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ON THE TWO-PARAMETER MATRIX PENCIL PROBLEM∗

SATIN K. GUNGAH† , FAWWAZ F. ALSUBAIE‡ , AND IMAD M. JAIMOUKHA §

Abstract. The multiparameter matrix pencil problem (MPP) is a generalization of the one-
parameter MPP: given a set of m×n complex matrices A0, . . . , Ar , with m ≥ n+r−1, it is required
to find all complex scalars λ0, . . . , λr, not all zero, such that the matrix pencil A(λ) =

∑
r

i=0 λiAi

loses column rank and the corresponding nonzero complex vector x such that A(λ)x = 0. This
problem is related to the well-known multiparameter eigenvalue problem except that there is only
one pencil and, crucially, the matrices are not necessarily square. In this paper, we give a full
solution to the two-parameter MPP. Firstly, an inflation process is implemented to show that the
two-parameter MPP is equivalent to a set of three m2×n2 simultaneous one-parameter MPPs. These
problems are given in terms of Kronecker commutator operators (involving the original matrices)
which exhibit several symmetries. These symmetries are analysed and are then used to deflate

the dimensions of the one-parameter MPPs to m(m−1)
2

×
n(n+1)

2
thus simplifying their numerical

solution. In the case that m = n+1 it is shown that the two-parameter MPP has at least one solution

and generically n(n+1)
2

solutions and furthermore that, under a rank assumption, the Kronecker
determinant operators satisfy a commutativity property. This is then used to show that the two-
parameter MPP is equivalent to a set of three simultaneous eigenvalue problems. A general solution
algorithm is presented and numerical examples are given to outline the procedure of the proposed
algorithm.

Key words. multiparameter matrix pencil problem, two-parameter matrix pencil problem,
multiparameter eigenvalue problem, Kronecker product, Kronecker commutator operator, Kronecker
determinant, Kronecker canonical form.

AMS subject classifications. 15A22, 47A56, 47A80, 47A25, 15A69, 65F15, 15A18, 47B47

1. Notation. Upper case letters denote matrices while lower case letters denote
vectors or scalars. R and C denote the set of real and complex numbers, Rn and Cn

the sets of real and complex n-dimensional column vectors and Rm×n and Cm×n the
sets of real and complex m×n matrices, respectively. For A ∈ Cm×n, AT and rank(A)
denote transpose and rank, respectively. Ir and 0r×s denote the r× r identity matrix
and the r×s zero matrix, respectively, with the subscripts dropped when they can be
inferred from the context. The vector operator and Kronecker product are denoted
as vec (·) and ⊗, respectively, where we take vec(A) to be the vector of the stacked
columns of A. For x∈Cn we define x⊗2=x⊗ x and for all i≥2, x⊗(i+1)=x⊗ x⊗i. A
vector z∈Cnr

is called strongly decomposable if z=x⊗r for some x∈Cn.

2. Introduction. The multiparameter matrix pencil problem (MPP) of the form

(2.1)

(

r
∑

i=0

λiAi

)

x = 0, 0 6= λ =







λ0

...
λr






∈ C

r+1, 0 6= x ∈ C
n.

where Ai ∈ Cm×n, i = 0, . . . , r, are given (not necessarily square) matrices has re-
ceived increasing attention in recent years. In [9, 10], a technique based on gradient
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method is presented to solve a given multiparameter MPP, where local convergence
is proved under certain conditions. Numerical examples are given to illustrate the
proposed algorithm. Another gradient based algorithm was proposed in [38], where
the multiparameter MPP is posed as a structured matrix perturbations that cause
a specified system matrix to fail to have full column rank. In [23], the notion of
the generalized Jordan form and generating vector for the multiparameter MPP were
considered. Various numerical methods based on iterative algorithms have been dis-
cussed in [24]. In [25], a linearization process is performed on a given multiparameter
polynomial matrix to yield a multiparameter MPP with linear eigenvalues. The spec-
tral properties between the multiparameter polynomial MPP and the linear MPP is
studied. An iterative algorithm with minimal residual quotient and Newton shift is
outlined to the MPP in-hand. The problem was also considered in [31] where under
certain assumptions on the pencil in (2.1), they derive results concerning the number
of solutions in the generic case. In [2] the first order H2 optimal model reduction
problem was shown to be equivalent to a one-parameter MPP. In [1] the second order
H2 optimal model reduction problem was shown to be equivalent to a two-parameter
MPP, but no dedicated algorithms were given for its solution. In [3] it was shown that
the r-th order H2 optimal model reduction problem is equivalent to an r-parameter
MPP. Furthermore, a general approach was outlined for the numerical solution of
the r-parameter MPP, subject to some regularity assumptions. In [17] it is shown
that the low order least squares optimal realization of linear time-invariant dynam-
ical systems from given data can be posed as a multiparameter MPP. Similarly, it
is shown in [36] that globally optimal least-squares identification of autoregressive
moving-average models is equivalent to a multiparameter MPP. Both [17] and [36]
then propose solving this problem via the block Macaulay method. In [16] several
eigenvalue problems, including the multiparameter MPP, were considered. They use
shift-invariant subspaces and multi-dimensional realization algorithms to provide a
unified framework for solving these problems. In [35], two algorithms, based on the
block Macaulay matrix approach [17, 16], were proposed to transform the multipa-
rameter MPP into standard eigenvalue problems. The work in [20] uses a randomized
sketching approach and exploits the deflation technique in [3] to transform the multi-
parameter MPP to square multiparameter eigenvalue problems, see (2.2) below. They
then use available algorithms for the multiparameter eigenvalue problem to solve these
transformed MPPs.

The related multiparameter eigenvalue (MEV) problems of the form

(2.2)

(

r
∑

i=0

λiAij

)

xj = 0, λ0, λ1, . . . , λr ∈ C, 0 6= xj ∈ C
n, j = 1, . . . , r,

where the Aij ∈ Cn×n are given square matrices have received considerable attention
since the last century and during more recent years [4, 5, 18, 37, 6, 21]. Although
the multiparameter MPP we consider is different from the MEV problem, notably
in that the matrices are tall and there is only one pencil, certain aspects of these
problems are similar and we will use some of the machinery developed in [5] for the
solution of the MEV problem, suitably extended, to the non-square multi-parameter
MPP. In [13, 14, 15, 4, 5], multiparameter spectral theory was firstly introduced. This
involves the solution of a system of multiparameter linear eigenvalue problems of r-
tuples. It is shown that the root vectors [5] associated with a regular matrix pencil
is decomposable in terms of its right eigenvectors of the underlying multiparameter
system. Furthermore, the determinant operators associated with the regular pencil
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commute. In [8, 32, 26, 27, 12], the solvability, regularity, and further classification of
the multiparameter eigenvalue problem are discussed.

In this paper, we use our preliminary investigation in [3], which presents a theo-
retical study of the problem and its applications in the H2 optimal model reduction
problem [19, 7, 2, 1], to give a full solution to the two-parameter MPP. Section 3 gives
a statement of the problem. It then provides the solution of the problem with one less
matrix: for A,B ∈ Cm×n, the matrix pencil ν1A + ν2B loses rank if and only if the
Kronecker commutator ∆ = A⊗B−B⊗A loses rank and that the null space of ∆, if
nonempty, always contains a strongly decomposable vector. This result is then used
in an inflation process to prove that the two-parameter MPP is equivalent to a set of
three m2×n2 simultaneous one-parameter MPPs. These problems are given in terms
of Kronecker commutator operators in the form of ∆ defined above. These operators
exhibit several symmetries and these are analysed in detail in Section 4. Starting
with the commutation matrix introduced in [33] and the symmetric projection and
elimination matrices introduced in [29, 30], we define a skew-symmetric projection
matrix and three selection matrices. These are used to define two real orthogonal
sparse matrices. It is shown that all Kronecker commutator operators of a given
dimension can be block anti-diagonalized using these two matrices. Furthermore,
∆ loses rank if and only if one of the anti-diagonal blocks loses rank. This result
is then used in Section 5 to deflate the dimensions of the one-parameter MPPs to
m(m−1)

2 × n(n+1)
2 , thus simplifying their numerical solution. Section 6 deals with the

case m = n+1 showing that a solution to the two-parameter MPP always exists, and

that it generically has n(n+1)
2 solutions. It also establishes, under a rank assumption,

a commutativity property of the underlying deflated matrices, thus establishing that

the two-parameter MPP is equivalent to a set of three n(n+1)
2 × n(n+1)

2 simultaneous
eigenvalue problems. Section 7 then summarises the contribution of the paper by pre-
senting a solution algorithm and a few numerical examples to highlight the procedure
of the proposed algorithm. Future research directions towards extending our solution
approach to the general multiparameter MPP are outlined in Section 8. Finally our
conclusions appear in Section 9.

3. The Two-Parameter MPP. In this section, we define and give a general
solution to the two-parameter MPP:

Problem 3.1. Let A0, A1, A2 ∈ Cm×n be given where m > n and assume that

(3.1) rank









A0

A1

A2







 = n, rank
([

A0 A1 A2

])

= m.

Find all eigenvalues λ and the corresponding eigenvectors x such that

(3.2) (λ0A0 + λ1A1 + λ2A2)x = 0, 0 6= x ∈ C
n, 0 6= λ :=





λ0

λ1

λ2



∈ C
3,

where we do not distinguish between an eigenvalue λ and αλ for 0 6= α ∈ C and
between an eigenvector x and βx for 0 6= β ∈ C.

Remark 3.1. There is no loss of generality in making assumptions (3.1). If they
are not satisfied, we can, using unitary transformations, apply a column compression
[34] on the first (block column) matrix in (3.1) and/or a row compression on the
second (block row) matrix in (3.1), remove the zero columns and/or rows and get an
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equivalent pencil with smaller n and/or m. While our results are valid without these
assumptions, it is recommended to carry out the above procedure since the computa-
tional complexity of our solution increases rapidly with m and n. Note also that the
number of equations in (3.2) is m and the number of unknowns is n+1 (n−1 for
nontrivial x and 2 for nontrivial λ), hence our assumption that m>n: there are at
least as many equations as unknowns.

Before we give a solution to Problem 3.1, we investigate the one-parameter MPP.
We define the Kronecker commutator operator and investigate its properties. Further
properties of the commutator operator will be given in Section 4 below.

Theorem 3.2. Let A,B ∈ Cm×n and define the Kronecker commutator operator
∆ = A⊗B −B ⊗A ∈ Cm2×n2

. Then the following two statements are equivalent

(3.3) ∆z = 0, 0 6= z ∈ C
n2

.

(3.4) (ν1A+ ν2B)x = 0, 0 6= x ∈ C
n, 0 6=

[

ν1
ν2

]

∈ C
2.

Furthermore, if the null space N of ∆ is nonempty, it includes a nonzero strongly
decomposable vector. Finally, if N has dimension one, then

N = {αz : α ∈ C, z is strongly decomposable}.
Proof. The proof of (3.4)⇒(3.3) was derived in Theorem 4.1 in [3], but we include

it here for completeness. If Ax=0 or Bx=0, then (3.3) follows with z=x⊗ x, so we
can assume Ax 6=0 and Bx 6=0. By carrying out the manipulations

(

(ν1A+ ν2B)x
)

⊗(Bx) − (Bx)⊗
(

(ν1A+ ν2B)x
)

= 0,

and
(

(ν1A+ ν2B)x
)

⊗(Ax) − (Ax)⊗
(

(ν1A+ ν2B)x
)

= 0,

we get ν1∆x⊗2 = 0 and ν2∆x⊗2 = 0. Since ν1 and ν2 are not both zero, it follows
that ∆x⊗2 = 0 and this proves (3.3). Next, we prove (3.3)⇒(3.4) by constructing
ν1, ν2 and x ∈ Cn that satisfy (3.4). Taking the inverse vec(·) operation in (3.3):

BZAT −AZBT = 0, vec(Z) = z, 0 6= Z ∈ C
n×n.

Let Z have rank r where 1≤ r≤ n. Then Z =UV T for some U, V ∈Cn×r with full
column rank. It follows that BUV TAT−AUV TBT=0, which can be written as

(3.5)
[

BU −AU
] [

AV BV
]T

= 0.

Carrying out a row compression [34] on AV and applying it to BV we get:

(3.6) W
[

AV BV
]

=
r1

m−r1

[

S̃11 S̃12

0 S̃22

]

,

where r1 = rank(S̃11) = rank(AV ) ≤ r and where W ∈ C
m×m is nonsingular. Next,

we carry out a second row compression on S̃22 and apply it to (3.6):

(3.7)

[

Ir1 0

0 Ŵ

]

W
[

AV BV
]

=
r1

r2

m−r1−r2





S̃11 S̃12

0 Ŝ22

0 0



,

where r2 = rank(Ŝ22) = rank(S̃22) ≤ r and where Ŵ ∈ C(m−r1)×(m−r1) is nonsingular.
There are two cases to consider:
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1. If r1 + r2 ≤ r, then (3.7) shows that the pencil ν1AV +ν2BV is equivalent
to an (r1+r2) × r pencil, with r1+r2 ≤ r, and so has at least one solution
(and might have up to r finite solutions or a continuum of solutions). Let
(ν1AV +ν2BV )y=0 be any solution. Then setting x=V y 6=0 proves (3.4).

2. If r1 + r2 > r, we carry out a partitioning of (3.7) as follows:

(3.8)

[

Ir1 0

0 Ŵ

]

W
[

AV BV
]

=
r

r1+r2−r

m−r1−r2





S11 S12

0 S22

0 0



,

so that S22 has full row rank. It follows from (3.5) and (3.8) that

(3.9)
[

BU −AU
]

[

ST
11 0

ST
12 ST

22

]

= 0,

since W and Ŵ are nonsingular. Equation (3.9) allows us to derive two sets
of solutions to (3.4):
(a) The equation corresponding to the second column of (3.9) givesAUST

22 =
0. Since ST

22 has full column rank, there exists y 6= 0 such that ST
22y 6= 0.

Then, ν2 = 0, 0 6= ν1 ∈ C arbitrary and x = UST
22y 6= 0 satisfy (3.4).

(b) The equation corresponding to the first column of (3.9) gives

(3.10) BUST
11 −AUST

12 = 0,

where S11, S12 ∈Cr×r. Hence there exist ν1, ν2 ∈C, not both zero, and
0 6= y∈Cr, such that (ν1S

T
11+ν2S

T
12)y=0. Note that, by the sequential

row compression construction above, ST
11 and ST

12 have no common null
space, so that ST

11y=0⇒ST
12y 6=0. The remainder of the proof depends

on whether ST
11y=0:

i. If ST
11y 6= 0 so that ν2 6= 0, post-multiplying (3.10) by ν2y gives

ν2BUST
11y − ν2AUST

12y = 0.

Substituting −ν2S
T
12y = ν1S

T
11y gives (ν1A + ν2B)UST

11y = 0, and
defining x = UST

11y 6= 0 then gives (3.4).
ii. If ST

11y = 0, then ST
12y 6= 0, ν2 = 0 and ν1 6= 0. Post-multiplying

(3.10) by ν1y gives ν1AUST
12y = 0. Defining x = UST

12y 6= 0 then
gives (3.4). Note that in this case, A loses column rank.

This completes the proof that (3.3)⇒(3.4).
Next, we prove that ifN is nonempty, it includes a nonzero strongly decomposable

vector. Suppose N is nonempty so that ∆z = 0 for some 0 6= z ∈ Cn2

. Then (3.4) is
satisfied and the proof of (3.4)⇒(3.3) shows that ∆x⊗2 = 0, x 6= 0 and so x⊗2 ∈ N .
This also proves the last part.

Remark 3.2. Theorem 3.2 extends Theorems 6.3.1 and 6.3.2 in [5] to non-square
matrices. In the case that the one-parameter MPP in (3.4) has no solution, [11]
defines the notion of the nearest solvable one-parameter MPP in terms of the size of
matrix perturbations to A and B. A possible future research direction would be to use
our approach to extend this result to the multiparameter MPP.

Next, we use Theorem 3.2 to give a solution to Problem 3.1.
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Theorem 3.3. Let A0, A1, A2 ∈ Cm×n be as given in Problem 3.1 and define the
Kronecker commutator operators

(3.11) ∆0 :=A1⊗A2−A2⊗A1, ∆1 :=A2⊗A0−A0⊗A2, ∆2 :=A0⊗A1−A1⊗A0,

so that ∆0,∆1,∆2 ∈ Cm2×n2

. Then the m × n two-parameter MPP in (3.2) has a
solution if and only if the following three m2 × n2 one-parameter MPPs

(3.12) (λi∆j−λj∆i)z=0, (i, j)∈{(0, 1), (0, 2), (1, 2)}, 0 6=





λ0

λ1

λ2



∈C
3, 0 6=z∈C

n2

,

have a simultaneous solution. Hence, if the one-parameter MPPs in (3.12) have a
simultaneous solution then there exists a strongly decomposable vector 0 6= z = x⊗2

such that (λi∆j − λj∆i)x
⊗2 = 0, (i, j) ∈ {(0, 1), (0, 2), (1, 2)}, and (λ0, λ1, λ2) 6= 0

such that (λ0A0 + λ1A1 + λ2A2)x = 0.

Proof. First, we prove that (3.2)⇒(3.12). If A0x = 0, then by taking z = x⊗2,
µ1 = µ2 = 0 and any 0 6= µ0 ∈ C, it can be verified that (3.12) is satisfied. A similar
argument shows that (3.12) is satisfied if A1x = 0 or A2x = 0. Thus we can assume
that A0x 6= 0, A1x 6= 0 and A2x 6= 0. By carrying out the manipulation

(

(λ0A0 + λ1A1 + λ2A2)x
)

⊗(A2x) − (A2x) ⊗
(

(λ0A0 + λ1A1 + λ2A2)x
)

= 0,

and the same with subscripts 1 and 2 exchanged and 0 and 2 exchanged, we get

(λ0∆1 − λ1∆0)x
⊗2 = 0, (λ0∆2 − λ2∆0)x

⊗2 = 0, (λ1∆2 − λ2∆1)x
⊗2 = 0,

which gives (3.12) with z = x⊗2 6= 0.
Next, we prove that (3.12)⇒(3.2). We prove that if one of the MPPs in (3.12)

has a solution, say the first, then they all have a simultaneous solution such that (3.2)
is satisfied. Suppose that the first pencil in (3.12) has a solution so that

(

µ0(A0⊗A2−A2⊗A0)+µ1(A1⊗A2−A2⊗A1)
)

z=0,

[

µ0

µ1

]

6=0, z 6=0,

which can be written as

(

(µ0A0 + µ1A1)⊗A2−A2⊗(µ0A0 + µ1A1)
)

z=0,

[

µ0

µ1

]

6=0, z 6=0.

It follows from Theorem 3.2 (with A = µ0A0 + µ1A1 and B = A2) that there exists
ν1, ν2, not both zero, and x 6= 0 such that

(

ν1(µ0A0 + µ1A1) + ν2A2

)

x = 0.

Since ν1, ν2 are not both zero and µ0, µ1 are not both zero then λ0 := ν1µ0, λ1 :=
ν1µ1, λ2 := ν2 are not all zero and this proves (3.2). Furthermore, since (3.2) is
satisfied, the proof of (3.2)⇒(3.12) shows that (3.12) have a simultaneous solution
(λ0, λ1, λ2) and a strongly decomposable z=x⊗2. This proves (3.12)⇒(3.2).

Remark 3.3. The significance of Theorem 3.2 (specifically that the null space
of the Kronecker commutator always has a strongly decomposable element) is that
it allows us to capture all (and only) the solutions of the two-parameter MPP in
(3.12). In [3], a regularity assumption was needed to show that (3.12) captures only
the solutions of the two-parameter MPP Problem 3.1.
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4. The Kronecker Commutator and Anti-Commutator Operators. Since
the MPPs in Theorem 3.2 and Theorem 3.3 are given in terms of Kronecker commu-
tator operators of the form ∆ = A⊗B −B ⊗A for A,B ∈ Cm×n, we give a detailed
investigation of their properties in this section. This will be used in Section 5 to
highlight further properties of the one-parameter MPPs in Theorem 3.3 and simplify
the computation of their solution.

We start with the definition of the commutation matrix and the symmetric and
skew-symmetric projection matrices. The following lemma gives the definition and
presents some of their properties needed in our work.

Lemma 4.1. Let Kn denote the commutation matrix (first introduced in a different
form in [33], re-named and developed further in [28] and re-named again and defined
explicitly in the current form in [29, 30]) as

Kn=

n
∑

i=1

n
∑

j=1

(eni e
n
j
T )⊗ (enj e

n
i
T )=

n
∑

i=1

eni
T ⊗ In ⊗ eni =

n
∑

i=1

eni ⊗ In ⊗ eni
T ∈R

n2×n2

,

where eni denotes the ith column of In. Define the symmetric and skew-symmetric
projection matrices as

(4.1) Hn :=
1

2
(In2 +Kn) ∈ R

n2×n2

, Fn :=
1

2
(In2 −Kn) ∈ R

n2×n2

,

respectively. Then the following properties can be readily established from the defini-
tions and simple manipulations:

P.1
[

Kn Hn Fn
]

=
[

KnT HnT FnT
]

·

P.2





Kn

Hn

Fn





[

Kn Hn Fn
]

=





In2 HnKn FnKn

KnHn Hn 0
KnFn 0 Fn



=





In2 Hn −Fn

Hn Hn 0
−Fn 0 Fn



·

P.3 Hn + Fn = (Hn)2 + (Fn)2 = In2 .

The next property gives implicit definitions of the commutation, symmetric and skew-
symmetric projection matrices in term of their action on vec(Z), for any Z ∈ Cn×n:

P.4





Kn

Hn

Fn



 vec(Z) =





vec(ZT )
1
2vec(Z + ZT )
1
2vec(Z − ZT )



·

The following properties relate to the action on Kronecker products of any A,B ∈
Cm×n, the Kronecker commutator operator ∆ := A ⊗ B − B ⊗ A ∈ Cm2×n2

and the
Kronecker anti-commutator operator ∆̃ := A⊗B +B ⊗A ∈ Cm2×n2

:

P.5 Km(A⊗B)
[

Kn In2

]

= (B ⊗A)
[

In2 Kn
]

·

P.6





Km∆
Hm∆
Fm∆



 =





−∆Kn

∆Fn

∆Hn



,





Km∆̃

Hm∆̃

Fm∆̃



 =





∆̃Kn

∆̃Hn

∆̃Fn



·

P.7





Km

Hm

Fm



∆
[

Kn Hn Fn
]

=





−∆ −Fm∆Kn −Hm∆Kn

−Km∆Fn 0 2Hm(A⊗B)Fn

−Km∆Hn 2Fm(A⊗B)Hn 0



·
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Km

Hm

Fm



∆̃
[

Kn Hn Fn
]

=





∆̃ Hm∆̃Kn Fm∆̃Kn

Km∆̃Hn 2Hm(A⊗B)Hn 0

Km∆̃Fn 0 2Fm(A⊗B)Fn



·

Furthermore, suppose that z = vec(Z) ∈ Cn2

for any Z ∈ Cn×n. Then

(4.2) z = (Hn + Fn)z = Hnz + Fnz = zsym + zskew,

where,

(4.3) zsym = Hnz =
1

2
vec(Z + ZT ), zskew = Fnz =

1

2
vec(Z − ZT ),

are the symmetric and skew-symmetric parts of z, respectively. Finally, if z ∈ Cn2

is
in the null space of ∆, then so are zsym and zskew.

Proof. Properties P.1-P.3 follow from the definitions and simple manipulations
and Property P.4 gives the implicit definitions. Property P.5 is proved in [29, 30] and
gives Kn its name. Properties P.6 and P.7 follow from Property P.5 and the definitions
and simple manipulations. The proof of (4.2) and the expressions in (4.3) follow from
Property P.3 and the definitions in (4.1). Finally, suppose that ∆z = 0. Then

∆z = 0 ⇒ Hn∆z = 0, Fn∆z = 0,

⇒ ∆Fnz = 0, ∆Hnz = 0, (from P.6)

which proves that ∆zsym = 0 and ∆zskew = 0 from the definitions in (4.3).

For illustration, we give the commutation, symmetric and skew-symmetric pro-
jection matrices for n = 3 with the entries of Z being the labels for clarity:

K3=

11 21 31 12 22 32 13 23 33

11

21

31

12

22

32

13

23

33





























1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1





























, H3=

11 21 31 12 22 32 13 23 33

11

21

31

12

22

32

13

23

33





























1 0 0 0 0 0 0 0 0
0 1

2 0 1
2 0 0 0 0 0

0 0 1
2 0 0 0 1

2 0 0
0 1

2 0 1
2 0 0 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1

2 0 1
2 0

0 0 1
2 0 0 0 1

2 0 0
0 0 0 0 0 1

2 0 1
2 0

0 0 0 0 0 0 0 0 1





























,

F3 =

11 21 31 12 22 32 13 23 33

11

21

31

12

22

32

13

23

33





























0 0 0 0 0 0 0 0 0
0 1

2 0 − 1
2 0 0 0 0 0

0 0 1
2 0 0 0 − 1

2 0 0
0 − 1

2 0 1
2 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 1

2 0 − 1
2 0

0 0 − 1
2 0 0 0 1

2 0 0
0 0 0 0 0 − 1

2 0 1
2 0

0 0 0 0 0 0 0 0 0





























, Z =





11 12 13
21 22 23
31 32 33



·

The column and row labels denote the labels of the entries of Z in vec(Z).
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Next, we define three selection and two associated matrices. We also establish a
comprehensive list of their properties, some of which we will be using and others for
completeness since they may be of general interest.

Definition 4.2. Let Z ∈ C
n×n and let z = vec(Z) ∈ C

n2

. Let d(Z) ∈ C
n and

l(Z) ∈ Cn(n−1)/2 denote the vectors obtained from z by keeping only the diagonal and
strictly lower triangular elements of Z, in the same order they occur in z, respectively,
and let u(Z) ∈ Cn(n−1)/2 be the vector obtained from z by keeping only the strictly
upper triangular elements of Z, in the same order they occur in Knz.

Lemma 4.3. Let the diagonal, lower triangular and upper triangular selection ma-

trices Sn
D∈Rn×n2

, Sn
L∈R

n(n−1)
2 ×n2

and Sn
U ∈R

n(n−1)
2 ×n2

be defined such that

P.8





Sn
D

Sn
L

Sn
U



 vec(Z) =





d(Z)
l(Z)
u(Z)



·

Let epi denote the i-th column of Ip and for each 1≤j<i≤n let kij=(j−1)n+i−j(j+1)
2 .

Explicit definitions for the selection matrices are as follows:

Sn
D =

n
∑

i=1

eni ⊗ eni
T ⊗ eni

T
,

Sn
L =

n−1
∑

j=1

n
∑

i=j+1

e
n(n−1)/2
kij

⊗ enj
T ⊗ eni

T
,

Sn
U =

n−1
∑

j=1

n
∑

i=j+1

e
n(n−1)/2
kij

⊗ eni
T ⊗ enj

T
.

Then, the following properties are satisfied:

P.9 Pn :=





Sn
D

Sn
L

Sn
U



 is a permutation matrix satisfying

PnT
Pn = Sn

D
TSn

D+Sn
L
TSn

L+Sn
U
TSn

U =In2 ,

PnPnT =





Sn
D

Sn
L

Sn
U





[

Sn
D
T Sn

L
T Sn

U
T
]

=





In 0 0
0 In(n−1)/2 0
0 0 In(n−1)/2



.

P.10 Sn
D
TSn

D = ID, Sn
L
TSn

L = IL and Sn
U
TSn

U = IU where ID, IL and IU are
n2 × n2 diagonal matrices with zeros on the diagonals except for ones at the
locations corresponding to the diagonal, strictly lower triangular and strictly
upper triangular elements in vec(Z), respectively.

P.11





Sn
D

Sn
L

Sn
U



Kn =





Sn
D

Sn
U

Sn
L



·

P.12 Kn = Sn
D
TSn

D + Sn
L
TSn

U + Sn
U
TSn

L.

P.13 Sn
D

[

Hn Fn
]

= Sn
D

[

In2 0
]

.
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P.14 Sn
L

[

Hn Fn
]

= Sn
U

[

Hn −Fn
]

= 1
2

[

Sn
L + Sn

U Sn
L − Sn

U

]

.

Furthermore, define the associated matrices

(4.4) Sn :=





[ Sn
D√

2Sn
L

]

0

0
√
2Sn

U



∈R
n2×2n2

, T n :=







Sn
D

1√
2
(Sn

L+Sn
U )

1√
2
(Sn

L−Sn
U )






=:

[

Vn

Un

]

∈R
n2×n2

.

Then the following properties are satisfied:

P.15 T n =

[

Vn

Un

]

= Sn

[

Hn

−Fn

]

=





[ Sn
D√
2Sn

L

]

Hn

−
√
2Sn

UFn



·

P.16 T nT nT = T nT T n = In2 .

Proof. Property P.8 expresses the implicit definitions of the selection matrices.
The explicit definitions of Sn

D, Sn
L and Sn

U are slight modifications to those of the
elimination matrix in [30] which selects the lower triangular (rather than the strictly
lower) part of Z. Property P.9 follows since Pnz is simply a rearrangement of the
elements of z. We prove the second statement of Property P.10 as the proof of the
others is similar. Starting from the explicit definition of Sn

L:

Sn
L
T
Sn
L =

n−1
∑

q=1

n
∑

p=q+1

n−1
∑

j=1

n
∑

i=j+1

(

(

e
n(n−1)/2
kpq

)T

⊗ enq ⊗ enp

)

(

e
n(n−1)/2
kij

⊗ enj
T ⊗ eni

T
)

=
n−1
∑

q=1

n
∑

p=q+1

n−1
∑

j=1

n
∑

i=j+1

(

(

e
n(n−1)/2
kpq

)T

e
n(n−1)/2
kij

)

⊗
(

enq ⊗ enp
)

(

enj
T⊗ eni

T
)

.

The first term in the summation is a scalar and is equal to 1 if and only if kpq = kij ,
and zero otherwise. Setting p = i and q = j we get

Sn
L
TSn

L =
n−1
∑

j=1

n
∑

i=j+1

(

enj ⊗ eni
)

(

enj
T ⊗ eni

T
)

=
n−1
∑

j=1

n
∑

i=j+1

(

en
2

kij

)(

en
2

kij

)T

,

which is a diagonal matrix with ones at the kij locations along the diagonal, and zero
otherwise, which proves the property. Property P.11 states that the diagonal elements
of Z and ZT are the same and that the strictly lower (resp., upper) triangular elements
of Z are the same as the strictly upper (resp., lower) triangular elements of ZT .
Property P.12 (which follows by pre-multiplying Property P.11 by

[

Sn
D
T Sn

L
T Sn

U
T
]

and using Property P.9) shows that Kn can be defined in terms of the selection
matrices: to transpose a square matrix, we swap the lower and upper triangular
parts. That is, we select the different parts, swap the lower and upper parts and then
undo the permutation, so that,

Kn=
[

Sn
D
T Sn

L
T Sn

U
T
]





In 0 0
0 0 In(n−1)/2
0 In(n−1)/2 0









Sn
D

Sn
L

Sn
U



·

Property P.13 states that the diagonal elements of Z and 1
2 (Z+ZT ) are the same and

that the diagonal elements of 1
2 (Z−ZT ) are zero. Property P.14 states that the lower
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and upper triangular elements of 1
2 (Z + ZT ) are the same while those of 1

2 (Z − ZT )
are the negatives of each other. Property P.15 follows from Properties P.13 and P.14
and direct evaluation. Finally, Property P.16 follows from Property P.9 and a direct
evaluation using the expression for T n in (4.4).

For illustration, we give the selection matrices for n = 4 with the entries of Z
being the labels for clarity:

Z =









11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44









,





Sn
D

Sn
L

Sn
U



 =

11 21 31 41 12 22 32 42 13 23 33 43 14 24 34 44

11

22

33

44

21

31

41

32

42

43

12

13

14

23

24

34

























































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

























































·

The column labels denote the labels of the entries of Z in vec(Z). The row labels
denote the labels of the entries of Z in d(Z), l(Z) and u(Z), respectively.

Remark 4.1. It is straightforward to use the examples above to illustrate the prop-
erties enumerated in Lemmas 4.1 and 4.3. Note that a combination of Sn

D and Sn
L in

different order was introduced in [30] as the elimination matrix as it eliminates the
strictly upper triangular part. For our purposes, we separate them and introduce Sn

U .

The matrices Kn, Hn, Fn, Sn
D, Sn

L and Sn
U give us a set of transformations that

we can apply to vectors of the form vec(Z) in order to effect the manipulations on the
matrix Z equivalent to transposing, decomposing into symmetric and skew-symmetric
parts, and selecting the diagonal, strictly lower and strictly upper triangular parts,
respectively. Using these tools, we are ready to state the main result of this section.

Theorem 4.4. Let m and n be integers and let all variables be as defined in
Lemma 4.1 and Lemma 4.3. For any A,B∈Cm×n, let ∆:=A⊗ B−B ⊗ A∈Cm2×n2

and ∆̃ := A⊗B+B⊗A ∈ Cm2×n2

be the Kronecker commutator and anti-commutator
operators, respectively. Then

1. ∆ can be block anti-diagonalized using orthogonal transformations as follows

T m∆T nT =

[

Vm

Um

]

∆
[

VnT UnT
]

=

n(n+1)
2

n(n−1)
2

m(m+1)
2

m(m−1)
2

[

0 ∆12

∆21 0

]

,
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and ∆̃ := A⊗B+B⊗A ∈ Cm2×n2

can be block diagonalized using the same
orthogonal transformations as follows:

T m∆̃T nT =

[

Vm

Um

]

∆̃
[

VnT UnT
]

=

n(n+1)
2

n(n−1)
2

m(m+1)
2

m(m−1)
2

[

∆̃11 0

0 ∆̃22

]

,

where the partitioning of T m and T n is defined in (4.4) and where
[

∆̃11 ∆12

∆21 ∆̃22

]

=

[

Vm∆̃VnT Vm∆UnT

Um∆VnT Um∆̃UnT

]

=

[

2Vm(A⊗B)VnT 2Vm(A⊗B)UnT

2Um(A⊗B)VnT 2Um(A⊗B)UnT

]

·

2. Suppose that the null space of ∆21 is nonempty. Then it includes a vector

(4.5) y = Vnx⊗2,

for some 0 6= x ∈ Cn with VnT y = x⊗2.
3. ∆ has full column rank if and only if ∆21 has full column rank.

Proof.
1. We will prove the result for ∆ only as the proof for ∆̃ is similar. The orthog-

onality of T m and T n follows from Property P.16. Using Properties P.1, P.7
and P.15 we have

T m∆T nT=Sm

[

Hm

−Fm

]

∆
[

Hn −Fn
]

SnT=Sm

[

0 −Hm∆Fn

−Fm∆Hn 0

]

ST
n

=





[ Sm
D√
2Sm

L

]

0

0
√
2Sm

U





[

0 −Hm∆Fn

−Fm∆Hn 0

]





[ Sn
D√

2Sn
L

]

0

0
√
2Sn

U





T

,

which gives the result by a direct evaluation using (4.4). The equality of the
two expressions for both ∆21 and ∆12 follows from Property P.7.

2. Suppose that ∆21 loses column rank. Then ∆ loses column rank and it follows
from Theorem 3.2 that there exists 0 6=x∈Cn such that ∆x⊗2=0. Therefore,

∆x⊗2=0 ⇒ T m∆T nTT nx⊗2=0 ⇒
[

0 ∆12

∆21 0

]





[ Sn
D√
2Sn

L

]

Hnx⊗2

−
√
2Sn

UFnx⊗2



=0

⇒
[

0 ∆12

∆21 0

][

Vnx⊗2

0

]

=0 ⇒ ∆21Vnx⊗2=0,(4.6)

where we used the fact that since x⊗2 is symmetric, Fnx⊗2=0. This proves
the first equality in (4.5) by defining y = Vnx⊗2 6= 0. The second equality
follows by pre-multiplying the first by VnT and the orthogonality of T n.

3. It is clear that ∆21 has full column rank if ∆ has full column rank. Let ∆21

have full column rank and suppose on the contrary that ∆ loses column rank.
It follows from Theorem 3.2 there exists 0 6=x∈Cn such that ∆x⊗2=0. This
implies that ∆21 loses column rank from (4.6), thus proving the result.

Remark 4.2. While the permutation approach in [3] can be adapted to give a proof
of the theorem, we have opted for the selection matrices approach as it is more specific
to the two-parameter MPP and is more relevant to the familiar Kronecker commutator
and anti-commutator operators. While we only use Kronecker commutator operators
in this work, we have included the corresponding results for anti-commutator operators
for completeness and since they may be of interest in other fields.
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5. Deflation Scheme for the Two-Parameter MPP. In this section, we
use the Kronecker commutator properties derived in Section 4 to present a deflation
scheme for the one-parameter MPPs in (3.12) by removing redundant equations and
exploiting the special structure of the matrices and eigenvector.

Theorem 4.4 shows that the rank properties of the m2×n2 Kronecker commutator

operator ∆ are effectively captured by the rank properties of the m(m−1)
2 × n(n+1)

2 anti-
diagonal block ∆21. The next result uses this to deflate the m2 × n2 one-parameter

MPPs in Theorem 3.3 to equivalent m(m−1)
2 × n(n+1)

2 MPPs.

Theorem 5.1. Let all variables be as defined in Theorem 3.3 and Theorem 4.4

and let m̃ = m(m−1)
2 and ñ = n(n+1)

2 . Define the Kronecker determinants

Γ0 = 2Um(A1⊗A2)VnT = Um∆0VnT

Γ1 = 2Um(A2⊗A0)VnT = Um∆1VnT(5.1)

Γ2 = 2Um(A0⊗A1)VnT = Um∆2VnT

so that Γi ∈ C
m̃×ñ for i = 0, 1, 2. Then the m2 × n2 one-parameter MPPs in (3.12)

have a simultaneous solution (equivalently, the m × n two-parameter MPP in Prob-
lem 3.1 has a solution) if and only if the following three m̃× ñ one-parameter MPPs

(5.2) (λiΓj−λjΓi)y=0, (i, j) ∈ {(0, 1), (0, 2), (1, 2)}, 0 6=





λ0

λ1

λ2



∈C
3, 0 6=y∈C

ñ,

have a simultaneous solution.

Proof. The matrix pencils in (3.12) are equivalent to

T m(λi∆j−λj∆i)T nTT nz=0, (i, j) ∈ {(0, 1), (0, 2), (1, 2)}.

By Theorem 4.4, the matrices T m∆iT nT , i = 0, 1, 2, have the form

T m∆iT nT =

[

0 ⋆

Γi 0

]

, Γi ∈ C
m̃×ñ,

where ⋆ denotes terms whose expressions are not needed in the present context. Thus
the matrix pencils in (3.12) are equivalent to the following pencils:

[

0 ⋆

λiΓj−λjΓi 0

]

T nz = 0, (i, j) ∈ {(0, 1), (0, 2), (1, 2)}.

This shows that if (5.2) has a solution 0 6= λ = (λ0, λ1, λ2) and 0 6= y ∈ Cñ, then
(3.12) has a solution λ = (λ0, λ1, λ2) and

0 6= z = T nT

[

y

0

]

= VnT
y ∈ C

n2

.

Suppose now that (3.12) has a solution 0 6= λ = (λ0, λ1, λ2) and 0 6= z ∈ Cn2

. Then it
follows from the last part of Theorem 3.3 that there exists a strongly decomposable
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eigenvector 0 6= x⊗2 ∈ Cn2

satisfying (3.12). Now, Property P.15 implies that

T nx⊗2 =





[ Sn
D√
2Sn

L

]

Hn

−
√
2Sn

UFn



x⊗2

=





[ Sn
D√
2Sn

L

]

Hnx⊗2

−
√
2Sn

UFnx⊗2





=

[

Vnx⊗2

0

]

=:

[

y

0

]

,

since Fnx⊗2 = 0 as x⊗2 is symmetric. Therefore, for (i, j) ∈ {(0, 1), (0, 2), (1, 2)},

T m(λi∆j−λj∆i)T nTT nx⊗2 =

[

0 ⋆

λiΓj−λjΓi 0

][

y

0

]

=

[

0
(λiΓj−λjΓi)y

]

= 0,

which proves that (5.2) has a solution λ = (λ0, λ1, λ2) and 0 6= y ∈ Cñ. It follows
that the m× n two-parameter MPPs in (3.2) have a solution if and only if the m̃× ñ

one-parameter MPPs in (5.2) have a solution.

6. The Solution of the Two-Parameter MPP when m = n + 1. The
number of unknowns in Problem 3.1 is n + 1 and the number of equations is m

(see Remark 3.1). Thus when m = n + 1, the number of equations is equal to the
number of unknowns, and it might be expected that the problem always has at least
one solution. The next result shows that this is the case. Furthermore, it shows
that, under a certain rank condition on the Kronecker determinants, the set of linked
matrix pencils in (5.2) can be decoupled and their solution reduces to finding the
simultaneous eigenvectors of a set of three commuting matrices [22].

Theorem 6.1. With everything as defined in Theorem 5.1, suppose that m =
n+1. Then the one-parameter MPPs in (5.2) (and therefore the (n+1) × n two-
parameter MPP in Problem 3.1) have at least one simultaneous solution, and gener-
ically ñ solutions. Furthermore, suppose that there exist α0, α1, α2 ∈ C such that
Γ:=α0Γ0+α1Γ1+α2Γ2 is nonsingular. Then

1. Γ−1Γ0, Γ−1Γ1 and Γ−1Γ2 commute.
2. The solutions of the (n+1)×n two-parameter MPP in Problem 3.1 are given

by the simultaneous solutions of the three ñ× ñ eigenvalue problems

(6.1) (λiIñ − Γ−1Γi)y = 0, i = 0, 1, 2, 0 6= y ∈ C
ñ.

Proof. If m = n + 1, then m̃ = ñ and the Kronecker determinants in (5.2) are
therefore square. Consider one of the pencils in equations (5.2), say the first one:
(λ0Γ1 − λ1Γ0)y = 0. We first show that this always has a nontrivial solution. If Γ0

is singular, then we can take λ0 = 0, λ1 an arbitrary complex number and y 6= 0
can be chosen to be any vector in the null space of Γ0 so that Γ0y = 0. If Γ0 is
nonsingular, then pre-multiplying by Γ−1

0 shows that the pencil is equivalent to the
eigenvalue problem (λ0Γ

−1
0 Γ1−λ1Iñ)y = 0. Then we can take λ0 = 1 and λ1 and y any

eigenvalue-eigenvector pair for Γ−1
0 Γ1. Thus the pencil always has a nontrivial solution

(and generically ñ nontrivial solutions). It follows from the proof of Theorem 5.1 that
(λ0∆1 − λ1∆0)z = 0 has at least one nontrivial solution with z = VnT y 6= 0. It then
follows from the proof of Theorem 3.3 that the two-parameter MPP in Problem 3.1
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has at least one nontrivial solution (and generically ñ nontrivial solutions) and that
the pencils in (3.12) (and therefore the pencils in (5.2)) have at least one nontrivial
simultaneous solution (and generically ñ nontrivial simultaneous solutions).

Suppose now that Γ is nonsingular.
1. To prove the commutativity relations, define the linear map

L :=
[

(A0⊗In)VnT (A1⊗In)VnT (A2⊗In)VnT
]

∈ C
(nm)×(3ñ),

and the subspace

(6.2) Y :=











y0
y1
y2



: yi ∈ C
ñ, L





y0
y1
y2



 = 0







.

Since the number of rows of the linear map L in (6.2) is nm = n(n+1) = 2ñ
(see assumptions (3.1)) and since Y is the null space of L, then

(6.3) dimY ≥ 3ñ− 2ñ = ñ.

Let Knm∈R
nm×nm be the commutation matrix [29] satisfying Knm(Ai⊗In)=

(In⊗Ai)Kn, where Kn is defined in Lemma 4.1. Pre-multiplying the equation
in (6.2) by Knm and using the fact that KnVnT=VnT from the definition of
Vn in (4.4) and Property P.2 gives

(6.4)

[

(A0⊗In)VnT (A1⊗In)VnT (A2⊗In)VnT

(In⊗A0)VnT (In⊗A1)VnT (In⊗A2)VnT

]





y0
y1
y2



=0, ∀





y0
y1
y2



∈Y.

Pre-multiplying the first block row of (6.4) by Um(Im ⊗A2) and the second
by Um(A2 ⊗ Im) and subtracting gives

Um ((A0 ⊗A2)−(A2 ⊗A0))VnTy0+Um ((A1 ⊗A2)−(A2 ⊗A1))VnTy1=0,

and repeating with A1 and A0, we get the Kronecker determinant equations

(6.5)
Γ1y0 = Γ0y1,

Γ2y0 = Γ0y2,

Γ2y1 = Γ1y2,

from the definitions in (3.11) and (5.1). Thus, every vector
[

yT0 yT1 yT2
]T

in Y satisfies the Kronecker determinant equations in (6.5). It follows that

(6.6) Y⊆Ȳ :=











ȳ0
ȳ1
ȳ2



: ȳi∈C
ñ,

Γ1ȳ0=Γ0ȳ1
Γ2ȳ0=Γ0ȳ2
Γ2ȳ1=Γ1ȳ2







.

Let
[

ȳT0 ȳT1 ȳT2
]T∈Ȳ . Then

Γiȳj = Γj ȳi, i, j = 0, 1, 2.

Multiplying this by αi and summing over i for each j:

(6.7) Γȳ0 = Γ0ȳ, Γȳ1 = Γ1ȳ, Γȳ2 = Γ2ȳ,
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where ȳ = α0ȳ0 + α1ȳ1 + α2ȳ2. Pre-multiplying the three equations in (6.7)
by Γ−1 gives

(6.8) ȳ0 = Γ−1Γ0ȳ, ȳ1 = Γ−1Γ1ȳ, ȳ2 = Γ−1Γ2ȳ.

Thus, every vector
[

ȳT0 ȳT1 ȳT2
]T

in Ȳ satisfies (6.8). It follows that

(6.9) Y ⊆ Ȳ ⊆ ¯̄Y :=











¯̄y0
¯̄y1
¯̄y2



=





Γ−1Γ0

Γ−1Γ1

Γ−1Γ2



¯̄y : ¯̄y∈C
ñ







.

Now it is clear that dim ¯̄Y ≤ ñ and so it follows from (6.3) that

ñ ≤ dimY ≤ dim Ȳ ≤ dim ¯̄Y ≤ ñ,

and so ñ = dimY = dim Ȳ = dim ¯̄Y = ñ. It follows that

(6.10) Y = Ȳ = ¯̄Y.

Next, we prove the first commutativity result: Γ−1Γ1Γ
−1Γ0 = Γ−1Γ0Γ

−1Γ1.
For any y ∈ Cñ, let

(6.11) y0 = Γ−1Γ0y, y1 = Γ−1Γ1y, y2 = Γ−1Γ2y,

so that
[

yT0 yT1 yT2
]T ∈ ¯̄Y. Since ¯̄Y = Ȳ, it follows from (6.6) that

(6.12) Γ1y0 = Γ0y1, Γ2y0 = Γ0y2, Γ2y1 = Γ1y2.

Pre-multiplying the first equation in (6.11) by Γ1 and the second by Γ0 gives

Γ1Γ
−1Γ0y = Γ1y0, Γ0Γ

−1Γ1y = Γ0y1,

and using the first equation in (6.12) gives Γ1Γ
−1Γ0y = Γ0Γ

−1Γ1y. Since this
is satisfied for all y ∈ Cñ it follows that Γ1Γ

−1Γ0 = Γ0Γ
−1Γ1. Pre-multiplying

by Γ−1 then proves the first commutativity result. The proof of the other
commutativity results is similar (simply change the indices) and therefore
omitted.

2. Note that since Γ−1Γ0,Γ
−1Γ1 and Γ−1Γ2 commute, then (6.1) have simulta-

neous solutions and can be simultaneously upper triangularized using a joint
Schur decomposition; see Chapter 4 of [22] for more details. Next, we prove
that (3.2)⇒(6.1). Now, (3.2) implies that

[

A0⊗In A1⊗In A2⊗In
]





λ0x
⊗2

λ1x
⊗2

λ2x
⊗2



=0.

Since x⊗2 is symmetric, x⊗2 = VnT y for some 0 6= y ∈ Cñ. It follows that

[

(A0⊗In)VnT (A1⊗In)VnT (A2⊗In)VnT
]





λ0y

λ1y

λ2y



=0,



ON THE TWO-PARAMETER MATRIX PENCIL PROBLEM 17

and it follows from (6.2) and (6.6) that





y0
y1
y2



 :=





λ0y

λ1y

λ2y



∈ Y ⊆ Ȳ ,

and so it follows from (6.7) that

λ0Γy = αΓ0y, λ1Γy = αΓ1y, λ2Γy = αΓ2y,

where α = α0λ0 + α1λ1 + α2λ2. Since y 6= 0, Γ is non-singular and not all
the λis are zero, then α 6= 0. Pre-multiplying by Γ−1 proves (6.1) since we
do not distinguish between eigenvalues λ and αλ for α 6= 0.
Next, we prove (6.1)⇒(3.2). Let y 6=0 satisfy (6.1). Then (6.9) implies that





y0
y1
y2



 :=





λ0y

λ1y

λ2y



 =





Γ−1Γ0

Γ−1Γ1

Γ−1Γ2



y ∈ ¯̄Y.

It follows from (6.10) and (6.2) that

[

(A0⊗In)VnT (A1⊗In)VnT (A2⊗In)VnT
]





y0
y1
y2



=0,

which is equivalent to

[

A0⊗In A1⊗In A2⊗In
]





λ0VnT y

λ1VnT y

λ2VnT y



=0.

It follows that

(6.13) ((λ0A0 + λ1A1 + λ2A2)⊗ In) z = 0, z := VnT
y 6= 0.

This implies that λ0A0+λ1A1+λ2A2 loses column rank and (3.2) follows. If
z is strongly decomposable so that z = x⊗2, then x solves (3.2). Otherwise,
x can be chosen as any vector in the null space of λ0A0 + λ1A1 + λ2A2.

Remark 6.1. As mentioned in the introduction, we use some of the machinery
developed in [5] for the solution of the MEV problem in (2.2). The commutation
results in Part 1 of our Theorem 6.1 correspond to Theorem 6.7.2 in [5] and their
proof follows a similar method of proof while Part 2 corresponds to Theorems 6.6.1
and 6.8.1 in [5]. Note also that the non-singularity of Γ allows us to directly go from
Problem 3.1 to the solution in (6.1).
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7. Solution Algorithm and Examples. By way of summarizing our results,
we present Algorithm 7.1 for the solution of the two-parameter MPP in Problem 3.1.
We also present three examples that illustrate and clarify our solution algorithm.

Algorithm 7.1 Computation of all solutions of the two-parameter MPP if they exist

Input: Matrices A0, A1, A2∈Cm×n

//∗ as described in Problem 3.1, with m≥n+1. ∗//
1: Evaluate the sparse matrices Um and Vn defined in (4.4).
2: Evaluate the matrices Γ0,Γ1,Γ2 using either of the expressions in (5.1) where

∆0,∆1,∆2 are defined in (3.11).
3: if (m=n+ 1) then //∗ Problem 3.1 has a solution. ∗//
4: if Γ:=α0Γ0+α1Γ1+α2Γ2 is nonsingular for some α0, α1, α2∈C then

5: Find all solutions λ(p)=(λ
(p)
0 , λ

(p)
1 , λ

(p)
2 ) and y(p), p = 1, . . . , k ≤ ñ := n(n+1)

2 ,
to the simultaneous eigenvalue problems in (6.1) using e.g. the joint upper
triangular Schur form approach [22].

6: else

7: Find all solutions λ(p) = (λ
(p)
0 , λ

(p)
1 , λ

(p)
2 ) and y(p), p = 1, . . . , k ≤ ñ, to the

one-parameter simultaneous MPPs in (5.2) using e.g. [34].
8: end if

9: if VnT y(p) is strongly decomposable so that VnT y(p) = x(p) ⊗ x(p) then

10: x(p) is the eigenvector.
11: else

12: Choose x(p) to be in the null space of λ
(p)
0 A0 + λ

(p)
1 A1 + λ

(p)
2 A2.

13: end if

14: else //∗ (m > n+ 1) and Problem 3.1 has a solution if and only if (5.2) has
a simultaneous solution. ∗//

15: if (5.2) has a simultaneous solution then

16: Find all solutions λ(p) = (λ
(p)
0 , λ

(p)
1 , λ

(p)
2 ) and y(p), p = 1, . . . , k ≤ ñ, to the

one-parameter simultaneous MPPs in (5.2) using e.g. [34].
17: if VnT y(p) is strongly decomposable so that VnT y(p) = x(p) ⊗ x(p) then

18: x(p) is the eigenvector.
19: else

20: Choose x(p) to be in the null space of λ
(p)
0 A0 + λ

(p)
1 A1 + λ

(p)
2 A2.

21: end if

22: end if

23: end if

Output: (λ(1), x(1)), . . . , (λ(k), x(k)) or no solution.

Remark 7.1. With reference to line 1, note that, while Um and Vn contain a
√
2

factor (see (4.4)), this factor can be removed using diagonal scaling and, since Kn and
Km are sparse (0,1) matrices, the matrices Um and Vn are sparse (0, 1) compression
matrices, which is computationally useful when the dimensions m and n are large.
More formally, we can replace the definition of Um and Vn in (and only in) (5.1) by

−2Sm
U Fm and

[

Sn
D

2Sn
L

]

Hn, respectively.

Remark 7.2. With reference to line 2 regarding the numerical evaluation of Kron-
ecker determinants in (5.1), note that in [3, Chapter 4.3], using the fact that Um and
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Vn are effectively (0, 1) sparse compression matrices and using an element-by-element
expression for Aj ⊗Ak, two algorithms were presented for evaluating the expressions
depending on the available memory and computation time.

Remark 7.3. With reference to line 4, we are not aware of any literature for
determining whether there exists a linear combination of three general square complex
matrices which is nonsingular or any efficient algorithms for determining such a com-
bination if it exists. In Example 1 we used a simple search algorithm. In Example 2,
we determined that such a combination does not exist from the special structure of the
matrices. Investigating this issue in the general case is a future research direction.

Remark 7.4. With reference to line 6, that is when Γ = α0Γ0 + α1Γ1 + α2Γ2 is
singular for all α0, α1, α2 ∈ C, then we do not have a commutativity property and we
must use Theorem 5.1 for the solution. Nevertheless, it is shown in Theorem 5.1 that
the solutions have simultaneous eigenvectors. This suggests some partial commutativ-
ity properties. Furthermore, with reference to line 14, that is, when m > n+ 1, it is
not known whether Γ (which is now a long matrix) having a full column rank implies
any commutativity properties. Investigating these issues is a future research direction.

7.1. Example 1. This example presents a 4× 3 two-parameter MPP. Let

A0 =









2 3 1
2 2 2
4 4 3
5 5 4









, A1 =









3 3 1
1 2 2
2 3 3
4 2 4









, A2 =









3 1 2
3 3 3
3 4 4
4 4 5









·

Since m = n+1, then using step 3 of Algorithm 7.1, and ignoring the
√
2 term in Um

and Vn following Remark 7.1, the Kronecker determinant matrices are:

Γ0=

















12 14 −2 22 8 12
6 18 −4 20 4 14
0 20 −6 28 −2 22

−6 −2 −2 −10 −10 −4
−16 4 −4 −12 −22 0
−8 8 −2 −4 −12 6

















, Γ1=

















0 −14 2 −14 2 −12
12 −16 4 −2 12 −10
14 −14 6 0 16 −10
12 8 2 20 14 10
14 14 4 28 18 18
−2 8 2 6 0 8

















,

Γ2=

















−8 0 0 −10 −6 0
−16 −6 0 −24 −10 −2
−14 −18 0 −28 −10 −6

0 −4 0 −4 −2 −4
6 −12 0 −6 4 −12

12 −14 0 −2 10 −10

















·

Since Γ0 is nonsingular, then we can use Theorem 6.1 (see step 4 of Algorithm 7.1)
to get all 6 (= ñ) eigenvalues λ as











1
−1
0



,





1
−0.0674
0.2755



,





1
1.1714

−1.5777



,





1
−0.8627− 0.1011i
1.2215− 0.8717i



,





1
−0.8627+0.1011i
1.2215+0.8717i



,





1
−1.1025
0.0630











·
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7.2. Example 2. This example presents a 3 × 2 two-parameter pencil with a
continuum of solutions and demonstrates that m ≥ n+1 is only a necessary condition
for a zero-dimensional solution set. Let

A0 =





1 0
4 0
7 0



, A1 =





2 0
5 0
8 0



, A2 =





3 0
0 6
9 0



·

Note that A0 and A1 have zero second columns, so there is a continuum of solutions

λ0 and λ1 arbitrary, λ2 = 0 and x =
[

0 1
]T

. In this example m = n + 1, then
using step 3 of Algorithm 7.1, the Kronecker determinants are

Γ0 =





−30 0 24
−12 0 0
90 0 −96



, Γ1 =





24 0 −12
24 0 0

−72 0 84



, Γ2 =





−6 0 0
−12 0 0
−6 0 0



·

Note that the three Kronecker determinants have a zero second column and so α0Γ0+
α1Γ1 +α2Γ2 is singular for all α0, α1, α2 ∈ C and we need to use Theorem 5.1, which
follows from Theorem 3.3 (see step 6 of Algorithm 7.1). Solving (λiΓj − λjΓi)y = 0,
(i, j) ∈ {(0, 1), (0, 2), (1, 2)} by reducing the pairs {Γi,Γj} to the Kronecker Canonical
Form [34] or otherwise, we get the two simultaneous solutions:

λ(1)=





⋆

⋆

0



, y(1)=





0
1
0



, z(1)=









0
0
0
1









=

[

0
1

]

⊗
[

0
1

]

⇒ x(1)=

[

0
1

]

,

λ(2)=





1
−2
1



, y(2)=





1
a

1



, z(2)=









1
1
1
a









=

[

1
1

]

⊗
[

1
1

]

⇒ x(2)=

[

1
1

]

,

where ⋆ denotes an arbitrary complex number and where we have normalised the
second eigenvalue such that λ0 = 1. The second eigenvector y(2) has an arbitrary
entry, denoted as a. Theorem 3.3 (via Theorem 3.2) guarantees that there exists
a strongly decomposable z(2) = VnT y(2); choosing a = 1 ensures z(2) is strongly
decomposable. Note that we get all the solutions using Theorem 5.1, Theorem 3.3
and Theorem 3.2 even though α0Γ0 + α1Γ1 + α2Γ2 is singular for all α0, α1 and α2.

7.3. Example 3. This example presents a 4× 2 two-parameter pencil. Let

A0 =









2 4
6 0
0 2
6 0









, A1 =









1 0
0 1
0 0
0 0









, A2 =









0 0
2 0
0 2
2 0









·

In this example m > n + 1, then using our approach in Theorem 5.1, which follows
from Theorem 3.3 (see step 14 of Algorithm 7.1):

Γ0 =

















4 0 0
0 0 4
4 0 0
0 4 0
0 0 4
0 0 0

















, Γ1 =

















−8 0 −16
0 −16 −8

−8 0 −16
0 0 −16
0 0 0
0 0 16

















, Γ2 =

















−12 8 4
0 0 −4

−12 0 0
0 −4 0
0 0 −12
0 0 0

















·
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Solving (λiΓj−λjΓi)y = 0, (i, j) ∈ {(0, 1), (0, 2), (1, 2)} by reducing the pairs {Γi,Γj}
to the Kronecker Canonical Form, we get the single simultaneous solution:

λ =





1
−2
−3



, y =





1
0
0



, z =









1
0
0
0









=

[

1
0

]

⊗
[

1
0

]

, ⇒ x =

[

1
0

]

·

8. The Multiparameter MPP. In the previous sections, we presented the
solution of the two-parameter MPP. By way of outlining our future research directions,
we summarize in this section the known results about the r-parameter MPP for r>2:
given (r+1) matrices A0, . . . , Ar∈Cm×n, with m≥n+r−1, assume that

rank













A0

...
Ar












= n, rank

([

A0 · · · Ar

])

= m.

Find all eigenvalues λ and the corresponding eigenvectors x such that (2.1) is satisfied.
Our preliminary work in [3] gives the following result:

Theorem 8.1. For i = 0, . . . , r, define the Kronecker commutator operators

∆i =

∣

∣

∣

∣

∣

∣

∣







A0 · · · Ai−1 Âi Ai+1 · · · Ar

...
...

...
...

...
...

...

A0 · · · Ai−1 Âi Ai+1 · · · Ar







∣

∣

∣

∣

∣

∣

∣

⊗

∈ C
mr×nr

,

where Âi indicates column deletion and where the matrix defining ∆i has r identical
block rows. Then

(a)

(

r
∑

i=1

λiAi

)

x=0, 0 6=







λ1

...
λr






∈C

r, 0 6=x∈C
n ⇐⇒ ∆0x

⊗r = 0, 0 6= x ∈ C
n.

(b) (2.1) ⇐⇒ (λ0∆j − λj∆0)x
⊗r = 0, 0 6= x ∈ Cn, j = 1, . . . , r.

(c) Suppose we index the rows and columns of ∆i as (i1, . . . , ir) and (j1, . . . , jr)
with 1 ≤ i1, . . . , ir ≤ m and 1 ≤ j1, . . . , jr ≤ n, respectively, and define the

Kronecker determinants Γi ∈ C(
m

r )×((
n

r)), obtained as compressed versions of
∆i by retaining the

(

m
r

)

rows of ∆i with indices (i1, . . . , ir) with 1 ≤ i1 <

. . . < ir ≤ m and the
((

n
r

))

columns of ∆i with indices (j1, . . . , jr) with 1 ≤
j1 ≤ . . . ≤ jr ≤ n. Then

(8.1) (2.1) ⇐⇒ (λ0Γj − λjΓ0)y = 0, 0 6= y ∈ C((
n

r)), j = 1, . . . , r,

with y a compressed version (in the above sense) of x⊗r for some x ∈ Cn and

where
(

n
k

)

= n!
k!(n−k)! and

((

n
k

))

=
(

n+k−1
k

)

= (n+k−1)!
k!(n−1)! denote the number of k-

combinations of the set {1, . . . , n} without and with replacement, respectively.
(d) (See also [31]) If m = n+r−1, then

(

m
r

)

=
((

n
r

))

and the one-parameter MPPs

in (8.1) have at least one solution (and generically
(

m
r

)

=
((

n
r

))

solutions).

The above result provides a solution for the r-parameter MPP in the generic case,
which here can be defined as m = n + r − 1 and Γ :=

∑r
i=0 αiΓi nonsingular for

some α0, . . . , αr ∈ C. However, a complete solution in the case that m > n+ r− 1 or
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m = n+ r − 1 but Γ :=
∑r

i=0 αiΓi is singular for all α0, . . . , αr ∈ C requires further
research for the proof of the above results with the strongly decomposable vector x⊗r

replaced by a general z ∈ Cnr

and the compressed vector y replaced by a general
vector. This would allow us to extend Algorithm 7.1 to the case r > 2.

9. Conclusions. In this paper, we have considered the multiparameter matrix
pencil problem (MPP) and highlighted its relation to earlier problems. Interest in the
problem is relatively new and to the authors’ knowledge little work has been done for
its solution. We were led to it because of its links to the optimal H2 model reduction
problem [19, 7, 2, 1], established in the general case in [3]. Due to its inherent impor-
tance and as a first step towards extending the solution approach to the general mul-
tiparameter MPP, we presented a full solution of the two-parameter MPP. Firstly, an
inflation process was implemented in Theorem 3.3 to prove (using Theorem 3.2) that
the two-parameter MPP is equivalent to three m2 × n2 simultaneous one-parameter
MPPs. The inflated MPPs are given in terms of Kronecker commutator operators
involving the original matrices which exhibit several symmetries. These symmetries
were thoroughly investigated in Section 4 as they can also be interesting in other prob-
lems than the MPP. The results were then exploited in Theorem 5.1 to deflate the

dimensions of the one-parameter MPPs to m(m−1)
2 × n(n+1)

2 using Theorem 4.4, thus
simplifying their numerical solution. In the case that m = n + 1 (that is, when the
number of equations is equal to the number of unknowns), Theorem 6.1 showed that
a solution to the two-parameter MPP always exists and established a commutativity
property of the Kronecker determinants under a rank assumption. This was used to
decouple the three one-parameter MPPs into three simultaneous eigenvalue problems
thus simplifying their solution, which led to Algorithm 7.1. Numerical examples were
then given to highlight the procedure of the proposed solution algorithm. Finally, fu-
ture research directions to extend our approach to the general multiparameter MPP
were outlined.

Acknowledgement. We thank the reviewers for their substantial time and effort
which greatly helped us to improve the readability and quality of the paper.
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