · ∇λh dx

≥ c2c4‖uh‖21,h + ‖∇λh‖2L2 − ‖wh‖L2‖∇λh‖L2
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Using (25), Youngs inequality and ‖uh‖1,h = |φh|1,curl,h, finally gives

b(σ̃h, curl(φh)) + bg(φh, λh) ≥ c2c4‖uh‖21,h + ‖∇λh‖2L2 − c2c4‖uh‖1,h‖∇λh‖L2

& |φh|21,curl,h + ‖∇λh‖2L2 .

With the continuity estimates ‖σh‖L2 . |φh|1,curl,h, and the left estimate of equation (23),
we conclude the proof by the norm equivalence (24). �

The above prove and the norm equivalence (24) also shows, that we can derive an
inf-sup condition on the orthogonal complement of ∇Sk+1

h , i.e. there holds

sup
06=σh∈Σ

k−1

h

b(σh, curl(φh))

‖σh‖L2

& ‖φh‖1,curl,h ∀φh ∈ W k,⊥
h .(26)

see also Remark 5.

Theorem 3 (Consistency). The HHJ-like method for the stream function is consistent
in the following sense. If the exact solution of the Stokes problem (5) is such that
u ∈ H1(Ω,Rd), σ ∈ H1(Ω,Rd×d), p ∈ L2

0, and ψ ∈ Ψ is the exact stream function such
that curl(ψ) = u, then

a(σ, τh) + b(τh, curl(ψ)) + b(σ, curl(φh)) = −
∫

Ω

f · curl(φh) dx,

for all τh ∈ Σk−1
h , φh ∈ W k

h .

Proof. As the exact solutions σ and u = curl(ψ) are continuous we have that JσnnK = 0
and Jcurl(ψ)tK = 0 on all faces F ∈ F , thus by definition (17), we have

b(σ, curl(φh)) =
∑

T∈T

∫

T

div(σ) · curl(φh) dx−
∑

F∈F

∫

F

JσnnK curl(φh)n ds

=

∫

Ω

div(σ) · curl(φh) dx,

b(τh, curl(ψ)) =−
∑

T∈T

∫

T

τh : ∇ curl(ψ) dx+
∑

F∈F

∫

F

(τh)ntJcurl(ψ)tK ds

= −
∫

Ω

τh : ∇ curl(ψ) dx.

Now, since dev σ = σ = ν∇u = ν∇ curl(ψ) we have

a(σ, τh) + b(τh, curl(ψ)) =

∫

Ω

1

ν
σ : τh dx−

∫

Ω

τh : ∇ curl(ψ) dx = 0.

With div(σ) = −f +∇p, integration by parts for the pressure integral finally gives

b(σ, curl(φh)) =

∫

Ω

(−f +∇p) · curl(φh) dx = −
∫

Ω

f · curl(φh) dx,

where we used that curl(∇p) = 0. �
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5.1. An error analysis of the HHJ-like method. The a priori error estimate pre-
sented in this section is based on the inf-sup stability and the consistency proven before.
Further we need several interpolation results.

To this end let IV k−1

h
and IW k

h
be an H(div)-conforming and H(curl)-conforming (pro-

jection based) interpolation operator, respectively, as for example in [17, 18]. Note, that
these operators commute with the corresponding differential operators, i.e.

IV k−1

h
curl = curl IW k

h
,(27)

Further, let IΣk−1

h
be the interpolation operator defined in [24].

Lemma 6. Let u, σ be arbitrary with u ∈ H1(Ω,Rd)∩Hm(T ,Rd) and σ ∈ H1(Ω,Rd×d)∩
Hm−1(T ,Ωd×d). For s = min(m− 1, k − 1), there holds the approximation estimate

‖σ − IΣk−1

h
σ‖L2 +

√

∑

F∈F

h‖(σ − IΣk−1

h
σ)nt‖2F . hs‖σ‖Hs(T ),

‖u− IV k−1

h
u‖1,h . hs‖u‖Hs+1(T ).

Proof. The estimate of IV k−1

h
follows with the standard techniques and is based on the

Bramble-Hilbert lemma. We refer to for example to [34, 9] for a detailed proof. The
proof for IΣk−1

h
can be found in [24]. Note, that the estimate for IΣk−1

h
is motivated by

the norm equivalence given in Lemma 1. �

Theorem 4 (Optimal convergence). Let u ∈ H1(Ω,Rd)∩Hm(T ,Rd), σ ∈ H1(Ω,Rd×d)∩
Hm−1(T ,Ωd×d) be the exact solution of (5), and let ψ ∈ Ψ be the exact stream function
such that curl(ψ) = u. Let σh, ψh ∈ σk−1

h ×W k
h be the solution of the HHJ-like method

(20) and set uh := curl(ψh). For s = min(m− 1, k − 1) there holds the error estimate

1

ν
‖σ − σh‖L2 + ‖u− uh‖1,h . hs‖u‖Hs+1(T )

Proof. In a first step we bound the error by the triangle inequality which gives

1

ν
‖σ − σh‖L2 + ‖u− uh‖1,h ≤ 1

ν
‖σ − IΣk−1

h
σ‖L2 + ‖u− IV k−1

h
u‖1,h

+
1

ν
‖IΣk−1

h
σ − σh‖L2 + ‖IV k−1

h
u− uh‖1,h.

Applying Lemma 6 shows, that the first two terms on the right side already converge
with the optimal order. We continue with the last two terms on the right side. Since,
uh = curlψh and u = curlψ, the commuting property of the interpolation operators, see
equation (27), gives

1

ν
‖IΣk−1

h
σ − σh‖L2 + ‖IV k−1

h
u− uh‖1,h

=
1

ν
‖IΣk−1

h
σ − σh‖L2 + ‖IV k−1

h
curlψ − curlψh‖1,h

=
1

ν
‖IΣk−1

h
σ − σh‖L2 + ‖ curl IW k

h
ψ − curlψh‖1,h

≤ 1

ν
‖IΣk−1

h
σ − σh‖L2 + ‖IW k

h
ψ − ψh‖1,curl,h.
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In the following we aim to use the discrete stability results proven in the last section.
To this end we define the following product space norm

‖(τh, φh)‖∗ :=
√
ν‖φh‖1,curl,h +

1√
ν
‖τh‖L2 ∀(τh, φh) ∈ Σk−1

h ×W k
h .

Following the definition of IW k
h
, equation (200) in [18], we see that for an arbitrary

µh ∈ Sk+1
h we have

∫

Ω

IW k
h
ψ · ∇µh dx =

∫

Ω

ψ · ∇µh dx = −
∫

Ω

div(ψ)µh dx = 0,

where we used that the stream function fulfills div(ψ) = 0. Now as ψh is the solution of

(20), we have IW k
h
ψ − ψh ∈ W k,⊥

h , thus Lemma 3, Lemma 4 and the inf-sup condition

(26) gives the estimate

‖(IΣk−1

h
σ − σh, IW k

h
ψ − ψh)‖∗

. sup
(τh,φh)∈

Σk−1

h
×W k,⊥

h

a(IΣk−1

h
σ − σh, τh) + b(IΣk−1

h
σ − σh, curl(φh)) + b(τh, curl(IW k

h
ψ − ψh))

‖(τh, φh)‖∗

. sup
(τh,φh)∈

Σk−1

h
×W k,⊥

h

a(IΣk−1

h
σ − σ, τh) + b(IΣk−1

h
σ − σ, curl(φh)) + b(τh, curl(IW k

h
ψ − ψ))

‖(τh, φh)‖∗
.

where we used Theorem 3 in the last step. Following the same steps as in the proof of
Theorem 6.3 in [24], the Cauchy-Schwarz inequality (as in the proof of Lemma 3) allows
us to bound

a(IΣk−1

h
σ − σ, τh) + b(IΣk−1

h
σ − σ, curl φh) + b(τh, curl(IW k

h
ψ − ψ))

.



‖(IΣk−1

h
σ − σ, IW k

h
ψ − ψ)‖∗ +

1√
ν

√

∑

F∈F

h‖(IΣk−1

h
σ − σ)nt‖2F



 ‖(τh, φh)‖∗,

and we conclude the proof with the interpolation error estimates of Lemma 6. �

Remark 6. We want to emphasize that although s = min(m − 1, k − 1), the result of
Theorem 4 reads as an optimal convergence result. Since the fixed polynomial order k
corresponds to the approximation order of the stream function ψh in the space W k

h , it
follows that for uh = curlψh ∈ V k−1

h the convergence rate of the error measured in a
discrete H1-like norm is only expected to be at most of order O(hk−1). Further note,
that if the finite element library for the implementation allows an approximation of the
reduced system (22), hence provides an explicit basis forW k,⊥

h , the method is also optimal
with respect to the number of degrees of freedom compared to a direct approximation of
uh ∈ V k−1

h as for example in [24, 35]. This follows directly by the properties of the
discrete de Rham complex as in [53].

Remark 7 (Pressure robustness). Theorem 4 shows that the velocity error can be
bounded independently of the continuous pressure solution. Methods that allow to de-
duce such error estimates are called pressure robust and we present a brief explanation
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in the following. Let P be the continuous Helmholtz projection (see [21]) onto the rota-
tional part of a given load f

f = ∇θ + ξ =: ∇θ + P(f),

with θ ∈ H1(Ω)/R and ξ =: P(f) ∈ {v ∈ H0(div,Ω) : div(v) = 0}. Testing the
momentum balance (5b) with an arbitrary (exactly) divergence-free test function v, shows
that σ = ν∇u is steered only by P(f) since integration by parts gives

∫

Ω

∇θ · v dx = 0.

In [37] the author showed that this property might not be handed over from the continuous
to the discrete setting since for classical mixed methods a discrete divergence-free velocity
test function might not be exactly divergence-free. In this case, one can only deduce a
velocity error estimate that depends on the best approximation of the continuous pressure
solution that includes a scaling 1/ν which can produce big errors for vanishing viscosities
ν → 0, see [39, 38, 31, 27]. One advantage of the stream function formulation is, that
the right hand side of the weak formulation, see (7), (10) and (20), is only tested with
curl(φ) or curl(φh) in the continuous and discrete setting, respectively. Hence, in both
situations we have again with integration by parts that

∫

Ω

∇θ · curl(φ) dx =

∫

Ω

∇θ · curl(φh) dx = 0,

and thus the (discrete) velocity uh = curl(ψh) is again only steered by P(f) which allows
to derive the pressure robust error estimate of Theorem 4.

6. Post processing for the pressure

Following chapter 4.4 in [21], we can construct a simple post processing which allows
to approximate the pressure of the Stokes equations (5). To this end we define the
(discontinuous) pressure space

Qk
h := Pk(Ω,R) ∩ L2

0(Ω,R),

with the property div(V k−1
h ) = Qk−2

h . Further, there holds the (polynomial robust, see
[33]) Stokes inf-sup condition

sup
06=vh∈V

k−1

h

∫

Ω
div(vh)qh dx

‖vh‖1,h
& ‖qh‖L2 ∀qh ∈ Qk−2

h .(28)

Now let σh ∈ Σk−1
h be the solution of the HHJ-like method (20), then we define the weak

problem: Find ph ∈ Qk−2
h such that

∫

Ω

ph div(vh) dx = −
∫

Ω

f · vh dx+ b(σh, vh) ∀vh ∈ V k−1
h .(29)

Theorem 5. Let p ∈ L2
0(Ω,R) ∩ Hm−1(T ,R) be the exact solution of (5), and let

u, uh, σ, σh be defined as in Theorem 4. Further, let ph be the solution of (29). For
s = min(m− 1, k − 1) there holds the error estimate

‖p− ph‖L2 . hs‖u‖Hs+1(T ) + ‖p‖Hs(T ).
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Proof. The proof follows with exactly the same steps as the proof of Theorem 45 in
chapter 4.4 in [21] and involves (28), the results of Theorem 4 and the properties of the
interpolation operators of Lemma 6. �

7. Numerical example

In this section we present a numerical example to validate the findings of Section
5.1. All numerical examples were implemented within the finite element library Net-
gen/NGSolve, see [49, 50] and www.ngsolve.org.

Let Ω = (0, 1)d and f = − div(σ)+∇p with the exact solutions u = curl(ψ), σ = ν∇u
and

ψ := x2(x− 1)2y2(y − 1)2, p := x5 + y5 − 1

3
, for d = 2,

ψ :=





x2(x− 1)2y2(y − 1)2z2(z − 1)2

x2(x− 1)2y2(y − 1)2z2(z − 1)2

x2(x− 1)2y2(y − 1)2z2(z − 1)2



 , p := x5 + y5 + z5 − 1

2
, for d = 3.

In Table 1 and 2 we present several errors including their estimated order of convergence
(eoc) for a fixed viscosity ν = 10−6, polynomial orders k = 2, 3, 4 (where the order
corresponds to the approximation space W k

h of the stream function, see Remark 6)
for the two and three dimensional case, respectively. As predicted by Theorem 4 and
Theorem 5 the H1-seminorm error of the velocity uh, the L

2-norm error of the stress σh
and the L2-norm error of the pressure ph converge with optimal orders. Beside that, as
given in the most right columns of Table 1 and 2, we further observe that the L2-norm
error of the velocity uh converges at one order higher. This is explained by exploiting a
standard Aubin-Nitsche duality argument to prove that the solution uh ∈ V k−1

h fulfills
the estimate

‖u− uh‖L2 . hk‖u‖Hk ,

whenever the problem admits full regularity and the exact solution is smooth enough.
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[43] J. C. Nédélec, éléments finis mixtes incompressibles pour l’équation de stokes dans 3, Numerische
Mathematik, 39 (1982), pp. 97 – 112.
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