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Abstract. We initiate the study of computing (near-)optimal contracts in succinctly repre-3
sentable principal-agent settings. Here optimality means maximizing the principal’s expected payoff4
over all incentive-compatible contracts—known in economics as “second-best” solutions. We also5
study a natural relaxation to approximately incentive-compatible contracts.6

We focus on principal-agent settings with succinctly described (and exponentially large) outcome7
spaces. We show that the computational complexity of computing a near-optimal contract depends8
fundamentally on the number of agent actions. For settings with a constant number of actions,9
we present a fully polynomial-time approximation scheme (FPTAS) for the separation oracle of the10
dual of the problem of minimizing the principal’s payment to the agent, and use this subroutine11
to efficiently compute a δ-incentive-compatible (δ-IC) contract whose expected payoff matches or12
surpasses that of the optimal IC contract.13

With an arbitrary number of actions, we prove that the problem is hard to approximate within14
any constant c. This inapproximability result holds even for δ-IC contracts where δ is a sufficiently15
rapidly-decaying function of c. On the positive side, we show that simple linear δ-IC contracts with16
constant δ are sufficient to achieve a constant-factor approximation of the “first-best” (full-welfare-17
extracting) solution, and that such a contract can be computed in polynomial time.18
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1. Introduction. Economic theory distinguishes three fundamentally different22

problems involving asymmetric information and incentives. In the first—known as23

mechanism design (or screening)—the less informed party has to make a decision.24

A canonical example is Myerson’s optimal auction design problem [42], in which a25

seller wants to maximize the revenue from selling an item, having only incomplete26

information about the buyers’ willingness to pay. The second problem is known as27

signalling (or Bayesian persuasion). Here, as in the first case, information is hidden,28

but this time the more informed party is the active party. A canonical example is29

Akerlof’s “market for lemons” [1]. In this example, sellers are better informed about30

the quality of the products they sell, and may benefit by sharing (some) of their31

information with the buyers.32

Both of these basic incentive problems have been studied very successfully and33

extensively from a computational perspective, see, e.g., [9, 10, 11, 6, 12, 5, 28, 29] and34

[19, 21, 17, 22].35

The third basic problem, the agency problem in contract theory, has received36

far less attention from the theoretical computer science community, despite being37
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2 P. DÜTTING, T. ROUGHGARDEN, AND I. TALGAM-COHEN

regarded as equally important in economic theory (see, e.g., the scientific background38

on the 2016 Nobel Prize for Hart and Holmström [48]). (A notable exception is [4],39

which we will discuss with further related work in more detail below.)40

The basic scenario of contract theory is captured by the following hidden-action41

principal-agent problem [30]: There is one principal and one agent. The agent can42

take one of n actions ai ∈ An. Each action ai is associated with a distribution Fi over43

m outcomes xj ∈ R≥0, and has a cost ci ∈ R≥0. The principal designs a contract p44

that specifies a payment p(xj) for each outcome xj . The agent chooses an action ai45

that maximizes expected payment minus cost, i.e.,
∑
j Fi,jp(xj) − ci. The principal46

seeks to set up the contract so that the chosen action maximizes expected outcome47

minus expected payment, i.e.,
∑
j Fi,jxj −

∑
j Fi,jp(xj).48

The principal-agent problem is quite different from mechanism design and sig-49

nalling, where the basic difficulty is the information asymmetry and that part of the50

information is hidden. In the principal-agent problem the issue is one of moral haz-51

ard : in and by itself the agent has no intrinsic interest in the expected outcome to52

the principal.53

It is straightforward to see that the optimal contract can be found in time polyno-54

mial in n and m by solving n linear programs (LPs). For each action the corresponding55

LP gives the smallest expected payment at which this action can be implemented. The56

action that yields the highest expected reward minus payment gives the optimal payoff57

to the principal, and the LP for this action the optimal contract.58

Succinct principal-agent problems. This linear programming-based algo-59

rithm for computing an optimal contract has several analogs in algorithmic game60

theory:61

1. Mechanism design. For many basic mechanism design problems, the optimal62

(randomized) mechanism is the solution of a linear program with size polynomial63

in that of the players’ joint type space.64

2. Signalling. For many computational problems in signalling, the optimal signalling65

scheme is the solution to a linear program with size polynomial in the number of66

receiver actions and possible states of nature.67

3. Correlated equilibria. In finite games, a correlated equilibrium can be computed68

using a linear program with size polynomial in the number of game outcomes.69

These linear-programming-based solutions are unsatisfactory when their size is ex-70

ponential in some parameter of interest. For example, in the mechanism design and71

correlated equilibria examples, the size of the LP is exponential in the number of play-72

ers. A major contribution of theoretical computer science to game theory and eco-73

nomics has been the articulation of natural classes of succinctly representable settings74

and a thorough study of the computational complexity of optimal design problems in75

such settings. Examples include work on multi-dimensional mechanism design that76

has emphasized succinct type distributions [9, 10, 11, 12], succinct signalling schemes77

with an exponential number of states of nature [22], and the efficient computation of78

correlated equilibria in succinctly representable multi-player games [46, 36]. The goal79

of this paper is to initiate an analogous line of work for succinctly described agency80

problems in contract theory.81

We focus on principal-agent settings with succinctly described (and exponentially82

large) outcome spaces, along with a reward function that supports value queries and83

a distribution for each action with polynomial description. While there are many84

such settings one can study, we focus on what is arguably the most natural one from85

a theoretical computer science perspective, where outcomes correspond to vertices86
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of the hypercube, the reward function is additive, and the distributions are product87

distributions. (Cf., work on computing revenue-maximizing multi-item auctions with88

product distributions over additive valutions, e.g. [9, 10].)89

For example, outcomes could correspond to sets of items, where items are sold90

separately using posted prices. Actions could correspond to different marketing strate-91

gies with different costs, which lead to different (independent) probabilities of sales92

of various items. Or, imagine that a firm (principal) uses a headhunter (agent) to93

hire an employee (action). Dimensions could correspond to tasks or skills. Actions94

correspond to types of employees, costs correspond to the difficulty of recruiting an95

employee of a given type, and for each employee type there is some likelihood that96

they will possess each skill (or be able to complete some task). The firm wants to97

motivate the headhunter to put in enough effort to recruit an employee who is likely98

to have useful skills for the firm, without actually running extensive interviews to find99

out the employee’s type.100

In our model, as in the classic model, there is a principal and an agent. The agent101

can take one of n actions ai ∈ An, and each action has a cost ci ∈ R≥0. Unlike in the102

original model, we are given a set of items M , with |M | = m. Outcomes correspond103

to subsets of items S ∈ 2M . Each item has a reward rj , and the reward of a set104

S of items is
∑
j∈S rj . Every action ai comes with probabilities qi,j for each item105

j. If action ai is chosen, each item j is included in the outcome independently with106

probability qi,j . A contract specifies a payment pS for each outcome S ∈ 2M . The107

goal is to compute a contract that maximizes (perhaps approximately) the principal’s108

payoff in running time polynomial in n and m (which is logarithmic in the size |2M |109

of the outcome space).110

A notion of approximate IC for contracts. The classic approach in contract111

theory is to require that the agent is incentivized exactly, i.e., he (weakly) prefers112

the chosen action over every other action. We refer to such contracts as incentive113

compatible or just IC contracts. Motivated in part by our hardness results for IC114

contracts (see the next section) and inspired by the success of notions of approximate115

incentive compatibility in mechanism design (as, for example, in [8, 51, 12], hereafter116

referred to as the CDW framework), we introduce a notion of approximate incentive117

compatibility that is suitable for contracts.118

Our notion of δ-incentive compatibility (or δ-IC) is that the agent utility of the119

approximately incentivized action ai is at least that of any other action ai′ , less δ.120

(See Section 2.4 for details, including how to turn δ-IC contracts into IC contracts121

with small multiplicative—and necessarily—additive loss.) This notion is natural122

for several reasons. First, it coincides with the usual notion of ε-IC in “normalized”123

mechanism design settings (with all valuations between 0 and 1), as in [8, 51]. A second124

reason is behaviorial. There is an increasing body of work in economics on behavioral125

biases in contract theory [39], including strong empirical evidence that such biases play126

an important role in practice—for example, that agents “gift” effort to the principals127

employing them [2]. The notion of δ-IC offers a mathematical formulation of an agent’s128

bias. Along similar lines, [15] advocates generally for approximate IC constraints in129

settings where the designer can propose their “preferred action” to agents, in which130

case an agent may be biased against deviating due to the complexities involved in131

determining the agent-optimal action or the psychological costs of deviating. See also132

[25] for related discussion in the context of contract theory.133

1.1. Our contribution and techniques. We prove several positive and nega-134

tive algorithmic results for computing near-optimal contracts in succinctly described135
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4 P. DÜTTING, T. ROUGHGARDEN, AND I. TALGAM-COHEN

principal-agent settings. Our work reveals a fundamental dichotomy between settings136

with a constant number of actions and those with an arbitrary number of actions.137

Constant number of actions. For a constant number of actions, we prove in138

Section 3 that while it is NP -hard to compute an optimal IC contract, there is an139

FPTAS that computes a δ-IC contract with expected principal surplus at least that140

of the optimal IC contract; the running time is polynomial in m and 1/δ.141

Theorem 1.1 (See Theorem 3.1, Corollary 3.2). For every constant n ≥ 1 and142

δ > 0, there is an algorithm that computes a δ-IC contract with expected principal143

surplus at least that of an optimal IC contract in time polynomial in m and 1/δ.144

The starting point of our algorithm is a linear programming formulation of the145

problem of incentivizing a given action with the lowest possible expected payment.146

Our formulation has a polynomial number of constraints (one per action other than147

the to-be-incentivized one) but an exponential number of variables (one per outcome).148

A natural idea is to then solve the dual linear program using the ellipsiod method.149

The dual separation oracle is: given a weighted mixture of n−1 product distributions150

(over the m items) and a reference product distribution q∗, minimize the ratio of151

the probability of outcome S in the mixture distribution and that in the reference152

distribution. Unfortunately, as we show, this is an NP -hard problem, even when153

there are only n = 3 actions. On the other hand, we provide an FPTAS for the154

separation oracle in the case of a constant number of actions, based on a delicate multi-155

dimensional bucketing approach. The standard method of translating an FPTAS for156

a separation oracle to an FPTAS for the corresponding linear program relies on a157

scale-invariance property that is absent in our problem. We proceed instead via a158

strengthened version of our dual linear program, to which our FPTAS separation159

oracle still applies, and show how to extract from an approximately optimal dual160

solution a δ-IC contract with objective function value at least that of the optimal161

solution to the original linear program.162

Arbitrary number of actions. The restriction to a constant number of actions163

is essential for the positive results above (assuming P 6= NP ). Specifically, we prove164

in Section 4 that computing the IC contract that maximizes the expected payoff to the165

principal is NP -hard, even to approximate to within any constant c. This hardness166

of approximation result persists even if we relax from exact IC to δ-IC contracts,167

provided δ is sufficiently small as a function of c.168

Theorem 1.2 (See Theorem 4.1, Corollary 4.2). For every constant c ∈ R, c ≥ 1,169

it is NP -hard to find a IC contract that approximates the optimal expected payoff170

achievable by an IC contract to within a multiplicative factor of c.171

Theorem 1.3 (See Theorem 4.1, Corollary 4.3). For any constant c ∈ R, c ≥ 5172

and δ ≤ ( 1
4c )

c, it is NP -hard to find a δ-IC contract that guarantees > 2
cOPT, where173

OPT is the optimal expected payoff achievable by an IC contract.174

We prove these hardness of approximation results by reduction from MAX-3SAT,175

using the fact that it is NP -hard to distinguish between a satisfiable MAX-3SAT176

instance and one in which there is no assignment satisfying more than a 7/8+α fraction177

of the clauses, where α is some arbitrarily small constant [33]. Our reduction utilizes178

the gap between “first best” (full-welfare-extracting) and “second best” solutions in179

contract design settings, where satisfiable instances of MAX-3SAT map to instances180

where there is no gap between first and second best and instances of MAX-3SAT in181

which no more than 7/8 + α clauses can be satisfied map to instances where there is182

a constant-factor multiplicative gap between the first-best and second-best solutions.183
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On the positive side, we prove that for every constant δ there is a simple (in184

fact, linear1) contract that achieves a cδ-approximation, where cδ is a constant that185

depends on δ. This approximation guarantee is with respect to the strongest possible186

benchmark, the first-best solution.2187

Theorem 1.4 (See Theorem 5.1). For every constant δ > 0 there exists a con-188

stant cδ and a polynomial-time (in n and m) computable δ-IC contract that obtains a189

multiplicative cδ-approximation to the optimal welfare.190

Our proof of this result, in Section 5, shows that the optimal social welfare can191

be upper bounded by a sum of (constantly many in δ) expected payoffs achievable by192

δ-IC contracts. The best such contract thus obtains a constant approximation to the193

optimal welfare.194

Black-box distributions. Product distributions are a rich and natural class195

of succinctly representable distributions to study, but one could also consider other196

classes. Perhaps the strongest-imaginable positive result would be an efficient algo-197

rithm for computing a near-optimal contract that works with no assumptions about198

each action’s probability distribution over outcomes, other than the ability to sample199

from them efficiently. (Positive examples of this sort in signalling include [22] and in200

mechanism design include [32] and its many follow-ups.) Interestingly, the principal-201

agent problem poses unique challenges to such “black-box” positive results. The moral202

reason for this is explained, for example, in [49]: Rewards play a dual role in contract203

settings, both defining the surplus from the joint project to be shared between the204

principal and agent and providing a signal to the principal of the agent’s action. For205

this reason, in optimal contracts, the payment to the agent in a given outcome is206

governed both by the outcome’s reward and on its “informativeness,” and the latter207

is highly sensitive to the precise probabilities in the outcome distributions associated208

with each action. In Section 6 we translate this intuition into an information-theoretic209

impossibility result for the black-box model, showing that positive results are possible210

only under strong assumptions on the distributions (e.g., that the minimum non-zero211

probability is bounded away from 0).212

1.2. Related work. The study of computational aspects of contract theory was213

pioneered by Babaioff, Feldman and Nisan [4] (see also their subsequent works, notably214

[24] and [7]). This line of work studies a problem referred to as combinatorial agency,215

in which combinations of agents replace the single agent in the classic principal-agent216

model. The challenge in the new model stems from the need to incentivize multiple217

agents, while the action structure of each agent is kept simple (effort/no effort). The218

focus of this line of work is on complex combinations of agents’ efforts influencing219

the outcomes, and how these determine the subsets of agents to contract with. The220

resulting computational problems are very different from the computational problems221

in our model.3222

A second direction of highly related work is [3]. This work considers a principal-223

agent model in which the agent action space is exponentially sized but compactly224

1A linear contract is defined by a single parameter α ∈ [0, 1], and sets the payment pS for any
set S ∈ 2M to pS = α ·

∑
j∈S rj . Linear contracts correspond to a simple percentage commission,

and are arguably among the most frequently used contracts in practice. See [16] and [23] for recent
work in economics and computer science in support of linear contracts.

2Note that the principal’s objective function (reward minus payment to the agent) is a mixed-sign
objective; such functions are generally challenging for relative approximation results.

3For example, several of the key computational questions in their problem turn out to be #P -
hard, while all of the problems we consider are in NP .
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6 P. DÜTTING, T. ROUGHGARDEN, AND I. TALGAM-COHEN

represented, and argue that in such settings indirect (interactive) mechanisms can225

be better than one-shot mechanisms. Our focus is more algorithmic, and instead of226

a compactly represented action space we consider a compactly represented outcome227

space.228

A third direction of related work considers a bandit-style model for contract design229

[34]. In their model each arm corresponds to a contract, and they present a procedure230

that starts out with a discretization of the contract space, which is adaptively refined,231

and which achieves sublinear regret in the time horizon. Again the result is quite232

different from our work, where the complexity comes from the compactly represented233

outcome space, and our result on the black-box model sheds a more negative light on234

the learning approach.235

Further related work comes from Kleinberg and Kleinberg [38] who consider the236

problem of delegating a task to an agent in a setting where (unlike in our model)237

monetary compensation is not an option. Although payments are not available, they238

show through an elegant reduction to the prophet-inequality problem that constant239

competitive solutions are possible.240

A final related line of work was initiated by Carroll [16] who—working in the clas-241

sic model (where computational complexity is not an issue)—shows a sense in which242

linear contracts are max-min optimal (see also the recent work of [50]). Dütting et243

al. [23] show an alternative such sense, and also provide tight approximation guaran-244

tees for linear contracts.245

2. Preliminaries. We start by defining succinct principal-agent settings and246

the contract design problem.247

2.1. Succinct principal-agent settings. Let n and m be parameters. A248

principal-agent setting is composed of the following: n actions An among which the249

agent can choose, and their costs 0 = c1 ≤ · · · ≤ cn for the agent; outcomes which the250

actions can lead to, and their rewards for the principal; and a mapping from actions251

to distributions over outcomes. Crucially, the agent’s choice of action is hidden from252

the principal, who observes only the action’s realized outcome. Our goal is to study253

succinct principal-agent settings with description size polynomial in n and m; the254

(implicit) outcome space can have size exponential in m. Throughout, unless stated255

otherwise, all principal-agent settings we consider are succinct. We focus on arguably256

one of the most natural models of succinctly-described settings, namely those with257

additive rewards and product distributions.258

In more detail, let M = {1, 2, ..,m}, where M is referred to as the item set. Let259

the outcome space be {0, 1}M , that is, every outcome is an item subset S ⊆ M . For260

every item j ∈ M , the principal gets an additive reward rj if the realized outcome261

includes j, so the principal’s reward for outcome S is rS =
∑
j∈S rj . Every action262

ai ∈ An is associated with probabilities qi,1, ..., qi,m ∈ [0, 1] for the items. We denote263

the corresponding product distribution by qi. When the agent takes action ai, item j is264

included in the realized outcome independently with probability qi,j . The probability265

of outcome S is thus qi,S = (
∏
j∈S qi,j)(

∏
j /∈S(1− qi,j)). By linearity of expectation,266

the principal’s expected reward given action ai is Ri =
∑
S qi,SrS =

∑
j qi,jrj . Action267

ai’s expected welfare is Ri − ci, and we assume Ri − ci ≥ 0 for every i ∈ [n].268

Example 2.1 (Succinct principal-agent setting). A company (principal) hires an269

agent to sell its m products. The agent may succeed in selling any subset of the m270

items, depending on his effort level, where the ith level leads to sale of item j with271

probability qi,j. Reward rj from selling item j is the profit-margin of product j for the272
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company.273

Representation. A succinct principal-agent setting is described by an n-vector274

of costs c, an m-vector of rewards r, and an n×m-matrix Q where entry (i, j) is equal275

to probability qi,j (and we assume for simplicity that the number of bits of precision276

for all values is poly(n,m)).277

Assumptions. Our assumption that c1 = 0 is a typical assumption in the con-278

tracts literature. It serves to make the individual rationality constraint a special case279

of the incentive compatibility constraint (also see Section 2.2 below).280

Unless stated otherwise, we assume that all principal-agent settings are normal-281

ized, i.e., Ri ≤ 1 for every ai ∈ An (and thus also ci ≤ 1). Normalization amounts to a282

simple change of “currency”, i.e., of the units in which rewards and costs are measured.283

It is a standard assumption in the context of approximate incentive compatibility—see284

Section 2.3 (similar assumptions appear in both the CDW framework and in [15]).285

2.2. Contracts and incentives. A contract p is a vector of payments from the286

principal to the agent. Payments are non-negative; this is known as limited liability of287

the agent.4 The contractual payments are contingent on the outcomes and not actions,288

as the actions are not directly observable by the principal. A contract p can potentially289

specify a payment pS ≥ 0 for every outcome S, but by linear programming (LP)290

considerations detailed below, we can focus on contracts for which the support size291

of the vector p is polynomial in n. We sometimes denote by pi the expected payment292 ∑
S⊆M qi,SpS to the agent for choosing action ai, and without loss of generality restrict293

attention to contracts for which pi ≤ Ri for every ai ∈ An (in particular, pi ≤ 1 by294

normalization).295

Given contract p, the agent’s expected utility from choosing action ai is pi − ci.296

The principal’s expected payoff is then Ri − pi. The agent wishes to maximize his297

expected utility over all actions and over an outside option with utility normalized to298

zero (“individual rationality” or IR). Since by assumption the cost c1 of action a1 is299

0, the outside opportunity is always dominated by action a1 and so we can omit the300

outside option from consideration. Therefore, the incentive constraints for the agent301

to choose action ai are: pi − ci ≥ pi′ − ci′ for every i′ 6= i. If these constraints hold302

we say ai is incentive compatible (IC) (and as discussed, in our model IC implies IR).303

The standard tie-breaking assumption in the contract design literature is that among304

several IC actions the agent tie-breaks in favor of the principal, i.e. chooses the IC305

action that maximizes the principal’s expected payoff.5 We say contract p implements306

or incentivizes action ai if given p the agent chooses ai (namely ai is IC and survives307

tie-breaking). If there exists such a contract for action ai we say ai is implementable,308

and slightly abusing notation we sometimes refer to the implementing contract as an309

IC contract.310

Simple contracts. In a linear contract, the payment scheme is a linear function311

of the rewards, i.e., pS = αrS for every outcome S. We refer to α ∈ [0, 1] as the312

linear contract’s parameter, and it serves as a succinct representation of the contract.313

Linear contracts have an alternative succinct representation by an m-vector of item314

payments pj = αrj for every j ∈ M , which induce additive payments pS =
∑
j∈S pj .315

A natural generalization is separable contracts, the payments of which can also be316

4Limited liability plays a similar role in the contract literature as risk-averseness of the agent.
Both reflect the typical situation in which the principal has “deeper pockets” than the agent and is
thus the better bearer of expenses/risks.

5The idea is that one could perturb the payment schedule slightly to make the desired action
uniquely optimal for the agent. For further discussion see [13, p. 8].
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8 P. DÜTTING, T. ROUGHGARDEN, AND I. TALGAM-COHEN

separated over the m items and represented by an m-vector of non-negative payments317

(not necessarily linear). The optimal linear (resp., separable) contract can be found in318

polynomial time (see Proposition A.1 in Appendix A). We return to linear contracts319

in Section 5 and to separable contracts in Appendix H.320

2.3. Contract design and relaxations. The goal of contract design is to max-321

imize the principal’s expected payoff from the action chosen by the agent subject322

to IC constraints. A corresponding computational problem is OPT-CONTRACT:323

The input is a succinct principal-agent setting, and the output is the principal’s ex-324

pected payoff from the optimal IC contract. A related problem is MIN-PAYMENT:325

The input is a succinct principal-agent setting and an action ai, and the output is326

the minimum expected payment p∗i with which ai can be implemented (up to tie-327

breaking). OPT-CONTRACT reduces to solving n instances of MIN-PAYMENT to328

find p∗i for every action ai, and returning the maximum expected payoff to the prin-329

cipal maxi∈[n]{Ri − p∗i }. Observe that MIN-PAYMENT can be formulated as an330

exponentially-sized LP with 2m variables {pS} (one for each set S ⊆ M) and n − 1331

constraints:332

min
∑
S⊆M

qi,SpS(2.1)333

s.t.
∑
S⊆M

qi,SpS − ci ≥
∑
S⊆M

qi′,SpS − ci′ ∀i′ 6= i, i′ ∈ [n],334

pS ≥ 0 ∀S ⊆M.335336

While we can’t use this LP formulation to compute an optimal contract, it implies337

that there is a succinct optimal contract: There exists an extreme point of the feasible338

region which is optimal. That extreme point must satisfy 2m constraints with equality339

(one per variable). Only n− 1 of those constraints aren’t of the form pS = 0, so the340

remaining constraints must all have pS = 0.341

The dual LP has n− 1 nonnegative variables {λi′} (one for every action i′ other342

than i), and exponentially-many constraints:343

max
∑
i′ 6=i

λi′(ci − ci′)(2.2)

s.t.
(∑
i′ 6=i

λi′
)
− 1 ≤

∑
i′ 6=i

λi′
qi′,S
qi,S

∀S ⊆ E, qi,S > 0,

λi′ ≥ 0 ∀i′ 6= i, i′ ∈ [n].344345

However, the ellipsoid method cannot be applied to solve the dual LP in polyno-346

mial time. The separation oracle, which is related to the concept of likelihood ratios347

from statistical inference, turns out to be NP-hard except for the n = 2 case—see348

Proposition B.1 in Appendix B.349

We return to LP (2.1) and to its dual LP (2.2) in Section 3.350

Relaxed IC. Contract design like auction design is ultimately an optimization351

problem subject to IC constraints. The state-of-the-art in optimal auction design352

requires a relaxation of IC constraints to ε-IC. In the CDW framework, the ε loss353

factor is additive and applies to normalized auction settings. The framework enables354

polytime computation of an ε-IC auction with expected revenue approximating that355

of the optimal IC auction.6 Appropriate ε-IC relaxations are also studied in multiple356

6To be precise, the CDW framework focuses on Bayesian IC (BIC) and ε-BIC auctions.
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additional contexts—see [15] and references within for voting, matching and compet-357

itive equilibrium; and [45] for Nash equilibrium. We wish to achieve similar results in358

the context of optimal contracts. For completeness we include the definition of ε-IC359

cast in the language of contracts:360

Definition 2.2 (δ-IC action). Consider a (normalized) contract setting. For δ ≥361

0, an action ai is δ-IC given a contract p if the agent loses no more than additive δ362

in expected utility by choosing ai, i.e.: pi− ci ≥ pi′ − ci′ − δ for every action ai′ 6= ai.363

As in the IC case, we often slightly abuse notation and refer to the contract p itself364

as δ-IC. By this we mean a contract p with an (implicit) action ai that is δ-IC given p (if365

there are several such δ-IC actions, by our tie-breaking assumption the agent chooses366

the one that maximizes the principal’s expected payoff). We also say the contract367

δ-implements or δ-incentivizes action ai. Finally if there exists such a contract for368

ai then we say this action is δ-implementable. We denote by δ-OPT-CONTRACT369

and δ-MIN-PAYMENT the above computational problems with IC replaced by δ-IC370

(e.g., the input to δ-OPT-CONTRACT is a succinct principal-agent setting and a371

parameter δ, and the output is the principal’s expected payoff from the optimal δ-IC372

contract).373

2.4. Properties of approximately IC contracts. We conclude this section374

with a few observations concerning δ-IC contracts. Proofs appear in Appendix C.375

Implementability. A first observation is that, by LP duality, any action can be376

δ-implemented up to tie-breaking even for arbitrarily small δ. Note that this result377

just talks about whether a given action can be δ-incentivized, it may be the case that378

the payments required for this are very high.379

Proposition 2.3. For every principal-agent setting and every δ > 0, every action380

ai can be δ-implemented up to tie-breaking.381

Relaxed vs. exact IC. Our next pair of results concerns the relation between382

IC contracts and δ-IC contracts.383

Proposition 2.4 shows that for every δ-IC contract there is an IC contract with384

approximately the same expected payoff to the principal up to small—and necessary—385

multiplicative and additive losses. Thus relaxing IC to δ-IC increases the expected386

payoff of the principal only to a certain extent. More precisely, Proposition 2.4 shows387

that any δ-IC contract can be transformed into an IC contract that maintains at least388

(1−
√
δ) of the principal’s expected payoff up to an additive loss of (

√
δ− δ). Similar389

results are known in the context of auctions (see [31, 20] for welfare maximization390

and [18] for revenue maximization).391

To state Proposition 2.4, denote by `α=1 the linear contract with parameter α = 1392

(that transfers the full reward from principal to agent).393

Proposition 2.4. Fix a principal-agent setting and δ > 0. Let p be a contract394

that δ-incentivizes action ai. Then the IC contract p′ defined as (1−
√
δ)p+

√
δ`α=1395

achieves for the principal expected payoff of at least (1 −
√
δ)(Ri − pi) − (

√
δ − δ),396

where Ri − pi is the expected payoff of contract p.397

Proposition 2.5 shows that an additive loss is necessary, as even for tiny δ there398

can be a multiplicative constant-factor gap between the expected payoff of an IC399

contract and a δ-IC one.400

Proposition 2.5. For any δ ∈ (0, 1/2], there exists a principal-agent setting where401

the optimal contract extracts expected payoff OPT but a δ-IC contract extracts expected402

payoff ≥ 4
3OPT .403
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10 P. DÜTTING, T. ROUGHGARDEN, AND I. TALGAM-COHEN

Relaxed IC with exact IR. In our model, IC implies IR due to the existence404

of a zero-cost action a1, but this is no longer the case for δ-IC. What if we are willing405

to relax IC to δ-IC due to the considerations above, but do not want to give up on406

IR? Suppose we enforce IR by assuming that the agent chooses a δ-IC action only if407

it has expected utility ≥ 0. The following lemma shows that this has only a small408

additive effect on the principal’s expected payoff, allowing us from now on to focus409

on δ-IC contracts (IR can be later enforced by applying the lemma):410

Lemma 2.6. For every δ-IC contract p that achieves expected payoff of Π for411

the principal, there exists a δ-IC and IR contract p′ that achieves expected payoff of412

≥ Π− δ.413

3. Constant number of actions. In this section we begin our exploration of414

the computational problems OPT-CONTRACT and MIN-PAYMENT by considering415

principal-agent settings with a constant number n of actions. For every constant416

n ≥ 3 these problems are NP-hard, and this holds even if the IC requirement is417

relaxed to δ-IC (See Proposition D.1 and Corollary D.2 in Appendix D). As our main418

positive result, we establish the tractability of finding a δ-IC contract that matches419

the expected payoff of the optimal IC contract. In Section 4 we show this result is too420

strong to hold for non-constant values of n (under standard complexity assumptions),421

and in Section 5 we provide an approximation result for general settings.422

To state our results more formally, fix a principal-agent setting and action ai; let423

OPTi be the solution to MIN-PAYMENT for ai (or ∞ if ai cannot be implemented424

up to tie-breaking without loss to the principal); and let OPT be the solution to425

OPT-CONTRACT. Observe that OPT = maxi∈[n]{Ri−OPTi}. Our main results in426

this section are the following:427

Theorem 3.1 (MIN-PAYMENT). There exists an algorithm that receives as428

input a (succinct) principal-agent setting with a constant number of actions and m429

items, an action ai, and a parameter δ > 0, and returns in time poly(m, 1
δ ) a contract430

that δ-incentivizes ai with expected payment ≤ OPTi to the agent.431

Corollary 3.2 (OPT-CONTRACT). There exists an algorithm that receives432

as input a (succinct) principal-agent setting with a constant number of actions and433

m items, and a parameter δ > 0, and returns in time poly(m, 1
δ ) a δ-IC contract with434

expected payoff ≥ OPT to the principal.435

Proof. Apply the algorithm from Theorem 3.1 once per action ai to get a con-436

tract that δ-incentivizes ai with expected payoff at least Ri −OPTi to the principal.437

Maximizing over the actions we get a δ-IC contract with expected payoff ≥ OPT to438

the principal.439

Corollary 3.2 shows how to achieve OPT with a δ-IC contract rather than an440

IC one, in the same vein as the CDW results for auctions. A similar result does not441

hold for general n unless P=NP (Corollary 4.3). Note that the δ-IC contract can be442

transformed into an IR one with an additive δ loss by applying Lemma 2.6, and to a443

fully IC one with slightly more loss by Proposition 2.4, where δ can be an arbitrarily444

small inverse polynomial in m.445

In the rest of the section we prove Theorem 3.1.446

An FPTAS for the separation oracle. We begin by stating the separation447

oracle problem, and relating it to a problem called MIN-LR. LP (2.1) formulates448
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MIN-PAYMENT for action ai. Its dual LP (2.2) has constraints of the form:449

(
∑
i′ 6=i

λi′)− 1 ≤
∑
i′ 6=i

λi′
qi′,S
qi,S

.(3.1)450

451

The separation oracle problem is thus: Given n − 1 nonnegative values {λi′} and452

n product distributions qi, {qi′} over the m items, find an outcome S such that453

(
∑
i′ 6=i λi′)−1 >

∑
i′ 6=i λi′

qi′,S
qi,S

(i.e., a violated constraint), or determine that no such454

S exists. Dividing by
∑
i′ 6=i λi′ and letting αi′ = λi′/(

∑
i′ 6=i λi′) we can rewrite (3.1)455

as456

1− 1∑
i′ 6=i λi′

≤
∑
i′ 6=i

(
λi′∑
i′ 6=i λi′

· qi
′,S

qi,S

)
=
∑
i′ 6=i

αi′qi′,S
qi,S

.457

Observe that the αs sum to 1, since
∑
i′ 6=i αi′ =

∑
i′ 6=i λi′/(

∑
i′ 6=i λi′) = 1. We con-458

clude that the separation oracle problem for dual LP (2.2) is equivalent to searching for459

S such that
∑
i′
αi′qi′,S
qi,S

is strictly less than 1− 1/(
∑
i′ 6=i λi′). Minimizing

∑
i′
αi′qi′,S
qi,S

460

over all S is sufficient to solve the problem.461

We can restate this minimization problem over S in the language of likelihood462

ratios (LR). Let the MIN-LR problem be as follows: For constant n and parameter463

m, the input is n − 1 nonnegative weights {αi′} that sum to 1; n − 1 product dis-464

tributions {qi′}; and a product distribution qi; where all product distributions are465

over m items M . The goal is to minimize the likelihood ratio
∑

i′ αi′qi′,S
qi,S

over all466

outcomes S ⊆ M , where the numerator is the likelihood of S under the weighted467

combination distribution
∑
i′ αi′qi′ , and the denominator is the likelihood of S under468

distribution qi. Observe that a weighted combination distribution is not in general a469

product distribution itself, so the problem might be challenging. Denote the optimal470

solution to MIN-LR (the minimum likelihood ratio) by ρ∗.471

Solving the separation oracle problem turns out to be NP-hard (see Proposition472

B.1 in Appendix C),7 but we can give an FPTAS for the MIN-LR problem (Lemma 3.3,473

proof in Appendix E). Lemma 3.4 states the guarantee from applying this FPTAS to474

solve the separation oracle problem.475

Lemma 3.3 (FPTAS). There is an algorithm for the MIN-LR problem that re-476

turns an outcome S with likelihood ratio ≤ (1 + δ)ρ∗ in time polynomial in m, 1
δ .477

Lemma 3.4. If the FPTAS for the MIN-LR problem with parameter δ does not
find a violated constraint of dual LP (2.2) (i.e., returns an outcome with likelihood ra-
tio ≥ 1−1/(

∑
i′ 6=i λi′)), then for every S the dual constraint (3.1) holds approximately

up to (1 + δ):

(
∑
i′ 6=i

λi′)− 1 ≤ (1 + δ)
∑
i′ 6=i

λi′
qi′,S
qi,S

.

Proof. Assume there exists S such that (
∑
i′ 6=i λi′) − 1 > (1 + δ)

∑
i′ 6=i λi′

qi′,S
qi,S

.478

Then dividing by (
∑
i′ λi′) and using the definition of ρ∗ as the minimum likelihood479

ratio we get 1− 1∑
i′ λi′

> (1+δ)ρ∗. Combining this with the guarantee of Lemma 3.3,480

the FPTAS returns S′ with likelihood ratio < 1− 1∑
i′ λi′

, thus identifying a violated481

constraint. This completes the proof.482

7In fact the problem is strongly NP-hard; but because it involves products of the form qi,S =
(
∏

j∈S qi,j)(
∏

j /∈S(1 − qi,j)), the strong NP-hardness does not rule out an FPTAS [47, Theorem

17.12].
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12 P. DÜTTING, T. ROUGHGARDEN, AND I. TALGAM-COHEN

Applying the separation oracle FPTAS: The standard method. Given483

an FPTAS with parameter δ for the separation oracle of a dual LP, for many problems484

it is possible to find in polynomial time an approximately-optimal, feasible solution485

to the primal—see, e.g., [37, 14, 35, 44, 27, 26]. We first describe a fairly standard486

approach in the literature to utilizing a separation oracle FPTAS, which we refer to487

as the standard method, and explain where we must deviate from this approach. The488

proof of Theorem 3.1 then applies an appropriately modified approach.489

The standard method works as follows: Let OPTi be the optimal value of the490

primal (minimization) LP. For a benchmark value Γ, add to the (maximization) dual491

LP a constraint that requires its objective to be at least Γ, and attempt to solve the492

dual by running the ellipsoid algorithm with the separation oracle FPTAS.493

Assume first that the ellipsoid algorithm returns a solution with value Γ. Since
the separation oracle applies the FPTAS, it may wrongly conclude that some solution
is feasible despite a slight violation of one or more of the constraints. For example, if
we were to apply the FPTAS separation oracle from Lemma 3.3 to solve dual LP (2.2),
we could possibly get a solution for which there exists S such that:

∑
i′ 6=i

λi′
qi′,S
qi,S

< (
∑
i′ 6=i

λi′)− 1 ≤ (1 + δ)
∑
i′ 6=i

λi′
qi′,S
qi,S

where the second inequality is by Lemma 3.4. Clearly, the value Γ of an approximately-494

feasible solution may be higher than OPTi. In the standard method, the approx-495

imately-feasible solution can be scaled by 1
1+δ to regain feasibility while maintaining496

value of Γ
1+δ . Scaling thus establishes that Γ

1+δ ≤ OPTi. Now assume that for some497

(larger) value of Γ, the ellipsoid algorithm identifies that the dual LP is infeasible. In498

this case we can be certain that OPTi < Γ, and we can also find in polynomial time499

a primal feasible solution with value < Γ (more details in the proof of Theorem 3.1500

below).501

Using binary search (in our case over the range [ci, Ri] ⊆ [0, 1] since Ri is the502

maximum the principal can pay without losing money), the standard method finds503

the smallest Γ∗ for which the dual is identified to be infeasible, up to a negligible504

binary search error ε. This gives a primal feasible solution that achieves value Γ∗+ ε,505

and at the same time establishes that (Γ∗)−

1+δ ≤ OPTi by the scaling argument, which506

is equivalent to Γ∗

1+δ ≤ OPTi.
8 So the standard method has found an approximately-507

optimal, feasible solution to the primal.508

Applying the separation oracle FPTAS: Our method. The issue with509

applying the standard method to solve MIN-PAYMENT is that the scaling argument510

does not hold. To see this, consider an approximately-feasible dual solution for which511

(
∑
i′ 6=i λi′)− 1 ≤ (1 + δ)

∑
i′ 6=i λi′

qi′,S
qi,S

for every S, and notice that scaling the values512

{λi′} does not achieve feasibility. We therefore turn to an alternative method to prove513

Theorem 3.1.514

Proof of Theorem 3.1. We apply the standard method using the FPTAS with515

parameter δ (see Lemma 3.3) as separation oracle to the following strengthened version516

of dual LP (2.2),9 where the extra (1+δ) multiplicative factor in the constraints makes517

8The notation (Γ∗)− means any number smaller than Γ∗.
9Strengthened duals appear, e.g., in [44, 26].
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them harder to satisfy:518

max
∑
i′ 6=i

λi′(ci − ci′)(3.2)519

s.t. (1 + δ)
(
(
∑
i′ 6=i

λi′)− 1
)
≤
∑
i′ 6=i

λi′
qi′,S
qi,S

∀S ⊆ E, qi,S > 0520

λi′ ≥ 0 ∀i′ 6= i, i′ ∈ [n].521522

Let Γ∗ be the infimum value for which dual LP (3.2) would be identified as infea-523

sible. The ellipsoid algorithm is thus able to find an approximately-feasible solution to524

dual LP (3.2) with objective (Γ∗)−. The key observation is that this solution is fully525

feasible with respect to the original dual LP (2.2). This is because if the separation526

oracle FPTAS does not find a violated constraint of dual LP (3.2), then for every S527

it holds that (
∑
i′ 6=i λi′) − 1 ≤

∑
i′ 6=i λi′

qi′,S
qi,S

(by the same argument as in the proof528

of Lemma 3.4). From the key observation it follows that529

(3.3) (Γ∗)− ≤ OPTi530

(despite the fact that the scaling argument does not hold).531

Now let Γ∗+ ε be the smallest value for which the binary search runs the ellipsoid532

algorithm for dual LP (3.2) and identifies its infeasibility. During its run for Γ∗ +533

ε, the ellipsoid algorithm identifies polynomially-many separating hyperplanes that534

constrain the objective to < Γ∗ + ε. Formulate a “small” primal LP with variables535

corresponding exactly to these hyperplanes. By duality, the small primal LP has a536

solution with objective < Γ∗ + ε, and moreover since the number of variables and537

constraints is polynomial we can find such a solution p∗ in polynomial time. Observe538

that p∗ is also a feasible solution to the primal LP corresponding to dual (3.2) (the539

only difference from the small LP is more variables):540

min (1 + δ)
∑
S⊆E

qi,SpS(3.4)541

s.t. (1 + δ)
( ∑
S⊆E

qi,SpS
)
− ci ≥

∑
S⊆E

qi′,SpS − ci′ ∀i′ 6= i, i′ ∈ [n]542

pS ≥ 0 ∀S ⊆ E.543544

We have thus obtained a contract p∗ that is a feasible solution to LP (3.4) with545

objective (1 + δ)
∑
S⊆E qi,SpS < Γ∗+ ε. For action ai, this contract pays the agent an546

expected transfer of
∑
S⊆E qi,SpS <

Γ∗+ε
1+δ . We have the following chain of inequalities:547 ∑

S⊆E qi,SpS ≤
(Γ∗)−+ε

1+δ ≤ OPTi+ε
1+δ ≤ OPTi, where the second inequality is by (3.3),548

and the last inequality is by taking the binary search error to be sufficiently small.10549

To complete the proof we must show that p∗ is δ-IC. This holds since the constraints550

of LP (3.4) ensure that for every action ai′ 6= ai, using the notation pi =
∑
S⊆E qi,SpS ,551

we have pi′ − ci′ ≤ (1 + δ)pi − ci ≤ pi − ci + δpi ≤ pi − ci + δ (the last inequality uses552

that pi ≤ Ri ≤ 1 by normalization).553

4. Hardness of approximation. In this section unlike the previous one, the554

number of actions is no longer assumed to be constant. We show a hardness of555

10We use here that OPTi ≥ ci and that the number of bits of precision is polynomial.
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approximation result for optimal contracts, based on the known hardness of approxi-556

mation for MAX-3SAT. In his landmark paper, H̊astad [33] shows that it is NP-hard557

to distinguish between a satisfiable MAX-3SAT instance, and one in which there is558

no assignment satisfying more than 7/8 + α of the clauses, where α is an arbitrarily-559

small constant (Theorems 5.6 and 8.3 in [33]). We build upon this to prove our main560

technical contribution stated in Theorem 4.1, which immediately leads to our main561

results for this section in Corollaries 4.2-4.3.562

Theorem 4.1. Let c ∈ Z, c ≥ 3 be an (arbitrarily large) constant integer. Let563

ε,∆ ∈ R, ε > 0,∆ ∈ [0, 1
20c ] be such that ε−2∆1/c

3 ∈ (0, 1
20 ] and ( ε−2∆1/c

3 )c is an564

(arbitrarily small) constant. Then it is NP-hard to determine whether a principal-565

agent setting has an IC contract extracting full expected welfare, or whether there is566

no ∆-IC contract extracting > 1
c + ε of the expected welfare.567

We present two direct implications of Theorem 4.1. First, Corollary 4.2 applies568

to the OPT-CONTRACT problem, and states hardness of approximation within any569

constant of the optimal expected payoff by an IC contract. (A similar result can be570

shown for MIN-PAYMENT; see Appendix F.)571

Corollary 4.2. For any constant c ∈ R, c ≥ 1, it is NP-hard to approximate572

the optimal expected payoff achievable by an IC contract to within a multiplicative573

factor c.574

Corollary 4.2 suggests that in order to achieve positive results, we may want to575

follow the approach of the CDW framework and relax IC to ∆-IC. That is, instead576

of trying to compute in polynomial time an approximately-optimal IC contract, we577

should try to compute in polynomial time a ∆-IC contract with expected payoff that578

is guaranteed to approximately exceed that of the optimal IC contract. The next579

corollary establishes a computational limitation on this approach: Corollary 4.3 fixes580

a constant approximation factor c, and derives ∆ for which a c-approximation by581

a ∆-IC contract is NP-hard to find. (It is also possible to reverse the roles—fix ∆582

and derive a constant approximation factor for which NP-hardness holds.) We shall583

complement this limitation with a positive result in Section 5.584

Corollary 4.3. For any constant c ∈ R, c ≥ 5 and ∆ ≤ ( 1
4c )

c, it is NP-hard to585

find a ∆-IC contract that guarantees > 2
cOPT , where OPT is the optimal expected586

payoff achievable by an IC contract.11587

Proof. The corollary follows from Theorem 4.1 by setting ε = 1
c .588

It also follows from Theorem 4.1 and Corollary 4.3 that for every c,∆ as speci-589

fied, it is NP-hard to approximate the optimal expected payoff achievable by a ∆-IC590

contract to within a multiplicative factor c/2. That is, hardness of approximation591

also holds for δ-OPT-CONTRACT.592

In the remainder of the section we prove Theorem 4.1. After a brief overview,593

Section 4.2 sets up some tools for the proof, in Section 4.3 we focus on the special case594

of c = 2, and in Section 4.4 we prove the more general statement for any constant c.595

4.1. Proof overview. It will be instructive to consider first a version of Theo-596

rem 4.1 for the case of c = 2:597

Theorem 4.4. Let ε,∆ ∈ R, ε > 0,∆ ∈ [0, 1
202 ] be such that ε−2∆1/2

3 ∈ (0, 1
20 ]598

and ( ε−2∆1/2

3 )2 is an (arbitrarily small) constant. Then it is NP-hard to determine599

11The relevant hardness notion is more accurately FNP-hardness.
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Fig. 1: Outline of a product setting for c = 2.

whether a principal-agent setting has an IC contract extracting full expected welfare,600

or whether there is no ∆-IC contract extracting > 1
2 + ε of the expected welfare.601

This theorem is already interesting as it shows that even relaxing IC to ∆-IC where602

∆ � 0, approximating the optimal expected payoff within 65% is computationally603

hard:604

Corollary 4.5. For any ∆ ≤ 1
202 , it is NP-hard to find a ∆-IC contract that605

guarantees > 0.65 ·OPT , where OPT is the optimal expected payoff achievable by an606

IC contract.607

Proof. The corollary follows from Theorem 4.4 by setting ε = 3
20 .608

To establish Theorem 4.4 we present a gap-preserving reduction from any MAX-609

3SAT instance ϕ to a principal-agent setting that we call the “product setting” (the610

reduction appears in Algorithm 4.2 and is analyzed in Proposition 4.15). The product611

setting encompasses a 2-action, 1-item principal-agent “gap setting”, in which any δ-612

IC contract for sufficiently small δ cannot extract much more than 1
2 of the expected613

welfare (Proposition 4.8). The “gap setting” is coupled with a useful gadget we call614

the “SAT setting”, which is a principal-agent setting with n actions and m items615

whose probabilities depend on the 3SAT instance ϕ. See Figure 1 to see how the gap616

and SAT settings are combined to form the product setting.617

The important property of the SAT setting is the following: if assigning TRUE618

to exactly the variable subset S satisfies the 3SAT formula, then item subset S occurs619

in the SAT setting with probability zero for every action. This property becomes620

useful once the gap actions are added to this gadget (see Figure 1). In particular,621

“gap action 2” achieves set S with non-zero probability, and so a contract paying only622

for set S can incentivize this action by just covering its cost, thus extracting the full623

welfare. If on the other hand, the 3SAT formula is unsatisfiable, then the “gap” in624

the gap setting kicks in and prevents any contract from extracting more than 1
2 of the625

expected welfare.626

Constant c > 2. The special case of c = 2 captures most ideas behind the proof627

of the more general Theorem 4.1, but the analysis is simplified by the fact that to628

extract more than roughly 1
2 of the expected welfare in the 2-action gap setting, there629

is a single action that the contract could potentially incentivize. The more general630

case involves gap settings with more actions (the reduction appears in Algorithm 4.3631

and is analyzed in Proposition 4.17). To extract more than ≈ 1
c of the expected632

welfare, the contract could potentially incentivize almost any one of these actions633

(Proposition 4.9).634

Barrier to going beyond constant c. Our techniques for establishing Theorem635

4.1 do not generalize beyond constant values of c (the approximation factor). The636

reason for this is that we do not know of (c, ε, f)-gap settings (Definition 4.6) where637
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f(c, ε) = o(εc). As long as f(c, ε) is of order εc, the gap in the MAX-3SAT instance638

we reduce from must be between 7/8 + εc and 1, and this gap problem is known639

to be NP-hard only for constant c. As [33] notes, significantly stronger complexity640

assumptions may lead to hardness for slightly (but not significantly) larger values of c.641

4.2. Main tools used in the proof. In this section we formalize the notions of642

“gap” and “SAT” principal-agent settings as well as the notion of an “average action”,643

which will be useful in proving Theorems 4.1 and 4.4. The term “gap setting” reflects644

the gap between the first-best solution (i.e., the expected welfare), and the second-645

best solution (i.e., the expected payoff to the principal from the optimal contract). It646

will be convenient not to normalize gap settings (and thus also the product settings647

encompassing them). This makes our negative results only stronger, as we show next.648

Unnormalized settings and a stronger δ-IC notion. Before proceeding we649

must define what we mean by a δ-IC contract in an unnormalized setting. Moreover650

we show that if Theorems 4.1 or 4.4 hold for unnormalized settings with the new δ-IC651

notion, then they also hold for normalized settings with the standard δ-IC notion.652

Recall that in a normalized setting, action ai that is δ-incentivized by the contract653

must satisfy δ-IC constraints of the form pi − ci + δ ≥ pi′ − ci′ for every i′ 6= i. In654

an unnormalized setting, an additive δ-deviation from optimality is too weak of a655

requirement; we require instead that ai satisfy δ-IC constraints of the form656

(4.1) (1 + δ)pi − ci ≥ pi′ − ci′ ∀i′ 6= i.657

Two key observations are: (i) The constraints in (4.1) imply the standard δ-IC con-658

straints if pi ≤ 1, as is the case if the setting is normalized; (ii) The constraints in659

(4.1) are invariant to scaling of the setting and contract (i.e., to a change of currency660

of the rewards, costs and payments). By these observations, a δ-IC contract accord-661

ing to the new notion in an unnormalized setting becomes a standard δ-IC contract662

after normalization of the setting and payments, with the same fraction of optimal663

expected welfare extracted as payoff to the principal.664

Assume a negative result holds for unnormalized settings, i.e., it is NP-hard to665

determine between the two cases stated in Theorem 4.1 (or Theorem 4.4). Assume for666

contradiction this does not hold for normalized settings. Then given an unnormalized667

setting, we can simply scale the expected rewards and costs to normalize it, and then668

determine whether or not there is an IC contract extracting full expected welfare. If669

such a contract exists, it is also IC and full-welfare-extracting in the unnormalized670

setting after scaling back the payments. On the other hand, by the discussion above, if671

there is no standard-notion ∆-IC contract extracting a given fraction of the expected672

welfare in the normalized setting, there can also be no such contract with the new673

∆-IC notion in any scaling of the setting. We have thus reached a contradiction to674

NP-hardness. We conclude that proving our negative results for unnormalized settings675

only strengthens these results.676

Gap settings and their construction. We now turn to the definition of gap677

settings.678

Definition 4.6 (Unstructured gap setting). Let f(c, ε) ∈ R≥0 be an increasing679

function where c ∈ Z>0 and ε ∈ R>0. An unstructured (c, ε, f)-gap setting is a680

principal-agent setting such that for every 0 ≤ δ ≤ f(c, ε), the optimal δ-IC contract681

can extract no more than 1
c + ε of the expected welfare as the principal’s expected682

payoff.683

For convenience we focus on (structured) gap settings as follows.684
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Definition 4.7 (Gap setting). A (c, ε, f)-gap setting is a setting as in Defini-685

tion 4.6 with the following structure: there is a single item and c actions; the first686

action has zero cost; the last action has probability 1 for the item and maximum687

expected welfare among all actions.688

To construct a gap setting, we construct a principal-agent setting with a single689

item, c actions and parameter γ ∈ R>0, γ < 1. The construction is similar to [23], but690

requires a different analysis. For every i ∈ [c], set the probability of action ai for the691

item to γc−i, and set ai’s cost to ci = (1/γi−1)− i+ (i− 1)γ. Set the reward for the692

item to be 1/γc−1. Observe that the expected welfare of action ai is i − (i − 1)γ, so693

the last action has the maximum expected welfare c− (c− 1)γ. This establishes the694

structural requirements from a gap setting (Definition 4.7). Propositions 4.8 and 4.9695

establish the gap requirements from a gap setting (Definition 4.6) for c = 2 and c ≥ 3,696

respectively—the separation between these cases is for clarity of presentation. We use697

the former in Section 4.3, in which we show hardness for the c = 2 case; the latter is698

a generalization to arbitrary-large constant c. See Appendix G for proofs.699

Proposition 4.8 (2-action gap settings). For every ε ∈ (0, 1
4 ], there exists a700

(2, ε, ε2)-gap setting.701

Proposition 4.9 (c-action gap settings). For every c ≥ 3 and ε ∈ (0, 1
4 ], there702

exists a (c, ε, εc)-gap setting.703

For concreteness we describe the 2-action gap setting: The agent has c = 2704

actions, which can be thought of as “effort” and “no effort”. Effort has cost 1
ε −2 + ε,705

and no effort has cost 0. Without effort the item has probability ε, and with effort the706

probability is 1. The reward associated with the item is 1
ε . It is immediate to see that707

the maximum expected welfare (first-best) is 2− ε. In the proof of Proposition 4.8 we708

show that the best an ε2-IC contract can extract is ≈ 1.709

Average actions and SAT settings. The motivation for the next definition710

is that given a contract, for an action to be IC or δ-IC it must yield higher expected711

utility for the agent in comparison to the “average action”. Average actions are thus712

a useful tool for analyzing contracts.713

Definition 4.10 (Average action). Given a principal-agent setting and a subset714

of actions, by the average action we refer to a hypothetical action with the average of715

the subset’s distributions, and average cost. (If a particular subset is not specified, the716

average is taken over all actions in the setting.)717

Another useful ingredient will be SAT settings defined as follows.718

Definition 4.11 (SAT setting). A SAT principal-agent setting corresponds to a719

MAX-3SAT instance ϕ. If ϕ has n clauses and m variables then the SAT setting has720

n actions and m items. Two conditions hold: (1) ϕ is satisfiable if and only if there721

is an item set in the SAT setting that the average action leads to with zero probability;722

(2) If every assignment to ϕ satisfies at most 7/8 + α of the clauses, then for every723

item set S the average action leads to S with probability at least 1−8α
2m .724

The following proposition provides a reduction from MAX-3SAT instances to SAT725

settings.726

Proposition 4.12. For every ϕ the reduction in Algorithm 4.1 runs in polyno-727

mial time on input ϕ and returns a SAT setting corresponding to ϕ.728

Proof of Proposition 4.12. We first argue that there is a satisfying assignment to729

the MAX-3SAT instance if and only if there is a set S with 0-probability in every one730
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18 P. DÜTTING, T. ROUGHGARDEN, AND I. TALGAM-COHEN

Algorithm 4.1 SAT setting construction in polytime

Input : A MAX-3SAT instance ϕ with n clauses and m variables.
Output: A principal-agent SAT setting (Definition 4.11) corresponding to ϕ.
begin

Given ϕ, construct a principal-agent setting in which every clause corresponds to
an action with a product distribution, and for every variable there is a correspond-
ing item. If variable j appears in clause i of ϕ as a positive literal, then let item
j’s probability in the ith product distribution be 0, and if it appears as a negative
literal then let item j’s probability be 1. Set all other probabilities to be 1

2 . We
set the costs of all actions and the rewards for all items to be 0.

end

of the product distributions. First note that there is a natural 1-to-1 correspondence731

between subsets {S} of items and truth assignments to the variables: for every vari-732

able j, if item j ∈ S then assign TRUE and otherwise FALSE. Now consider a set S733

and its corresponding assignment. S has 0-probability in the ith product distribution734

iff either an item in S has probability 0 or an item in S has probability 1 according735

to this distribution. Therefore, in clause i, either one of the TRUE variables appears736

as a positive literal or one of the FALSE variables appears as a negative literal. And737

this is a necessary and sufficient condition for the clause to be satisfied. We conclude738

that S has 0-probability in every product distribution if and only if the corresponding739

assignment satisfies every clause, establishing condition (1) of Definition 4.11. To740

show condition (2), assume that at most 7
8 + α of the clauses can be satisfied. Con-741

sider the average action whose distribution results from averaging over all actions.742

This distribution has for every S a probability at least ( 1
8 − α) · 8

2m = 1−8α
2m , since743

the probability of S is 8
2m in every distribution corresponding to a clause which the744

assignment corresponding to S does not satisfy. This completes the proof.745

4.3. The c = 2 case: Proof of Theorem 4.4. In this section we present a746

polynomial-time reduction from MAX-3SAT to a product setting, which combines747

gap and SAT settings. The reduction appears in Algorithm 4.2. We then analyze748

the guarantees of the reduction and use them to prove Theorem 4.4. Most of the749

analysis appears in Proposition 4.15, which shows that the reduction in Algorithm750

4.2 is gap-preserving. Some of the results are formulated in general terms so they can751

be reused in the next section (Section 4.4).752

Before turning to Proposition 4.15, we begin with two simple observations about753

the product setting resulting from the reduction.754

Observation 4.13. Partition all actions of the product setting but the last one755

into blocks of n actions each.12 Every action in the ith block has the same expected756

reward for the principal as action ai in the gap setting, and the last action in the757

product setting has the same expected reward as the last action in the gap setting.758

Corollary 4.14. The optimal expected welfares of the product and gap settings759

are the same, and are determined by their respective last actions.760

Proposition 4.15 (Gap preservation by Algorithm 4.2). Let ϕ be a MAX-761

3SAT instance for which either there is a satisfying assignment, or every assignment762

satisfies at most 7/8 + α of the clauses for α ≤ (0.05)2. Let ∆ ≤ (0.05)2. Consider763

12If the number of actions in the gap setting is 2, there is a single such block.
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Algorithm 4.2 Polytime reduction from MAX-3SAT to principal-agent

Input : A MAX-3SAT instance ϕ with n clauses and m variables; a parameter
ε ∈ R≥0.

Output: A principal-agent product setting combining a SAT setting and a gap setting.
begin

Combine the SAT setting corresponding to ϕ (attainable in poly-
time by Proposition 4.12) with a poly-sized (2, ε, ε2)-gap setting (ex-
ists by Proposition 4.8) to get the product setting, as follows:
• The product setting has n + 1 actions and m + 1 items: m “SAT items”

correspond to the SAT setting items, and the last “gap item” corresponds to
the gap setting item.

• The upper-left block of the product setting’s (n + 1) × (m + 1) matrix of
probabilities is the SAT setting’s n ×m matrix of probabilities. The entire
lower-left 1 × m block is set to 1

2 . The entire upper-right n × 1 block is
set to the probability that action a1 in the gap setting results in the item.
The remaining lower-right 1 × 1 block is set to the probability that the last
action (i.e., action a2) in the gap setting results in the item (recall that this
probability is 1).

• In the product setting, the rewards for the m SAT items are set to 0, and the
reward for the gap item is set as in the gap setting.

• The costs of the first n actions in the product setting are the cost of action
a1 in the gap setting; the cost of the last action in the product setting is the
cost of the last action (i.e., action a2) in the gap setting.

end

the product setting resulting from the reduction in Algorithm 4.2 run on input ϕ, ε =764

3α1/2 + 2∆1/2 ≤ 1
4 . Then:765

1. If ϕ has a satisfying assignment, the product setting has an IC contract that ex-766

tracts full expected welfare;767

2. If every assignment to ϕ satisfies at most 7/8+α of the clauses, the optimal ∆-IC768

contract can extract no more than 1
2 + ε of the expected welfare.769

Proof. First, if ϕ has a satisfying assignment, then there is a subset of SAT items770

that has zero probability according to every one of the first n actions. Consider771

the outcome S∗ combining this subset together with the gap item. We construct a772

full-welfare extracting contract: the contract’s payment for S∗ is the cost of the last773

action in the product setting multiplied by 2m (since the probability of S∗ according774

to the last action is 1/2m), and all other payments are set to zero. It is not hard to775

see that the resulting contract makes the agent indifferent among all actions, so by776

tie-breaking in favor of the principal, the principal receives the full expected welfare777

as her payoff.778

Now consider the case that every assignment to ϕ satisfies at most 7/8 +α of the779

clauses, and assume for contradiction that there is a ∆-IC contract p for the product780

setting that extracts more than 1
2 + ε of the expected welfare. We derive from p a781

δ-IC contract p′ for the (2, ε, ε2)-gap setting where δ ≤ ε2, which extracts more than782
1
2 + ε of the expected welfare. This is a contradiction to the properties of the gap783

setting (Definition 4.6).784

It remains to specify and analyze contract p′ : For brevity we denote the singleton785
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containing the gap item by M ′, and define786

p′(S′) =
1− 8α

2m

∑
S⊆[m]

p(S ∪ S′)∀S′ ⊆M ′,(4.2)787

where S′ is either the singleton containing the gap item or the empty set. The starting788

point of the analysis is the observation that to extract > 1
2 + ε of the expected welfare789

in the product setting, contract p must ∆-incentivize the last action (this follows790

since the expected rewards and costs of the actions are as in the gap setting by791

Observation 4.13, and so the same argument as in the proof of Proposition 4.8 holds).792

Claim 4.16 below establishes that if contract p ∆-incentivizes the last action in793

the product setting, then contract p′ δ-incentivizes the last action in the gap setting794

for δ = 8α+∆
1−8α . So indeed795

δ =
8α

1− 8α
+

∆

1− 8α
796

≤ 9α+ 4∆797

= (3α1/2)2 + (2∆1/2)2
798

≤ (3α1/2 + 2∆1/2)2 = ε2,799800

using that α,∆ ≤ (0.05)2 for the first inequality.801

Now observe that the expected payoff to the principal from contract p′ that δ-802

incentivizes the last gap setting action is at least that of contract p that ∆-incentivizes803

the last product setting action: the payments of p′ as defined in (4.2) are the average804

payments of p lowered by a factor of (1 − 8ε), and the expected rewards in the two805

settings are the same (Observation 4.13). The expected welfares in the two settings806

are also equal (Corollary 4.14). We conclude that like contract p in the product807

setting, contract p′ guarantees extraction of > 1
2 + ε of the expected welfare in the808

gap setting. This leads to a contradiction and completes the proof of Proposition 4.15809

(up to Claim 4.16 proved below).810

The next claim is formulated in general terms so that it can also be used in Section811

4.4. It references the contract p′ defined in (4.2).812

Claim 4.16. Assume every assignment to the MAX-3SAT instance ϕ satisfies at813

most 7/8 + α of its clauses where α < 1
8 , and consider the product and gap settings814

returned by the reduction in Algorithm 4.2 (resp., Algorithm 4.3). If in the product815

setting the last action is ∆-incentivized by contract p, then in the gap setting the last816

action is δ-incentivized by contract p′ for δ = 8α+∆
1−8α .817

Proof. Let gi denote the distribution of action ai in the gap setting and let c be818

the number of actions in this setting. In the product setting, by construction its last819

action assigns probability gc(S′)
2m to every set S ∪ S′ such that S contains SAT items820

and S′ ⊆M ′. Thus the expected payment for the last action given contract p is821 ∑
S⊆[m]

∑
S′⊆M ′

gc(S
′)

2m
p(S ∪ S′) =

1

1− 8α

∑
S′⊆M ′

gc(S
′)p′(S′),(4.3)822

823

where the equality follows from the definition of p′ in (4.2). Note that the resulting824

expression in (4.3) is precisely the expected payment for the last action in the gap825

setting given contract p′, multiplied by factor 1/(1− 8α).826
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Similarly, for every i ∈ c consider the average action over the ith block of n actions827

in the product setting.13 Again by construction, the probability this ith average action828

assigns to S ∪ S′ is ≥ gi(S
′)(1−8α)
2m , where we use that the average action of the SAT829

setting has probability ≥ 1−8α
2m for S (Definition 4.11). Thus the expected payment830

for the ith average action given contract p is at least831 ∑
S⊆[m]

∑
S′⊆M ′

gi(S
′)(1− 8α)

2m
p(S ∪ S′) =

∑
S′⊆M ′

gi(S
′)p′(S′) ∀i ∈ [c],(4.4)832

833

where again the equality follows from (4.2). Note that the resulting expression in834

(4.4) is precisely the expected payment for action ai in the gap setting given contract835

p′.836

We now use the assumption that in the product setting, contract p ∆-incentivizes837

the last action. This means the agent ∆-prefers the last action to the ith average838

action, which has cost zero. Combining (4.3) and (4.4) we get839

1 + ∆

1− 8α

∑
S′⊆M ′

gc(S
′)p′(S′)− C ≥

∑
S′⊆M ′

gi(S
′)p′(S′) ∀i ∈ [c],(4.5)840

841

where C denotes the cost of the last action in the product and gap settings. By842

definition of δ-IC, Inequality (4.5) immediately implies that in the gap setting, the843

last action is δ-IC given contract p′ where δ = 8α+∆
1−8α , thus completing the proof of844

Claim 4.16.845

We can now use Proposition 4.15 to prove Theorem 4.4.846

Proof of Theorem 4.4. Recall that (ε−2∆1/2)2

9 is a constant ≤ (0.05)2. Assume847

a polynomial-time algorithm for determining whether a principal-agent setting has a848

(fully-IC) contract that extracts the full expected welfare, or whether no ∆-IC contract849

can extract more than 1
2 + ε. Then given a MAX-3SAT instance ϕ for which either850

there is a satisfying assignment or every assignment satisfies at most 7
8 + (ε−2∆1/2)2

9851

of the clauses, by Proposition 4.15 the product setting (constructed in polynomial852

time) either has a full-welfare extracting contract or has no ∆-IC contract that can853

extract more than 1
2 + ε. Since the algorithm can determine among these two cases, it854

can solve the MAX-3SAT instance ϕ. But by [33] and since (ε−2∆1/2)2

9 is a constant,855

we know that there is no polynomial-time algorithm for solving such MAX-3SAT856

instances unless P = NP . This completes the proof of Theorem 4.4.857

4.4. The general case: Proof of Theorem 4.1. In this section we formulate858

and analyze the guarantees of the reduction in Algorithm 4.3.859

Proposition 4.17 (Gap preservation by Algorithm 4.3). Let c ∈ Z, c ≥ 3. Let860

ϕ be a MAX-3SAT instance for which either there is a satisfying assignment, or every861

assignment satisfies at most 7/8 + α of the clauses for α ≤ (0.05)c. Let ∆ ≤ (0.05)c.862

Consider the product setting resulting from the reduction in Algorithm 4.3 run on863

input ϕ, c, ε = 3α1/c + 2∆1/c ≤ 1
4 . Then:864

1. If ϕ has a satisfying assignment, the product setting has an IC contract that ex-865

tracts full expected welfare;866

2. If every assignment to ϕ satisfies at most 7/8+α of the clauses, the optimal ∆-IC867

contract can extract no more than 1
c + ε of the expected welfare.868

13If c = 2 there is a single such block.
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Algorithm 4.3 Generalized polytime reduction from MAX-3SAT to principal-agent

Input : A MAX-3SAT instance ϕ with n clauses and m variables; parameters ε ∈
R≥0 and c ∈ Z>0 where c ≥ 3.

Output: A principal-agent product setting combining copies of a SAT setting and a
gap setting.

begin
Combine multiple copies of the SAT setting corresponding to ϕ (attain-
able in polytime by Proposition 4.12) with a poly-sized (c, ε, εc)-gap set-
ting (exists by Proposition 4.9) to get the product setting, as follows:
• The product setting has cn + 1 actions and m + 1 items: m “SAT items”

correspond to the SAT setting items, and the last “gap item” corresponds to
the gap setting item.

• For every i ∈ [c], consider the ith block of n rows of the product setting’s
(cn + 1) × (m + 1) matrix of probabilities. The ith block consists of row
(i− 1) ·n+ 1 to row i ·n and forms a submatrix of size n× (m+ 1). The first
m columns of the sub-matrix are set to a copy of the SAT setting’s n ×m
matrix of probabilities, and the entire last column is set to the probability
that action ai in the gap setting results in the item. Finally, the first m
entries of the last row of the product setting’s matrix (i.e., row cn + 1) are
set to 1

2 , and the last entry (the lower-right corner of the matrix) is set to
the probability that the last action in the gap setting results in the item.

• In the product setting, the rewards for the m SAT items are set to 0, and the
reward for the gap item is set as in the gap setting.

• For every i ∈ [c], the costs of the n actions in block i are the cost of action
ai in the gap setting; the cost of the last action in the product setting is the
cost of the last action in the gap setting.

end

Proof. First, if ϕ has a satisfying assignment, then there is a subset of SAT items869

that has zero probability according to every one of the actions in the product setting870

except for the last action, and so we can construct a full-welfare extracting contract as871

in the proof of Proposition 4.15. From now on consider the case that every assignment872

to ϕ satisfies at most 7/8 + α of the clauses, and assume for contradiction there is a873

∆-IC contract p for the product setting that extracts more than 1
c + ε of the expected874

welfare.875

Consider the case that p ∆-incentivizes the last action in the product setting.
Then we can derive from it a δ-IC contract p′ for the (c, ε, εc)-gap setting where δ ≤ εc,
which extracts more than 1

c + ε of the expected welfare. This is a contradiction to the
properties of the gap setting (Definition 4.6). The construction of p′ and its analysis
are as in the proof of Proposition 4.15 (where Equation (4.2) defines p′), and so are
omitted here except for the following verification: we must verify that indeed δ ≤ εc.
We know from Claim 4.16 that δ = 8α+∆

1−8α . As in the proof of Proposition 4.15 this is
≤ 9α+ 4∆, and it is not hard to see that

9α+ 4∆ ≤ (3α1/c)c + (2∆1/c)c ≤ (3α1/c + 2∆1/c)c = εc,

where the first inequality uses that c ≥ 3.876

In the remaining case, p ∆-incentivizes an action ai∗k in the product setting which877

is the kth action in block i∗ ∈ [c] (recall each block has n actions). We derive from p878

a contract p′k (depending on k) for the gap setting that ∆-incentivizes ai∗ at the same879
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expected payment. As in the proof of Proposition 4.17, this means that p′k extracts880

> 1
c + ε of the expected welfare in the gap setting. Since ∆ ≤ δ = 8α+∆

1−8α it follows881

from the argument above that ∆ ≤ εc, and so we have reached a contradiction to the882

properties of the gap setting (Definition 4.6).883

We define p′k as follows: Let sk denote the distribution of action ak in the SAT884

setting. For every subset S′ ⊆M ′ of gap items,885

p′k(S′) =
∑
S⊆[m]

p(S ∪ S′)sk(S) ∀S′ ⊆M ′,(4.6)886

887

where S′ is either the singleton containing the gap item or the empty set.888

For the analysis, let gi denote the distribution of action ai in the gap setting. In889

the product setting, for every i ∈ [c], k ≤ n the expected payment for action aik by890

contract p is891

(4.7)
∑
S∈[m]

∑
S′⊆M ′

sk(S)gi(S
′)p(S ∪ S′).892

In the gap setting, the expected payment for ai by contract p′k is
∑
S′⊆M ′ gi(S

′)p′(S′),893

and by definition of p′k in (4.6) this coincides with the expected payment in (4.7). We894

know that contract p ∆-incentivizes ai∗k in the product setting, in particular against895

any action aik where i ∈ [c] \ {i∗} (i.e., against actions in the same position k but in896

different blocks). This implies that contract p′k ∆-incentivizes ai∗ in the gap setting897

against any action ai, completing the proof.898

We can now use Proposition 4.17 to prove Theorem 4.1. The proof is identical to899

that of Theorem 4.4 and so is omitted here.900

5. Approximation guarantees. In this section we show that for any constant901

δ there is a simple, namely linear, δ-IC contract that extracts as expected payoff for902

the principal a cδ-fraction of the optimal welfare, where cδ is a constant that depends903

only on δ. Recall that a linear contract is defined by a parameter α ∈ [0, 1], and pays904

the agent pS = α
∑
j∈S rj for every outcome S ⊆M .905

Theorem 5.1. Consider a principal-agent setting with n actions. For every δ > 0906

let cδ = maxγ∈(0,1)(1 − γ)(dlog1+δ(
1
γ )e + 1)−1. Then there is a δ-IC linear contract907

with expected payoff ALG where908

ALG ≥ cδ ·max
i∈[n]
{Ri − ci}.909

An immediate corollary of Theorem 5.1 is that we can compute a δ-IC linear910

contract that achieves a constant-factor approximation in polynomial time. By Corol-911

lary 4.2 we cannot achieve a similar result for IC (rather than δ-IC) contracts unless912

P = NP . In fact, an even stronger lower bound holds for the class of exactly IC913

linear (or, more generally, separable) contracts. These contracts cannot achieve an914

approximation ratio better than n (see [23] and Appendix H for details).915

5.1. Geometric understanding of linear contracts. To prove Theorem 5.1916

we will rely on the following geometric understanding of linear contracts developed in917

[23]. Fix a principal-agent setting. For a linear contract with parameter α ∈ [0, 1] and918

an action ai, the expected reward Ri =
∑
S qi,SrS is split between the principal and919

the agent, leaving the principal with (1−α)Ri in expected utility and the agent with920

αRi − ci (the sum of the players’ expected utilities is action ai’s expected welfare).921
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α

αRi − ci

−c1

−c2

−c3

R1 − c1

R2 − c2

R3 − c3

α1 α2 α3

Fig. 2: Upper envelope diagram for linear contracts.

The agent’s expected utility for choosing action ai as a function of α is thus a line922

from −ci (for α = 0) to Ri − ci (for α = 1). Drawing these lines for each of the n923

actions, we trace the maximum the agent’s utility for his best action as α goes from924

0 to 1. This gives us the upper envelope diagram for linear contracts in the given925

principal-agent setting.926

Figure 2 illustrates the construction and enables a few key observations that hold927

in general. A first observation is that only actions that appear on the upper envelope928

can be incentivized, and for each action that can be incentivized the smallest α for929

which this action is part of the upper envelope is the one that yields the highest930

expected payoff for the principal. Moreover, if we index actions from left to right as931

they appear on the upper envelope, then they will be sorted by increasing welfare932

Ri − ci, increasing expected reward Ri, and increasing cost ci as these correspond to933

the intercept of αRi − ci with the y-axis at α = 1, the slope of αRi − ci, and the934

intercept of αRi − ci with the y-axis at α = 0.935

In the remainder of this section, we will use IN for the subset of N ≤ n actions936

that are implementable by some linear contract, and we will index them in the order937

in which they appear on the upper envelope. Note that then i < i′ implies that938

ci < ci′ , Ri < Ri′ , and Ri − ci < Ri′ − ci′ . Moreover, maxi{Ri − ci} = RN − cN as939

the action with the highest welfare must appear on the upper envelope.940

For every action ai ∈ IN , we denote by αi the smallest parameter α of a linear941

contract that incentivizes ai. Note that because of our assumption that the minimum942

cost of any action is 0, we have that α1 = 0.943

5.2. Bucketing construction. Our proof of Theorem 5.1 relies on a bucket-944

ing construction that is parametrized by δ > 0 and γ ∈ (0, 1). We describe this945

construction below, and visualize it in Figure 3.946

For a fixed δ > 0 and fixed γ ∈ (0, 1) we subdivide the range [0, 1] of α-parameters947

into κ+ 1 = dlog1+δ(
1
γ )e+ 1 buckets as follows:948

B1 = [0, γ(1 + δ)0),949

Bk = [γ(1 + δ)k−2, γ(1 + δ)k−1) for k ∈ {2, . . . , κ},950

Bκ+1 = [γ(1 + δ)κ−1, 1].951952

For each bucket Bk with k ∈ [κ+ 1] we now specify an action ah(k). If bucket Bk953

has a single action ai that is implementable with an α ∈ Bk, then we let ah(k) = ai.954

Otherwise, if bucket Bk has more than one action ai that is implementable with an955

α ∈ Bk, then we let ah(k) be the action ai with the highest expected reward that is956
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α

αRi − ci

αh(1)

αh(0),h(1) αh(1),h(2) αh(2),h(3)

B1 B2 B3

ah(1) = a2

ah(2) = a2

ah(3) = a4

Fig. 3: Bucketing construction.

implementable with an α ∈ Bk.957

Next for each bucket Bk and associated action ah(k) we define a value of α, which958

we will denote by αh(k−1),h(k). For k = 1 we set αh(k−1),h(k) = 0. For k ≥ 2 we959

distinguish between the case where Bk has exactly one implementable action, and the960

case where it has more than one. If it has exactly one implementable action we set961

αh(k−1),h(k) = γ(1 + δ)k−2, i.e., we define αh(k−1),h(k) to be the left endpoint of Bk.962

Note that in this case h(k) = h(k − 1) and so963

Rh(k) − ch(k) = Rh(k−1) − ch(k−1).964

Otherwise, if Bk has more than one implementable action, then we have h(k) >965

h(k − 1) and therefore also Rh(k) > Rh(k−1), and we set966

αh(k−1),h(k) =
ch(k) − ch(k−1)

Rh(k) −Rh(k−1)
,967

i.e., in this case αh(k−1),h(k) is the α that makes the agent indifferent between actions968

ah(k−1) and ah(k).969

5.3. Upper bound on the optimal welfare. The first key ingredient in our970

proof of Theorem 5.1 will be the following upper bound on the optimal welfare971

maxi∈[n](Ri−ci) = RN −cN in terms of the parameters of the bucketing construction972

in Section 5.2 for any δ > 0 and γ ∈ (0, 1).973

Lemma 5.2. Fix δ > 0 and γ ∈ (0, 1) and consider the bucketing construction974

from Section 5.2. Then,975

max
i∈[n]

(Ri − ci) = RN − cN ≤
κ+1∑
k=1

(1− αh(k−1),h(k))Rh(k).976

To prove Lemma 5.2 we rely on the following observation from [23].977

Observation 5.3. Consider two actions ai, ai′ such that ai has higher expected978

reward and higher welfare than ai′ , i.e., Ri > Ri′ and Ri − ci > Ri′ − ci′ , and let979

αi′,i = (ci − ci′)/(Ri −Ri′). Then980

(Ri − ci)− (Ri′ − ci′) ≤ (1− αi′,i)Ri.981
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Proof of Lemma 5.2. We argue by induction that for all k ≥ 1, Rh(k) − ch(k) ≤982 ∑k
i=1(1− αh(i−1),h(i))Rh(i). For k = 1, recall that αh(0),h(1) = 0 by definition, and it983

trivially holds that Rh(1) − ch(1) ≤ Rh(1). Now assume that the inequality holds for984

k − 1, i.e.,985

Rh(k−1) − ch(k−1) ≤
k−1∑
i=1

(1− αh(i−1),h(i))Rh(i).(5.1)986

987

If Bk is a bucket that contains only one implementable action, then h(k) = h(k−1)988

and thus (Rh(k)− ch(k))− (Rh(k−1)− ch(k−1)) = 0. So, in particular, (Rh(k)− ch(k))−989

(Rh(k−1) − ch(k−1)) ≤ (1− αh(k−1),h(k))Rh(k).990

Otherwise, if Bk is a bucket that contains more than one implementable action,991

then h(k) > h(k−1) and thus Rh(k) > Rh(k−1) and Rh(k)− ch(k) > Rh(k−1)− ch(k−1).992

So we can apply Observation 5.3 to actions ah(k) and ah(k−1). This shows (Rh(k) −993

ch(k))− (Rh(k−1) − ch(k−1)) ≤ (1− αh(k−1),h(k))Rh(k).994

We conclude that in both cases (Rh(k) − ch(k)) − (Rh(k−1) − ch(k−1)) ≤ (1 −995

αh(k−1),h(k))Rh(k). Adding this inequality to inequality (5.1) we obtain996

Rh(k) − ch(k) ≤
k∑
i=1

(1− αh(i−1),h(i))Rh(i),997

998

as claimed.999

5.4. Approximate implementability. The second crucial observation con-1000

cerning the bucketing construction in Section 5.2 for any fixed δ > 0 and γ ∈ (0, 1)1001

concerns the (approximate) implementability of the actions ah(k) for k ∈ [κ+ 1].1002

For k = 1, action ah(1) is incentivized exactly at α1. For k ≥ 2 and buckets Bk1003

that contain only one implementable action, action ah(k) is incentivized exactly at1004

αh(k−1),h(k). For k ≥ 2 and buckets Bk that contain more than one implementable1005

action, action ah(k) is not incentivized exactly at αh(k−1),h(k), but—as the following1006

lemma shows—it is δ-incentivized.1007

Lemma 5.4. Fix δ > 0 and γ ∈ (0, 1) and consider the bucketing construction1008

from Section 5.2. For any k ∈ {2, . . . , κ + 1} such that Bk contains more than one1009

implementable action, the linear contract with α = αh(k−1),h(k) ensures that1010

αRh(k) − ch(k) + δ ≥ αRi − ci for every i ∈ [n].10111012

Proof. The lines Rh(k)− ch(k) and Rh(k−1)− ch(k−1) intersect at αh(k−1),h(k). By1013

construction, their intersection must fall between, on the one hand, the left endpoint1014

γ(1 + δ)k−2 of the bucket in which αh(k) falls, and αh(k) on the other hand. This1015

shows that (1 + δ)αh(k−1),h(k) ≥ (1 + δ)γ(1 + δ)k−2 = γ(1 − δ)k−1 ≥ αh(k). Com-1016

bining this with the fact that ah(k) is incentivized exactly at αh(k), we obtain that1017

αh(k−1),h(k)Rh(k)− ch(k) + δ ≥ (1 + δ)αh(k−1),h(k)Rh(k)− ch(k) ≥ αh(k)Rh(k)− ch(k) ≥1018

αh(k)Ri− ci for all i ∈ [n], where the first inequality holds since Rh(k) ≤ 1 by normal-1019

ization.1020

5.5. Proof of the approximation guarantee. We are now ready to prove1021

Theorem 5.1. We will use the bucketing construction from Section 5.2, and we will1022

use Lemma 5.2 to derive an upper bound on the optimal welfare and Lemma 5.4 to1023

derive a lower bound on what a δ-IC linear contract can achieve.1024
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Proof of Theorem 5.1. Fix some δ > 0 and some γ ∈ (0, 1), and consider the1025

bucketing construction from Section 5.2 for these parameters. Write ALG for the1026

payoff achievable with a δ-IC linear contract, and OPT for the maximum welfare of1027

any action. For the linear contract we consider choosing the best α among αh(1) and1028

αh(k−1),h(k) for k ≥ 2. We then have,1029

ALG ≥ max{(1− αh(1))Rh(1), (1− αh(1),h(2))Rh(2), . . . , (1− αh(κ),h(κ+1))Rh(κ+1)}
≥ (1− γ) max{(1− αh(0),h(1))Rh(1), (1− αh(1),h(2))Rh(2),1030

. . . , (1− αh(κ),h(κ+1))Rh(κ+1)}

≥ (1− γ)
1

κ+ 1

κ+1∑
i=1

(1− αh(k−1),h(k))Rh(k)

≥ (1− γ)
1

κ+ 1
OPT,1031

1032

where for the first inequality we use Lemma 5.4, for the second inequality we use1033

that αh(1) ≤ γ and that αh(0),h(1) ≥ 0, for the third inequality we lower bound the1034

maximum with the average, and for the final inequality we use Lemma 5.2.1035

The proof is completed by observing that for a fixed δ > 0 the above argument1036

applies for all γ ∈ (0, 1). We can thus conclude that1037

ALG ≥ max
γ∈(0,1)

(1− γ)
1

dlog1+δ(
1
γ )e+ 1

OPT,1038

as claimed.1039

6. Black-box model. We conclude by considering a black-box model which con-1040

cerns non-necessarily succinct principal-agent settings. In this model, the principal1041

knows the set of actions An, the cost ci of each action ai ∈ An, the set of items M1042

and the rewards rj for each item j ∈ M , but does not know the probabilities qi,S1043

that action ai assigns to outcome S ⊆ M . Instead, the principal has query access to1044

the distributions {qi}. Upon querying distribution qi of action ai, a (random) set is1045

returned where S is selected with probability qi,S . Our goal is to study how well a1046

δ-IC contract in this model can approximate the optimal IC contract if limited to a1047

polynomial number of queries (where the guarantees should hold with high probability1048

over the random samples). Black-box models have been studied in other algorithmic1049

game theory contexts such as signaling—see [22] for a successful example.1050

Let η = min{qi,S | i ∈ [n], S ⊆M, qi,S 6= 0} be the minimum non-zero probability1051

of any set of items under any of the actions. Note that then either qi,S = 0 or qi,S ≥ η1052

for every S. In Section 6.1 we address the case in which η is inverse super-polynomial1053

and obtain a negative result; in Section 6.2 we show a positive result for the case of1054

inverse polynomial η.1055

6.1. Inverse super-polynomial probabilities. We show a negative result for1056

the case where the minimum probability η is inverse super-polynomial, by proving1057

that poly(1/
√
η) samples are required to obtain a constant factor multiplicative ap-1058

proximation better than ≈ 1.15. The negative result holds even for succinct settings,1059

in which the unknown distributions are product distributions.1060

The basic idea is to construct two nearby instances, which, with high probability,1061

cannot be distinguished with polynomially many samples, and for which no single1062

contract can simultaneously be good for both settings.1063
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Theorem 6.1. Assume η ≤ η0 = 1/625 and δ ≤ δ0 = 1/100. Even with n = 21064

actions and m = 2 items, achieving a multiplicative ≤ 1.15 approximation to the1065

optimal IC contract through a δ-IC contract, where the approximation guarantee is1066

required to hold with probability at least 1−γ, may require at least s ≥ − log(γ)/(9
√
η)1067

queries.1068

Proof. We consider a scenario with two settings, both of which have n = 2 actions1069

and m = 2 items, and which differ only in the probabilities of the items given the1070

second action. Let τ be some constant > 2 (to be fixed later), and let µ =
√
η

τ . Let1071

β = (1 + 1
τ2 )−1 and note that β < 1.1072

Setting I:

r1 = β
τ2µ r2 = β

τ2µ

a1 : τµ τµ c1 = 0

a2 : τ2µ µ c2 = τ−1
τ3

1
1−µβ

1073

Setting II:

r1 = β
τ2µ r2 = β

τ2µ

a1 : τµ τµ c1 = 0

a2 : µ τ2µ c2 = τ−1
τ3

1
1−µβ

1074

Note further that the minimum probability of any set of items in both settings is1075

q2,{1,2} = τ2µ2 = η, as required by definition of η.1076

The expected reward achieved by the two actions in the two settings is R1 =1077

2β/τ < 1 and R2 = (1 + 1/τ2)β = 1. Moreover, the cost of action 2 is c2 ≤ β/τ2. So1078

the welfare achieved by the two actions is R1 − c1 < β and R2 − c2 ≥ β.1079

In both settings the optimal IC contract incentivizes action 2, by paying only for1080

the set of items that maximizes the likelihood ratio. In Setting 1 this is {1}, in Setting1081

2 it is {2}. The payment for this set in both cases is c2/(τ
2µ(1− µ)− τµ(1− τµ)) =1082

c2/(τ
2µ−τµ). This leads to an expected payment of τ2µ(1−µ)·c2/(τ2µ−τµ) = β/τ2.1083

The resulting payoff (and our benchmark) is therefore R2 − β/τ2 = β.1084

We now argue that if we cannot distinguish between the two settings, then we1085

can only achieve a ≈ 1.1568 approximation. Of course, we can always pay nothing1086

and incentivize action 1, but this only yields a payoff of 2β/τ . We can also try to1087

δ-incentivize action 2 in both settings, by paying for outcome {1} and {2}. But (as1088

we show below) the payoff that we can achieve this way is (for δ → 0 and µ→ 0) at1089

most (1 + 1/τ2− (τ2 + 1)/((τ −1)τ3)β. Now max{2/τ, 1 + 1/τ2− (τ2 + 1)/((τ −1)τ3}1090

is minimized at τ = 1 +
√

2 where it is 2/(1 +
√

2) ≈ 0.8284. The upper bound on the1091

payoff from action 2 for this choice of τ is actually increasing in both µ and δ and equal1092

to ≈ 0.8644 ·β at the upper bounds µ0 =
√
η0/(2

2) = 1/100 and δ0 = 1/100, implying1093

that the best we can achieve without knowing the setting is a ≈ 1/0.8644 ≈ 1.15681094

approximation.1095

So if we want to achieve at least a ≤ 1.15 approximation with probability at least1096

1 − γ, then we need to be able to distinguish between the two settings with at least1097

this probability. A necessary condition for being able to distinguish between the two1098

settings is that we see at least some item in one of our queries to action 2. So,1099

1− γ ≤ 1− (1− τ2µ)2s,1100

which implies that s ≥ log(γ)/(2 log(1− τ2µ) ≥ − log(γ)/(2 ·µ · τ2) ≥ − log(γ)/(18µ).1101

Plugging in µ we get s ≥ − log(γ)/(18
√
µ

τ ) > − log(γ)/(9
√
µ).1102
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We still need to prove our claims regarding the payoff that we can achieve if we1103

want to δ-incentivize action 2 in both settings. To this end consider the IC constraints1104

for δ-incentivizing action 2 over action 1 in Setting I and Setting II, respectively:1105

τ2µ(1− µ)p{1} + (1− τ2µ)µp{2} − c2 ≥1106

τµ(1− τµ)p{1} + (1− τµ)τµp{2} − δ, and1107

(1− τ2µ)µp{1} + τ2µ(1− µ)p{2} − c2 ≥1108

τµ(1− τµ)p{1} + (1− τµ)τµp{2} − δ.11091110

Adding up these constraints yields1111

(τ2µ(1− µ) + (1− τ2µ)µ− 2τµ(1− τµ)) · (p{1} + p{2}) ≥ 2c2 − 2δ.11121113

We maximize the minimum performance across the two settings by choosing p{1} =1114

p{2}. Letting p = p{1} = p{2} we thus obtain1115

(τ2µ(1− µ) + (1− τ2µ)µ− 2τµ(1− τµ))p ≥ c2 − δ.11161117

It follows that1118

p ≥ c2 − δ
τ2µ+ µ− 2τµ

.1119

The performance of the optimal contract that δ-incentivizes action 2 in both settings1120

thus achieves an expected payoff of1121

R2 − (τ2µ(1− µ) + (1− τ2µ)µ)
c2 − δ

τ2µ+ µ− 2τµ
= R2 −

τ2(1− 2µ) + 1

(τ − 1)2
(c2 − δ).1122

1123

Plugging in R2 and c2 and letting δ → 0 and µ → 0 we obtain the aforementioned1124

1 + 1/τ2 − (τ2 + 1)/((τ − 1)τ3)β. Finally, to see that the expected payoff evaluated1125

at τ = 1 +
√

2 > 2 is increasing in both δ and µ observe that the derivative in δ is1126

simply the probability term (τ2(1− 2µ) + 1)/(τ − 1)2 which is positive and that both1127

this probability term and the cost c2 are decreasing in µ implying that as µ increases1128

we subtract less.1129

6.2. Inverse polynomial probabilities. We show a positive result for the case1130

where the minimum probability η is inverse polynomial. Namely, let OPT denote the1131

expected payoff of the optimal IC contract; then with poly(n,m, 1
η ,

1
ε ,

1
γ ) queries it1132

is possible to find, with probability at least (1 − γ), a 4ε-IC contract with expected1133

payoff at least OPT − 5ε. Formally:1134

Theorem 6.2. Fix ε > 0, and assume ε ≤ 1/2. Fix distributions Q such that1135

qi,S ≥ η for all i ∈ [n] and S ⊆ M . Denote the expected payoff of the optimal1136

IC contract for distributions Q by OPT . Then there is an algorithm that with s =1137

(3 log( 2n
ηγ ))/(ηε2) queries to each action and probability at least 1 − γ, computes a1138

contract p̃ which (i) is 4ε-IC on the actual distributions Q; and (ii) has expected1139

payoff Π on the actual distributions satisfying Π ≥ OPT − 5ε.1140

We will show that the optimal 2ε-IC contract for the empirical distributions ob-1141

tained from s = (3 log( 2n
ηγ ))/(ηε2) queries to each action has the desired properties.141142

14Note that this contract can be computed in polynomial time by solving n−1 LPs similar to the
MIN-PAYMENT LP, with an appropriately relaxed IC constraint, because there will be at most ns
outcomes with a non-zero probability.
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30 P. DÜTTING, T. ROUGHGARDEN, AND I. TALGAM-COHEN

Our proof goes through a series of technical lemmas (Lemmas 6.3 to 6.7), which we1143

describe and state below, and whose proofs appear in Appendix I.1144

The first lemma (Lemma 6.3) establishes that s = (3 log( 2n
ηγ ))/(ηε2) queries to1145

each action suffice to ensure that with probability at least 1− γ all empirical proba-1146

bilities are within an error of at most ε of the actual probabilities.1147

Lemma 6.3. Consider the algorithm that issues s queries to each action i ∈ N ,1148

and sets q̃i,S to be the empirical probability of set S under action i. With s =1149

(3 log( 2n
ηγ ))/(ηε2) queries to each action, with probability at least 1− γ, for all i ∈ [n]1150

and S ⊆M ,1151

(1− ε)qi,S ≤ q̃i,S ≤ (1 + ε)qi,S .11521153

The remaining lemmas (Lemma 6.4 to Lemma 6.7) all operate on the assumption1154

that the empirical probabilities are close to the actual probabilities.1155

The first two of these lemmas—Lemma 6.4 and Lemma 6.5—show that IC and1156

δ-IC are approximately preserved when switching from the actual distributions to the1157

empirical distributions, and vice versa.1158

We will use Lemma 6.4 to relate the performance of the optimal 2ε-IC contract1159

for the empirical distributions to that of the optimal IC contract for the actual dis-1160

tributions. We will use Lemma 6.5 to show that the optimal 2ε-IC contract for the1161

empirical distributions is 4ε-IC under the actual distributions.1162

Lemma 6.4. Suppose that (1−ε)qi,S ≤ q̃i,S ≤ (1+ε)qi,S for all i ∈ [n] and S ⊆M .1163

Consider contract p. If ai is the action that is incentivized by this contract under the1164

actual probabilities Q, then the payoff of ai under the empirical distributions Q̃ is at1165

least as high as that of any other action up to an additive term of 2ε.1166

Lemma 6.5. Suppose that (1−ε)qi,S ≤ q̃i,S ≤ (1+ε)qi,S for all i ∈ [n] and S ⊆M .1167

Consider contract p̃. If ai is the action that is δ-incentivized by this contract under1168

the empricial probabilities Q̃, then the payoff of ai under the actual distributions is at1169

least as high as that of any other action up to an additive term of δ + 2ε. (δ + 2ε)-IC1170

for the actual probabilities Q.1171

The final two lemmas (Lemma 6.6 and Lemma 6.7) relate the payoff of an action1172

on the actual distributions to that on the empirical distributions, and vice versa.1173

We will use these lemmas to connect the performance of the two aforementioned1174

contracts under the empirical and actual distributions.1175

Lemma 6.6. Suppose that (1 − ε)qi,S ≤ q̃i,S ≤ (1 + ε)qi,S for all i ∈ [n] and1176

S ⊆ M . If action ai achieves payoff Π̃ under contract p̃ when evaluated on the1177

empirical distributions Q̃, then it achieves payoff Π ≥ Π̃ − 2ε when evaluated on the1178

actual distributions Q.1179

Lemma 6.7. Assume ε ≤ 1/2. Suppose that (1− ε)qi,S ≤ q̃i,S ≤ (1 + ε)qi,S for all1180

i ∈ [n] and S ⊆ M . If action ai achieves payoff P under contract p when evaluated1181

on the actual distributions Q, then it achieves payoff P̃ ≥ P − 3ε when evaluated on1182

the empirical distributions Q.1183

We are now ready to prove the theorem.1184

Proof of Theorem 6.2. Let Q̃ denote the empirical distributions that result from1185

querying each action s times. By Lemma 6.3, with probability at least 1 − γ, the1186

empirical probabilities obtained in this way will satisfy (1− ε)qi,S ≤ q̃i,S ≤ (1 + ε)qi,S1187

for all i ∈ [n] and S ⊆M .1188
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Denote the optimal 2ε-IC contract for the empirical distributions Q̃ by p̃ . We will1189

use Π̃ for the expected payoff that this contract achieves under the empirical distribu-1190

tions Q̃, and Π for the expected payoff that it achieves under the actual distributions1191

Q. Likewise, denote by p the optimal IC contract for the actual distributions Q. We1192

will write P for the expected payoff that it achieves under the actual distributions Q,1193

and P̃ for its expected payoff under the empirical distributions Q̃.1194

By Lemma 6.5, contract p̃ which is 2ε-IC on Q̃ is 4ε-IC on Q, as claimed. Further-1195

more, by Lemma 6.4, contract p which is IC on Q is 2ε-IC on Q̃. Since p̃ is the optimal1196

such contract, this implies that Π̃ ≥ P̃ . Together with Lemma 6.6 and Lemma 6.7 we1197

thus obtain1198

Π ≥ Π̃− 2ε ≥ P̃ − 2ε ≥ P − 5ε,11991200

which completes the proof.1201
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tion A.1 establishes that the problem of finding an optimal IC or δ-IC linear resp. sep-1305

arable contract is tractable.1306

Proposition A.1. Let δ ≥ 0. Given a principal-agent setting, an optimal linear1307

(resp., separable) δ-IC contract can be found in polynomial time.1308

Proof. The problem of finding an optimal linear (resp., separable) δ-IC contract1309

for incentivizing any action ai can be formulated as a polynomial-sized LP with 11310

variable (resp., m variables) representing the contract’s parameter α (resp., the item1311

payments {pj}), and n− 1 δ-IC constraints.1312

Appendix B. Intractability of the ellipsoid method. In this appendix we1313

establish the intractability of the ellipsoid method for MIN-PAYMENT, except for1314

the special case of n = 2. Recall LP (2.1) for the MIN-PAYMENT problem. Its dual1315

is as follows, where {λi′} are n− 1 nonnegative variables (one for every action other1316

than i):1317

max
∑
i′ 6=i

λi′(ci − ci′)1318

s.t.
(∑
i′ 6=i

λi′
)
− 1 ≤

∑
i′ 6=i

λi′
qi′,S
qi,S

∀S ⊆ E, qi,S > 0,1319

λi′ ≥ 0 ∀i′ 6= i, i′ ∈ [n].13201321

Consider applying the ellipsoid method to solve LP (2.1) for action ai. The sepa-1322

ration oracle problem is: Given an instantiation of the dual variables {λi′}, consider1323

the combination distribution
∑
i′ 6=i λi′qi′ , which is a convex combination of the prod-1324

uct distributions {qi′}. To find a violated constraint of the dual LP we need to find1325

a set S for which the likelihood ratio between the combination distribution and the1326

product distribution qi is sufficiently small.1327

Note that a combination distribution is not itself a product distribution.15 There-1328

fore solving the separation oracle is not easy and in fact it is an NP-hard problem1329

even for n = 3, as formalized in Proposition B.1. In the special case of n = 2, the1330

combination distribution is a product distribution. By taking S to be all items that1331

are more likely according to qi than according to the combination distribution, we1332

minimize the likelihood ratio and solve the separation oracle. (This is one way to1333

conclude that OPT-CONTRACT with n = 2 is tractable.)1334

Proposition B.1. Solving the separation oracle of dual LP (2.2) is NP-hard for1335

n ≥ 3.1336

Proof. Rather than prove Proposition B.1 directly, it is enough to point the reader1337

to Corollary D.2, which establishes the NP-hardness of MIN-PAYMENT.1338

Remark B.2. Proposition B.1 immediately holds for δ-IC as well, i.e., for the1339

separation oracle of dual LP (3.2). This dual corresponds to primal LP (3.4) solving1340

MIN-PAYMENT for δ-IC contracts. This is simply because the separation oracle1341

problem of dual LP (3.2) is identical to that of dual LP (2.2).1342

15For example, consider a fifty-fifty mix between the following two product distributions over two
items: a point mass on the empty set, and a point mass on the grand bundle. This combination
distribution has probability 1

2
for the empty set and probability 1

2
for the grand bundle, and the

item marginals are 1
2

. A product distribution with item marginals of 1
2

has probability 1
4

for every
set.
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Appendix C. Properties of δ-IC contracts. In this appendix we give the1343

proofs that were omitted from Section 2.4.1344

Proof of Proposition 2.3. Action ai can be δ-implemented if and only if LP C.11345

has a feasible solution.1346

min 0(C.1)1347

s.t.(1 + δ)

∑
S⊆E

qi,SpS

− ci ≥ ∑
S⊆E

qi′,SpS − ci′∀i′ 6= i, i′ ∈ [n]1348

pS ≥ 0 ∀S ⊆ E.1349

Consider the dual:1350

max
∑
i′ 6=i

λi′(ci − ci′)(C.2)1351

s.t.(1 + δ)qi,S
∑
i′ 6=i

λi′ ≤
∑
i′ 6=i

λi′qi′,S∀S ⊆ E, qi,S > 01352

λi′ ≥ 0 ∀i′ 6= i, i′ ∈ [n].1353

Since qi and {qi′} are distributions and δ > 0, the only feasible solution to the dual1354

LP (C.2) is λi′ = 0 for every i′ 6= i. The dual is feasible and bounded, hence the1355

primal must be feasible, completing the proof.1356

Proof of Proposition 2.4. The expected payoff of action ai under the interpolation1357

contract p′ is1358

Ri − [(1−
√
δ)pi +

√
δRi] = (1−

√
δ)(Ri − pi).1359

We will argue that for every action ai′ with i′ 6= i, either i′ is not incentivized by p′1360

(Case 1) or its expected payoff is sufficiently high (Case 2).1361

Case 1: Assume Ri − (1 +
√
δ)pi > Ri′ − pi′ . We claim that in this case ai is1362

preferred over ai′ under contract p′. Namely,1363

(1−
√
δ)pi +

√
δRi − ci = (1 + δ)pi − ci +

√
δ(Ri − (1 +

√
δ)pi)1364

≥ pi′ − ci′ +
√
δ(Ri − (1 +

√
δ)pi)1365

> pi′ − ci′ +
√
δ(Ri′ − pi′)1366

= (1−
√
δ)pi′ +

√
δRi′ − ci′ ,13671368

where we used that action ai is δ-incentivized under p for the first inequality, and the1369

second inequality holds by assumption because we are in Case 1.1370

Case 2: Assume now that Ri − (1 +
√
δ)pi ≤ Ri′ − pi′ . In this case the expected1371

payoff achieved by action ai′ is high. Namely,1372

Ri′ − (1−
√
δ)pi′ −

√
δRi′ = (1−

√
δ)(Ra′i − pa′i)1373

≥ (1−
√
δ)(Ri − (1 +

√
δ)pi)1374

= (1−
√
δ)(Ri − pi)− (1−

√
δ)
√
δpi,13751376

where the inequality holds by assumption because we are in Case 2.1377
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Proof of Proposition 2.5. Consider the following principal-agent setting parame-
terized by δ and ε > 0. LetM = ε/δ. There are n = 2 actions and m = 2 items. The
probabilities of the items given the actions is described by the following matrix(

1
4

2ε
3(M+ε)

0 1

)
,

where the first column corresponds to item 1 and the second column to item 2. Set1378

the rewards to be r1 = 4ε
3 for item 1 and r2 =M+ ε for item 2 (notice r1 < r2), and1379

the costs to be c1 = 0 and c2 =M− Mε
2(M+ε) > 0. Observe that the expected rewards1380

are R1 = ε and R2 =M+ ε.1381

Claim C.1. OPT = ε.1382

Proof of Claim C.1. The expected payoff from letting the agent chose the zero-1383

cost action a1 is R1 = ε. Can we get any better by incentivizing a2? The optimal1384

contract for incentivizing the costly action in a 2-action setting is well-understood1385

(see e.g. [23]): The only positive payment should be for the single subset of items1386

maximizing the likelihood that the agent has chosen action a2; in our case this is1387

the subset {2} containing item 2 only. Observe that its probability given action 1 is1388
ε

2(M+ε) . The 2-action characterization also specifies the payment for this outcome,1389

setting it at p{2} = c2/
(

1− ε
2(M+ε)

)
= M. Subtracted from R2 we get expected1390

payoff of ε from optimally incentivizing a2.1391

Claim C.2. Contract p that pays M− ε
3 for outcome S = {2} and 0 otherwise1392

δ-incentivizes action a2 with expected payoff R2 − p2 = 4
3ε.1393

Proof of Claim C.2. We show action a2 is δ-IC: The agent’s expected utility from1394

a1 is ε
2(M+ε)p2 = ε(3M−ε)

6(M+ε) , and from a2 given contract (1 + δ)p it is (1 + δ)p2 − c2 =1395

(1 + ε
M )(M− ε

3 ) −M + Mε
2(M+ε) = ε(2M−ε)

3M + Mε
2(M+ε) . It can be verified that the1396

former is less than the latter for δ ≤ 1
2 .1397

Putting these claims together completes the proof of Proposition 2.5.1398

Proof of Lemma 2.6. Fix a principal-agent setting. Let ai be the action that is δ-1399

incentivized by contract p and assume ai is not IR. Observe that the agent’s expected1400

utility from ai is ≥ −δ (otherwise ai would not be δ-IC with respect to a1, which1401

has expected utility ≥ 0 for the agent). First, if Π > δ, then let p′ be identical to p1402

except for an additional δ payment for every outcome. Contract p′ still δ-incentivizes1403

action ai, but now the agent’s expected utility from ai is ≥ 0, as required. Otherwise1404

if Π ≤ δ, let p′ be the contract with all-zero payments. The expected payoff to the1405

principal is zero, which is at most an additive δ loss compared to Π.1406

Appendix D. Hardness with a constant number of actions. In this1407

appendix we show NP-hardness of the two computational problems related to optimal1408

contracts when the number of actions n is constant. Appendices D.1 and D.2 prove1409

hardness of δ-OPT-CONTRACT (Proposition D.1), from which hardness of δ-MIN-1410

PAYMENT follows by the reduction in Section 2 (Corollary D.2).1411

Proposition D.1. δ-OPT-CONTRACT is NP-hard even for n = 3 actions.1412

Corollary D.2. δ-MIN-PAYMENT is NP-hard even for n = 3 actions.1413
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D.1. The computational problem MIN-MAX-PROB. It will be conve-1414

nient to reduce to δ-OPT-CONTRACT from a computational problem we call MIN-1415

MAX-PROB, which is a variant of MIN-MAX PRODUCT PARTITION [40] and thus1416

NP-hard.1417

• Input: A product distribution q over m items such that for every item j, its1418

probability qj is equal to 1
aj+1 where aj is an integer ∈ [3, amax] (log amax is1419

polynomial in m).1420

• Output: YES iff there exists a subset of items S∗ such that qS∗ = `A, where1421

A =
√∏

j aj and ` =
∏
j qj .1422

We now take a closer look at MIN-MAX-PROB. Denote aS =
∏
j∈S aj .1423

Observation D.3. The probability of subset S is qS = `aS.1424

Proof. For every item j, the probability it is excluded is1425

1− qj = 1− 1

aj + 1
=

aj
aj + 1

= qjaj .1426

So the probability of the outcome being precisely S is1427

qS =

∏
j∈S

qj

∏
j /∈S

(1− qj)

1428

=

∏
j∈S

qj

∏
j /∈S

qjaj

1429

=

 m∏
j=1

qj

∏
j /∈S

aj

 = `aS ,1430

1431

as claimed.1432

Observation D.3 immediately implies:1433

Observation D.4. For every subset S, aS + aS = aS + A2

aS
≥ 2A, where equality1434

holds iff aS = aS = A. Equivalently, qS + qS ≥ 2`A, where equality holds iff qS =1435

qS = `A.1436

Proof. The inequality in the observation holds by the inequality of arithmetic and1437

geometric means (AM-GM inequality), which states that for any two non-negative1438

numbers w, z, (w + z)/2 ≥
√
wz. Namely, for z = aS , w = A2/aS , and A =

√
zw the1439

AM-GM inequality states that aS + A2/aS = z + w ≥ 2
√
wz = 2

√
aS ·A2/aS = 2A1440

as claimed.1441

Observation D.4 shows the connection between MIN-MAX-PROB and the NP-1442

hard problem MIN-MAX PRODUCT PARTITION: q is a YES instance (there exists1443

a subset of items S such that qS = `A) iff aS = A.1444

The following observation will be useful in the reduction to δ-OPT-CONTRACT.1445

Observation D.5. Let ∆ = 1− `A2m−1, then 0 < ∆ < 1.1446

Proof. By definition,

`A =

√∏
aj∏

(aj + 1)
≤
∏√

aj + 1∏
(aj + 1)

=
1∏√
aj + 1

≤ 1

2m
<

1

2m−1
,
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where the second-to-last inequality follows since aj ≥ 3 and so
√
aj + 1 ≥ 2. We1447

conclude that `A2m−1 < 1, completing the proof.1448

D.2. Proof of Proposition D.1. We now use hardness of MIN-MAX-PROB1449

to establish hardness of δ-OPT-CONTRACT.1450

Proof of Proposition D.1. The proof is by reduction from MIN-MAX-PROB, as1451

follows.1452

Reduction. Given an instance q of MIN-MAX-PROB, construct a principal-1453

agent setting with n = 3 actions.1454

• For action a1, set its product distribution q1 to be q.1455

• For action a2, set its product distribution q2 to be 1 − q (i.e., q1,j + q2,j = 1 for1456

every item j).1457

• For action a3, set its product distribution q3 to be such that q3,1 = 1 (i.e., this1458

action’s outcome always includes item 1), and q3,j = 1
2 for every other item j > 1.1459

Set costs c1, c2 to zero and set c3 to be c = (amax + 1)−1. The only nonzero reward is1460

r = r1 for item 1; set r to be any number strictly greater than ∆−1.1461

Analysis. First notice that the reduction is polynomial in m; in particular, the1462

number of bits of precision required to describe the probabilities, cost c and reward r1463

is polynomial.1464

The analysis will show that the expected payoff the principal can extract by a1465

δ-IC contract if q is a YES instance is strictly larger than if q is a NO instance. We1466

introduce some notation: Let S1 = {S ⊆ [m] | 1 ∈ S}, i.e., S1 is the collection of1467

all item subsets containing item 1. Given a contract p, let P =
∑
S∈S1 pS (the total1468

payment for subsets in S1). Observe that the expected payment to the agent if he1469

chooses action a3 is P
2m−1 .1470

Claim D.6. Action a3 can be weakly δ-incentivized with expected payment c
∆(1+δ)1471

if and only if q is a YES instance of MIN-MAX-PROB.1472

Proof of Claim D.6. Fix a δ-IC contract p that weakly δ-incentivizes action a3.1473

By Observation D.3, the agent’s expected utility from action a1 is `
∑
S pSaS and from1474

action a2 is `
∑
S pSaS . The agent’s expected utility from action a3 (after boosting1475

by (1 + δ)) is P (1+δ)
2m−1 − c.1476

Assume first that q is a NO instance. If p weakly incentivizes action a3 then1477

P (1 + δ)

2m−1
− c ≥ ` ·max

{∑
S

pSaS ,
∑
S

pSaS

}
1478

≥ `

2

(∑
S

pSaS +
∑
S

pSaS

)
1479

=
`

2

∑
S

pS(aS + aS) > `A
∑
S

pS ≥ `AP,1480

where the second-to-last inequality is by Observation D.4, and is strict by our as-1481

sumption that q is a NO instance. Rearranging P (1+δ)
2m−1 − c > `AP we get1482

c <
P (1 + δ)

2m−1
− `AP (1 + δ) =

P (1 + δ)

2m−1

(
1− `A2m−1

)
=
P∆(1 + δ)

2m−1
.1483

By Observation D.5 we can divide both sides by ∆(1 + δ) > 0 to establish P
2m−1 >1484

c
∆(1+δ) , completing the proof of the first direction.1485
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Assume now that q is a YES instance. Then there exists S∗ such that aS∗ =1486

aS∗ = A, and without loss of generality S∗ ∈ S1 (otherwise take its complement).1487

Consider the following contract: Let pS∗ = c2m−1

∆(1+δ) and set all other payments to 0.1488

The expected payment to the agent for action a3 is pS∗
2m−1 = c

∆(1+δ) as required, and1489

the agent’s expected utility (after boosting by (1 + δ)) is pS∗ (1+δ)
2m−1 − c = c

∆ − c =1490
c(1−∆)

∆ . Plugging in ∆ = 1 − `A2m−1, we get that the expected utility from action1491

a3 is `A c2m−1

∆ = `ApS∗ . This is equal to the expected utility from action a1, since1492

`
∑
S pSaS = `pS∗aS∗ = `ApS∗ Similarly, the expected utility from action a2 is also1493

`ApS∗ . We conclude that p weakly δ-incentivizes a3, completing the proof of Claim1494

D.6.1495

We now use Claim D.6 to complete the hardness proof by showing that the ex-1496

pected payoff the principal can extract if q is a YES instance is strictly larger than if1497

q is a NO instance.1498

For a YES instance, by Claim D.6 action a3 can be weakly δ-incentivized with1499

expected payment c
∆(1+δ) . We argue that the values chosen in the reduction for c and r1500

guarantee that action a3 has the (strictly) highest expected payoff for the principal, so1501

the agent breaks ties in favor of a3: Since the only positive reward is r1 = r and since1502

q3,1 = 1, the expected payoff from a3 is q3,1r1 − c
∆(1+δ) = r − c

∆(1+δ) . The expected1503

reward (and thus also payoff) from a1 is at most q1,1r1 ≤ r
4 (using that a1+1 ≥ 4), and1504

the expected reward from a2 is at most q2,1r1 ≤ (1− 1
amax+1 )r. Since r

4 ≤ (1− 1
amax+1 )r1505

(using that amax ≥ 3), it suffices to show r − c
∆(1+δ) ≥ r − c

∆ > (1 − 1
amax+1 )r, or1506

simplifying, r > c(amax+1)
∆ . Since the reduction sets c = (amax + 1)−1 and r > ∆−1,1507

the argument is complete.1508

For a NO instance, by Claim D.6 the expected payoff from a3 is strictly lower than1509

r− c
∆(1+δ) . By the analysis of the YES case we know that the expected rewards from1510

a1, a2 are strictly lower than r − c
∆ (and by limited liability the principal’s expected1511

payoff is bounded by the expected reward). This completes the proof of Proposition1512

D.1.1513

Appendix E. An FPTAS for the separation oracle. In this appendix we1514

establish the FPTAS for MIN-LR stated in Lemma 3.3. Recall from the discussion1515

leading to Lemma 3.3 that the separation oracle problem reduces to MIN-LR.1516

Proof of Lemma 3.3. We adapt an FPTAS of Moran [41] (see also subsequent
papers such as [43]). Let

∆ = (1 + ε)1/2m.

FPTAS algorithm. The algorithm proceeds in iterations from 0 to m. In1517

iteration j, the partial solutions in that iteration are subsets of the first j items. For1518

a partial solution S ⊆ {1, . . . , j}, recall that q`,S is the marginal probability to draw1519

S among the first k items if the sample is distributed according to q`.1520

The partial solutions in iteration j are partitioned into families Yj,1, . . . , Yj,rj .1521

The partition is such that for every family r ∈ [rj ] and partial solutions S, S′ ∈ Yj,r,1522

for every distribution ` ∈ [k] ∪ {i}, the ratio between q`,S and q`,S′ is at most ∆.1523

In the first iteration j = 0, the only solution is the empty set. The solutions in1524

iteration j+ 1 are generated from the families in iteration j as follows: One arbitrary1525

partial solution S is chosen from every family Yj,r to “represent” it, and for each such1526

S two partial solutions S ∪{j+ 1} and S are added to the solutions of iteration j+ 11527

(i.e., with and without the (j + 1)st item).1528

This manuscript is for review purposes only.



THE COMPLEXITY OF CONTRACTS 39

The algorithm outputs the minimum objective 1
qi,S

∑
k αkqk,S among the solutions1529

S in iteration m.1530

Analysis. We first argue that ALG ≤ (1 + ε)OPT . Let S∗ be the optimal1531

solution, and denote the subset of S∗ containing only items among the first j by S∗j .1532

By induction, in iteration j there is a partial solution S′j such that ∆−j · q`,S∗j ≤1533

q`,S′j ≤ ∆j · q`,S∗j for every distribution ` ∈ [k] ∪ {i}. Denote S′ = S′m. Then1534

ALG ≤ 1
qi,S′

∑
k αkqk,S′ ≤ ∆2m · 1

qi,S∗

∑
k αkqk,S∗ = (1 + ε)OPT .1535

It remains to show that the FPTAS runs in polynomial time. The running time
is O(

∑
j rj). In the input distributions {qk}, qi, denote the range of every nonzero

probability by [qmin, 1] (qmin can be exponentially small). For every distribution ` ∈
[k] ∪ {i}, the probabilities that are not 0 are at least qmmin. So a partition “in jumps
of ∆” requires O(t) parts, where t is the smallest integer satisfying qmmin ·∆t ≥ 1. So

t =

⌈
m log(q−1

min)

log ∆

⌉
=

⌈
2m2 log(q−1

min)

log (1 + ε)

⌉
≤
⌈

2m2 log(q−1
min)

ε

⌉
,

where the last inequality uses log(1 + ε) ≥ ε for ε ∈ (0, 1]. Since the partition to1536

rj families maintains “jumps of ∆” for n distributions, rk = O(tn). We invoke the1537

assumption that n is constant to complete the analysis and the proof of Lemma 3.3.1538

Appendix F. Hardness of MIN-PAYMENT. In this appendix we show the1539

following counterpart to Corollary 4.2.1540

Proposition F.1. For any constant c ∈ R, c ≥ 1, it is NP-hard to approximate1541

the minimum expected payment for implementing a given action to within a multi-1542

plicative factor c.1543

Proof. The proof is by reduction from MAX-3SAT. Given an instance of MAX-1544

3SAT, the goal is to determine whether the instance is satisfiable or whether at most1545
7
8 + ε of the clauses can be satisfied, where ε is an arbitrarily small constant.1546

Reduction. Given ϕ, we obtain the SAT principal-agent setting corresponding1547

to ϕ (Proposition 4.12), but we set the reward for every item to be 1 rather than 0.1548

We add an action an+1 with cost C and product distribution qn+1 with probability 1
21549

for every item.1550

Analysis. As in the analysis in the proof of Proposition 4.15, if ϕ has a satisfying1551

assignment then we can implement an+1 at cost C. Otherwise recall that by Definition1552

4.11, the average action over the first n actions leads to every item set S with proba-1553

bility at least 1−8ε
2m . Consider a contract p and let P =

∑
S pS . The expected utility1554

of the agent for choosing an+1 is P/2m−C. Consider again the average action over the1555

first n actions. The expected payment to the agent for “choosing” this action (i.e.,1556

the expected payment over the average distribution) is at least 1−8ε
2m P = P

2m − 8εP
2m ,1557

and there is some action ai (with cost 0) for which the expected payment is as high.1558

To incentivize an+1 over ai it must hold that P
2m − C ≥ P

2m − 8εP
2m , i.e., P

2m ≥ C
8ε .1559

We conclude that if there is no assignment satisfying more than 7
8 + ε of the clauses,1560

the expected payment for implementing an+1 is C8ε rather than C. Approximating the1561

expected payment within a multiplicative factor 1
8ε would thus solve the MAX-3SAT1562

instance we started with, and we can make ε as small a constant as we want.1563

Appendix G. Proofs omitted from Section 4. In this appendix we provide1564

proofs for Propositions 4.8 and 4.9. In particular, we establish the existence of gap1565

settings for 2 actions (Proposition 4.8) and c actions (Proposition 4.9).1566
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Proof of Proposition 4.8. For the gap setting constructed above with c = 2 ac-1567

tions and γ = ε, consider a δ-IC contract. Since the expected reward of the first1568

action a1 is 1, and the maximum expected welfare is 2 − γ ≥ 2 − 4ε
1+2ε , if a contract1569

is to extract more than 1
2−4ε/(1+2ε) = 1

2 + ε of the expected welfare then it must1570

δ-incentivize the last action ac (a limited liability contract cannot extract more than1571

the expected reward from an agent choosing a1, since a1 is zero-cost). Let p be the1572

payment for the item and let p0 be the payment for the empty set. For any action ai∗1573

that the contract δ-incentivizes, the following inequality must hold for every i ∈ [c]:1574

(1 + δ)
(
γc−i

∗
p+ (1− γc−i

∗
)p0

)
− 1

γi∗−1
+ i∗ − (i∗ − 1)γ ≥1575 (

γc−ip+ (1− γc−i)p0

)
− 1

γi−1
+ i− (i− 1)γ.(G.1)1576

Observe that for the contract to δ-incentivize ac at minimum expected payment, it
must hold that p0 = 0. We can now plug p0 = 0 into inequality (G.1) and choose
i∗ = c, i = i∗ − 1. We get a lower bound on the expected payment for δ-incentivizing
ac:

p ≥ (1− γ)2

γ(1 + δ − γ)
.

The principal’s expected payoff is thus ≤ 1
γ −

(1−γ)2

γ(1+δ−γ) ≤
1

1+γ2−γ , where the last1577

inequality uses δ ≤ f(ε) = γ2. We get an upper bound of 1
1+γ2−γ on what the best1578

δ-IC contract can extract out of 2 − γ for the principal. The ratio is thus at most1579
1
2 + ε (using γ ≤ 1

4 ), and this completes the proof of Proposition 4.8.1580

Proof of Proposition 4.9. For the gap setting constructed above with c actions1581

and γ = ε, consider a δ-IC contract. As in the proof of Proposition 4.8, this contract1582

cannot extract more than 1
c + ε of the expected welfare by δ-incentivizing action a1.1583

Assume from now on that the contract δ-incentivizes action ai∗ for i∗ ≥ 2 at minimum1584

expected payment. As in the proof of Proposition 4.8, Inequality (G.1) must hold for1585

i∗ and every i ∈ [c].1586

Assume first that the contract’s payment p0 for the empty set is zero. (This1587

assumption is without loss of generality for the case of c = 2 actions, as well as for1588

c ≥ 3 and fully-IC optimal contracts by Proposition 6 in [23].) Plugging p0 = 01589

into Inequality (G.1) and choosing i = i∗ − 1, we get a lower bound on the expected1590

payment for δ-incentivizing ai∗ (in particular making it preferable to ai∗−1):1591

(G.2) γc−i
∗
p ≥ (1− γi∗−1)(1− γ)

γi∗−1(1 + δ − γ)
.1592

The principal’s expected payoff is thus ≤ 1
γi∗−1 − (1−γi∗−1)(1−γ)

γi∗−1(1+δ−γ)
≤ γc+γi∗−1(1−γ)

γi∗−1(1+γc−γ)
=1593

γc

γi∗−1(1+γc−γ)
+ 1−γ

1+γc−γ , where the last inequality uses δ ≤ f(ε) = γc. Maximizing1594

this expression by plugging in i∗ = c, we get an upper bound of 1
1+γc−γ on what the1595

best δ-IC contract can extract out of c− (c−1)γ for the principal. The ratio can thus1596

be shown to be at most 1
c + ε, as required (using that c ≥ 3 and γ ≤ 1

4 ; see Claim1597

G.1).1598

Now consider the case that p0 > 0. We argue that in this case, plugging i = i∗−11599

into Inequality (G.1) gives a lower-bound on γc−i
∗
p that is only higher than that in1600

Inequality (G.2). To see this, consider the contribution of p0 > 0 to the left-hand side1601
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of Inequality (G.1), which is (1 + δ)(1 − γc−i∗)p0. Compare this to its contribution1602

to the right-hand side of Inequality (G.1), which is (1 − γc−i)p0. For δ ≤ γc, γ ≤ 1
41603

and i = i∗ − 1 it holds that (1 + δ)(1 − γc−i∗) ≤ 1 − γc−i. This completes the proof1604

of Proposition 4.9 up to Claim G.1.1605

Claim G.1. For every γ ∈ (0, 1
4 ] and c ∈ Z, c ≥ 3,

1

1 + γc − γ
· 1

c− (c− 1)γ
≤ 1

c
+ γ.

Proof. We first establish the claim for c = 3. We need to show 1
1+γ3−γ ·

1
3−2γ ≤1606

1
3 + γ. Simplifying, we need to show 13γ+ 6γ4 ≤ 4 + 9γ2 + 7γ3, which holds for every1607

γ ≤ 1
4 .1608

We now consider c ≥ 4: It is sufficient to show 1
1−γ ·

1
c−cγ ≤

1
c + γ. Multiplying1609

by c we get 1
(1−γ)2 ≤ 1 + cγ. This holds if and only if c ≥ 2−γ

(1−γ)2 . The right-hand side1610

is an increasing function in the range 0 < γ ≤ 1
4 and so we can plug in γ = 1

4 and1611

verify. Since c ≥ 4 ≥ 28
9 , the proof is complete.1612

Appendix H. Approximation by separable contracts. In this appendix1613

we examine the gap between separable and optimal contracts.1614

Recall that a contract p is separable if there are payments p1, ..., pm such that1615

p(S) =
∑
j∈S pj for every S ⊆M . By linearity of expectation, the expected payment1616

for action ai given a separable contract p is
∑
j qi,jpj .1617

As we have shown in Proposition A.1 the optimal separable contract can be com-1618

puted in polynomial time via linear programming. Thus we know that separable (and1619

other simple computationally-tractable) contracts cannot achieve a constant approx-1620

imation to OPT unless P = NP (Corollary 4.2).1621

In fact, an even stronger lower bound holds—they cannot achieve an approxima-1622

tion better than n, unless we relax the IC requirement to δ-IC. We provide a proof of1623

this general lower bound for the case of n = 2.1624

Proposition H.1. For every ε > 0 there is a principal-agent instance with n = 21625

actions and m = 2 items, in which the best separable contract only provides a 2 − ε1626

approximation to OPT .1627

Proof. For δ ∈ (0, 1) consider the following n = 2 actions and m = 2 items1628

instance. The probabilities qi,j for the two actions i ∈ {1, 2} and items j ∈ {1, 2} are1629

q1,1 =
δ

2
, q1,2 = 1− δ

2
and q2,1 =

1

2
, q2,2 =

1

2
.1630

1631

The rewards rj for the two items j ∈ {1, 2} are1632

r1 =
1− (1− δ

2 )δ
δ
2

and r2 = δ.1633

1634

The resulting expected rewards Ri for the two actions i ∈ {1, 2} are1635

R1 = q1,1r1 + q1,2r2 =
δ

2

1− (1− δ
2 )δ

δ
2

+ (1− δ

2
)δ = 1, and1636

R2 = q2,1r1 + q2,2r2 =
1

2

1− (1− δ
2 )δ

δ
2

+
1

2
δ =

1

δ
− 1 + δ,1637

1638
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42 P. DÜTTING, T. ROUGHGARDEN, AND I. TALGAM-COHEN

so that R2 > 1 for all δ ∈ (0, 1) and R2 → ∞ as δ → 0. The costs ci for the two1639

actions i ∈ {1, 2} are1640

c1 = 0 and c2 = (1− δ)(R2 −R1) = (1− δ)(1

δ
− 2 + δ).1641

1642

Note that on this instance1643

R1 − c1 = 1 and R2 − c2 = 2− 2δ + δ2.16441645

We claim that: (1) The optimal contract can incentivize action 2 with an expected1646

payment of c2/(1 − δ2), so that the expected payoff to the principal is R2 − c2/(1 −1647

δ2) = (1/δ − 1 + δ) − (1/δ − 2 + δ)/(1 + δ). (2) The optimal separable contract can1648

either incentivize action 1 by paying nothing or it can incentivize action 2 by setting1649

p1 = 2c2/(1− δ) and p2 = 0. Since1650

R2 − q2,1p1 = (
1

δ
− 1 + δ)− 1

2

2c2
(1− δ)

= 11651
1652

the expected payoff to the principal in both cases is 1.1653

Using (1) and (2) and setting δ = 1
2 (3− ε−

√
ε2 − 10ε+ 9) we have1654

OPT

ALG
= (

1

δ
− 1 + δ)−

1
δ − 2 + δ

1 + δ
= 2− ε.1655

1656

It remains to show (1) and (2). For (1) denote the payments in the optimal1657

contract for outcomes (1,0), (0,1), and (1,1) by p1, p2, p1,2. The optimal contract can1658

incentivize action 2 via p1 > 0 and p2 = p1,2 = 0 as long as1659

q2,1(1− q2,2)p1 − c2 ≥ q1,1(1− q1,2)p11660

⇔ p1 ≥
c2

q2,1(1− q2,2)− q1,1(1− q1,2)
=

4c2
1− δ2

1661
1662

Setting p1 = 4c2/(1−δ2) leads to an expected payment of q2,1(1−q2,2)p1 = c2/(1−δ2).1663

For (2) denote the payments of the optimal separable contract by p1 and p2 and1664

note that the optimal separable contract either has p1 > 0 and p2 = 0 or it has p1 = 01665

and p2 > 0. In the former case the incentive constraint is1666

q2,1p1 − c2 ≥ q1,1p116671668

and in the latter it is1669

q2,2p2 − c2 ≥ q1,2p2.16701671

Note that since q1,2 = 1 − δ/2 > 1/2 = q1,2 it is impossible to incentivize action1672

2 by having only p2 > 0. In the other case, where only p1 > 0, the smallest p1 that1673

satisfies the incentive constraint is p1 = c2/(q2,1 − q1,1) = 2c2/(1− δ).1674

Appendix I. Proofs of technical lemmas in Section 6. In this appendix1675

we provide proofs for Lemma 6.3, Lemma 6.4, Lemma 6.5, and Lemma 6.7.1676

Proof of Lemma 6.3. Note that with s = (3 log( 2n
ηγ ))/(ηε2) we have γ = n

η ·1677

2 exp(−ηsε2/3). Further note that since qi,S ≥ η for all i ∈ [n] and S ⊆M each action1678

can assign positive probability to at most 1/η sets S. Finally, for all i ∈ [n], S ⊆ M1679
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such that qi,S = 0 we have q̃i,S = 0. So, by the union bound, it suffices to show that1680

for each of the at most n/η pairs i, S with qi,S > 0 the probability with which q̃i,S1681

does not fall into [(1− ε)qi,S , (1 + ε)qi,S ] is at most 2 exp(−ηsε2/3).1682

Consider any such pair i, S. Let Xi,S denote the random variable that counts the1683

number of times set S was returned in the s queries to action i. Then q̃i,S = Xi,S/s1684

and E[X] = sqi,S . So, using Chernoff’s bound,1685

Pr[q̃i,S 6∈ [(1− ε)qi,S , (1 + ε)qi,S ]] = Pr[|Xi,S − E[Xi,S ]| ≥ ε]1686

≤ 2 exp(−ηsε2/3),16871688

as claimed.1689

Proof of Lemma 6.4. Let ai be the action that is incentivized by p under the1690

actual probabilities Q, and let ai′ be any other action. Then,1691 ∑
S⊆M

q̃i,Spi,S − ci + 2ε ≥ (1− ε)
∑
S⊆M

qi,Spi,S − ci + 2ε1692

≥
∑
S⊆M

qi,Spi,S − ci + ε1693

≥
∑
S⊆M

qi′,Spi′,S − ci′ + ε1694

≥ (1 + ε)
∑
S⊆M

qi′,Spi′,S − ci′1695

≥
∑
S⊆M

q̃i′,Spi′,S − ci′ ,1696

1697

where we used the bounds on the probabilities in the first and last step, that we are1698

considering normalized settings in the second and fourth step, and the IC constraint1699

in the third step.1700

Proof of Lemma 6.5. Let ai be the action that is incentivized by p̃ under the1701

empirical probabilities Q̃, and let ai′ be any other action. Then,1702 ∑
S⊆M

qi,Spi,S − ci + δ + 2ε ≥ (1 + ε)
∑
S⊆M

qi,Spi,S − ci + δ + ε1703

≥
∑
S⊆M

q̃i,Spi,S − ci + δ + ε1704

≥
∑
S⊆M

q̃i′,Spi′,S − ci′ + ε1705

≥ (1− ε)
∑
S⊆M

qi′,Spi′,S − ci′ + ε1706

≥
∑
S⊆M

qi′,Spi′,S − ci′ ,1707

1708

where we used that we are considering normalized settings in the first and the last1709

step, the bounds on the probabilities in the second and fourth step, and the δ-IC1710

constraint in the third step.1711
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Proof of Lemma 6.6. We have,1712

Π̃ =
∑
S⊆M

q̃i,SrS −
∑
S⊆M

q̃i,Spi,S1713

≤ (1 + ε)
∑
S⊆M

qi,SrS − (1− ε)
∑
S⊆M

qi,Spi,S1714

≤
∑
S⊆M

qi,SrS −
∑
S⊆M

qi,Spi,S + 2ε1715

= Π + 2ε,17161717

where we used the bounds on the payments in the first step and that we are considering1718

normalized settings in the second.1719

Proof of Lemma 6.7. We have,1720

P =
∑
S⊆M

qi,SrS −
∑
S⊆M

qi,Spi,S1721

≤ 1

1− ε
∑
S⊆M

q̃i,SrS −
1

1 + ε

∑
S⊆M

q̃i,Spi,S1722

≤ (1 + 2ε)
∑
S⊆M

q̃i,SrS − (1− ε)
∑
S⊆M

qi,Spi,S1723

= Π + 3ε,17241725

where we used the bounds on the probability in the first step, and that 1/(1−ε) ≤ 1+2ε1726

and 1/(1 + ε) ≥ 1− ε for all ε ≤ 1/2.1727
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