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Abstract. Lyapunov functions play a vital role in the context of control theory for nonlinear
dynamical systems. Besides its classical use for stability analysis, Lyapunov functions also arise in
iterative schemes for computing optimal feedback laws such as the well-known policy iteration. In
this manuscript, the focus is on the Lyapunov function of a nonlinear autonomous finite-dimensional
dynamical system which will be rewritten as an infinite-dimensional linear system using the Koop-
man or composition operator. Since this infinite-dimensional system has the structure of a weak-*
continuous semigroup, in a specially weighted Lp-space one can establish a connection between the
solution of an operator Lyapunov equation and the desired Lyapunov function. It will be shown
that the solution to this operator equation attains a rapid eigenvalue decay which justifies finite rank
approximations with numerical methods. The potential benefit for numerical computations will be
demonstrated with two short examples.
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1. Introduction. We consider nonlinear dynamical systems of the form

(1.1)

{
d
dtx(t) = f(x(t)), for t ∈ (0,∞),
x(0) = z,

where z ∈ Rd and f ∈ C1
(
Rd;Rd

)
. If for given z ∈ Rd there exists a unique solution

x(·) to (1.1), we use the notation x(t) := Φt(z). Our interest is the computation of
the cost functional

v(z) :=

∫ ∞

0

g(Φt(z)) dt(1.2)

for some given g : Rd → R. In what follows, we will restrict ourselves to initial values
z ∈ Ω ⊂ Rd, where Ω is a bounded open domain with C1 boundary. In particular, we
assume that Ω is flow-invariant under the system (1.1), i.e., for every z ∈ Ω it holds
that Φt(z) ∈ Ω for all t ≥ 0. It is well-known, see, e.g., [37, Chapter III, Theorem
XVI] that this is guaranteed if f is continuous on Ω and satisfies a tangent condition
of the form

ν(x)⊤f(x) ≤ 0 for all x ∈ ∂Ω,(1.3)

where ν(x) denotes the outer unit normal to the boundary ∂Ω. Let us moreover
emphasize that this implies that the solution Φt(z) exists for all t ≥ 0 so that the cost
functional (1.2) is well-defined as a mapping from Ω to [0,∞]. If g(z) = ∥h(z)∥2 and
(1.1) is locally asymptotically stable around the origin, v is characterized by the first
order nonlinear partial differential equation (PDE)

∇v(z)⊤f(z) + ∥h(z)∥2 = 0, v(0) = 0,(1.4)

where ∇v(z) = ( ∂v
∂z1

, . . . , ∂v
∂zd

)⊤, see, e.g., [31, Theorem 3.2]. If, additionally, the

system is linear and the costs are quadratic, i.e., f(z) = Az, g(z) = z⊤C⊤Cz then
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v(z) = z⊤Pz with P being the unique symmetric positive semidefinite solution to the
observability Lyapunov equation

A⊤P + PA+ C⊤C = 0.(1.5)

In fact, similar results also hold true for the case of infinite-dimensional linear systems,
see [9, Theorem 4.1.23] and one of the main ideas of this article is to use the known
Koopman embedding which replaces (1.1) by an infinite-dimensional linear system
such that (1.4) can be related to an operator Lyapunov equation similar to (1.5).

Existing literature and related results. Computing Lyapunov functions for linear
systems has been studied extensively in the literature, see the detailed overviews [5, 33]
and the references therein. In particular, the so-called large-scale case where the
system dynamics f(x) = Ax are associated with a high dimensional system resulting
from a spatial semi discretization of a PDE has received much attention. The efficacy
of numerical methods here relies on the nowadays well-known fact that the solution
P to (1.5) often exhibits a very fast singular value decay which can be exploited with
low rank techniques [4, 24, 32]. For some early works that discuss such properties
from a finite-dimensional perspective, we refer to [2, 15, 28]. Beginning with [10],
considerable progress such as nuclearity of the solution operator P or p-summability
of the singular values has also been made from an infinite-dimensional perspective, see
[17, 25, 26]. Most of the previous results rely on (spectral) properties of the generator
A of the underlying system and therefore restrict to a particular class of systems
such as analytic control systems. Very recently, in [27] the author has obtained an
approximation result for solutions to operator Lyapunov equation which is not based
on analytic semigroup theory and therefore covers the case of hyperbolic PDEs. One
of the main ideas in that article is to compensate for the lack of regularity of the
solution by means of a particularly regularizing observation operator which, in the
context of (1.2), can be interpreted as a specific cost function g. We will follow a
similar strategy which we elaborate upon later in this article. The general idea of
embedding nonlinear dynamics in an infinite-dimensional system has a longstanding
tradition with its origin tracing back to at least [19] and [8]. A renewed interest,
specifically with regard to applications in control theory, goes back to [23] and has
inspired a great amount of work in the recent literature. While a full overview on
aspects of Koopman and composition operators is beyond the scope of this article,
we refer to the overview articles [6, 7, 18] and the monograph [22] as well as the
references therein. Let us further mention [21] where the authors discuss nonlinear
stability analysis by inspection of the eigenfunctions of the infinitesimal generator of
the Koopman semigroup.

Contribution. Following the aforementioned embedding of (1.1) into an infinite-
dimensional linear system, in this article we will discuss a functional analytic setting
which allows to express (1.2) implicitly via a solution of an abstract operator Lyapunov
equation on an appropriately weighted Lp space. Our main results can be summarized
as follows:

(i) Since the Koopman semigroup is not strictly contractive, we utilize a weight
function as in Assumption 2.6 to show that the composition semigroup be-
comes exponentially stable on the associated weighted Lp space, see Theo-
rem 2.12.

(ii) Following the linear quadratic case, we define a candidate P to replace (1.2)
by the abstract bilinear form (3.1) which we show in Theorem 3.6 to be
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approximable by convergent finite rank operators. Here, the approximation
rate will depend on the structure and smoothness of the cost function g.

(iii) For the sum of squares solution (see Definition 3.9) induced by the eigenfunc-
tions of the operator P , we show in Theorem 3.10 that it coincides with (1.2)
by means of a Dirac sequence.

(iv) The operator P is shown to satisfy an operator Lyapunov equation in Theo-
rem 4.1.

The precise structure of this article is as follows. After a brief review of well-known
results on Koopman or composition operators and weighted Lp spaces, in section 2 we
replace the nonlinear dynamics (1.1) by an infinite-dimensional exponentially stable
weak-* continuous semigroup with infinitesimal generator A. Section 3 introduces a
specific structure of the cost function g which allows for an interpretation of the ex-
tended observability map arising in the context of well-posed linear systems. Section 4
contains the characterization of P as the solution to an operator Lyapunov equation.
In section 5, we illustrate our numerical findings by means of two numerical examples.
A short conclusion with an outlook for future research is provided in section 6.

Notation. For a Banach space X, we denote its topological dual space by X∗

and by ⟨·, ·⟩X,X∗ the dual pairing between X and X∗. In the case of a Hilbert space
H we simply write ⟨·, ·⟩H for the dual pairing. The space of bounded linear operators
mapping from X to itself is denoted by L(X). For a linear (unbounded) operator
A with domain D(A) in X mapping to Y we write A : D(A) ⊆ X → Y . If D(A) is
dense in X, the adjoint of such an operator is denoted by A∗ : D(A∗) ⊆ Y ∗ → X∗.
With σ(A) ⊆ C we denote the spectrum of an operator. For a set Ω ⊆ Rd we
denote the closure by Ω̄ and the interior by Ω◦. By Cm (Ω) we denote the set of m-
times continuously differentiable functions over Ω. The Lebesgue space to an index
1 ≤ p ≤ ∞ and a Banach space Y is denoted by Lp (Ω;Y ). If Y = R we write Lp (Ω).
The Sobolev space to an index k ∈ N and 1 ≤ p ≤ ∞ over a set Ω ⊆ Rd is denoted
by W k,p(Ω). The Jacobi matrix containing all first order derivaties is denoted by
D. For a matrix A ∈ Rd×d we denote the eigenvalues by λi(A). If the matrix A is
symmetric, i.e., A = A⊤, we write λmin(A) and λmax(A) to denote the smallest and
largest eigenvalue, respectively.

2. The composition semigroup and its adjoint. In this section, we first
recall some well-known facts about composition operators on (weighted) Lebesgue
spaces. In particular, we review existing results on the Koopman operator and its
left-adjoint, the transfer or Perron-Frobenius operator. With the intention of relating
the Lyapunov function (1.2) to a specific operator Lyapunov equation, we introduce an
appropriately weighted Lp

w (Ω)-space on which the composition semigroup associated
with the flow Φt(z) of (1.1) will turn out to be exponentially stable.

2.1. Koopman and Perron-Frobenius operators. Instead of the nonlinear
finite-dimensional system (1.1) which describes pointwise dynamics, one might focus
on an infinite-dimensional linear formulation induced by a so-called composition oper-
ator. The following results are well-known in the literature and can be found in many
textbooks such as, e.g., [20].

The Koopman operator can be seen as acting on observables evaluated along the
flow Φt(z) of the system (1.1). For a function space Y and observables Y ∗ ∋ ψ : Ω →
R, the Koopman operator Kt : Y ∗ → Y ∗ associated with (1.1) is defined for fixed t by

ψ 7→ Ktψ = ψ ◦ Φt, (Ktψ)(z) = ψ(Φt(z)).

3



Depending on the nature of the dynamical system and the chosen function space Y ,
the family {Kt}t≥0 of Koopman operators enjoys additional properties. In fact, since
the composition of functions is linear and (1.1) is time-invariant, for Y = L1 (Ω) and
Y ∗ = L∞ (Ω) respectively, the Koopman operator Kt defines a semigroup of bounded
linear operators on Y ∗, i.e., we have

(i) Kt ∈ L(Y ∗), t ≥ 0,
(ii) K0 = idY ∗ ,
(iii) Kt+s = KtKs, t, s ≥ 0.

Note however that on L∞ (Ω), the semigroup is generally not strongly continuous [20,
Theorem 7.4.2] but only weak-* continuous, see also the discussion in subsection 2.3.

If one is interested in the statistical behavior, it is useful to study how probability
densities ρ evolve under the dynamics (1.1). This naturally leads to the transfer or
Perron-Frobenius operator Pt which is defined by

ρ 7→ Ptρ, (Ptρ)(z) = ρ(Φ−tz)|detDΦ−tz|.

In this case, a canonical choice for the function space Y is L1 (Ω) on which Pt

becomes a strongly continuous (stochastic) semigroup, see, e.g., [20, Section 7.4],
meaning that Pt is a positivity preserving contraction semigroup. Let us emphasize
that Pt is an isometry with its eigenvalues being located on the unit circle, see [13,
Corollary 2.5].

The operators Kt and Pt are adjoint to each other, i.e., for all ρ ∈ L1 (Ω) , ψ ∈
L∞ (Ω) and t ≥ 0, we have

⟨Ptρ, ψ⟩L1(Ω),L∞(Ω) = ⟨ρ,Ktψ⟩L1(Ω),L∞(Ω).

Turning to the infinitesimal generators AK and AP , for f as in (1.1), we have the
characterization ([20, Section 7.6])

AKψ = f⊤∇ψ, APρ = −div(ρf).

In other words, AK and AP are hyperbolic first-order differential operators. Note
that it is also common to assume that (1.1) is only accurate up to small stochastic
perturbations in form of a white noise term which renders the resulting generators
parabolic, see, e.g., [13]. In this case, both Koopman and Perron-Frobenius operators
are frequently considered on weighted spaces which are then assumed to be related to
the invariant probability density of the stochastic dynamics. Here, we will restrict to
the fully deterministic and thus hyperbolic case.

2.2. Weighted Lp (Ω) spaces. Here, we briefly recall the theory of weighted
Lebesgue spaces. The material is rather standard and can be found in any standard
textbook, e.g., [1]. For a given measurable weight function

w : Ω → R+ with w−1 ∈W 1,∞(Ω)(2.1)

we define the following weighted Lebesgue spaces.

Definition 2.1 (The space Lp
w (Ω)). Given a weight function w as in (2.1), we

define

∥ϕ∥Lp
w(Ω) :=


(∫

Ω
|ϕ(x)|pw(x) dx

) 1
p , for 1 ≤ p <∞,

ess sup
x∈Ω

|ϕ(x)w(x)| , for p = ∞

4



and the corresponding space Lp
w (Ω) as

Lp
w (Ω) :=

{
ϕ : Ω → R

∣∣ ∥ϕ∥Lp
w(Ω) <∞

}
.

Note that in the case p = ∞ our definition does not coincide with the usual definition
for Lebesgue spaces from, e.g., [1, Definition 3.15] where the weighting w is not
included within the essential supremum. Our modification is motivated by a different
dual pairing which we utilize frequently throughout the rest of this article. We now
have the following result.

Lemma 2.2. Let X = Lp
w (Ω) for some 1 ≤ p <∞ and φ ∈ X∗ then it holds that

⟨ϕ, φ⟩X,X∗ =

{ ∫
Ω
ϕ(x)φ(x)w(x) dx for 1 < p <∞,∫

Ω
ϕ(x)φ(x)w2(x) dx for p = 1,

where φ ∈ Lp∗

w (Ω) and 1
p + 1

p∗ = 1.

Proof. For 1 < p <∞, the statement is well-known [1, Theorem 6.12]. For p = 1,
the assertion also follows from [1, Theorem 6.12] by straightforward modification.

From now on we will identify elements φ ∈
(
L1
w (Ω)

)∗
with φ ∈ L∞

w (Ω), i.e., we

identify
(
L1
w (Ω)

)∗ ≡ L∞
w (Ω). As L1

w (Ω) and L∞
w (Ω) lack a Hilbert space structure

the following embeddings will become useful.

Lemma 2.3. For w as in (2.1), it holds that

L∞
w (Ω) ⊂ L2

w2 (Ω) ⊂ L1
w (Ω)

where the embeddings are dense.

Proof. With the Hölder inequality we get

∥ϕ∥L1
w(Ω) =

∫
Ω

|ϕ(x)|w(x) dx ≤ ∥ϕ(x)w(x)∥L2(Ω)|Ω|1/2 = C(Ω)∥ϕ∥L2
w2 (Ω)

as well as

∥ϕ∥2L2
w2 (Ω) =

∫
Ω

|ϕ(x)|2w(x)2 dx ≤ ∥ϕ(x)w(x)∥2L∞(Ω)|Ω| = C(Ω)∥ϕ∥2L∞
w (Ω)

this proves L∞
w (Ω) ⊆ L2

w2 (Ω) ⊆ L1
w (Ω). To show that L∞

w (Ω) is dense in L1
w (Ω), let

ϕ ∈ L1
w (Ω). We define ϕm := χ{ϕw≤m}ϕ for some m ∈ N and it follows

∥ϕ− ϕm∥ = ∥χ{ϕw>m}ϕ∥L1
w(Ω) =

∫
Ω

χ{ϕw>m}(x)|ϕ(x)|w(x)dx.

For almost every x ∈ Ω we have (χ{ϕw>m}ϕw)(x) → 0 and |χ{ϕ>m}ϕw|(x) ≤ |ϕw|(x).
By the dominated convergence theorem [1, A.3.21] it follows

lim
m→∞

∥ϕ− ϕm∥L1
w(Ω) = 0

The same construction can be used to show that L∞
w (Ω) is dense in L2

w2 (Ω). Lastly,
by the inequality shown above ϕm ∈ L2

w2 (Ω) and therefore L2
w2 (Ω) is also dense in

L1
w (Ω).
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In one of the later results, namely Theorem 2.8, we will need some density result that
is given in the following Lemma 2.4. Its proof consists mainly of standard textbook
arguments which can be found for example in [12, Chapter 4.4] and which are adapted
to the weighted space.

Lemma 2.4. If 1
w ∈Wm,∞(Ω) for some m ∈ N thenWm,∞(Ω) is dense in L∞

w (Ω)
and L2

w2 (Ω) with respect to the weak-* topology.

Proof. Let us define the extension

E : Lp (Ω) → Lp
(
Rd
)
, with Eϕ :=

{
ϕ(x) for x ∈ Ω
0 else

.

Let us start with X∗ = L∞
w (Ω). For ψ ∈ L∞

w (Ω) we define

ψk := (η1/k ∗ E(ψw))
∣∣
Ω︸ ︷︷ ︸

∈C∞(Ω̄)

1

w
∈Wm,∞(Ω)

where ηε denotes the standard mollifier from [12, Chapter 4.4]. Now let ϕ ∈ X =
L1
w (Ω) then

| ⟨ϕ, ψk−ψ⟩X,X∗| =
∣∣∫

Ω

ϕ(x) (ψk(x)−ψ(x))w(x)2dx
∣∣

=
∣∣∫

Ω

ϕ(x)

∫
Rn

E(ψw)(y)η(y−x) dy w(x) dx−
∫
Ω

ϕ(x)ψ(x)w(x)2 dx
∣∣.

We can utilize Fubini [1, A6.10] to show that

| ⟨ϕ, ψk−ψ⟩X,X∗| =
∣∣ ∫

Rn

E(ψw)(y)

∫
Ω

ϕ(x)η(y−x)w(x) dx dy −
∫
Ω

ϕ(x)ψ(x)w(x)2 dx
∣∣

=
∣∣ ∫

Ω

(∫
Rn

E(ϕw)(x)η(y − x) dx− ϕ(y)w(y)

)
ψ(y)w(y) dy

∣∣
≤∥η1/k ∗ E(ϕw)− E(ϕw)∥L1(Rn)∥ψw∥L∞(Ω).

We know that ϕw ∈ L1 (Ω) and that there exists a compact V such that U ⊂
V ⊂ Rd. Thus, with [12, Appendix, Theorem 7] it follows that ∥η1/k ∗ E(ϕw) −
E(ϕw)∥L1(Rd) →

k→∞
0 and since ∥ψw∥L∞(Ω) = ∥ψ∥L∞

w (Ω) the statement is shown. For

L2
w2 (Ω) one can follow the same construction and arrive at

| ⟨ϕ, ψk − ψ⟩X,X∗ | ≤∥η1/k ∗ E(ϕw)− E(ϕw)∥L2(Rd)∥ψw∥L2(Ω).

From here, the statement again follows with [12, Appendix, Theorem 7] and the fact
that ∥ψw∥L2(Ω) = ∥ψ∥L2

w2 (Ω).

2.3. Composition operators on Lp
w (Ω)-spaces. In this section, we study the

Koopman and the Perron-Frobenius operator on the space Lp
w (Ω). From now on, we

fix the Banach space X := L1
w (Ω) and its dual space X∗ = L∞

w (Ω) as well as the
Hilbert space H := L2

w2 (Ω) which are related via the embeddings from Lemma 2.3. If
a statement holds true in both of these spaces we will use Y ∈ {X,H} as a placeholder.
Since the Koopman operator associated with the dynamics (1.1) is a special compo-
sition operator, we largely follow the (more general) exposition from [34, Chapter 2].
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For this purpose, we consider the measure space (Ω,B, µ) with measure

µ(B) :=

∫
B

w(z) dz for B ∈ B.

Note that µ is a σ-finite measure. Let T : Ω → Ω then be a measurable transformation
on Ω, i.e., assume that T−1(S) ∈ B for all S ∈ B. Further assume that T is non-
singular meaning that µ(S) = 0 implies µ(T−1(S)) = 0 for all S ∈ B. By the
Radon-Nikodým theorem ([1, Theorem 6.11]), there exists ρT ∈ L1

w (Ω) s.t.

(2.2) µ(T−1(S)) =

∫
S

ρT (x)w(x) dx ∀S ∈ B.

Consequently, if ∥ρT ∥L∞(Ω) < ∞ then T is non-singular. If T ∈ C1(Ω,Ω) then a
change of variables ([30, Theorem 7.26]) implies that

ρT (a) =

{
|detDT (z)|−1w(a)

w(z) , if there exists z ∈ Ω, s.t. a = T (z),

0 else.
(2.3)

The non-singularity of T assures that the composition operator

CT : Lp
w (Ω) → Lp

w (Ω) ,
φ 7→ φ ◦ T,

is well-defined.

Definition 2.5. On Y ∗ with Y ∈ {H,X}, we define the composition semigroup
as the family of composition operators with respect to the transformation T = Φt

induced by the solution operator of (1.1) by

S∗ : [0,∞) → L(Y ∗),
t 7→ S∗(t)

and S∗(t)φ = φ ◦ Φt for all φ ∈ Y ∗.

To justify the name, we will show in Theorem 2.8 that S∗(t) is a well-defined weak-*
continuous semigroup, provided that the weight function w and the dynamic f satisfy
additional properties.

Assumption 2.6. We assume that the weighting w and the dynamic f from equa-
tion (1.1) are such that

(i) fi ∈ L∞
w (Ω) ∩ C1

(
Ω̄
)
, for i = 1, . . . , n

(ii) the following inequality holds

ess sup
x∈Ω

−f(x)
⊤∇w(x)
w(x)

= ω0 <∞.

From now on, we will always assume that Assumption 2.6 is satisfied. The subsequent
inequality will be used in various places throughout the rest of this paper. It provides
an exponential bound for the weight along trajectories.

Lemma 2.7. Let (Φt(z))t≥0 denote the trajectory of the dynamical system (1.1).
It holds that

w(z) ≤ exp(tω0)w(Φ
t(z)) for t ∈ [0,∞), z ∈ Ω.

7



Proof. For t ≥ s ≥ 0, differentiation of w along trajectories yields

d

ds
w(Φt−s(z)) = −f(Φt−s(z))⊤∇w(Φt−s(z)) ≤ ω0w(Φ

t−s(z)),

where the last inequality follows from Assumption 2.6. The assertion now follows
with Gronwall’s lemma.

Theorem 2.8. For Y ∈ {X,H} the composition semigroup S∗(t) ∈ L(Y ∗) from
Definition 2.5 is a well-defined weak-* continuous semigroup with infinitesimal gen-
erator

A∗ : D(A∗) ⊆ Y ∗ → Y ∗, A∗φ = f⊤∇φ.

with W 1,∞(Ω)∩L∞
w (Ω) ⊆ D(A∗) in the case Y = X and W 1,2(Ω)∩L2

w2 (Ω) ⊆ D(A∗)
in the case Y = H.

Proof. First we have to show that S∗(t) ∈ L(Y ∗). We begin with the case Y =
H = L2

w2 (Ω). For this, consider the trajectory (Φt(z))t≥0 as a mapping

Φ: R+ × Rd → Rd, Φ(t, z) = Φt(z).

The dynamic of the system given by equation (1.1) then reads

∂

∂t
Φ(t, z) = f(Φ(t, z)).

From [16], we know that J(t) := DΦt(z) exists and solves the linear ordinary differ-
ential equation 

d
dtJ(t) =

(
Df(Φt(z))

)︸ ︷︷ ︸
=:A(t)

J(t) for t > 0

J(0) = I

and is thus given by J(t) = exp
(∫ t

0
A(s) ds

)
. The properties of the matrix exponen-

tial imply

det J(t) = exp

(
tr

(∫ t

0

A(s) ds

))
.

Since the system was assumed to be flow-invariant it holds Φt(Ω̄) ⊆ Ω̄. Furthermore,
fi ∈ C1

(
Ω̄
)
by Assumption 2.6 and, hence, Df ∈ C0

(
Ω̄
)
, so that we conclude that

A(t) is bounded. As a consequence, there exist α(t) and β(t) such that

0 < α(t) ≤ detDΦt(z) ≤ β(t) <∞.

From [34, Corollary 2.1.2], for the norm of the composition operator S∗(t) we find

∥S∗(t)∥L(L2
w2 (Ω)) = ∥ρΦt(·)∥

1/2
L∞(Ω),

where ρΦt(·) denotes the Radon-Nikodým derivative. Similar to equation (2.3), ρΦt(·)
is determined by a change of variables [30, Theorem 7.26] such that with Lemma 2.7,
we obtain the bound

∥ρΦt(·)∥L∞(Ω) = ess sup
z∈Φ−t(Ω)

∣∣∣∣ w2(Φ−t(z))

detDΦt(z)w2(z)

∣∣∣∣ = ess sup
z∈Ω

∣∣∣∣detDΦt(Φt(z))−1 w2(z)

w2(Φt(z))

∣∣∣∣
≤ ess sup

z∈Ω

∣∣detDΦt(z)−1
∣∣ exp(2ω0t) <∞.

8



Therefore the composition operator S∗(t) is well-defined and bounded on L2
w2 (Ω).

Next, let us consider Y = X = L1
w (Ω). Then Y ∗ = X∗ = L∞

w (Ω) and we obtain that

∥S∗(t)φ∥L∞
w (Ω) = ess sup

z∈Ω
|φ(Φt(z))w(z)| = ess sup

z∈Ω

∣∣∣∣φ(Φt(z))w(Φt(z))
w(z)

w(Φt(z))

∣∣∣∣
≤ ∥ϕ∥L∞

w (Ω) exp(tω0) <∞,

where the inequality again follows from Lemma 2.7. Consequently, S∗(t) ∈ L(Y ∗)
for Y ∈ {H,X}. Let us show that S∗(t) is a weak-* continuous semigroup. Due to
the time invariance of (1.1), it immediately follows that Φt(Φs(z)) = Φt+s(z) and,
consequently, S∗(t+ s) = S∗(t)S∗(s). It remains to show weak-* continuity of S∗(t).
Let us consider φ ∈ W 1,∞(Ω) first. Then φ is Lipschitz continuous and by the
multidimensional mean value theorem [29, Theorem 5.19] for some ξ ∈ (0, t) it holds

|φ(Φt(z))− φ(z)|w(z) ≤ L∥Φt(z)− Φ0(z)∥w(z) ≤ Lt
∥∥ d
dtΦ

ξ(z)
∥∥w(z)

= Lt∥f(Φξ(z))∥w(z) ≤ Lt∥f(Φξ(z))w(Φξ(z))∥ w(z)

w(Φξ(z))
≤ Lt exp(ω0t)∥f∥L∞

w (Ω).

This obviously implies that lim
t→0

∥S∗(t)φ−φ∥Y ∗ = 0 for Y ∗ = X∗ = L∞
w (Ω). The case

Y = H = L2
w2 (Ω) follows similarly. By Lemma 2.4 we know that for φ ∈ Y there

exists φn ∈W 1,∞(Ω) such that φn
∗
⇀ φ. For arbitrary ρ ∈ Y and n ∈ N, consider

lim
t→0

| ⟨ρ, S∗(t)φ− φ⟩Y,Y ∗ |

= lim
t→0

| ⟨ρ, S∗(t)φ− φ− (S∗(t)φn − φn) + (S∗(t)φn − φn)⟩Y,Y ∗ |

≤ lim
t→0

(
∥ρ∥Y ∥S∗(t)φn − φn∥Y ∗ + (1 + ∥S∗(t)∥) | ⟨ρ, φn − φ⟩Y,Y ∗ |

)
≤ 2| ⟨ρ, φn − φ⟩Y,Y ∗ |

which proves that S∗(t) is weak-* continuous. For the generator note that

A∗φ = lim
t→0

S∗(t)φ− φ

t
= lim

t→0

φ(Φt(·))− φ

t
=

d

dt
φ(Φt(·)) = f⊤∇φ

where φ ∈ D(A∗) if and only if f⊤∇φ ∈ Y ∗ exists in a weak sense. In the case Y = X
it is sufficient if φ ∈W 1,∞(Ω), since fi ∈ L∞

w (Ω) by assumption. For Y = H we need
φ ∈W 1,2(Ω) instead.

The result from [11, Theorem 1.6] immediately yields that any weakly continuous
semigroup is also strongly continuous. With the previous Theorem 2.8 this means
that S(t) and in the case Y = H = L2

w2 (Ω) also S∗(t) defines a strongly continuous
semigroup.

Lemma 2.9. If Y ∈ {X,H} the preadjoint S(t) : Y → Y of the composition semi-
group S∗(t) is given by

(S(t)ρ)(a) =

{
µ(a)ρ(Φ−t(a)) if a ∈ (Φt(Ω))

◦
,

0 else

µ(a) :=
∣∣det(DΦt(a))

∣∣−1 w2 (Φ−t(a))

w2(a)
≥ 0.
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Proof. By Assumption 2.6 we know that fi ∈ C1
(
Ω̄
)
and therefore fi is Lipschitz

continuous. Since the tangent condition is also fulfilled the trajectories are uniquely
determined [37, Chapter III, Theorem XVIII (b) ]. Hence Φt : Ω̄ → Φt(Ω̄) is bijective

and to any a ∈ Φt(Ω̄) ⊆ Ω̄ we obtain a unique (Φt)
−1

(a) = Φ−t(a) ∈ Ω̄. Now let
ρ ∈ X and φ ∈ X∗ then we can use a change of variables z := Φ−t(a) ([30, Theorem
7.26]) to compute

⟨ρ, S∗φ⟩X,X∗ =

∫
Ω

ρ(z)φ(Φt(z)) w2(z) dz

=

∫
(Φt(Ω))◦

∣∣det(DΦt(a))
∣∣−1

ρ(Φ−t(a))φ(a) w2(Φ−t(a)) da

=

∫
(Φt(Ω))◦

µ(a)ρ(Φ−t(a))φ(a) w2(a) da = ⟨S(t)ρ, φ⟩X,X∗ .

Proposition 2.10. The generator A : D(A) ⊆ L1
w (Ω) → L1

w (Ω) of the semigroup
S(t) is given by

A : D(A) ⊆ X → X,

ϕ 7→ − div (f ϕ)− 2 f(x)⊤∇w
w ϕ

It holds that

D := {ϕ : Ω → R
∣∣ ∥ϕ∥L1

w(Ω) +
∑
|α|=1

∥D(α)ϕ∥L1(Ω) <∞ and ϕ
I

≡ 0} ⊆ D(A) ⊆ L1
w (Ω)

where I := {x ∈ ∂Ω
∣∣ f(x)⊤ν(x) ̸= 0}.

Proof. Let ϕ ∈ D and ψ ∈ D(A∗) ⊆ L∞
w (Ω). The divergence theorem yields

⟨ϕ,A∗ψ⟩X,X∗ =

∫
Ω

ϕ(x)f(x)⊤∇ψ(x)w2(x) dx

=

∫
∂Ω

ν(x)⊤f(x)ϕ(x)︸ ︷︷ ︸
=0

ψ(x)w2(x) dx−
∫
Ω

f(x)⊤∇ϕ(x)ψ(x)w2(x) dx

−
∫
Ω

f(x)⊤∇w2(x)

w2(x)
ϕ(x)ψ(x)w2(x) dx−

∫
Ω

div f(x)ϕ(x)ψ(x)w2(x) dx

= ⟨Aϕ,ψ⟩X,X∗ .

This implies that A∗ is the adjoint of A and consequently A is the preadjoint of A∗.
By the statement given in [11, Subsection 2.5] it follows that A is the generator of
S(t).

Remark 2.11. Note that A is the sum of a first order differential operator and a
multiplication operator.

For the computation of (1.1), the asymptotic behavior of the semigroup for t→ ∞ is
crucial. As it turns out, on the weighted space Lp

w (Ω), we obtain a simple condition
for exponential stability.

Theorem 2.12. If f from (1.1) and w satisfy

(2.4) ess sup
x∈Ω

−f(x)
⊤∇w(x)
w(x)

= ω0 < 0,

then S(t) is an exponentially stable semigroup of contractions of type ω0 over X.
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Proof. Since µ(a) ≥ 0, with the explicit expression for S(t) from Lemma 2.9, we
conclude that

|(S(t)ϕ)(a)| =
{
µ(a)|ϕ(Φ−t(a))| for a ∈ Φt(Ω)
0 else

= (S(t)|ϕ|)(a)

for a ∈ Ω. Consequently, this yields

∥S(t)ϕ∥L1
w(Ω) =

∫
Ω

(S(t)|ϕ|) (x) w(x) dx(2.5)

=

∫
Ω

(S(t)|ϕ|) (x) 1

w(x)︸ ︷︷ ︸
∈L∞

w (Ω)

w2(x) dx =

〈
|ϕ|, S∗(t)

1

w(x)

〉
X,X∗

.(2.6)

Note that w−1 ∈ D(A∗) since
(2.7)∥∥ A∗w−1

∥∥
L∞
w (Ω)

=ess sup
x∈Ω

∣∣∣∣w(x)f(x)⊤∇( 1

w(x)

)∣∣∣∣ ≤ ∥f∥L∞
w (Ω)

∥∥w−1(x)
∥∥
W 1,∞(Ω)

.

Combining (2.6) and (2.7) we conclude

d

dt
∥S(t)ϕ∥L1

w(Ω) =

〈
|ϕ|, S∗(t)A∗ 1

w(x)

〉
X,X∗

=

〈
S(t)|ϕ|,−f(x)

⊤∇w(x)
w(x)2

〉
X,X∗

=

∫
Ω

(S(t)|ϕ|) (x)−f(x)
⊤∇w(x)
w(x)

w(x) dx ≤ ω0

∫
Ω

(S(t)|ϕ|) (x)w(x) dx

= ω0∥S(t)ϕ∥L1
w(Ω).

Gronwall’s lemma implies ∥S(t)ϕ∥L1
w(Ω) ≤ exp (ω0t) ∥ϕ∥L1

w(Ω).

Remark 2.13. Let us emphasize that the semigroup is not necessarily exponen-
tially stable over H. For example consider, f(x) := −x in Ω := B1(0) ⊆ Rd and
w(x) := 1

∥x∥ . With regard to the assumptions of Theorem 2.12, note that

ess sup
x∈Ω

−f(x)
⊤∇w(x)
w(x)

= ess sup
x∈Ω

− x⊤x

∥x∥2
= −1 < 0

i.e., the lemma is applicable. However, for β > −d−2
2 we can define functions

uβ(x) := ∥x∥β

which are elements of H. Indeed, observe that in spherical coordinates we have

∥uβ∥2L2
w2 (Ω) =

∫
Ω

∥x∥2(β−1) dx = |S1(0)|
∫ 1

0

rd−1+2(β−1) dr <∞.

However, for x ∈ Ω it also holds that

(A∗uβ)(x) = −x⊤∇(∥x∥β) = −βx⊤x∥x∥β−2 = −βuβ(x).

This means that for d ≥ 3 it follows that uβ ∈ H for β > − 1
2 . Consequently,

σ(A∗) ̸⊆ C− and since σ(A) = σ(A∗) the semigroup cannot be exponentially stable
over H.
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Many physical systems can be modeled with port-Hamiltonian systems for which we
have a more specific characterization.

Proposition 2.14. Suppose that f(x) in (1.1) corresponds to a port-Hamiltonian
system, i.e.,

f(x) = (J(x)−R(x))∇H(x) ∀x ∈ Ω

where
(i) H : Ω → R+ is two times continuously differentiable with

∥∇H(x)H−1/2(x)∥L∞(Ω) <∞.

(ii) R : Ω 7→ Rd×d is continuously differentiable and symmetric and positive semi-
definite for all x ∈ Ω.

(iii) J : Ω 7→ Rd×d is continuously differentiable and skew-symmetric for all x ∈ Ω.
(iv) The tangent condition ⟨f(x), ν(x)⟩ ≤ 0 for all x ∈ ∂Ω is fulfilled.

If, in addition it holds that

(2.8) ess sup
x∈Ω

{
−∇H(x)⊤R(x)∇H(x)

2H(x)

}
= ω0 < 0 ∀x ∈ Ω

then S(t) is an exponentially stable semigroup of contractions over the space L∞
w (Ω)

of type ω0 with regard to the weighting w(x) := H−1/2(x).

Proof. Equation (2.4) and the assumptions of Theorem 2.8 can be checked easily.

Note that condition (i) and (2.8) are canonically satisfied if R(x) is positive definite
for every x ∈ Ω and the smallest eigenvalue can be bounded from below independently
of x ∈ Ω and furthermore, it holds that

0 < ess inf
x∈Ω

∥∇H(x)∥
H(x)1/2

≤ ess sup
x∈Ω

∥∇H(x)∥
H(x)1/2

<∞.

In particular, the inequalities are true if H is quadratic in the neighborhood of M :=
H−1({0}).

3. Nuclear cost and sum of squares solution. As mentioned in the intro-
duction, the structure of the cost g plays a crucial role in the approximability of the
cost function v. In particular, with g and the underlying semigroup, we will derive an
operator valued Lyapunov equation. With the concept of nuclear operators in mind,
we refer to a cost function g as nuclear if it can be represented as a sum of squares of
elements of the dual space. This class of cost functions is commonly found in many
control problems.

Definition 3.1. We say that the cost g of the dynamical system from equation
(1.2) is nuclear with respect to X if it can be represented as

g(x) :=

∞∑
i=1

ci(x)
2 ∀x ∈ Ω, with ci ∈ X∗ and

∞∑
i=1

∥ci∥2X∗ <∞.

In this case, we define the following observation operator C and its adjoint C∗

C : X → ℓ2, ϕ 7→
(
⟨ϕ, ci⟩X,X∗

)
i∈N

C∗ : ℓ2 → X∗, (ai)i∈N 7→
∞∑
i=1

aici.
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Note that for the particularly relevant case of a quadratic cost function, we may define
(c̃1, . . . , c̃r)

⊤ = C̃ ∈ Rr×d, and g(x) := x⊤C̃⊤C̃x =
∑r

i=1( c̃
⊤
i x︸︷︷︸

=:ci(x)

)2 for all x ∈ Rd.

Lemma 3.2. If the semigroup S(t) is exponentially stable of type ω0 over X then∫ ∞

0

∞∑
i=1

∥S∗(t)ci∥2X∗ dt ≤ K2.

Proof. Since S(t) is exponentially stable, we find that

∥S∗(t)ci∥L∞
w (Ω) = sup

ϕ∈L1
w(Ω),∥ϕ∥>0

| ⟨ϕ, S∗(t)ci⟩L1
w(Ω),L∞

w (Ω) |
∥ϕ∥L1

w(Ω)

= sup
ϕ∈L1

w(Ω),∥ϕ∥>0

| ⟨S(t)ϕ, ci⟩L1
w(Ω),L∞

w (Ω) |
∥ϕ∥L1

w(Ω)
≤ C exp(w0t)∥ci∥L∞

w (Ω).

In view of Definition 3.1, we observe that∫ ∞

0

∞∑
i=1

∥S∗(t)ci∥2L∞
w (Ω) dt ≤ C

∫ ∞

0

exp(2ω0t)

∞∑
i=1

∥ci∥2L∞
w (Ω) dt <∞.

The convergence of the integral allows us to define an operator P by integrating
the cost following the composition semigroup along time in the space of nuclear oper-
ators thereby preserving the nuclearity. We will call the associated bilinear form value
bilinear form as it will later on give rise to the Lyapunov function. More precisely, let
us consider the following definition.

Definition 3.3. For a given nuclear cost g and its corresponding observation
operator C, we define the value bilinear form as

⟨ϕ, ψ⟩P :=

∫ ∞

0

⟨CS(t)ϕ,CS(t)ψ⟩ℓ2 dt ∀ϕ, ψ ∈ X.(3.1)

For an exponentially decaying semigroup over a Hilbert space it has already been
shown ([10]) that for a finite rank observation operator C the Gramian P and the so-
called observability map C is a nuclear and a Hilbert-Schmidt operator, respectively.
However, in our case we do not have an exponentially decaying semigroup over the
entire Hilbert space H. Instead, we obtain the exponential decay only over X and
X∗, respectively. As it turns out, this is still sufficient because we assumed that the
observation operator is bounded on X.

Theorem 3.4. If S(t) is exponentially stable over X, then the following holds:
(i) The observability map C : H → L2 (0,∞; ℓ2) with C(ϕ) = CS(·)ϕ for ϕ ∈ H

is a Hilbert-Schmidt operator.
(ii) The value bilinear form is bounded over X, i.e.,

⟨ϕ, ψ⟩P ≤ C∥ϕ∥X∥ψ∥X for ϕ, ψ ∈ X.

(iii) The value bilinear form admits the representation

⟨ϕ, ψ⟩P =

∞∑
i=1

⟨ϕ, pi⟩X,X∗ ⟨ψ, pi⟩X,X∗

with pi ∈ X∗ satisfying
∑∞

i=1 ∥pi∥2H <∞.
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Proof. We start with (i). Let Hn be an orthonormal basis for L2 (0,∞). For
ϕ ∈ X we define

a(i)n (ϕ) :=
〈
Hn, ⟨ϕ, S∗(·)ci⟩X,X∗

〉
L2(0,∞)

=

∫ ∞

0

Hn(t) ⟨ϕ, S∗(t)ci⟩X,X∗ dt.

We want to show that a
(i)
n ∈ X∗. Linearity is obvious. For boundedness, we obtain

|a(i)n (ϕ)|2 ≤ ∥Hn∥2L2(0,∞)∥ϕ∥
2
X

∫ ∞

0

∥S∗(t)ci∥2X∗ dt ≤ K2∥ϕ∥2X

by the result from Lemma 3.2. Furthermore, since a
(i)
n ∈ X∗ = L∞

w (Ω) ⊆ L2
w2 (Ω) =

H∗ we obtain a
(i)
n ∈ H∗. Denoting by ej ∈ ℓ2 the canonical unit vector, with the

orthonormality of Hn we can rewrite Cϕ for ϕ ∈ H, i.e.

Cϕ = CS(·)ϕ = (⟨S(·)ϕ, ci⟩X,X∗)i∈N =

∞∑
i=1

⟨ϕ, S∗(·)ci⟩H ei =

∞∑
i=1

∞∑
n=0

a(i)n (ϕ)Hn(·)ei.

Since there exists a bijection between N × N0 and N, for showing that C is Hilbert-

Schmidt it is sufficient to show
∑

i,n ∥a
(i)
n ∥2H∗ < ∞. For this purpose, let {ϕk} be an

orthonormal basis of H. Using Parseval’s indentity twice it follows that

∞∑
i=1,n=0

∥a(i)n ∥2H∗ =

∞∑
i=1

∞∑
n=0

∞∑
k=1

|ain(ϕk)|2 =

∞∑
i,k=1

( ∞∑
n=0

〈
Hn, ⟨ϕk, S∗(·)ci⟩X,X∗

〉2
L2(0,∞)

)

=

∞∑
i,k=1

∥ ⟨ϕk, S∗(t)ci⟩X,X∗ ∥2L2(0,∞).

Using monotone convergence [12, Theorem 4, Appendix E] to interchange summation
and integration, we may rewrite this expression according to

∞∑
i=1,n=0

∥a(i)n ∥2H∗ =

∞∑
i=1

∞∑
k=0

∫ ∞

0

⟨ϕk, S∗(t)ci⟩2X,X∗ dt =

∞∑
i=1

∫ ∞

0

∞∑
k=0

⟨ϕk, S∗(t)ci⟩2X,X∗ dt

=

∞∑
i=1

∫ ∞

0

∥S∗(t)ci∥2H dt ≤ C(Ω)

∞∑
i=1

∫ ∞

0

∥S∗(t)ci∥2X∗ dt <∞.

For (ii) we can directly use Lemma 3.2 and arrive at

⟨ϕ, ψ⟩P =

∫ ∞

0

⟨CS(t)ϕ,CS(t)ψ⟩ℓ2 dt =

∫ ∞

0

∞∑
i=1

⟨ϕ, S∗(t)ci⟩X,X∗ ⟨ψ, S∗(t)ci⟩X,X∗ dt

≤
∫ ∞

0

∞∑
i=1

∥S∗(t)ci∥2X∗∥ϕ∥X∥ψ∥X dt ≤ K2∥ϕ∥X∥ψ∥X .

Lastly, for (iii) we note that there exists a representative pi,n ∈ X∗, such that a
(i)
n (ϕ) =

⟨ϕ, pi,n⟩X,X∗ . Therefore, by definition

⟨ϕ, ψ⟩P = ⟨Cϕ,Cψ⟩L2(0,∞;ℓ2)
=

∞∑
i=1

∞∑
n=0

a(i)n (ϕ)a(i)n (ψ)

=

∞∑
i=1

∞∑
n=0

⟨ϕ, pi,n⟩X,X∗ ⟨ψ, pi,n⟩X,X∗ .

14



We have already shown that
∑∞

i=1

∑∞
n=0 ∥a

(i)
n ∥2H∗ =

∑∞
i=1

∑∞
n=0 ∥pi,n∥2H < ∞ and

because there exists a bijection between N× N0 and N the statement is proven.

Remark 3.5. It is important to note that the norm used in (iii) is the norm of
the Hilbert space H and not the stronger norm of X∗.

The existence of such a decomposition alone may already be useful, but if the
decay is fast then it is justified to use efficient finite rank approximations, which are
of great interest from a numerical point of view. For smooth enough f : [0,∞) → R a
decay of the coefficients of the basis representation of the Laguerre polynomials can be
shown under some assumptions [14, Section 3], by using the spectral properties of the
Sturm-Liouville operator. This construction can also be applied to show that smooth
dynamics and cost result in an eigenvalue decay that is faster than any polynomial.
We note that an exponential decay rate in the slightly different setting where the
semigroup is stable over H has been shown [27], which can likely be generalized to
our setting. However, the following result also allows to treat dynamics and costs that
only enjoy a Sobolev regularity Wm,∞(Ω).

Theorem 3.6. Let C : X → Rr be of finite rank r ∈ N and S(t) exponentially
stable over X with decay rate ω0. If

range(C∗) ⊆ D((A∗)m) ⊆ X∗ with m even

then there exists pn ∈ X∗ such that

⟨ϕ, ψ⟩P =

∞∑
n=0

⟨ϕ, pn⟩X,X∗ ⟨ψ, pn⟩X,X∗ with

∞∑
n=N

∥pn∥2H ∈ O(N−m).

Proof. We construct the solution ⟨·, ·⟩P similarly as the alternating direction im-
plicit method from, e.g., [24, Remark 4.5] with shifts 1

2 . Let Ln for n ∈ N be the
normalized Laguerre polynomials [35, Equation 5.1.1] [14, Section 3]. We follow the
construction from Theorem 3.4, with the orthonormal basis of L2 (0,∞;R) given as

Hn(t) := exp(−t/2)Ln(t).

With these we will construct a sequence of decompositions, starting with

(3.2) a
(i)
0,n(ϕ) :=

∫ ∞

0

⟨ϕ, exp(t/2)S∗(t)ci⟩X,X∗ Ln(t) exp(−t) dt.

To construct the next decomposition a
(i)
1,n we first note that normalized Laguerre

polynomials Ln are eigenvalues to the Sturm-Liouville problem [14, Eq. 3.26]

d

dt

(
p(t)

dLn(t)

dt

)
+ (λnw(t)− q(t))Ln(t) = 0

with p(t) = t exp(−t), q(t) = 0 and w(t) = exp(−t). Therefore

(3.3)
d

dt

(
t exp(−t)dLn(t)

dt

)
= −λn exp(−t)Ln(t).

For the eigenvalues we find λn = n [14, Section 3, Page 42]. Therefore, we can
substitute Ln(t) exp(−t) in (3.2) by the expression from (3.3) and obtain

a
(i)
0,n(ϕ) :=− 1

λn

∫ ∞

0

⟨ϕ, exp(t/2)S∗(t)ci⟩X,X∗
d

dt

(
p(t)

dLn(t)

dt

)
dt.(3.4)
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Two times partial integration yields

a
(i)
0,n(ϕ) =

1

λn

∫ ∞

0

h1(t)Ln(t) exp(−t) dt(3.5)

with

h1(t) :=

(
− d

dt

(
t exp(−t) d

dt
⟨ϕ, exp(t/2)S∗(t)ci⟩X,X∗

))
exp(t)

=

〈
ϕ, exp(t/2)S∗(t)

(
(t− 1)

(
A∗ +

1

2
I

)
ci − t

(
A∗ +

1

2
I

)2

ci

)〉
X,X∗

=

2∑
k=0

p1,k(t)
〈
ϕ, exp(t/2)S∗(t)(A∗)kci

〉
X,X∗ ,

where p1,k(t) are polynomials with degree smaller or equal than 1. Note that (A∗)kci ∈
L∞
w (Ω) and since S∗(t) is exponentially stable, we conclude that∫ ∞

0

h1(t)
2 exp(−t) dt

≤
∫ ∞

0

2∑
k,k′=0

|p1,k(t)p1,k′(t)
〈
ϕ, S∗(t)(A∗)kci

〉
X,X∗

〈
ϕ, S∗(t)(A∗)k

′
ci

〉
X,X∗

| dt

≤∥ϕ∥2X
∫ ∞

0

2∑
k,k′=0

|p1,k(t)p1,k′(t)|∥S∗(t)(A∗)kci∥X∗∥S∗(t)(A∗)k
′
ci∥X∗ dt

≤∥ϕ∥2X
∫ ∞

0

2∑
k,k′=0

CkCk′ |p1,k(t)p1,k′(t)| exp(2ω0t) dt ≤ C∥ϕ∥2X .

with Ck := supt∈[0,∞) ∥ exp(−ω0t)S
∗(t)(A∗)kci∥X∗ . Note that Ck < ∞ because

Akci ∈ X∗ and S∗(t) is exponentially stable of type ω0 on X∗. Therefore a
(i)
1,n(ϕ) :=∫∞

0
h1(t)Ln(t) exp(−t) dt ∈ X∗ = L∞

w (Ω) with
∑∞

n=0 ∥a
(i)
1,n∥2H <∞ by the same argu-

ment as in Theorem 3.4. We then can replace Ln(t)w(t) in (3.5) again and construct
a new h2 of the form

h2(t) =
4∑

k=0

p2,k(t)
〈
ϕ, exp(t/2)S∗(t)(A∗)kci

〉
X,X∗

with a
(i)
0,n(ϕ) =

1
λ2
n

∫∞
0
h2(t)Ln(t) exp(−t) dt. This process can be repeated m/2-times

and we obtain a
(i)
m/2,n such that

a
(i)
0,n(ϕ) =

1

λ
m/2
n

a
(i)
m/2,n(ϕ) and

∞∑
n=0

∥a(i)m/2,n∥
2
X∗ <∞.

Since λn = n, this means that

∞∑
n=N

∥ai0,n∥2H =

∞∑
n=N

(
n−

m
2

)2 ∥aim/2,n∥
2
H ≤ N−m

∞∑
n=1

∥aim/2,n∥
2
H ∈ O(N−m)
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and by the representation

⟨ϕ, ψ⟩P =

r∑
i=1

∞∑
n=0

〈
ϕ, a

(i)
0,n

〉
X,X∗

〈
ψ, a

(i)
0,n

〉
X,X∗

from the proof of Theorem 3.4 the result follows.

Lemma 3.7. Let fi ∈ Wm−1,∞(Ω) ∩ L∞
w (Ω), ci ∈ Wm,∞(Ω) ∩ L∞

w (Ω) with m
even and ci = 0 for i > r for some r ∈ N. If the preadjoint S(t) of the composition
semigroup from Definition 2.5 is exponentially stable of type ω0 over X, then

∞∑
i=N

∥pi∥2H ∈ O(N−m) for all m ∈ N

for the representation of ⟨·, ·⟩P from Theorem 3.4.

Proof. Let c̃ ∈ W k,∞(Ω) ∩ L∞
w (Ω) with 1 ≤ k ≤ m. Then A∗c̃ = f⊤∇c̃ ∈

W k−1,∞(Ω) and furthermore

|(A∗c̃)(x)w(x)| = |f(x)⊤∇c̃(x)w(x)| ≤ ∥f∥L∞
w (Ω)∥∇c̃∥L∞(Ω) <∞.

We conclude that A∗c̃ ∈W k−1,∞(Ω)∩L∞
w (Ω). Let us note that (A∗)0ci = ci ∈ L∞

w (Ω)

by assumption. Next set c̃ := (A∗)
k−1

ci for 1 ≤ k ≤ m and by recursion it follows
ci ∈ D((A∗)m). With Theorem 3.6, we obtain

∑∞
i=N ∥pi∥2H ∈ O(N−m).

Remark 3.8. This result indicates that the smoothness of ci should be compati-
ble with the dynamics and that having more regularity is beneficial. Therefore, using
g1(x) := ∥x∥2 instead of ci(x) := xi is a suboptimal choice, even though the obser-
vation operator C has a lower rank of just one rather than n and produces the same
Lyapunov function.

Definition 3.9. We define the sum of squares solution as

v(x) :=

∞∑
i=1

pi(x)
2 for almost every x ∈ Ω

where pi ∈ X∗ are defined by the decomposition from Theorem 3.4.

Now we can show that the Lyapunov function can be recovered from the value bilinear
form as a limit process using Dirac sequences.

Theorem 3.10. If the preadjoint S(t) of the composition semigroup from Defi-
nition 2.5 is exponentially stable with rate ω0 then the Lyapunov function v in (1.2)
exists and it coincides with the sum of squares solution from Definition 3.9 almost
everywhere. Furthermore, it holds v ∈ L∞

w2 (Ω).

Proof. We use the standard mollifier ηε from [12, Chapter 4.4] and define η̃z,ε :=
1
wηε(· − z)

∣∣
Ω
. Keep in mind that ηε is normalized w.r.t the L1

(
Rd
)
-norm, i.e.,

∥ηε∥L1(Rd) = 1 for all ε > 0 and therefore ∥η̃z,ε∥L1
w(Ω) ≤ 1.

Since hw for any h ∈ X∗ = L∞
w (Ω) can be extended to a locally integrable

function on Rn, we can use [12, Appendix C, Theorem 7] to conclude that

(3.6) lim
ε→0

⟨η̃z,ε, h⟩X,X∗ = h(z)w(z) for almost every z ∈ Ω.
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With the result from Lemma 3.2 the following term is bounded independently of ε

⟨η̃z,ε, η̃z,ε⟩P =

∫ ∞

0

∞∑
i=1

⟨η̃z,ε, S∗(t)ci⟩2X,X∗ dt ≤
∫ ∞

0

∞∑
i=1

∥S∗(t)ci∥2X∗ dt ≤ K2 <∞.

Now for almost every z ∈ Ω it holds

lim
ε→0

⟨η̃z,ε, η̃z,ε⟩P = lim
ε→0

∫ ∞

0

∞∑
i=1

⟨η̃z,ε, S∗(t)ci⟩2X,X∗ dt.

Let us use the dominated convergence theorem [1, A.3.21] with the bound derived
earlier and (3.6) to conclude

lim
ε→0

⟨η̃z,ε, η̃z,ε⟩P =

∫ ∞

0

∞∑
i=1

lim
ε→0

⟨η̃z,ε, S∗(t)ci⟩2X,X∗ dt

=

∫ ∞

0

∞∑
i=1

ci(Φ
t(z))2w(z)2 dt = v(z)w(z)2.

Now we will identify the limit by the sum of squares solution. We start by defining

q
(ε)
k : Ω → R, z 7→ ⟨η̃z,ε, pk⟩X,X∗

and the extension

E : Ls (Ω) → Ls
(
Rd
)
, Eϕ :=

{
ϕ(x) x ∈ Ω
0 else

for any 1 ≤ s ≤ ∞. We observe that for z ∈ Ω

q
(ε)
k (z) =

∫
Ω

1

w(x)
ηε(x− z)pk(x)w(x)

2 dx = (E (pkw) ∗ ηε) (z).

With Young’s convolution inequality [1, Section 4.13], we can show

∥q(ε)k ∥L2(Ω) ≤ ∥ηε∥L1(Rd)∥pkw∥L2(Ω) = ∥pk∥L2
w2 (Ω)

and therefore for any k ∈ N and with the Hölder inequality [1, Lemma 3.18] and the
result from [12, Theorem 7, Appendix C] we get

∥q(ε)k (·)2 − (pkw)(·)2∥L1(Ω) =

∫
Ω

|q(ε)k (z)2 − pk(z)
2w(z)2| dz

=

∫
Ω

|(q(ε)k (z)− pk(z)w(z))(q
(ε)
k (z) + pk(z)w(z))| dz

≤2∥q(ε)k − pkw∥L2(Ω)∥pk∥L2
w2 (Ω) →

ε→0
0.

We conclude for arbitrary N ∈ N that

lim
ε→0

∥∥∥∥∥⟨η̃·,ε, η̃·,ε⟩P −
∞∑
k=1

(pkw)(·)2
∥∥∥∥∥
L1(Ω)

= lim
ε→0

∥∥∥∥∥
∞∑
k=1

q
(ε)
k (·)2 −

∞∑
k=1

(pkw)(·)2
∥∥∥∥∥
L1(Ω)

≤ lim
ε→0

(
N∑

k=1

∥∥∥q(ε)k (·)2 − (pkw)(·)2
∥∥∥
L1(Ω)

+

∞∑
k=N+1

∥q(ε)k ∥2L2(Ω) +

∞∑
k=N+1

∥pk∥2L2
w(Ω)

)

≤
N∑

k=1

lim
ε→0

∥∥∥q(ε)k (·)2 − (pkw)(·)2
∥∥∥
L1(Ω)

+ 2

∞∑
k=N+1

∥pk∥2L2
w(Ω) = 2

∞∑
k=N+1

∥pk∥2L2
w(Ω).
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Since
∑∞

k=1 ∥pk∥2L2
w(Ω) <∞ and N was arbitrary, it follows that

lim
ε→0

∥ ⟨η̃·,ε, η̃·,ε⟩P −
∞∑
k=1

(pkw)(·)2∥L1(Ω) = 0.

Since ∞ > w(z) > 0 almost everywhere, we obtain v(z) =
∑∞

i=1 pi(z)
2 almost every-

where on Ω. The last inequality can be shown using the boundedness of ⟨·, ·⟩P

ess sup
z∈Ω

w(z)2|v(z)| ≤ ess sup
z∈Ω

lim sup
ε→0

⟨η̃z,ε, η̃z,ε⟩P ≤ K2.

with the bound from Theorem 3.4 (ii). It follows v ∈ L∞
w2 (Ω).

Remark 3.11. Note that we do not need to assume that the limit for any of the
trajectories lim

t→∞
Φt(z) exists and that the sum of squares solution is independent of

the decomposition we choose.

4. An operator Lyapunov formulation. For linear systems with quadratic
costs the Lyapunov function from (1.2) is often computed by solving the algebraic
Lyapunov equation (1.5). The following result will give a similar characterization for
nonlinear systems by an infinite-dimensional operator Lyapunov equation.

Theorem 4.1. If the semigroup S(t) is exponentially stable over X then the value
bilinear form from (3.1) is the unique extension of the minimal solution of the operator
Lyapunov equation over H

⟨Aϕ,ψ⟩P + ⟨ϕ,Aψ⟩P + ⟨Cϕ,Cψ⟩ℓ2 = 0 ∀ϕ, ψ ∈ D(A) ⊆ H.

Proof. From Lemma 3.2 and the embedding X∗ ⊆ H it follows that C is infinite
time admissible [36, Definition 4.6.1] for S(t) over H. By the result from [36, Theorem
5.1.1] there exists a unique minimal solution ⟨·, ·⟩PH

: H × H → R that coincides
with ⟨·, ·⟩P on H. But H is dense in X by Lemma 2.3 and ⟨·, ·⟩PH

is also bounded
w.r.t. ∥ · ∥X by Theorem 3.4. Therefore, by the continuous linear extension theorem
[1, E4.18] there exists a unique bounded linear extension to X, which is ⟨·, ·⟩P .
In Theorem 3.10 we showed that the Lyapunov function v exists if the semigroup is
exponentially stable. If we assume that the Lyapunov function exists and satisfies
some additional assumptions and the dynamic is dominated by a stable linear term
around the origin, we obtain a converse implication.

Proposition 4.2. Let f(x) = Ax + f̃(x) be the dynamic of the system. Let us
assume that the following conditions are fulfilled:

(i) Re(λi(A)) < 0 for all eigenvalues λi(A) of A.
(ii) f fulfills the tangent condition (1.3), i.e., f(x)⊤ν(x) ≤ 0 for all x ∈ ∂Ω.
(iii) The Lyapunov function to the cost g(x) := ∥x∥2 exists and satisfies

v(z) :=

∫ ∞

0

∥Φt(z)∥2 dt <∞ for all z ∈ Ω̄, v1/2 ∈W 1,∞(Ω).

Then S∗(t) : L∞
w (Ω) → L∞

w (Ω) is exponentially stable w.r.t. w(x) := 1
∥x∥ .

Proof. By assumption (i) there exists a positive definite matrix X such that

A⊤X +XA+ Id×d = 0.
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In the following step, we verify that the assumptions of Theorem 2.12 are fulfilled for
the weighting w̃(x) := ∥x∥−1

X with ∥x∥X :=
√
x⊤Xx and the domain Ω := Br(0) ⊆ Ω

for some r > 0 small enough. For this purpose, we will focus on

− f(x)⊤∇w̃(x)
w̃(x)

=
x⊤A⊤Xx+ f̃(x)⊤Xx

2∥x∥2X
where we used ∇∥x∥−1

X = − Xx

∥x∥3/2
X

for x ̸= 0. First let us consider the nonlinear part.

Let X1/2 be the matrix square root of X, then it holds

(4.1)
|f̃(x)⊤Xx|
2∥x∥2X

≤ ∥X1/2f̃(x)∥2
∥x∥X

∥X1/2x∥2
2∥x∥X

≤ λmax(X)

2λmin(X)

∥f̃(x)∥2
∥x∥2

∈ O(∥x∥2).

Since X solves the algebraic Lyapunov equation, for the linear part we obtain

x⊤A⊤Xx

2∥x∥2X
=
x⊤
(
A⊤X +XA

)
x

4x⊤Xx
≤ −∥x∥2

4x⊤Xx
≤ − 1

4λmax(X)
< 0.(4.2)

By combining (4.1) and (4.2) we can choose C, r > 0 such that

ess sup
x∈Br(0)

−f(x)
⊤∇∥x∥X
∥x∥X

≤ −Cλmax(X)−1 and f(x)⊤ν(x) ≤ 0 for x ∈ ∂Br(0)

where ν(x) = x
∥x∥ . Therefore the assumptions of Theorem 2.12 are fulfilled and with

Theorem 3.10 the sum of squares solution coincides with v
∣∣
Br(0)

. In fact, we even

have v
∣∣
Br(0)

∈ L∞
w̃2 (Br(0)) which implies

ess sup
x∈Br(0)

v(x)

∥x∥2
≤ ess sup

x∈Br(0)

λmax(X)v(x)

∥x∥2X
<∞.

On the other hand for x ∈ Ω \Br(0) the expression ∥x∥2 is bounded from below and
ess supx∈Ω v(x) <∞ by assumption such that

(4.3) ess sup
x∈Ω

v(x)

∥x∥2
<∞.

If we define w(x) := v(x)−1/2, then with (1.4) it holds that

ess sup
x∈Ω

−f(x)
⊤∇w(x)
w(x)

= ess sup
x∈Ω

1

2
f(x)⊤∇v(x)︸ ︷︷ ︸

=−∥x∥2

v(x)−1 = ess sup
x∈Ω

−1

2

∥xf∥2

v(x)
< 0.

From the tangent condition f(x)⊤ν(x) ≤ 0 and with Theorem 2.12 the semigroup
S(t) : L1

w (Ω) → L1
w (Ω) is exponentially stable, i.e.,

∥S(t)ϕ∥L1
w(Ω) ≤ C exp(ω0t)∥ϕ∥L1

w(Ω) for some ω0 < 0.

This however means that S(t) : L1
w̄ (Ω) → L1

w̃ (Ω) with w̄(x) := 1
∥x∥ is also exponen-

tially stable since we can bound the norm w.r.t w̄ by the norm w.r.t w via

∥ϕ∥L1
w̄(Ω) =

∫
Ω

|ϕ(x)|
∥x∥

dx ≤ ess sup
x∈Ω

v1/2(x)

∥x∥︸ ︷︷ ︸
<∞ by (4.3)

∫
Ω

|ϕ(x)|v−1/2(x) dx = C̃∥ϕ∥L1
w(Ω).
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5. Numerical proof of concept. In this section, we briefly validate our the-
oretical findings by two small-scale numerical examples. Let us emphasize that our
purpose is to demonstrate the potential of the rapidly decaying eigenvalues of the solu-
tion of the resulting matrix Lyapunov equation for numerical methods. In particular,
we believe that it could establish a way for efficient tensor-based low rank solvers
for large-scale Lyapunov functions, e.g., arising throughout the policy iteration for
optimal feedback computations. A detailed treatise is however out of the scope of
this manuscript and is subject of ongoing research.

Here, we restrict ourselves to a simple two-dimensional setup based on a polyno-
mial tensor basis and a straightforward discretization. In more detail, the discretiza-
tion relies on Legendre polynomials or splines that are orthonormalized with respect
to the L2

w2 (Ω) norm using Gauss-Legendre quadrature and an eigendecomposition.
The infinitesimal generator is discretized as a matrix and the resulting algebraic Lya-
punov equation was solved using the built-in method solve_continuous_lyapunov

from Scipy. The implementation can be downloaded1 and was done using Python ver-
sion 3.9.15, TensorFlow version 2.11.0, Scipy version 1.8.1, and Numpy version 1.22.4.
All simulations were conducted on a desktop computer equipped with an AMD R9
3900X processor, 64 GB of RAM and a Radeon VII graphics card.

5.1. A linear quadratic problem. We begin with linear (dissipative) dynamics
and a quadratic cost function over the domain Ω = [−1, 1]2, i.e.,

f(x1, x2) := Am

(
x1
x2

)
=

(
−2 1
−1 −3

)(
x1
x2

)
and g(x) := c1(x)

2 + c2(x)
2

with ci(x) := xi. The weighting is chosen as w(x) := ∥x∥−1. With regard to the
compatibility of f and w, note that the tangent condition is fulfilled, fi ∈ L∞

w (Ω) and
furthermore

ω0 := sup
x

−f(x)
⊤∇w(x)
w(x)

= sup
x

x⊤Amx

∥x∥2
= λmax

(
1

2
(Am +A⊤

m)

)
< 0.

By Theorem 2.12 the corresponding semigroup is an exponentially stable semigroup
of contractions and furthermore, the assumptions of Lemma 3.7 are fulfilled for all
m ∈ N leading to a super-polynomial decay. In this specific case, it is easy to show
that the eigenfunctions pi of P are linear and that their representation as elements
of R2 is a decomposition of the solution X to the algebraic Lyapunov equation. In
other words, one can show that the solution P to the operator Lyapunov equation is
of finite rank of at most n = 2. This theoretical result is numerically confirmed by the
eigenfunctions pi and eigenvalues in Figure 1 of P where only the two largest eigenval-
ues are (numerically) non-zero and both of them correspond to linear eigenfunctions.
Figure 2 shows that the error between the calculated sum of squares solution and
the reference solution, obtained by solving the matrix-valued Lyapunov equation, is
approximately 10−13. The spiking behavior of the error in the corners of the domain
seems to be caused by numerical instabilities of the Legendre polynomials which had
a degree of up to 11 in this case.

5.2. Modified Van der Pol Oscillator. The Van der Pol oscillator is a com-
mon test example for nonlinear dynamics, see, e.g., [3]. While it is possible to use
an appropriate weighting w with w

∣∣
M = ∞ to handle the undamped case (where M

1https://git.tu-berlin.de/bhoeveler/koopman-based-operator-lyapunov
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Figure 1. Left: The squared norm of the first six eigenfunctions pi of the linear example.
Right: The first six eigenfunctions pi.

Figure 2. Left: The computed sum of squares solution for the linear example. Right: The error
between computed solution and reference solution obtained by solving the Lyapunov matrix equation.

denotes the stable manifold), we include a friction term to create a dynamic with zero
as the only accumulation point and choose w(x) := 1

∥x∥ as in the linear quadratic

case. To satisfy the tangent condition f(x)⊤ν(x) ≤ 0, we add an additional term x31.
We consider the domain Ω := [−3, 3]× [−3, 3] and examine the modified, damped Van
der Pol oscillator dynamic and a simple quadratic cost

f(x1, x2) :=

(
x2 − αx31

−µ(x21 − 1)x2 − x1 − ηx2

)
and g(x1, x2) := c1(x)

2 + c2(x)
2

with µ = 2, friction term η = 2.2 and α = 1.5 × 10−1. For the observation we again
choose ci(x) := xi. We need to verify that the assumptions of Proposition 4.2 are
satisfied. To do this, we first have to ensure that the linearized problem is locally
stable around the origin. We have the decomposition

f(x1, x2) = Am

(
x1
x2

)
+ f̃(x1, x2) =

(
0 1
−1 µ− η

)(
x1
x2

)
+ f̃(x1, x2)

where the eigenvalues of the matrix Am are given by

λi(Am) :=
1

2

(
p±

√
p2 − 4

)
with p := µ− η < 0.

We immediately see that Re(λi(Am)) < 0 for our choice of parameters and therefore
the matrix is stable. As a reference solution, we approximate the Lyapunov function
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Figure 3. Left: The squared norm of the first eighty eigenfunctions pi for the nonlinear
example. Right: The first six eigenfunctions pi.

Figure 4. Left: The computed sum of squares solution for the nonlinear example. Right:
The error between computed solution and the reference solution obtained by integrating over the
trajectories.

by integrating the cost along solution trajectories of the system. We use orthonor-
malized splines with 60 nodes and degree 4 for discretization and Gauss-Legendre
quadrature of degree 4 for integration on each subinterval. The rapid decay predicted
in Lemma 3.7 can be seen in Figure 3, along with the highly nonlinear eigenfunctions.
The error between the reference solution and our method has a magnitude of around
10−5, as shown in Figure 4. We attribute this error at least partially to the way we
compute the reference solution.

6. Conclusion and outlook. In this paper, we presented a method for rep-
resenting a Lyapunov function as the solution to an operator Lyapunov equation.
We showed that the solution to this operator equation has a nuclear decomposition
with rapidly decaying singular values which allows for a low-rank approximation. We
demonstrated the feasibility of this approximation both theoretically and numerically.

Several aspects seem to be worth to be investigated further, one of them being the
extension of our concepts to the case of (high-dimensional) nonlinear control problems
which are often solved via a sequence of Lyapunov equations in the policy iteration.
Moreover, we believe our results to be also applicable in the context of model order
reduction where the linear structure of the infinite-dimensional system could be used
for balanced truncation like techniques.
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[6] S. L. Brunton, M. Budǐsić, E. Kaiser, and J. N. Kutz, Modern Koopman theory for dy-
namical systems, SIAM Review, 64 (2022), pp. 229–340.
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d’équations différentielles non linéaires, Acta Mathematica, 59 (1932), pp. 63–87.

[9] R. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory,
Springer, New York, 1995.

[10] R. F. Curtain and A. J. Sasane, Compactness and nuclearity of the Hankel operator and in-
ternal stability of infinite-dimensional state linear systems, International Journal of Con-
trol, 74 (2001), pp. 1260–1270.

[11] K. Engel and R. Nagel, A short course on operator semigroups, Springer, 2006.
[12] L. C. Evans, Partial Differential Equations, American Mathematical Society, 1998.
[13] G. Froyland, O. Junge, and P. Koltai, Estimating long term behavior of flows without

trajectory integration: the infinitesimal generator approach, SIAM Journal on Numerical
Analysis, 51 (2013), pp. 223–247.

[14] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods, Society for Industrial
and Applied Mathematics, 1977.

[15] L. Grasedyck, Existence and computation of low Kronecker-rank approximations for large
linear systems of tensor product structure, Computing, 72 (2004), pp. 247–265.

[16] T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a
system of differential equations, Annals of Mathematics, 20 (1919), pp. 292–296.

[17] L. Grubisic and D. Kressner, On the eigenvalue decay of solutions to operator Lyapunov
equations, Systems & Control Letters, 73 (2014), pp. 42–47.
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approximation of the Koopman generator: Model reduction, system identification, and
control, Physica D: Nonlinear Phenomena, 406 (2020), p. 132416.

[19] B. O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proceedings of the
National Academy of Sciences, 17 (1931), pp. 315–318.

[20] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics,
Springer New York, New York, NY, 1994.
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