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Efficient and Parallel Solution of High-order Continuous Time

Galerkin for Dissipative and Wave Propagation Problems∗

Zhiming Chen† Yong Liu‡

Abstract. We propose efficient and parallel algorithms for the implementation of the high-
order continuous time Galerkin method for dissipative and wave propagation problems. By
using Legendre polynomials as shape functions, we obtain a special structure of the stiffness
matrix which allows us to extend the diagonal Padé approximation to solve ordinary
differential equations with source terms. The unconditional stability, hp error estimates,
and hp superconvergence at the nodes of the continuous time Galerkin method are proved.
Numerical examples confirm our theoretical results.
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1 Introduction

In this paper, we study the following system of ordinary differential equations (ODEs)

Y′(t) = DY(t) +R(t) in (0, T ), Y(0) = Y0, (1.1)

which is obtained from the method-of-lines approach for linear partial differential equations
(PDEs) after space discretization. Here T > 0 is the length of the time interval, Y,R ∈ R

M ,
and D is an M ×M real constant matrix, where M is the number of degrees of freedom of
the spatial discretization. Without loss of generality, we assume

D+ D
T ≤ 0, (1.2)

that is, D+D
T is a semi-negative definite matrix. This condition is satisfied by a large class

of linear PDEs including the dissipative problems such as the parabolic equations and the
wave propagation problems such as the wave equation and Maxwell equations.

Let 0 = t0 < t1 < · · · < tN = T be a partition of (0, T ). If the source R = 0 in
(1.1), the exact solution in each time interval (tn, tn+1) is Y(t) = eD(t−tn)Y(tn) for which
Padé approximation to the exponential function can be used to construct and analyze
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numerical schemes to solve (1.1). In [12], by using the partial fraction formula for the Padé
approximation, the [r/r], r ≥ 1, Padé approximation leads to the following method

Y(tn+1) ≈
Pr(τnD)

Pr(−τnD)
Y(tn) =


(−1)rI+

r∑

j=1

−Pr(−ζj)
P ′
r(ζj)

(ζjI+ τnD)
−1


Y(tn), (1.3)

where τn = tn+1 − tn, I ∈ R
M×M is the identity matrix, Pr(z) is the numerator of the

[r/r] Padé approximation to the exponential function ez, and {ζ1, · · · , ζr} are zeros of Pr(z)
which are known to be simple and lie in the left-half plane. (1.3) indicates that one can
compute the approximation of the solution Y(tn+1) in each time step by solving k complex
matrix problems and r− 2k real matrix problems of the form ζI+ τnD in parallel, where k,
0 ≤ k ≤ r/2, is the number of complex zeros of Pr(z) (see Remark 3.1 below). The purpose
of this paper is to construct algorithms sharing this very desirable property for solving (1.1)
with general nonzero sources R(t).

There exists a large literature on implicit single-step time-stepping methods for solving
(1.1) (see, e.g.,[16] and the references therein). The following continuous time Galerkin
method proposed in [17] is probably the simplest

Y′
r = DPr−1Yr + Pr−1R in (tn, tn+1), 0 ≤ n ≤ N − 1, (1.4)

where Yr is a piecewise polynomial of degree r ≥ 1 in each interval (tn, tn+1), continuous at
the nodes t = tn, and Pr−1 is the local L2 projection to the space of polynomials of degree
(r − 1) in each interval. It is shown in [17] that (1.4) is equivalent to the r-stage Gauss
collocation method at the nodes when R = 0 and has the highest classical order 2r among
all r-stage Runge-Kutta methods [16, Table 5.12]. The continuous time Galerkin method,
together with finite element discretization in space, is used in [2] for the heat equation
and in [11], [15] for the wave equation. We refer to [1] for a unified framework and the
comparison of the most popular implicit single-step time-stepping methods including also
the discontinuous time Galerkin method and various Runge-Kutta methods.

The difficulty in using the high-order continuous time Galerkin method or any implicit
time Runge-Kutta methods is that a straightforward implementation requires to solve a
system of linear equations of the size rM × rM , which is not feasible in most time for
PDE problems. In a recent work [23], efficient iterative algorithms are developed based
on optimal preconditioning of the stage matrix for finding the stage vectors of the implicit
Runge-Kutta methods for solving (1.1). For an r-stage implicit Runge-Kutta method, the
stage matrix is an r × r block matrix with each block being a M ×M matrix. One can
find further references in [23] for developing efficient algorithms implementing the high
order implicit time discretization methods in the literature. We also refer to [22], [19]
for the implementation of the discontinuous time Galerkin method based on the block
diagnalization of the stiffness matrix.

In this paper we propose an efficient realization of the method (1.4) which uses Legendre
polynomials as shape functions to obtain a new stiffness matrix which is different from the
stage matrix in [23] applying to the Gauss collocation method. By exploiting the special
structure of the stiffness matrix, we construct an algorithm which computes the solution
Yr(tn) at each node by solving k complex matrix problems and r−2k real matrix problems
in parallel, where k, 0 ≤ k ≤ r/2, is the number of complex zeros of the [r/r] Padé

2



numerator Pr(z). Moreover, a parallel-in-time algorithm is proposed to compute the other
coefficients of the solution Yr in each time interval (tn, tn+1) which solves in parallel kr
complex matrix problems and (r − 2k)r real matrix problems. For the dissipative system,
in which D + D

T is negative definite, in the parallel-in-time algorithm, only k complex
matrix problems and (r− 2k) real matrix problems need to be solved. We remark that our
parallel-in-time algorithm is different from the other parallel-in-time algorithms based on
domain decomposition or space-time multigrid techniques in the literature (see, e.g., [13]).

As a by-product of our analysis, we obtain the following formula (Theorem 3.3) to
compute the nodal values Yr(tn+1), 0 ≤ n ≤ N − 1, of the solution of (1.4)

Yr(tn+1) =
Pr(τnD)

Pr(−τnD)
Yr(tn) +

r∑

k=1

(−1)k+1 φk1(τnD)

Pr(−τnD)
bk−1 + τnR0, (1.5)

where for k = 1, · · · , r, φk1(λ) is a polynomial of degree r satisfying some recurrence re-
lations, and bk, R0 are vectors depending on the source R. (1.5) can be viewed as a
generalization of the [r/r] Padé approximation (1.3) for solving the ODE system without
sources.

The layout of the paper is as follows. In section 2 we introduce the continuous time
Galerkin method for (1.1) and prove the strong stability and derive a hp error estimate.
In section 3 we propose our parallel algorithms to implement the continuous time Galerkin
method. In section 4 we consider an alternative implementation for the dissipative system.
In section 5 we prove the optimal stability and error estimates in terms of r when D is
a symmetric or skew-symmetric matrix. In section 6 we consider the application of the
algorithms in this paper to solve the linear convection-diffusion equation by using the local
discontinuous Galerkin method and the wave equation with discontinuous coefficients by
using the unfitted finite element spatial discretization.

2 Implicit time discretization

In this section, we introduce the continuous time Galerkin method for solving (1.1). Let
0 = t0 < t1 < . . . < tN = T be a partition of the time interval (0, T ) with time steps
τn = tn+1 − tn, 0 ≤ n ≤ N − 1. We set In = (tn, tn+1) and τ = max

0≤n≤N−1
{τn}. For any

integer m ≥ 1, we define the finite element space

Vm
τ := {v ∈ [C(0, T )]M : v|In ∈ [Pm]M , 0 ≤ n ≤ N − 1},

where Pm is the set of polynomials whose degree is at most m. Define the local projection
Pm, m ≥ 0, such that in each time interval In, Pm : [L2(In)]

M → [Pm]M satisfies
∫

In

(Pmv,w) dt =

∫

In

(v,w) dt ∀w ∈ [Pm]M ,

where we denote (·, ·) the inner product of RM . It is well-known (see, e.g., Schwab [21])
that for any s ≥ 0, m ≥ 0,

‖v − Pmv‖L2(In) ≤ C
τ
min(m+1,s)
n

(m+ 1)s
‖v‖Hs(In) ∀v ∈ [Hs(In)]

M , (2.1)
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where the constant C is independent of m, τn but may depend on s. In this paper, for any
integer d ≥ 1 and Banach space X, we denote ‖ · ‖X both the norm of X and [X]d.

For any integer r ≥ 1, the continuous time Galerkin method for solving (1.1) is to find
the function Yr ∈ Vr

τ such that Yr(0) = Y0 and

Y′
r = DPr−1Yr + Pr−1R in In, 0 ≤ n ≤ N − 1. (2.2)

The following stability lemma extends an idea in Griesmaier and Monk [15] where the
continuous time Galerkin discretization in time and hybridizable discontinuous Galerkin
method in space for the wave equation are considered.

Lemma 2.1. The problem (2.2) has a unique solution Yr ∈ Vr
τ which satisfies

max
1≤n≤N

‖Yr(tn)‖RM ≤ ‖Y0‖RM + CT 1/2‖R‖L2(0,T ), (2.3)

max
0≤t≤T

‖Yr‖RM ≤ Cr2(‖Y0‖RM + T 1/2‖R‖L2(0,T )). (2.4)

where the constant C is independent of r, τ,D and R.

Proof. At each time step, (2.2) is equivalent to a linear system of equations whose existence
and uniqueness of the solution follow from the stability estimate (2.4). To prove the stability
estimates (2.3)-(2.4), we denote by {Lj}∞j=0 the Legendre polynomials on (−1, 1) and define

L̃j = Lj ◦ ψ−1, where ψ : (−1, 1) → (tn, tn+1) is the mapping ψ(ξ) = tn+tn+1

2 + tn+1−tn
2 ξ for

ξ ∈ (−1, 1). Then {L̃j}∞j=0 are orthogonal in L2(In), L̃r(tn) = (−1)r, L̃r(tn+1) = 1, and

∫

In

|L̃r|2dt =
τn

2r + 1
,

∫

In

|L̃′
r|2dt =

2r(r + 1)

τn
. (2.5)

For n = 0, · · · , N − 1, let Yn
r = Yr(tn) and Ŷr ∈ [P r]M satisfy

Ŷ′
r = DPr−1Ŷr in In, Ŷr(tn) = Yn

r . (2.6)

By multiplying (2.6) by Ŷr and integrating over In, we obtain easily by (1.2) that

1

2
‖Ŷr(tn+1)‖2RM − 1

2
‖Yn

r ‖2RM =

∫

In

(DPr−1Ŷr,Pr−1Ŷr)dt ≤ 0.

This implies
‖Ŷr(tn+1)‖RM ≤ ‖Yn

r ‖RM . (2.7)

Since Ŷr ∈ [P r]M in In, we have the following decomposition introduced in [15]

Ŷr = (−1)rYn
r L̃r + (t− tn)Ỹr, Ỹr ∈ [P r−1]M . (2.8)

Notice that Pr−1Ŷr = Pr−1[(t− tn)Ỹr], substituting this decomposition to (2.6), we have

(−1)rYn
r L̃

′
r + Ỹr + (t− tn)Ỹ

′
r = DPr−1[(t− tn)Ỹr] in In.

Multiply the equation by Ỹr ∈ [P r−1]M and integrate over In, we have by (2.5) that

1

2
‖Ỹr‖2L2(In)

+
1

2
τn‖Ỹr(tn+1)‖2RM ≤ Cτ−1/2

n r‖Yn
r ‖RM ‖Ỹr‖L2(In),
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where we have used the fact that by (1.2)

∫

In

(DPr−1[(t− tn)Ỹr], Ỹr)dt =

∫

In

(t− tn)(DỸr, Ỹr)dt ≤ 0. (2.9)

This yields ‖Ỹr‖L2(In) ≤ Cτ
−1/2
n r‖Yn

r ‖RM and thus by using (2.5)

‖Ŷr‖L2(In) ≤ Cτ1/2n r‖Yn
r ‖RM . (2.10)

On the other hand, it follows from (2.2) and (2.6) that

(Yr − Ŷr)
′ = DPr−1(Yr − Ŷr) + Pr−1R in In, (Yr − Ŷr)(tn) = 0. (2.11)

Then Yr − Ŷr = (t − tn)Wr for some Wr ∈ [P r−1]M . By substituting this relation into
the equation (2.11) we have

Wr + (t− tn)W
′
r = DPr−1[(t− tn)Wr] + Pr−1R in In.

By multiplying the equation by Wr and integrating over In, we obtain by a similar bound
as in (2.9) that

1

2
‖Wr‖2L2(In)

+
1

2
τn‖Wr(tn+1)‖2RM ≤ ‖R‖L2(In)‖Wr‖L2(In).

This yields ‖Wr‖L2(In) ≤ 2‖R‖L2(In) and thus

‖Yr − Ŷr‖L2(In) ≤ 2τn‖R‖L2(In). (2.12)

Now by multiplying (2.11) by Yr−Ŷr and integrating over In we obtain by (1.2) and (2.12)
that

1

2
‖(Yr − Ŷr)(tn+1)‖2RM ≤

∫

In

(Pr−1R,Yr − Ŷr)dt ≤ 2τn‖R‖2L2(In)
,

which implies by the triangle inequality and (2.7) that

‖Yr(tn+1)‖RM ≤ ‖Yn
r ‖RM + 2τ1/2n ‖R‖L2(In).

This yields (2.3). Next by using the triangle inequality, (2.10), and (2.12), we have

‖Yr‖L2(In) ≤ Cτ1/2n r‖Yn
r ‖RM + 2τn‖R‖L2(In), (2.13)

which implies by the hp inverse estimate that

max
tn≤t≤tn+1

‖Yr‖RM ≤ Cτ−1/2
n r‖Yr‖L2(In) ≤ Cr2‖Yn

r ‖RM + Cτ1/2n r‖R‖L2(In).

This shows (2.4) and completes the proof of the lemma.

To derive an hp a priori error estimate for the continuous time Galerkin method (2.2),
we first recall an interpolation operator in the literature (see, e.g., [21, Theorem 3.17]).
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Lemma 2.2. There exists an interpolation operator Πr : [H1(0, T )]M → Vr
τ such that for

any v ∈ [W 1+s,∞(0, T )]M , s ≥ 1, and n = 0, 1, · · · , N − 1,

(Πrv)(tn) = v(tn), (Πrv)(tn+1) = v(tn+1), (Πrv)
′ = Pr−1v

′ in In, (2.14)

‖v −Πrv‖L2(In) ≤ C
τmin(r+1,s)

rs
‖v‖Hs(In), (2.15)

max
tn≤t≤tn+1

‖v −Πrv‖RM ≤ C
τmin(r,s)+1

rs
‖v′‖W s,∞(In), (2.16)

where the constant C is independent of τ, r but may depend on s.

Proof. The interpolation operator is defined as

Πrv = v(tn) +

∫ t

tn

(Pr−1v
′)dt ∀t ∈ In.

(2.14) follows easily from this definition. Next by using (2.1), we have

max
tn≤t≤tn+1

‖v −Πrv‖RM ≤ τ1/2n ‖v′ − Pr−1v
′‖L2(In) ≤ C

τ
min(r,s)+1
n

rs
‖v′‖W s,∞(In).

This shows (2.16).
The estimate (2.15) is proved for s ≥ 2 in [21]. Here we use the duality argument to

show (2.15) also from s ≥ 1. Let w ∈ H1
0 (In) be the solution of the problem

−w′′ = v −Πrv in In.

It is easy to see that ‖w‖H2(In) ≤ C‖v − Πrv‖L2(In). Since (v − Πrv)(tn) = 0, (v −
Πrv)(tn+1) = 0, we multiply the equation by v−Πrv, integrate over In, and use (2.14) to
obtain

‖v −Πrv‖2L2(In)
=

∫

In

(w′,v′ − (Πrv)
′)dt =

∫

In

(w′ − Pr−1w
′,v′ −Pr−1v

′)dt

≤ C
τmin(r+1,s)

rs
‖w‖H2(In)‖v‖Hs(In).

This completes the proof by using ‖w‖H2(In) ≤ C‖v −Πrv‖L2(In).

The following theorem on the hp error estimate is the main result of this section.

Theorem 2.1. Let s ≥ 1. Assume that R ∈ [Hs(0, T )]M , Y ∈ [W 1+s,∞(0, T )]M and
Yr ∈ Vr

τ is the solution of the problem (2.2), we have

max
1≤n≤N

‖(Y −Yr)(tn)‖RM ≤ CT 1/2 τ
min(r+1,s)

rs
‖DY‖Hs(0,T ),

max
0≤t≤T

‖Y −Yr‖RM ≤ C(1 + T 1/2)
τmin(r+1,s)

rs−2
(T 1/2‖Y‖W s+1,∞(0,T ) + ‖R‖Hs(0,T )),

where the constant C is independent of τ, r,D but may depend on s.
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Proof. Let ΠrY ∈ Vr
τ be the interpolation of Y defined in Lemma 2.2. Since (ΠrY)′ =

Pr−1Y
′ in In, we have

(ΠrY)′ = Pr−1(DY +R) = DPr−1(Y −ΠrY) + DPr−1(ΠrY) + Pr−1R in In.

Thus by (2.2) we have

Y′
r − (ΠrY)′ = DPr−1(Yr −ΠrY)− DPr−1(Y −ΠrY). (2.17)

As (Yr −ΠrY)(0) = 0, we use (2.3) and (2.15) to obtain

max
1≤n≤N

‖(Yr −ΠrY)(tn)‖RM ≤ CT 1/2‖DPr−1(Y −ΠrY)‖L2(0,T )

≤ CT 1/2 τ
min(r+1,s)

rs
‖DY‖Hs(0,T ).

This shows the first estimate as Y(tn) = ΠrY(tn). The second estimate can be proved
similarly by using (2.4), (2.16), and Y′ = DY +R.

We remark that the first estimate in Theorem 2.1 is optimal in τ and r and the second
estimate in the theorem is optimal in τ but suboptimal in r which is due to the stability
estimate (2.4) in Lemma 2.1. In section 5 we will show that the stability in the L2 norm
can be improved to remove the dependence on r in (2.13) when D is symmetric or skew-
symmetric by using the explicit formulas of Yr(t) in section 3. We remark that many
spatial discretization matrices of the wave-like equations satisfy the property that D is
skew-symmetric, such as the energy conserving mixed finite element methods for solving
the Hodge wave equation in Wu and Bai [25] and the unfitted finite element method of the
acoustic wave equation in Chen et. al. [7].

The classical order of Runge-Kutta methods is the convergence order at the nodes
t = tn. For the continuous time Galerkin method, it is proved to be 2r when r ≥ 2 in
Hulme [17] for nonlinear ODEs and in Aziz and Monk [2] for parabolic equations. The
following theorem shows the hp superconvergence of the continuous time Galerkin method
at the nodes by using the idea of quasi-projection in [2, §4].

Theorem 2.2. Let s ≥ 1. Assume that DrY ∈ [Hs(0, T )]M and Yr ∈ Vr
τ is the solution

of the problem (2.2), we have

max
1≤n≤N

‖(Y −Yr)(tn)‖RM ≤ CT 1/2 τ
min(2r,s+r−1)

rs
‖DrY‖Hs(0,T ),

where the constant C is independent of τ, r but may depend on s.

Proof. If r = 1, the theorem follows from the first estimate of Theorem 2.1. Now we
assume r ≥ 2. Let ΠrY ∈ Vr

τ be the interpolation of Y defined in Lemma 2.2. Denote
ω0 = Y −ΠrY. For 1 ≤ i ≤ r − 1, we define correction functions ωi such that

ωi(tn) = 0, ω′
i = DPr−1ωi−1 in In, n = 0, 1, · · · , N − 1. (2.18)

We claim that ωi(tn+1) = 0 so that ωi ∈ Vr
τ . In fact, by (2.14), we have (ω′

0,v)In = 0 for any
v ∈ [P r−1]M , where (·, ·)In is the inner product of [L2(In)]

M . Since ω0(tn) = ω0(tn+1) = 0,
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we obtain by integration by parts that (ω′
1,v

′)In = (Dω0,v
′)In = 0. Therefore, (ω′

1,v)In =
0 for any v ∈ [P r−2]M and consequently, ω1(tn+1) =

∫
In
ω′
1dt = 0. By mathematical

induction, we know easily by the same argument that (ω′
i,v)In = 0 for any v ∈ [P r−i−1]M

and ωi(tn+1) = 0. This shows the claim.

Let ω =

r−1∑

i=1

ωi ∈ Vr
τ . By (2.17) and (2.18), we have

Y′
r − (ΠrY)′ + ω′ = DPr−1(Yr −ΠrY + ω)− DPr−1(ωr−1).

As (Yr −ΠrY + ω)(0) = 0, we use (2.3) to obtain

‖(Yr −ΠrY + ω)(tn)‖RM ≤ CT 1/2‖DPr−1(ωr−1)‖L2(0,T ) ≤ CT 1/2‖Dωr−1‖L2(0,T ).

Now it follows from (2.18) that

‖Dωi‖L2(In) ≤ τ‖D2ωi−1‖L2(In), 1 ≤ i ≤ r − 1.

By using (2.15) we have then

‖Dωr−1‖L2(In) ≤ τ r−1‖Drω0‖L2(In) ≤ C
τmin(2r,s+r−1)

rs
‖DrY‖Hs(In).

This completes the proof since by (2.14) and (2.18), (Yr −ΠrY + ω)(tn) = (Yr −Y)(tn),
1 ≤ n ≤ N .

The correction function ω =
∑r−1

i=1 ωi is introduced in [2] which is related to the idea
of quasi-projection in Douglas Jr. et al [10]. Our new observation is that ωi = 0 at the
nodes for 1 ≤ i ≤ r − 1, which simplifies the proof.

To conclude this section, we recall some facts about Padé approximation to the expo-
nential function which can be found in Saff and Varga [20] and the references therein. For
any integers m,n ≥ 0, the [m/n] Padé approximation to ez is defined as the polynomials
Pm(z) ∈ Pm, Qn(z) ∈ Pn, Qn(0) = 1, for which

ez − Pm(z)

Qn(z)
= O(|z|m+n+1) as |z| → 0.

It is known that

Pm(z) =
m∑

j=0

(m+ n− j)!m!zj

(m+ n)!j!(m− j)!
, Qn(z) =

n∑

j=0

(m+ n− j)!n!(−z)j
(m+ n)!j!(n − j)!

. (2.19)

Obviously, Qn(z) = Pn(−z). When m = n, Pm(z), Qm(z) are called diagonal Padé nu-
merator and denominator of type [m/m] for ez. The following lemma follows easily from
(2.19)

Lemma 2.3. The diagonal Padé numerator of type [m/m] for ez satisfies P0(z) = 1, P1(z) =
1 + 1

2z, P2(z) = 1 + 1
2z +

1
12z

2, and

Pm(z) = Pm−1(z) +
z2

4(2m− 1)(2m − 3)
Pm−2(z), m ≥ 2.

8



The following lemma is proved in Hairer and Wanner [16, Theorem 4.12], [20, Theorem
2.4]. It is essential in proving the A-stability of numerical methods for ODEs based on the
Padé approximation of the exponential function.

Lemma 2.4. All zeros of the diagonal Padé numerator of type [m/m], m ≥ 1, for ez are
simple and lie in the half-plane {z ∈ C : Re(z) ≤ −2}.

For m ≥ 1, denote ζ1, · · · , ζm ∈ C the zeros of Pm(z), the diagonal Padé numerator of
type [m/m] for ez, then by (2.19)

Pm(z) =
m!

(2m)!
(z − ζ1) · · · (z − ζm), Qm(z) = (−1)m

m!

(2m)!
(z + ζ1) · · · (z + ζm).

Recall that any polynomial F ∈ Pm−1 can be expanded as the Lagrange interpolation
function at m distinct zeros of Pm(−z). This yields the following partial fraction formula
(see, e.g., Szegö [24, Theorem 3.3.5])

F (z)

Pm(−z) =

m∑

j=1

−F (−ζj)
P ′
m(ζj)

1

z + ζj
. (2.20)

Since Pm(z)− (−1)mPm(−z) ∈ Pm−1, we obtain the partial fraction formula for the [m/m]
Padé approximation of ez (see Gallopoulos and Saad [12])

Rm,m(z) =
Pm(z)

Pm(−z) = (−1)m +
m∑

j=1

−Pm(−ζj)
P ′
m(ζj)

1

z + ζj
. (2.21)

Recall that if p(z) =
∑m

i=0 aiz
i is a polynomial of degree m, then p(X) :=

∑m
i=0 aiX

i for any
matrix X ∈ R

d×d, d ≥ 1. Obviously, if p(z) = p1(z) + p2(z) or q(z) = p1(z) · p2(z), where
p1, p2 are polynomials, then p(X) = p1(X) + p2(X), q(X) = p1(X) · p2(X). It follows now
from (2.20)-(2.21) that for any F ∈ Pm−1 and any matrix X ∈ R

d×d such that Pm(−X) is
invertible,

F (X)

Pm(−X)
=

m∑

j=1

−F (−ζj)
P ′
m(ζj)

(ζjI+ X)−1, (2.22)

Pm(X)

Pm(−X)
= (−1)mI+

m∑

j=1

−Pm(−ζj)
P ′
m(ζj)

(ζjI+ X)−1. (2.23)

The identity (2.23) is the basis of the method (1.3) in the introduction.

3 Parallel implementation

In this section, we propose parallel algorithms to implement the problem (2.2) based on
finding analytic formulas of the determinant and all factors of the stiffness matrix of the
continuous time Galerkin method at each time step. To form the stiffness matrix, we use
the Legendre polynomials {L̃j}rj=0 in In as the basis functions. We assume

Yr(t) =

r∑

j=0

ajL̃j(t), Pr−1R =

r−1∑

j=0

RjL̃j(t),
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where aj,Rj ∈ R
M . Since Pr−1L̃r = 0 in In, from (2.2), we have

r∑

j=0

ajL̃
′
j(t) = D

r−1∑

j=0

ajL̃j(t) +
r−1∑

j=0

RjL̃j(t).

For any k ≥ 1, multiplying the equation by (t− tn)(tn+1 − t)L̃′
k(t) and integrating over In,

we obtain

ak
τn
2

k(k + 1)

k + 1
2

=D

r−1∑

j=0

∫ tn+1

tn

ajL̃j(t)(t− tn)(tn+1 − t)L̃′
k(t) dt

+
r−1∑

j=0

∫ tn+1

tn

RjL̃j(t)(t− tn)(tn+1 − t)L̃′
k(t) dt, (3.1)

where we have used the fact that

∫ tn+1

tn

L̃′
jL̃

′
k(t− tn)(tn+1 − t) dt =

τn
2

∫ 1

−1
L′
jL

′
k(1− t2)dt =

τn
2

k(k + 1)

k + 1
2

δj,k.

Here δj,k is the Kronecker delta function. By the recursion relation (2k + 1)L̃k(t) =
τn
2 (L̃

′
k+1(t)− L̃′

k−1(t)),

∫ tn+1

tn

L̃j(t)(t− tn)(tn+1 − t)L̃′
k(t) dt

=
1

2j + 1

∫ tn+1

tn

τn
2
(L̃′

j+1(t)− L̃′
j−1(t))L̃

′
k(t)(t− tn)(tn+1 − t) dt

=
τ2n
4

k(k + 1)

k + 1
2

(
1

2k − 1
δj+1,k −

1

2k + 3
δj−1,k

)
.

Substituting the identity into (3.1), we have

ak =
τn
2
D

(
ak−1

2k − 1
− ak+1

2k + 3

)
+
τn
2

(
Rk−1

2k − 1
− Rk+1

2k + 3

)
, 1 ≤ k ≤ r − 2, (3.2)

ak =
τn
2
D

ak−1

2k − 1
+
τn
2

Rk−1

2k − 1
, k = r − 1, r. (3.3)

By the condition Yr(tn) = Yn
r , we also have

r∑

j=0

(−1)jaj = Yn
r . (3.4)

(3.2)-(3.4) can be written as a system of linear equations

AX = B, (3.5)
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where X = (aT0 ,a
T
1 , · · · ,aTr )T , B = (bT

0 ,b
T
1 , · · · ,bT

r )
T with

bk−1 =





− τn
2

(
Rk−1

2k−1 − Rk+1

2k+3

)
if 1 ≤ k ≤ r − 2,

− τn
2

Rk−1

2k−1 if k = r − 1, r,

Yn
r if k = r + 1,

and

A =




τn
2 D −I − τn

2 D
1
5 · · · · · · · · · 0

0 τn
2 D

1
3 −I − τn

2 D
1
7 · · · · · · 0

...
...

. . .
. . .

. . .
...

...
0 · · · · · · τn

2 D
1

2r−5 −I − τn
2 D

1
2r−1 0

0 · · · · · · · · · τn
2 D

1
2r−3 −I 0

0 · · · · · · · · · · · · τn
2 D

1
2r−1 −I

I −I I −I · · · · · · (−1)r+2
I




.

Here I ∈ R
M×M is the identity matrix. By Lemma 2.1, (3.5) has a unique solution. Since

A ∈ R
M(r+1)×M(r+1), it is expensive to solve (3.5) directly when M ≫ 1. Here we propose

efficient and parallel algorithms to solve (3.5).
Notice that A is a (r + 1) × (r + 1) block matrix. For λ ∈ R, we define Er+1(λ) ∈

R
(r+1)×(r+1) by

Er+1(λ) :=




a1 −1 b1 · · · · · · · · · 0
0 a2 −1 b2 · · · · · · 0
...

...
. . .

. . .
. . .

...
...

0 · · · · · · ar−2 −1 br−2 0
0 · · · · · · · · · ar−1 −1 0
0 · · · · · · · · · · · · ar −1
c1 c2 · · · · · · · · · cr cr+1




(3.6)

with

ak =
λ

2

1

2k − 1
, bk = −λ

2

1

2k + 3
, ck = (−1)k+1, k = 1, · · · , r + 1. (3.7)

Then A = Er+1(τnD) by replacing each element eij(λ) of Er+1(λ) by the M ×M matrix
eij(τnD)I, i, j = 1, · · · , r + 1.

We are going to solve (3.5) by extending the Cramer rule for the block matrices. We
first introduce some notation. For any matrix X = (Xij)

d
i,j=1, d ≥ 1, we denote Xi,j the

matrix obtained by removing the i-th row and j-th column, i, j = 1, . . . , d. We also denote
X(i1,··· ,ik),(j1,··· ,jl) the matrix obtained by removing the i1, · · · , ik-th rows and the j1, · · · , jl-
th columns, where 1 ≤ i1 < · · · < ik ≤ d, 1 ≤ j1 < · · · < jl ≤ d. The following property
about the adjugate matrix is well known

(detX)δi,j =

d∑

k=1

(−1)i+k(detXk,i)Xkj. (3.8)
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Denote by H = Er+1(λ)(r−1,r,r+1),(r−1,r,r+1) ∈ R
(r−2)×(r−2). Then the matrix Er+1(λ)

can be partitioned as

Er+1(λ) =




H br−3 0 0
−1 br−2 0
ar−1 −1 0
0 ar −1

c1 · · · cr−2 cr−1 cr cr+1



. (3.9)

Similarly, we have

Er(λ) =




H br−3 0
−1 0
ar−1 −1

c1 · · · cr−2 cr−1 cr



, Er−1(λ) =




H 0
−1

c1 · · · cr−2 cr−1


 . (3.10)

The following simple identities will play an important role in our analysis

Er+1(λ)r,(r,r+1) = Er(λ)∗,r, (3.11)

where for any X ∈ R
d×d, we denote X∗,j ∈ R

d×(d−1) the matrix by removing the j−th
column of X. Similarly, we denote Xi,∗ ∈ R

(d−1)×d the matrix by removing the i-th row of
X.

The following elementary lemma is useful in our analysis.

Lemma 3.1. For any r ≥ 3 and 1 ≤ j ≤ r − 2, we have

det[Er+1(λ)(r−2,r,r+1),(j,r,r+1)] = −ar−1 det[Er−1(λ)r−1,j ]

= ar−1cr−1 det[Er−1(λ)r−2,j], (3.12)

det[Er+1(λ)(r−1,r,r+1),(j,r,r+1)] = − det[Er(λ)r,j]

= cr det[Er(λ)r−1,j ]. (3.13)

Proof. We only prove (3.12). The identity (3.13) can be proved similarly. By (3.11),

det[Er+1(λ)(r−2,r,r+1),(j,r,r+1)] = det[Er(λ)(r−2,r),(j,r)]

= det




Hr−2,j

br−3

ar−1




= ar−1 det[Hr−2,j].

On the other hand, it is easy to see from (3.11) that

det[Er−1(λ)r−1,j ] = − detHr−2,j, det[Er−1(λ)r−2,j ] = cr−1 det[Hr−2,j].

This completes the proof.
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To proceed, we note that

E2(λ) =

(
a1 −1
1 −1

)
, E3(λ) =




a1 −1 0
0 a2 −1
1 −1 1


 . (3.14)

Lemma 3.2. Let ϕr(λ) = detEr+1(λ) be the determinant of Er+1(λ). Then ϕ1(λ) = 1−a1,
ϕ2(λ) = 1− a1 + a1a2, and

ϕr(λ) = ϕr−1(λ) + arar−1ϕr−2(λ), r ≥ 3. (3.15)

Moreover, ϕr(λ) = Pr(−λ), where Pr(λ) is the numerator of [r/r] Padé approximation of
eλ.

Proof. The determinants of Er+1(λ) for r = 1, 2 follow easily from (3.14). Since by (3.7),
ar = −br−2, we obtain by adding the r-th row to the (r− 2)-th row of Er+1(λ) in (3.9) and
then expanding the determinant by the r-th row that

ϕr(λ) = det




H br−3 0 0
−1 0 −1
ar−1 −1 0
0 ar −1

c1 · · · cr−2 cr−1 cr cr+1




= detEr(λ) + ar det




H br−3 0
−1 −1
ar−1 0

c1 · · · cr−2 cr−1 cr




= detEr(λ) + arar−1 detEr−1(λ),

where in the last equality we have expanded the determinant by the (r − 1)-th row. Since
a1 = λ/2, a2 = λ/6, we use Lemma 2.3 to conclude ϕr(λ) = Pr(−λ), where Pr(λ) is the
numerator of [r/r] Padé approximation of eλ.

Theorem 3.1. The matrix ϕr(τnD) is invertible. The solution of (3.5) X = (aT0 , · · · ,aTr )T
satisfies that for i = 1, · · · , r + 1,

ai−1 = (−1)rδi,r+1br +
r∑

j=1

(ζjI+ τnD)
−1

(
r+1∑

k=1

(−1)i+k+1φki(−ζj)
P ′
r(ζj)

bk−1

)
,

where φki(λ) = det[Er+1(λ)k,i], k, i = 1, · · · , r + 1, are the minors of Er+1(λ).

Proof. By Lemma 3.2, ϕr(λ) = Pr(−λ) = (−1)r r!
(2r)!(λ+ζ1) · · · (λ+ζr), where ζ1, · · · , ζr ∈ C

are zeros of the diagonal Padé numerator of type [r/r] for eλ. By Lemma 2.4, Re(ζk) ≤ −2,
k = 1, · · · , r. On the other hand, (1.2) implies that the eigenvalues of D lie in the left
half-plane. Thus the eigenvalues of ζkI + τnD, 1 ≤ k ≤ r, lie in the half-plane {z ∈ C :
Re(z) ≤ −2}. This shows ϕr(τnD) is invertible.
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Now by (3.8) we have

[detEr+1(λ)]δi,j =
r+1∑

k=1

(−1)i+k[detEr+1(λ)k,i]ekj(λ),

where ekj(λ) is the (k, j) element of Er+1(λ). By replacing λ by τnD in above equality, we
have

ϕr(τnD)δi,j =
r+1∑

k=1

(−1)i+kφki(τnD)ekj(τnD). (3.16)

From (3.5) we have

r+1∑

j=1

eij(τnD)aj−1 = bi−1, i = 1, · · · , r + 1.

Thus multiplying (3.16) by aj−1 and summing over j from 1 to r + 1, we obtain

ϕr(τnD)ai−1 =

r+1∑

k=1

(−1)i+kφki(τnD) ·
r+1∑

j=1

ekj(τnD)aj−1

=
r+1∑

k=1

(−1)i+kφki(τnD)bk−1. (3.17)

Note that for (k, i) 6= (r + 1, r + 1), φki(λ) ∈ Pm, m ≤ r − 1, by (2.22) we have

φki(τnD)

ϕr(τnD)
=

r∑

j=1

−φki(−ζj)
P ′
r(ζj)

(ζjI+ τnD)
−1.

For (k, i) = (r+ 1, r+1), we have from (3.6) that det[Er+1(λ)r+1,r+1] =
∏r

j=1 aj =
r!

(2r)!λ
r.

Thus φr+1,r+1(λ)− (−1)rϕr(λ) ∈ P r−1, by using (2.22) again we obtain

φr+1,r+1(τnD)

ϕr(τnD)
= (−1)rI+

r∑

j=1

−φr+1,r+1(−ζj)
P ′
r(ζj)

(ζjI+ τnD)
−1.

This completes the proof of the theorem.

We remark that (3.17) can also be proved by using an abstract result in Brown [4,
Theorem 2.19 and Corollary 2.21] where linear algebra when matrix elements are defined
over a space of commuting matrices are studied.

From this theorem we know that the discrete problem (2.2) can be solved by solving
r(r + 1) linear systems of equations of order M ×M in parallel once all minors of Er+1(λ)
at λ = −ζj, j = 1, · · · , r, are known. In the following, we will find recursive formulas to
computing these minors.

Let Gr(λ) = Er+1(λ)r,r+1, r ≥ 1. The determinants of Gr(λ) for r = 1, 2 can be
calculated by (3.14). We have the following lemma for detGr(λ) for r ≥ 3.
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Lemma 3.3. For r ≥ 3, we have

detGr(λ) = detGr−1(λ)− ar−1br−2 detGr−2(λ) + cr

r−1∏

k=1

ak.

Proof. By definition and the partition in (3.9), we know that

Gr(λ) =




H br−3 0
−1 br−2

ar−1 −1
c1 · · · cr−2 cr−1 cr



.

By expanding the determinant by the (r − 1)-th row and use (3.11), we obtain

detGr(λ) = det[Er+1(λ)(r−1,r),(r,r+1)] + ar−1 det




H

br−2

c1 · · · cr−2 cr




= det[Er(λ)r−1,r] + ar−1(cr detH− br−2 det[Er+1(λ)(r−2,r−1.r),(r−1,r,r+1)])

= detGr−1(λ) + cr

r−1∏

k=1

ak − ar−1br−2 det[Er(λ)(r−2,r−1),(r−1,r)]

= detGr−1(λ) + cr

r−1∏

k=1

ak − ar−1br−2 det[Er−1(λ)r−2,r−1]

= detGr−1(λ)− ar−1br−2 detGr−2(λ) + cr

r−1∏

k=1

ak,

where we have used the fact that detH = Πr−2
k=1ak and expanded the determinant by the

last column in the second equality. This completes the proof.

The minors of Gr(λ) for r = 1, 2 can be computed directly by (3.14). The following
lemma gives the recursive formulas for some of the minors of Gr(λ) which will be used to
compute the minors of Er+1(λ).

Lemma 3.4. For r ≥ 3, we have

det[Gr(λ)i,r] = (−1)r−i−1 a1 · · · ar−1

a1 · · · ai
detGi(λ), 1 ≤ i ≤ r − 1,

det[Gr(λ)r−1,j ] = det[Er(λ)r−1,j ]− br−2 det[Gr−1(λ)r−2,j ], 1 ≤ j ≤ r − 1,
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Proof. For i = 1, · · · , r − 2, by definition, we have

det[Gr(λ)i,r] = det




a1 −1 b1
. . .

. . .
. . .

ai−1 −1 bi−1

0 ai+1 −1 bi+1

. . .
. . .

. . .
. . .

0 ar−3 −1 br−3

0 ar−2 −1
0 ar−1

c1 · · · · · · · · · · · · · · · cr−3 cr−2 cr−1




= (−ar−1) · · · (−ai+1) det




a1 −1 b1
. . .

. . .
. . .

ai−2 −1 bi−2

ai−1 −1
c1 · · · · · · ci−1 ci




= (−1)r−i−1(

r−1∏

k=i+1

ak) detGi(λ).

Finally, for G(λ)i,r, i = r−1, we have by the definition and using the first identity in (3.11)

Gr(λ)r−1,r = Er+1(λ)(r−1,r),(r,r+1) = Er(λ)r−1,r = Gr−1(λ).

This shows the first equality of the lemma. To show the second equality, for any 1 ≤ j ≤
r − 2, we have by using the partition (3.9) that

Gr(λ)r−1,j =




H∗,j br−3 0
−1 br−2

c1 · · · cj−1 cj+1 · · · cr−2 cr−1 cr



.

Thus by expanding the determinant by the last column, we have by using (3.11), (3.13) and
the definition of Gr−1(λ) that

det[Gr(λ)r−1,j ]

= cr det[Er+1(λ)(r−1,r,r+1),(j,r,r+1)]− br−2 det[Er+1(λ)(r−2,r−1,r),(j,r,r+1)]

= det[Er(λ)r−1,j ]− br−2 det[Er(λ)(r−2,r−1),(j,r)]

= det[Er(λ)r−1,j ]− br−2 det[Gr−1(λ)r−2,j ].

This completes the proof.

The minors of Er+1(λ) for r = 1, 2 can be easily computed from (3.14). The following
theorem gives the recursive formulas for computing all minors of Er+1(λ) for r ≥ 3.
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Theorem 3.2. Let r ≥ 3, we have
1◦ For i = 1, · · · , r − 2,

det[Er+1(λ)i,j ] = det[Er(λ)i,j ] + arar−1 det[Er−1(λ)i,j ], 1 ≤ j ≤ r − 2,

det[Er+1(λ)i,j ] = (−1)j−i−1a1 · · · aj−1

a1 · · · ai
detGi(λ), j = r − 1, r, r + 1.

2◦ For i = r − 1, we have

det[Er+1(λ)r−1,j ] = −cr+1ar det[Er(λ)r,j ] + det[Gr(λ)r−1,j ], 1 ≤ j ≤ r − 1,

det[Er+1(λ)r−1,j ] = (−1)j−i−1a1 · · · aj−1

a1 · · · ai
detGi(λ), j = r, r + 1.

3◦ For i = r, we have

det[Er+1(λ)r,j ] = det[Er(λ)r−1,j ]− ar−1br−2 det[Er−1(λ)r−2,j ], 1 ≤ j ≤ r − 2,

det[Er+1(λ)r,j ] = cr+1(−1)i−j
j−1∏

k=1

ak, j = r − 1, r,

det[Er+1(λ)r,r+1] = detGr−1(λ)− ar−1br−2 detGr−2(λ) + cr

r−1∏

k=1

ak.

4◦ For i = r + 1, we have

det[Er+1(λ)r+1,j ] = − det[Er(λ)r,j ]− ar−1br−2 det[Er−1(λ)r−1,j ], 1 ≤ j ≤ r − 2,

det[Er+1(λ)r+1,j ] = (−1)i−j
j−1∏

k=1

ak, j = r − 1, r, r + 1.

Proof. The proof is divided into 4 steps.
Step 1. The first equality in 1◦ can be proved by the same argument as that in Lemma 3.2.
Here we omit the details. We only prove the second equality in 1◦ when j = r+1. The other
cases can be proved similarly. By the partition in (3.9), we know that for 1 ≤ i ≤ r − 2,

Er+1(λ)i,r+1 =




Hi,∗ Fi,∗

ar−1 −1
0 ar

c1 · · · cr−2 cr−1 cr



, F =




0 0 0
...

...
...

0 0 0
br−3 0 0
−1 br−2 0



,

where F ∈ R
(r−2)×3. By expanding the determinant first by the r-th and then by the

(r − 1)-th row, we know by (3.11) that

det[Er+1(λ)i,r+1] = arar−1 det[Er+1(λ)(i,r−1,r),(r−1,r,r+1)]

= arar−1 det[Er(λ)(i,r−1),(r−1,r)]

= arar−1 det[Gr−1(λ)i,r−1].
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This shows the second equality in 1◦ by the first identity in Lemma 3.4.
Step 2. We only prove the first equality in 2◦ when 1 ≤ j ≤ r − 2. The other cases

can be proved similarly. By the partition in (3.9), we have for 1 ≤ j ≤ r − 2,

Er+1(λ)r−1,j =




H∗,j br−3 0 0
−1 br−2 0
0 ar −1

c1 · · · cr−2 cr−1 cr cr+1




Expanding the determinant by the last column, we obtain

det[Er+1(λ)r−1,j] = cr+1ar det[Er+1(λ)(r−1,r,r+1),(j,r,r+1)] + det[Er+1(λ)(r−1,r),(j,r+1)]

= −cr+1ar det[Er(λ)r,j ] + det[Gr(λ)r−1,j ].

This shows the first equality in 2◦ for 1 ≤ j ≤ r − 2.
Step 3. The second equality in 3◦ can be easily proved. The last equality is shown in

Lemma 3.3 since Er+1(λ)r,r+1 = Gr(λ) by definition. To show the first equality in 3◦, we
again use the partition in (3.9) to obtain for 1 ≤ j ≤ r − 2,

Er+1(λ)r,j =




H∗,j br−3 0 0
−1 br−2 0
ar−1 −1 0

c1 · · · cj−1 cj+1 · · · cr−2 cr−1 cr cr+1



.

By expanding the determinant successively by the last columns, we have

det[Er+1(λ)r,j ]

= −cr+1 det[Er+1(λ)(r−1,r,r+1),(j,r,r+1]− cr+1br−2 det[Er+1(λ)(r−2,r,r+1),(j,r,r+1)].

This shows the first equality in 3◦ by Lemma 3.1.
Step 4. The first equality in 4◦ can be proved by the same argument as that Step 3.

The second equality can be easily proved. Here we omit the details.

This theorem indicates that all minors of Er+1(λ) can be computed once one knows
all minors of Em(λ), 1 ≤ m ≤ r, and the minors det[Gr(λ)r−1,j ], 1 ≤ j ≤ r − 1, which
can be computed by Lemma 3.4 recursively based on the information of the minors Em(λ),
1 ≤ m ≤ r.

The following lemma indicates that the nodal values of the solution to (2.2) depends
only on the coefficient a0.

Lemma 3.5. Let Yr(t), r ≥ 1, be the solution of the problem (2.2). Then

Yr(tn+1) = Yr(tn) + τnDa0 + τnR0, n = 1, · · · , N − 1.
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Proof. We integrate (2.2) over In and use the orthogonality of Legendre polynomials to
obtain

Yr(tn+1) = Yr(tn) +

∫

In

D




r−1∑

j=0

ajL̃j(t)


 dt+

∫

In

r−1∑

j=0

RjL̃j(t) dt,

= Yr(tn) + τnDa0 + τnR0.

This completes proof.

By Theorem 3.1, we have then

Yr(tn+1) = Yr(tn) +
r∑

j=1

(ζjI+ τnD)
−1

(
r+1∑

k=1

(−1)k
φk1(−ζj)
P ′
r(ζj)

(τnD)bk−1

)
+ τnR0.

This leads to the following parallel algorithm to compute the nodal values of the solution
Yr to the problem (2.2).

Algorithm 3.1. Given Yr(t0) = Y0. For n = 1, · · · , N − 1, do the following.
1◦ Compute vj ∈ R

M , j = 1, · · · , r, in parallel, where

vj =

r+1∑

k=1

(−1)k
φk1(−ζj)
P ′
r(ζj)

(τnD)bk−1.

2◦ Solve (τnD+ ζjI)wj = vj , j = 1, · · · , r, in parallel.
3◦ Compute

Yr(tn+1) = Yr(tn) +

r∑

j=0

wj + τnR0.

The following parallel-in-time algorithm computes the solution of the problem (2.2)
inside each time interval.

Algorithm 3.2. Given Yr(t0) = Y0.
1◦ Call Algorithm 3.1 to obtain Yr(tn), n = 1, . . . , N .
2◦ Compute the coefficients a1, · · · ,ar of Yr in each time interval In, n = 1, · · · , N − 1, in
parallel as follows.
(i) Compute vij ∈ R

M , i = 2, · · · , r + 1, j = 1, · · · r, in parallel, where

vij =
r+1∑

k=1

(−1)i+k+1φki(−ζj)
P ′
r(ζj)

bk−1.

(ii) Solve (τnD+ ζjI)wij = vij , i = 2, · · · , r + 1, j = 1, · · · , r, in parallel.
(iii) Compute ai−1 = (−1)rδi,r+1br +

∑r
j=1wij, i = 2, · · · , r + 1, in parallel.
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Remark 3.1. In [12], it is observed that the zeros of Pr(z) come in complex conjugate pairs
if they are complex. If ζj′ = ζ̄j, j, j

′ = 1, · · · , r, then vj = v̄j′, and

wj +wj′ =
vj

τnD+ ζjI
+

v̄j

τnD+ ζ̄jI
= 2Re

[
vj

τnD+ ζjI

]
.

Thus one need only to solve k complex matrix problems instead of 2k in Algorithm 3.1 (2◦)
and kr complex matrix problems instead of 2kr in Algorithm 3.2 (2◦), where 2k, 0 ≤ k ≤ r/2,
are the number of complex zeros of Pr(z).

Remark 3.2. If ζ = a + ib is a complex zero of Pr(z), then a ≤ −2 by Lemma 2.3. By
Remark 3.1, without loss of generality, we can choose one of the zeros such that b < 0. Let
w = w1 + iw2, v = v1 + iv2, where vi,wi ∈ R

M , i = 1, 2, satisfy (τnD+ ζI)w = v. Then

D̃

(
w1

w2

)
:=

(
τnD+ aI −b I

−b I −(τnD+ aI)

)(
w1

w2

)
=

(
v1

−v2

)
.

Let F = diag(τnD+(a+ b) I, τnD+(a+ b) I) ∈ R
2M×2M be the diagonal matrix. It is shown

in Chen et al [5, Lemma 4.1] that the condition number κ(F−1
D̃) ≤

√
2. Therefore, the

complex system (τnD+ ζI)w = v can be efficiently solved if one has the efficient solver for
the real matrix τnD + (a + b) I, where a + b ≤ −2. Notice that the eigenvalues of D lie in
the left half-plane due to the assumption D+ D

T ≤ 0.

Remark 3.3. For non-standard ODE systems of the form,

MY′ = DY +R in (0, T ), Y(0) = Y0, (3.18)

one can use the transformations Ỹ = M
1

2Y, D̃ = M
− 1

2DM
− 1

2 , R̃ = M
− 1

2R to transform
the problem (3.18) to (1.1) and use above algorithms to solve the transformed problem. This
leads to the following algorithm which is similar to Algorithm 3.1 to find the nodal values of
the solution of the continuous time Galerkin method for solving (3.18). A similar algorithm
to Algorithm 3.2 can also be formulated.

Algorithm 3.3. Given Yr(t0) = Y0. For n = 1, · · · , N − 1, do the following.
1◦ Compute vj ∈ R

M , j = 1, · · · , r, in parallel, where

vj =

r+1∑

k=1

(−1)k
φk1(−ζj)
P ′
r(ζj)

(τnD)M
−1 bk−1.

2◦ Solve (τnD+ ζjM)wj = vj , j = 1, · · · , r, in parallel.
3◦ Compute

Yr(tn+1) = Yr(tn) +

r∑

j=1

wj + τnM
−1R0.

To conclude this section, we prove the following theorem for finding the nodal values
of the solution (2.2) which extends (1.3) for solving the ODE system (1.1) when R = 0.
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Theorem 3.3. Let Yr ∈ Vr
τ , r ≥ 1, be the solution of the problem (2.2). Then for

n = 1, · · · , N − 1,

Yr(tn+1) =
Pr(τnD)

Pr(−τnD)
Yr(tn) +

r∑

k=1

(−1)k+1 φk1(τnD)

Pr(−τnD)
bk−1 + τnR0,

where φk1(λ) = det[Er+1(λ)k,1].

Proof. By Lemma 3.2 and (3.17) we have

Pr(−τnD)a0 =
r+1∑

k=1

(−1)k+1φk1(τnD)bk−1.

Since br+1 = Yr(tn), by Lemma 3.5,

Yr(tn+1) =

[
I+ (−1)r

τnDφr+1,1(τnD)

Pr(−τnD)

]
Yr(tn)

+

r∑

k=1

(−1)k+1φk1(τnD)bk−1 + τnR0.

Denote by ψr(λ) = (−1)rλφr+1,1(λ) = (−1)rλdet[Er+1(λ)r+1,1]. By Theorem 3.2, 4◦, we
know that ψr(λ) satsifies

ψr(λ) = ψr−1(λ) +
λ2

4

1

(2r − 1)(2r − 3)
ψr−2(λ), r ≥ 3.

On the other hand, by (3.14), we have ψ1(λ) = λ, ψ2(λ) = λ. This implies by Lemma 2.3
that ψr(λ) = Pr(λ)− Pr(−λ). Thus

I+ (−1)r
τnDφr+1,1(τnD)

Pr(−τnD)
= I+

Pr(τnD)− Pr(−τnD)
Pr(−τnD)

= Pr(τnD).

This completes the proof.

4 The dissipative system

In this section, we propose an alternative way to compute the coefficients a1, · · · ,ar of the
solution Yr of the problem (2.2) when the ODE system (1.1) is dissipative D+D

T < 0. The
algorithm is based on the block tridiagonal structure of the matrix and is less expensive
than the step 2◦ in Algorithm 3.2.

Let X̃ = (aT1 , · · · ,aTr )T ∈ R
rM and B̃ = (b̃T

1 ,b
T
2 , · · · ,bT

r )
T with b̃1 = b1 − 1

2(τnD)a0.

It follows from (3.5) that X̃ ∈ R
rM satisfies

ÃX̃ = B̃, (4.1)
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where

Ã =




−I − τn
2 D

1
5 · · · · · · · · · 0

τn
2 D

1
3 −I − τn

2 D
1
7 · · · · · · 0

...
. . .

. . .
. . .

...
...

· · · · · · τn
2 D

1
2r−5 −I − τn

2 D
1

2r−1 0

· · · · · · · · · τn
2 D

1
2r−3 −I 0

· · · · · · · · · · · · τn
2 D

1
2r−1 −I



.

It is easy to see that Ã = Er+1(τnD)r+1,1, let φr(λ) = det[Er+1(λ)r+1,1]. The goal of this
section is to show that φr(τnD) ∈ R

M×M is invertible so that the standard chasing algorithm
for block tridiagonal matrices (cf., e.g., Golub and Van Load [14, §4.5]) can be used to solve
(4.1).

We start with the following lemma.

Lemma 4.1. Let un ∈ Pn, n ≥ 0, such that (i) u0 = 0, u1 = 1 or (ii) u0 = 1, u1 = 1+A1t,
A1 ∈ R, and for n ≥ 2,

un(t) = (1 +Ant)un−1(t)− Cnt
2un−2, (4.2)

where An ∈ R, Cn > 0 for n ≥ 2. Then we have, for n ≥ 2,

un(un−1 + tu′n−1)− tun−1u
′
n > 0 in R\{0}.

Proof. We set, for n ≥ 1,

Gn(t, t
′) =

t′un(t)un−1(t
′)− tun−1(t)un(t

′)

t′ − t
.

It is easy to see by (4.2) that G1(t, t
′) = u0, and for n ≥ 2,

Gn(t, t
′) = un−1(t)un−1(t

′) + Cntt
′Gn−1(t, t

′).

This implies easily

Gn(t, t
′) = un−1(t)un−1(t

′) +

n−2∑

k=0

Cn · · ·Ck+2(tt
′)n−1−kuk(t)uk(t

′),

where we have used G1(t, t
′) = u0(t)u0(t

′) in both cases (i) and (ii). By letting t′ → t, we
obtain for n ≥ 2,

lim
t′→t

Gn(t, t
′) = un(t)[tun−1(t)]

′ − tun−1(t)u
′
n(t) > 0 in R\{0},

where we have used the condition u1 = 1 in the case (i) and u0 = 1 in the case (ii). This
completes the proof.

The following theorem is the main result of this section.

Theorem 4.1. Let D ∈ R
M×M satisfy D + D

T < 0, that is, D + D
T is negative definite.

Then the matrix φr(τnD) ∈ R
M×M , r ≥ 1, 1 ≤ n ≤ N − 1, is invertible.
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Proof. We are going to show that all zeros of φr(λ) locate at the imaginary axis {z ∈ C :
Re(z) = 0}. This implies easily φr(τnD) is invertible since the eigenvalues of D lie in the
left-half plane due to the dissipative property D+ D

T < 0.
To study the property of the zeros of φr(λ), we denote ψr(λ) = (−1)rφr(λ). By (3.14)

and Theorem 3.2 (4◦) we know that ψ1(λ) = 1, ψ2(λ) = 1, and

ψr(λ) = ψr−1(λ) + drλ
2ψr−2(λ), dr =

1

4(2r − 1)(2r − 3)
, for r ≥ 3. (4.3)

We note that (4.3) is also valid for r = 2 if we define ψ0(λ) = 0. Set t = λ2 and for m ≥ 0,
define fm(t) = ψ2m(λ), gm = ψ2m+1(λ). Then

fm(t) = gm−1(t) + d2mtfm−1(t), f0(t) = 0, f1(t) = 1,

gm(t) = fm(t) + d2m+1tgm−1(t), g0(t) = 1, g1(t) = 1 + d3t.

This implies that, for m ≥ 2,

fm(t) = (1 +Amt)fm−1(t)− Cmt
2fm−2(t), (4.4)

gm(t) = (1 + Ãmt)gm−1(t)− C̃mt
2fm−2(t), (4.5)

where Am = d2m + d2m−1, Cm = d2m−1d2m−2, Ãm = d2m+1 + d2m, C̃m = d2md2m−1. We
observe that fm, gm satisfy the same recurrence relation but with different coefficients and
initial values. In the following we will only prove fm, m ≥ 2, has m real zeros in (−∞, 0)
which then implies that φ2m(λ) = fm(λ1/2) has all zeros on the imaginary axis. The proof
for φ2m+1(λ), m ≥ 1, is similar and we omit the details.

We extend the argument in [24, §3.3 (4)] for orthogonal polynomials to show that
fm,m ≥ 2, has m zeros in (−∞, 0) by using Sturm theorem (cf., e.g., Perron [18, pp.7-
9]) based on the recurrence formula (4.4). We first note that if fm(t) =

∑m
k=0 θkt

k, then
θm > 0 since by (4.3) the leading coefficients of the polynomial ψr(λ) are positive, and
θ0 = fm(0) = 1 by (4.4). Now we claim that

fm(t), fm−1(t), · · · , f1(t) (4.6)

form a Sturmian sequence in [−M,−δ] for sufficiently large M > 0 and sufficiently small
δ > 0 in the following sense. (i) f1(t) = 1 has no zeros in [−M,−δ]. (ii) fm(−M)fm(−δ) 6= 0
for M ≫ 1 and δ ≪ 1 since θm > 0 and θ0 = 1. (iii) If c ∈ [−M,−δ] is a zero of fk(t),
1 ≤ k ≤ m − 1, then fk+1(c)fk−1(c) < 0. In fact, By Lemma 4.1, fk−1(c) 6= 0. By (4.4),
fk+1(c) = −Cmc

2fk−1(c). (iv) If c ∈ [−M,−δ] such that fm(c) = 0, then f ′m(c)fm−1(c) > 0,
which is a direct consequence of Lemma 4.1. Now the number of variations of sign in (4.6)
at t = −M is m for sufficiently large M since θm > 0; it is zero at t = −δ for sufficiently
small δ > 0 since θ0 = 1. Thus by Sturm theorem we conclude that fm(t) has exactly m
zeros in [−M,−δ]. This completes the proof.

Based on this theorem, we can use the following parallel-in-time algorithm to compute
the solution Yr to the problem (2.2).

23



Algorithm 4.1. Given Yr(t0) = Y0.
1◦ Call Algorithm 3.1 to obtain Yr(tn) for n = 1, . . . , N .
2◦ Compute Yr in each time interval In, n = 1, · · · , N − 1, in parallel by solving (4.1) to
obtain a1, · · · ,ar using the LU decomposition for block tridiagonal matrices.

We remark that the algorithm of LU decomposition for block tridiagonal matrices for
solving (4.1) requires to solve r systems of linear equations of size M in sequential instead
of to solve r2 systems of linear equations of size M in parallel in Step 2◦ of Algorithm 3.2.

5 Optimal stability and error esstimates

In this section, we show optimal stability and error estimates of the continuous time Galerkin
method (2.2) in terms of r when D is a symmetric or skew-symmetric matrix. This will
be achieved by using the explicit formulas in Theorem 3.1. We start by studying further
properties of the minors of the stiffness matrix of the continuous time Galerkin method
A = Er+1(τnD).

Let χr+1,j(λ) = (−1)r+1 det[Er+1(λ)r+1,j ], then by (3.14) we have

χ2,1 = −1, χ2,2 = a1, χ3,1 = −1, χ3,2 = a1, χ3,3 = −a1a2. (5.1)

For r ≥ 3, by 4◦ in Theorem 3.2, we have the following recursive formulas

χr+1,j(λ) = χr,j(λ) + arar−1χr−1,j(λ), 1 ≤ j ≤ r − 2, (5.2)

χr+1,j(λ) = (−1)j
j−1∏

k=1

ak, j = r − 1, r, r + 1. (5.3)

Let ϕ0 = 1 and ϕr(λ) = detEr+1(λ), r ≥ 1. Then by Lemma 3.2, ϕ1 = 1− a1,

ϕr+1 = ϕr + arar+1ϕr−1, r ≥ 1. (5.4)

Lemma 5.1. For any r ≥ 1 and λ ∈ R, we have

r−1∑

j=1

[χr,j(−λ)χr+1,j(λ) + χr,j(λ)χr+1,j(−λ)]
1

2j − 1

= ϕr−1(−λ)ϕr(λ) + ϕr−1(λ)ϕr(−λ) +
(−1)r2r

2r − 1
(a1 · · · ar−1)

2, (5.5)

r+1∑

j=1

χr+1,j(−λ)χr+1,j(λ)
1

2j − 1
= ϕr(−λ)ϕr(λ) +

(−1)r+12r

2r + 1
(a1 · · · ar)2. (5.6)

Proof. We denote

Ar : =

r−1∑

j=1

[χr,j(−λ)χr+1,j(λ) + χr,j(λ)χr+1,j(−λ)]
1

2j − 1

− [ϕr−1(−λ)ϕr(λ) + ϕr−1(λ)ϕr(−λ)] ,
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Br+1 : =

r+1∑

j=1

χr+1,j(−λ)χr+1,j(λ)
1

2j − 1
− ϕr(−λ)ϕr(λ).

We will argue by induction. First (5.5)-(5.6) are obvious for r = 1, 2 by (5.1). Now we
assume (5.5)-(5.6) are valid for all r ≤ n, n ≥ 2. Since by (5.3), χn+2,n(λ) = χn+1,n(λ), we
have by (5.2) and (5.4) that

An+1 = 2Bn+1 − 2χn+1,n+1(−λ)χn+1,n+1(λ)
1

2n + 1
+ anan+1An.

Now by (5.3) and the induction assumption that (5.5)-(5.6) are valid for r = n, we obtain

An+1 =
(−1)n+12(n + 1)

2n+ 1
(a1 · · · an)2.

This shows (5.5) for r = n+ 1. Similarly, we can prove by (5.2)-(5.4) that

Bn+2 = Bn+1 + (anan+1)
2Bn + anan+1An

+χn+2,n+2(−λ)χn+2,n+2(λ)
1

2n+ 3
− (anan+1)

2χn,n(−λ)χn,n(λ)
1

2n − 1
.

Now by the induction assumption (5.6) for r = n, n + 1 and (5.5) for r = n, we obtain by
using (5.3) that

Bn+2 = (−1)n+2 2(n+ 1)

2n+ 3
(a1 · · · an+1)

2.

This completes the proof.

Lemma 5.2. Let r ≥ 1. For any λ ≤ 0, we have

r−1∑

j=1

χr,j(λ)χr+1,j(λ)
1

2j − 1
≤ ϕr−1(λ)ϕr(λ),

r+1∑

j=1

χr+1,j(λ)
2 1

2j − 1
≤ ϕr(λ)

2. (5.7)

Proof. For any r ≥ 1, we denote

Cr :=

r−1∑

j=1

χr,jχr+1,j
1

2j − 1
− ϕr−1ϕr, Dr+1 :=

r+1∑

j=1

χ2
r+1,j

1

2j − 1
− ϕ2

r .

We again argue by induction. First (5.7) is obvious for r = 1, 2 by (5.1) since λ ≤ 0. Now
we assume (5.7) is valid for all r ≤ n, n ≥ 2. By (5.2)-(5.4), it is easy to see that

Cn+1 = −χ2
n+1,n+1

1

2n+ 1
+Dn+1 + anan+1Cn,

where we have used χn+2,n(λ) = χn+1,n(λ). Thus if Cn ≤ 0,Dn+1 ≤ 0, then Cn+1 ≤ 0.
On the other hand, by (5.2)-(5.4), we have

Dn+2 = Dn+1 + anan+1Dn + 2anan+1Cn + (a1 · · · an+1)
2(

1

2n + 3
− 1

2n− 1
).

Thus Dn+2 ≤ 0 if Dn ≤ 0,Dn+1 ≤ 0, and Cn ≤ 0. This completes the proof.
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The following theorem is the main result of this section.

Theorem 5.1. Let D be a symmetric or skew-symmetric matrix and Yr ∈ Vr
τ is the solution

of the problem (2.2). Then we have

‖Yr‖L2(0,T ) ≤ T 1/2‖Y0‖RM + CT‖R‖L2(0,T ), (5.8)

max
0≤t≤T

‖Yr‖RM ≤ Cr(‖Y0‖RM + T 1/2‖R‖L2(0,T )), (5.9)

where the constant C is independent of τ, r,D, and R.

Proof. Let Ŷr ∈ [P r]M be defined in (2.6) of Lemma 2.1, we claim that

‖Ŷr‖L2(In) ≤ τ1/2n ‖Yn
r ‖RM , (5.10)

which improves the bound (2.10) in the proof of Lemma 2.1. To show (2.6), by Theorem
3.1, we have

Ŷr(t) =

r+1∑

j=1

aj−1L̃j−1(t) =

r+1∑

j=1

(−1)j
χr+1,j(τnD)

ϕr(τnD)
Yn

r L̃j−1(t) ∀t ∈ In.

Thus by (2.5),

‖Ŷr‖2L2(In)
=

r+1∑

j=1

‖χr+1,j(τD)ϕr(τnD)
−1Yn

r ‖2RM

τn
2j − 1

. (5.11)

Denote Zn
r = ϕr(τnD)

−1Yn
r . If D is skew-symmetric D

T = −D
T , by (2.5), (5.6), we have

‖Ŷr‖2L2(In)
=

r+1∑

j=1

‖χr+1,j(τnD)Z
n
r ‖2RM

τn
2j − 1

= τn‖ϕr(τnD)Z
n
r ‖2RM − τn

∥∥∥∥∥

√
2r

2r + 1

r!

(2r)!
(τnD)

rZn
r

∥∥∥∥∥

2

RM

≤ τn‖Yn
r ‖2RM .

This shows the claim (5.10) when D is skew-symmetric.
If D is symmetric, the eigenvalues of D are non-positive since D+D

T ≤ 0. By Lemma
5.2, it is easy to show that

r+1∑
‖χr+1,j(τnD)Z

n
r ‖2RM

τn
2j − 1

− τn‖ϕr(τnD)Z
n
r ‖2RM ≤ 0,

which yields

r+1∑

j=1

‖χr+1,j(τnD)ϕr(τnD)
−1Yn

r ‖2RM

τn
2j − 1

≤ τn‖Yn
r ‖2RM .
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Now it follows from (5.11) that ‖Ŷr‖L2(In) ≤ τ
1/2
n ‖Yn

r ‖RM . This shows the claim (5.10)
when D is a symmetric matrix.

It follows from (5.10), (2.12) and (2.3) that

‖Yr‖L2(In) ≤ τ1/2n ‖Yn
r ‖RM + 2τn‖R‖L2(In)

≤ τ1/2n ‖Y0‖RM + Cτ1/2n T 1/2‖R‖L2(0,T )

This implies (5.8) easily. Now by the hp inverse estimate,

max
tn≤t≤tn+1

‖Yr‖RM ≤ Cτ−1/2
n r‖Yr‖L2(In) ≤ Cr(‖Y0‖RM + T 1/2‖R‖L2(0,T )).

This shows (5.9). This completes the proof.

The following theorem which improves the error estimates in Theorem 2.1 can be proved
by the argument in Theorem 2.1 by using Theorem 5.1 instead of Lemma 2.1. Here we omit
the details.

Theorem 5.2. Let D be a symmetric or skew-symmetric matrix. Assume that R ∈
[Hs(0, T )]M , Y ∈ [W 1+s,∞(0, T )]M , s ≥ 1, and Yr ∈ Vr

τ is the solution of the problem
(2.2), we have

‖Y −Yr‖L2(0,T ) ≤ C(1 + T )
τmin(r+1,s)

rs
(‖Y‖Hs(0,T ) + ‖DY‖Hs(0,T )),

max
0≤t≤T

‖Y −Yr‖RM ≤ C(1 + T 1/2)
τmin(r+1,s)

rs−1
(T 1/2‖Y‖W s+1,∞(0,T ) + ‖R‖Hs(0,T )),

where the constant C is independent of τ, r,D, and R but may depend on s.

We remark that the first estimate in Theorem 5.2 is optimal both in τ and r.

6 Numerical examples

In this section, we provide some numerical examples to confirm the theoretical results in
this paper.

Example 1. (Dissipative problem) Let Ω = (0, 1) × (0, 1) and T = 1. We consider the
following constant coefficient convection-diffusion problem

{
ut +∇ · (βu− ǫ∇u) = f in Ω× (0, T ),

u(x, 0) = u0(x) in Ω.
(6.1)

The boundary condition is set to be periodic. The source term f is chosen such that the
exact solution is u(x, t) = exp(−t) sin(4π(x1 − t)) cos(4π(x2 − t)).

We choose β = (1, 1)T and ǫ = 1 in (6.1). For spatial discretizations, we apply
the local discontinuous Galerkin (LDG) method in Cockburn and Shu [9] by using purely
upwind fluxes for convection terms and alternating fluxes for diffusion terms. For the sake
of completeness, we recall the method for solving (6.1) here.
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Let M denote a uniform Cartesian mesh of Ω with h the length of the sides of the
elements. E = Eside ∪ Ebdy, where Eside := {e = ∂K ∩ ∂K ′ : K,K ′ ∈ M}, Ebdy := {e =

∂K ∩ ∂Ω : K ∈ M}. For any subset M̂ ⊂ M and Ê ⊂ E , we use the notation

(u, v)
M̂

=
∑

K∈M̂

(u, v)K , 〈u, v〉
Ê
=
∑

e∈Ê

〈u, v〉e,

where (·, ·)K and 〈·, ·〉e denote the inner product of L2(K) and L2(e), respectively.
For any e ∈ E , we fix a unit normal vector ne of e with the convention that ne is the

unit outer normal to ∂Ω if e ∈ Ebdy. For any v ∈ H1(M) := {v : v ∈ H1(K),K ∈ M}, we
define the jump operator of v across e:

[[v]]e := v− − v+ ∀e ∈ Eside, [[v]]e := v− ∀e ∈ Ebdy,

where v±(x) := limε→0+ v(x ± εne) ∀x ∈ e. For any integer p ≥ 0, we define the finite
element space

V p
h := {v ∈ L2(Ω) : v|K ∈ Qp(K),K ∈ M},

where Qp(K) denotes the space of polynomials of degree at most p in each variable in K.
The semi-discrete problem is to find (uh,qh) ∈ [V p

h ]
3 such that, for all test functions

(vh, rh) ∈ [V p
h ]

3,

(∂tuh, vh)M + G(βuh, vh) =
√
ǫ
[
−(qh,∇vh)M + 〈q−

h · n, [[vh]]〉E
]
+ (f, vh)M,

(qh, rh)M =
√
ǫ
[
−(uh,divrh)M + 〈u+h , [[rh]] · n〉E

]
,

uh(x, 0) = (Phu0)(x) in Ω.

Here Ph : L2(Ω) → V p
h is the standard L2 projection operator, and

G(βuh, vh) = −(βuh,∇vh)M + 〈ǔhβ · n, [[vh]]〉E ,

where ǔh is chosen as the upwind flux: ǔh = u−h if β · n > 0, ǔ = u+h if β · n < 0. For
e ∈ Ebdy, we use the periodic boundary condition to define u+h .

The optimal L2-norm error estimate of order p+1 of the semi-discrete scheme for quasi-
uniform Cartesian meshes can be found in Cheng et al [8, Theorem 2.4], where it is shown
that max0≤t≤T ‖u − uh‖L2(Ω) ≤ C(1 + T )hp+1. Therefore, combined with the continuous
time Galerkin scheme, we know that the fully discrete scheme has O(hp+1+ τ r+1) accuracy
in the norm ‖·‖L∞(0,T ;L2(Ω)) and O(hp+1+τ2r) in the L2 norm at nodes t = tn, n = 1, · · · , N .

To test the accuracy at the nodes, we set τ = h
p+1

2r and thus N = T/τ = Tβ
1

r , where

β = h−
p+1

2 . The numerator of the [r/r] Padé approximation Pr(z) has 2k complex zeros and
1 real root if r = 2k + 1, k ≥ 1, and 2k complex zeros if r = 2k, k ≥ 1. Denote by C(2M)
the costs of solving the matrix problem τnD + ζjI with ζj being complex and C(M) the
costs of solving the matrix problem τnD+ ζjI with ζj real, where ζj, j = 1, · · · , r, are zeros
of Pr(z). Then the computational time in each time step of Algorithm 3.1 is proportion
to C(2M) for the parallel computation and proportion to kC(2M) + (r− 2k)C(M) for the
sequential computation. The wall time of using Algorithm 3.1 using parallel machines is
then proportion to N = Tβ

1

r which is decreasing in r. Thus high order time discretization is
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preferred for parallel computations. On the other hand, for the sequential computation, the
wall time of using Algorithm 3.1 is proportion to rN = Trβ

1

r which minimizes at r = ln β
for r > 0. This implies that the optimal choice of the order for the sequential computation is
r = ⌊ln β⌋+1, where ⌊a⌋ is the maximum integer strictly less than a > 0. Table 1 shows the
error ‖(u−uh)(·, T )‖L2(Ω) at the terminal time when r = ⌊ln β⌋+1. The optimal (p+1)-th
order is observed which confirms our theoretical results. We observe that the errors of high
order schemes are significant smaller than the low order schemes.

To test the accuracy in the ‖ · ‖L∞(0,T ;L2(Ω)) norm, we set τ = h
p+1

r+1 and thus N =

T/τ = Tγ
1

r+1 , where γ = h−(p+1). The wall time of using Algorithm 3.1 and Algorithm

3.2 for the parallel computation is proportion to N = Tγ
1

r+1 which decreases in r. On
the other hand, for the sequential computation, the wall time of using Algorithm 3.1 and

Algorithm 4.1 is rN = Trγ
1

r+1 which is increasing in r if ln γ ≤ 4 and minimizes at
r∗ = [−(2− ln γ)+

√
(2− ln γ)2 − 4 ]/2 if ln γ ≥ 4. Since r∗ ≥ 1 is equivalent to ln γ ≥ 4, the

optimal choice of the order for minimizing the computation wall time is r = max(1, ⌊r∗⌋+1).
We note that for the sequential computation, Algorithm 4.1 is cheaper than Algorithm 3.2.
Table 2 shows the error

max
0≤n≤N−1,1≤k≤10

‖(u− uh)(·, tn + 0.1kτn)‖L2(Ω)

as the approximation of ‖u−uh‖L∞(0,T ;L2(Ω)) when r = max(1, ⌊r∗⌋+1). We again observe
the optimal (p+1)-th order convergence and that high order methods perform much better
than low order methods.

Table 1: Example 1: numerical errors of ‖(u − uh)(·, T )‖L2(Ω) and orders.

p = 3 p = 4 p = 5

h error order error order error order

1/4 8.06E-03 – 1.29E-03 – 1.71E-04 –
1/8 5.64E-04 3.84 4.40E-05 4.88 2.84E-06 5.91
1/16 3.55E-05 3.99 1.37E-06 5.01 4.33E-08 6.04
1/32 2.03E-06 4.13 4.26E-08 5.00 6.94E-10 5.96

Table 2: Example 1: numerical errors in ‖ · ‖L∞(0,T ;L2(Ω)) norm and orders.

p = 3 p = 4 p = 5

h error order error order error order

1/4 2.77E-02 – 3.99E-03 – 5.81E-04 –
1/8 2.00E-03 3.79 1.36E-04 4.87 1.02E-05 5.83
1/16 1.14E-04 4.14 4.40E-06 4.95 1.69E-07 5.91
1/32 7.18E-06 3.98 1.33E-07 5.05 2.73E-09 5.95

Example 2. (Wave propagation problem) Let Ω = (−2, 2) × (−2, 2) and T = 1. We
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consider the following wave equation with discontinuous coefficients





1

ρc2
∂tu = divq+ f, ρ∂tq = ∇u in Ω× (0, T ),

[[u]] = 0, [[q · n]] = 0 on Γ× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x), q(x, 0) = q0(x) in Ω.

(6.2)

We assume the interface Γ is the union of two closely located ellipses. We take Ω1 = {x ∈
Ω : (x1−d1)2

a2
+

x2
2

b2
< 1 or (x1−d2)2

a2
+

x2
2

b2
< 1}, which is the union of two disks, and Ω2 = Ω\Ω̄1.

Here d1 = −0.82, d2 = 0.82, a = 0.81, and b = 0.51. The distance between two ellipses is
0.02. We consider the wave equation (6.2) with ρ1 = 1/2, ρ2 = 1, c1 = c2 = 1, and the
source f is chosen such that the exact solution is

u(x, t) =





cos(3t) sin(r1 − 1) sin(r2 − 1) sin(3πx1) sin(3πx2) in Ω1,

2 cos(3t) sin(r1 − 1) sin(r2 − 1) sin(3πx1) sin(3πx2) in Ω2,

where r1 = (x1−d1)2

a2
+

x2
2

b2
r2 = (x1−d2)2

a2
+

x2
2

b2
. The exact solution q(x, t) is computed by

(6.2) with the initial condition q0 = 0.

We use the unfitted finite element method in Chen et al [7] to discretize the problem
in space. Let M be an induced mesh which is constructed from a Cartesian partition T
of the domain Ω with possible local refinements and hanging nodes so that the elements
are large with respect to both domains Ω1,Ω2. Let MΓ := {K ∈ M : K ∩ Γ 6= ∅} and
E = Eside ∪ EΓ ∪ Ebdy, where EΓ := {ΓK = Γ ∩K : K ∈ M}.

For any K ∈ MΓ, i = 1, 2, let Ki = K ∩Ωi and K
h
i the polygonal approximation of Ki

bounded by the sides of K and Γh
K which is the line segment connecting two intersection

points of ΓK ∩∂K. Kh
i is the union of shape regular triangles Kh

ij, 1 ≤ JK
i ≤ 3, whose sides

are the sides of Kh
i and Γh

K . We always set Kh
i1 the element having Γh

K as one of its sides.

From Kh
ij we define the curved element K̃h

ij by

K̃h
i1 = (Ki ∩Kh

i1) ∪ (Ki\K̄h
i1), K̃h

ij = Ki ∩Kh
ij, j = 2, · · · , JK

i .

Then we know that K is the union of curved triangles K̃h
ij , i = 1, 2, j = 1, · · · , JK

i .
For any integers p, q ≥ 1, the space P p(K) denotes the space of polynomials of degree

at most p in K and Qp,q(K) denotes the space of polynomials of degree at most p for the
first variable and q for the second variable in K. For any K ∈ MΓ, we define the interface
finite element spaces

Wp(K) = {ϕ : ϕ|K̃h
ij
∈ P p(K̃h

ij), i = 1, 2, j = 1, · · · , JK
i },

and Xp(K) = Wp(K) ∩H1(K1 ∪K2). Notice that the functions in Xp(K) are conforming
in each Ki, i = 1, 2. Now we define the following unfitted finite element spaces

Xp(M) := {v ∈ H1(Ω1 ∪ Ω2) : v|K ∈ Xp(K) ∀K ∈ MΓ,
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v|K ∈ Qp(K) ∀K ∈ M\MΓ},
Wp(M) := {ψ : ψ|K ∈ [Wp(K)]2 ∀K ∈ MΓ,

ψ|K ∈ Qp−1,p(K)×Qp,p−1(K) ∀K ∈ M\MΓ}.

LetX0
p (M) = Xp(M)∩H1

0 (Ω1∪Ω2), whereH
1
0 (Ω1∪Ω2) = {v ∈ H1(Ω1∪Ω2) : v = 0 on ∂Ω}.

The semi-discrete unfitted finite element method for solving (6.2) is then to find
(uh,qh) ∈ X0

p (M)×Wp(M) such that for all (ϕh,ψh) ∈ X0
p(M) ×Wp(M),

( 1

ρc2
∂tuh, ϕh

)
M

= −(qh,∇ϕh)M + 〈q−
h · n, [[ϕh]]〉EΓ + (f, ϕh)M, (6.3)

(ρ∂tqh,ψh)M = −(uh,divψh)M + 〈u+h , [[ψh]] · n〉E , (6.4)

uh(x, 0) = (Phu0)(x), qh(x, 0) = (Phq0)(x) in Ω, (6.5)

where Ph : L2(Ω) → X0
p (M) and Ph : [L2(Ω)]2 → Wp(M) are the standard L2 projection

operators.
It is shown in [7, Theorem 2.2] that the following energy error of the semi-discrete

scheme

Een(t) := (‖(u − uh)(·, t)‖2L2(Ω) + ‖(q− qh)(·, t)‖2L2(Ω))
1/2.

has p-th order convergence. The semi-discrete problem (6.3)-(6.5) is an ODE system which
is solved by the continuous time Galerkin method in this paper. By Theorem 2.1 and
Theorem 2.2, we know that the energy error has O(hp+ τ r+1) convergence rate in the norm
max0≤t≤T Een(t) and O(hp + τ2r) in the Een(t) at nodes t = tn, n = 1, . . . , N .

Note that these two ellipses are close but not tangent. To resolve the interface Γ well,
we locally refine the mesh near the interface such that the interface deviation ηK ≤ η0 = 0.05
for all K ∈ MΓ. For the concept of the interface deviation we refer to [7, Definition 2.2],
see also Chen et al [6, Definition 2.2]. As an illustration, we show the computational mesh
for h = 1/4 in Figure 1.

In this example, we test the accuracy of the error in the ‖ · ‖L∞(0,T ;L2(Ω)) norm and
Een(T ). As in Example 1, to test the accuracy at nodes, we set τ = p

2r , thus the wall time of

using Algorithm 3.1 for the sequential computation is proportion to Trν
1

r which minimizes
at r = ln ν for r > 0, where ν = h−

p

2 . Table 3 shows the error Een(T ) at the terminal time
when r = ⌊ln ν⌋+ 1.

To test the accuracy in the ‖ · ‖L∞(0,T ;L2(Ω)) norm, we set τ = h
p

r+1 and thus N =

T/τ = Tµ
1

r+1 , where µ = h−p. As in Example 1, the wall time of using Algorithm 3.1 and

Algorithm 3.2 for the parallel computation is proportion to N = Tµ
1

r+1 which decreases in
r. However, since the wave equation is not dissipative, we cannot use Algorithm 4.1 for the
sequential computation. In this case, the wall time of using Algorithm 3.1 and Algorithm

3.2 for the sequential computation is proportion to rN + r2N = Tr(r + 1)µ
1

r+1 which is
increasing if lnµ ≤ 6 and minimizes at r∗∗ = [−(3− lnµ) +

√
(3− lnµ)2 − 8 ]/4 if lnµ ≥ 6.

Since r∗∗ ≥ 1 is equivalent to lnµ ≥ 6, the optimal choice of the order for minimizing the
computation wall time is r = max(1, ⌊r∗∗⌋+ 1). Table 3 shows the error

max
0≤n≤N−1,1≤k≤10

Een(tn + 0.1kτn)
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as the approximation of max0≤t≤T Een(t) when r = max(1, ⌊r∗∗⌋ + 1). We clearly observe
the optimal p-th order convergence and the superior performance of high order methods
from Tables 3-4.

Figure 1: Illustration of the computational domain and the mesh (left) and the correspond-
ing zoomed local mesh (right) with h = 1/4 in Example 2.

Table 3: Example 2: numerical errors of Een(T ) and orders.
p = 3 p = 4 p = 5

h error order error order error order

1/4 4.22E-01 – 2.21E-01 – 1.25E-01 –
1/8 8.97E-02 2.24 2.64E-02 3.06 6.20E-03 4.33
1/16 1.32E-02 2.76 1.81E-03 3.87 3.82E-05 4.96
1/32 1.66E-03 2.99 1.13E-04 4.00 1.19E-06 5.00

Table 4: Example 2: numerical errors of max0≤t≤T Een(t) and orders.

p = 3 p = 4 p = 5

h error order error order error order

1/4 5.23E-01 – 2.95E-01 – 1.69E-01 –
1/8 1.26E-01 2.05 3.70E-02 3.00 8.87E-03 4.25
1/16 1.90E-02 2.72 2.58E-03 3.84 2.93E-04 4.92
1/32 2.45E-03 2.96 1.66E-04 3.95 9.21E-06 4.99
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Numer. Math., 25: 1–14, 1975.
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