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Koopman analysis of isolated fronts and solitons ∗1

Jeremy P. Parker † and Jacob Page †2

3

Abstract. A Koopman decomposition of a complex system leads to a representation in which nonlinear dy-4
namics appear to be linear. The existence of a linear framework with which to analyse nonlinear5
dynamical systems brings new strategies for prediction and control, while the approach is straight-6
forward to apply to large datasets using dynamic mode decomposition (DMD). However, it can be7
challenging to connect the output of DMD to a Koopman analysis since there are relatively few ana-8
lytical results available, while the DMD algorithm itself is known to struggle in situations involving9
the propagation of a localised structure through the domain. Motivated by these issues, we derive10
a series of Koopman decompositions for localised, finite-amplitude solutions of classical nonlinear11
PDEs for which transformations to linear systems exist. We demonstrate that nonlinear travelling12
wave solutions to both the Burgers and KdV equations have two Koopman decompositions; one13
of which converges upstream and another which converges the other downstream of the soliton or14
front. These results are shown to generalise to the interaction of multiple solitons in the KdV equa-15
tion. The existence of multiple expansions in space and time has a critical impact on the ability of16
DMD to extract Koopman eigenvalues and modes – which must be performed within a temporally17
and spatially localised window to correctly identify the separate expansions. We provide evidence18
that these features may be generic for isolated nonlinear structures by applying DMD to a moving19
breather solution of the sine-Gordon equation.20

1. Introduction. Dynamic mode decomposition (DMD), invented by Schmid [30], has21

emerged as an increasingly popular linear tool with which to analyse nonlinear dynamical22

systems. The DMD algorithm yields a representation in which the state of the system is23

expressed as a superposition of fixed coherent structures (DMD modes) with an exponential24

dependence on time. DMD has primarily been applied in fluid mechanics [e.g. 31, 14, 18] but is25

also increasingly being used in other areas, for example in neuroscience [9]. While the output of26

the DMD algorithm is straightforward to interpret, it has additional theoretical significance27

owing to a connection with the Koopman operator [15, 20] for the underlying dynamical28

system. Through this connection, DMD modes can be shown to be related to simple invariant29

solutions of the system [e.g. equilibria, periodic orbits 22, 25, 27]. The objective of this paper30

is to establish some generic rules for applying DMD to spatially-extended nonlinear systems by31

deriving analytical Koopman decompositions for the state variable in some classical integrable32

nonlinear PDEs.33

The Koopman operator [15] is a linear operator acting on the space of observables for34

nonlinear systems, allowing us to perform spectral decompositions in the usual way [29, 21].35

The resulting Koopman decompositions (or expansions) of observables, and in particular the36

state of the system, cast the evolution as a sum of spatial Koopman modes with exponen-37

tial temporal behaviour. This is possible via a projection of the observable of interest onto38

Koopman eigenfunctions (strictly speaking, eigenfunctionals, though we follow the standard39
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nomenclature here), scalar functionals of the state of the system which have a ‘linear’ evolu-40

tion despite the underlying nonlinear dynamics. In this perspective, the fixed Koopman modes41

assume a secondary importance despite their physical significance, and can be regarded as the42

coefficients in the expansion [29, 21]. In a series of important contributions, various authors43

have identified strict requirements under which DMD is capable of performing a Koopman44

mode decomposition [29, 35, 36, 11, 28, 4, 16].45

The DMD algorithm is straightforward to apply to very complex systems since it requires46

only a sequence of snapshot pairs as input. However, it is often difficult to verify that the47

low-rank dynamics identified in DMD correspond to a Koopman decomposition due to a48

lack of analytical results beyond ODE model problems [e.g. 7, 11, 28]. Some of these ODE49

results have allowed extraction of Koopman modes in more complex nonlinear PDEs, e.g. the50

Stuart-Landau equation describes the transient collapse of unstable flow past a cylinder onto51

a limit cycle, and this connection allowed Bagheri [7] to find the corresponding Koopman52

modes for the velocity field. Certain nonlinear PDEs can also be rendered linear under a53

transformation of the state variable which allows for identification of Koopman eigenvalues54

[e.g. 25, 19, 23]. Page & Kerswell [25] exploited the linearising transform to derive a full55

Koopman decomposition for the velocity field in the Burgers equation. In this work we56

exploit a similar feature in the KdV equation to derive Koopman decompositions there.57

Beyond DMD, a variety of alternative methods to extract Koopman decompositions have58

been proposed. For example, Sharma et al. [34] have found a connection between Koopman59

modes and the ‘response modes’ of the resolvent operator. In statistically stationary flows,60

Arbabi & Mezić [5] have demonstrated an approach motivated by signal processing to allow61

for extraction of Koopman modes and eigenfunctions. Other approaches involve altering the62

snapshots on which DMD is applied, by adding additional functionals (observables) of the63

state of the system [36] or by ‘stacking’ snapshots of the state equispaced-in-time along the64

trajectory to form a single large observable [10].65

However, despite this progress there are still open questions as to how Koopman and66

DMD should be applied to systems which transit between multiple simple invariant solutions67

[11, 26]. In fact, Koopman analysis applied to a simple ODE with a pair of fixed points [26]68

has shown that each simple invariant solution has an associated Koopman expansion. Each69

expansion is convergent up to a crossover point along the heteroclinic connection between70

the fixed points. This introduces a critical constraint on DMD, which to function as a proxy71

for Koopman must be performed on an observation window in which there is a single valid72

decomposition. In addition, it is known that the DMD algorithm struggles when applied to73

localised travelling waves [e.g. 18] both in providing a low rank approximation to the dynamics74

and in extrapolating beyond the observation window. Our analysis of the KdV equation75

suggests that these two behaviours may be related, as we show that localised nonlinear waves76

possess multiple Koopman decompositions, each of which converges in different regions of77

space-time. For DMD to extract the different expansions, observations must be restricted in78

both time and space to a region where a single expansion holds.79

The remainder of this paper is structured as follows. In section 2 we introduce the Koop-80

man operator and derive a pair of Koopman decompositions for a travelling-front solution of81

the Burgers equation. In section 3 we perform a similar analysis for a one-soliton solution of82

the KdV equation, before using the inverse scattering transform to derive Koopman eigen-83
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functions, eigenvalues and modes for general (non-dispersive) solutions to the KdV equation,84

establishing the need for potentially many different Koopman decompositions in a generic85

case. The consequences of these decompositions for DMD are examined in section 4, and86

an observable that can robustly determine Koopman eigenvalues and modes is defined. We87

then apply DMD to find Koopman decompositions of the sine-Gordon equation, where the88

analytical decomposition is unknown. Finally, concluding remarks are provided in section 5.89

2. Koopman decompositions of nonlinear dynamics. In this paper we will consider non-90

linear PDEs of the form91

(2.1) ∂tu = F (u),92

for some F , with time forward map f t(u) = u +
∫ t
0 F (u)dt′. At a given time, u : R → R93

describes the current state of the system, and is a member of the relevant Sobolev solution94

space W for the given PDE.95

Let V be the vector space of all nonlinear functionals g well defined on the solution space96

of the PDE, so that g : W → R. Such functionals are often termed ‘observables’. The (one97

parameter family of) Koopman operator(s) K t : V → V is defined as shifting observables98

along a trajectory of (2.1),99

(2.2) K tg(u) := g(f t(u)).100

This perspective is useful due to the linearity of the Koopman operator. In particular, the101

eigenfunctions of K t are scalar observables with an exponential dependence on time,102

(2.3) K tϕλ(u) = ϕλ(f t(u)) := ϕλ(u)eλt,103

and therefore may provide a coordinate system for representing arbitrary observables in which104

the nonlinear evolution appears to be linear,105

(2.4) K tg(u) = g(f t(u)) =
∞∑
n=0

ϕλn(u)eλntĝn,106

where ĝn are Koopman modes for the observable g. In the general case, one must also allow107

for the possibility of a continuous spectrum, though all expansions in this paper are found to108

be discrete.109

Often the desire is to find a representation like (2.4) for the function describing the state110

itself, u, so that for equation (2.1),111

(2.5) u(x) =

∞∑
n=0

ϕλn(u)ûn(x).112

In this notation, u is viewed as a family of observables parameterised by x.113

Though u ∈ W , there is no guarantee that the Koopman modes ûn : R → R satisfy the114

smoothness conditions for W or that such a sum will converge for all of R. The expansion115

(2.5) should be viewed as an ansatz – as far as we are aware there are no proofs on the116
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existence and uniqueness of such an expansion in generic dynamical systems governed by117

ordinary differential equations, let alone PDEs. The recent work by Page & Kerswell [26]118

demonstrated that separate Koopman decompositions (2.5) can be constructed around simple119

invariant solutions of (2.1), and in general multiple decompositions will be required for a120

given trajectory as it wanders between unstable exact solutions. In this work our focus is121

on spatially localised dynamics, which typically require multiple Koopman decompositions in122

both time and space to represent the full nonlinear evolution.123

2.1. Motivating example: a front in the Burgers equation. The Burgers equation was124

considered by Page & Kerswell [25], who used the Cole-Hopf transformation to derive a Koop-125

man decomposition for the state variable u. In that study, only trajectories running down126

to the trivial solution were considered. Here, our focus is on travelling waves. The Burgers127

equation is defined by,128

(2.6) F (u) := −u∂xu+ ν∂2xu,129

and supports a variety of equilibria and travelling wave solutions [8]. We consider boundary130

conditions u(x → −∞) = U∞ and u(x → ∞) = 0, which admits a solution of a right-131

propagating front132

(2.7) u(x, t) = c
[
1− tanh

( c

2ν
(x− ct)

)]
,133

where the propagation speed c := U∞/2.134

In the approach of Page & Kerswell [25], Koopman eigenfunctions for the Burgers equation135

were obtained by exploiting the Cole-Hopf transformation and performing a Koopman mode136

decomposition (KMD) of the linearising variable. A KMD for the velocity field was then found137

by inverting this transformation. While such an approach should also be possible here, we138

instead derive the KMD(s) for the propagating front via a Laplace transform approach [26].139

This approach is more appropriate here, as it identifies regions in the x − t plane where a140

particular KMD is convergent.141

In [25] it was shown that the Koopman eigenvalues of the Burgers equation are all real.142

We adopt the following ansatz for the velocity field:143

(2.8) u(x, t) =

∫ ∞
−∞

v(−λ;x)ϕ−λ(u)e−λtdλ,144

where v(λ;x) is a Koopman mode density for the observable u, which is parameterised by x.145

In dynamical systems evolving on an attractor, our approach can be modified by assuming λ146

to be purely imaginary. In this approach, the Koopman mode density is simply the Fourier147

transform of the state variable [21].148

Equation (2.8) is a bilateral Laplace transform with time as the transform variable. The149

Koopman mode density can be obtained by inverting the transform by integration along a150

Bromwich contour in the complex-t plane,151

v(−λ;x)ϕ−λ(u) =
1

2πi

∫ γ+i∞

γ−i∞
u(x, t)eλtdt152

=
c

πi

∫ γ+i∞

γ−i∞

eλt

1 + exp
[
c
ν (x− ct)

]dt.(2.9)153

154
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For this inversion to be possible, u must have a valid analytic continuation into the complex155

plane, which is the case for this example. We note that we are using the time variable of the156

dynamical system as the transform variable in the Laplace transform, which is the opposite157

of the usual approach.158

For unilateral Laplace transforms, convergence is assured by selecting γ to lie to the right159

of the singularities of the integrand. For the bilateral transform, γ can be selected to the right160

or left of the singularities (the contour then closed to the left or right respectively) provided161

that the Koopman mode density vanishes below or above a critical value of λ respectively162

[26]. This results in two possible Koopman mode densities. In practice, one is associated with163

exponentially decaying Koopman eigenvalues, the other with exponential growth.164

The inversion integrand (2.9) has simple poles at tn = x/c+ iπ(2n+ 1)ν/c2, n ∈ Z. The165

inversion can therefore be accomplished by selecting either γ > x/c and closing to right or166

γ < x/c and closing to the left, a choice which yields a convergent KMD either upstream167

(x < ct) or downstream (x > ct) of the front. The solution procedure is almost identical for168

both cases, and we discuss only the upstream calculation in detail.169

For the upstream expansion, γ > x/c, we close the contour in a large semicircle to the left.170

The contribution to the integral from the semicircular contour vanishes for λ > −c2/ν, hence171

the corresponding Koopman mode density has support for λ ∈ (−c2/ν,∞) and the upstream172

KMD is173

(2.10) u(x, t) =

∫ ∞
−c2/ν

v−(−λ;x)ϕ−λ(u)e−λtdλ,174

where175

v−(−λ;x)ϕ−λ(u) =
c

πi

∮
C

eλt

1 + exp
[
c
ν (x− ct)

]dt
= 2c

∞∑
n=−∞

Res

(
eλt

1 + exp
[
c
ν (x− ct)

] , tn) ,(2.11)176

177

where C is the closed contour built from the Bromwich contour and the large semicircle.178

Evaluating the residues at the poles, we find179

v−(−λ;x)ϕ−λ(u) = 2c
∞∑

n=−∞

ν

c2
exp

[
λ
(x
c

+ iπ(2n+ 1)
ν

c2

)]
=

2ν

c
(−1)λν/c

2
exp

(
λx

c

) ∞∑
k=−∞

δ

(
k − λν

c2

)
,

(2.12)180

181

using the identity for generalised functions
∑

n e
2πint =

∑
k δ(k − t). Inserting the upstream182

density in (2.10) yields the upstream KMD,183

(2.13) u(x, t) = 2c
∞∑
k=0

(−1)k exp

[
kc

ν
(x− ct)

]
,184
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Figure 1: Simple travelling wave solutions to the Burgers (left) and KdV (right) equations
visualised in a co-moving frame along with the respective upstream (blue) and downstream
(red) Koopman expansions. Series are truncated at N = 10 in all cases.

valid for x < ct, with Koopman eigenvalues −kc2/ν.185

A similar approach with γ < x/c yields186

(2.14) v+(−λ;x)ϕ−λ(u) = −2ν

c
(−1)λν/c

2
exp

(
λx

c

) ∞∑
k=−∞

δ

(
k − λν

c2

)
,187

with the KMD for the velocity downstream188

u(x, t) =

∫ 0

−∞
v+(−λ;x)ϕ−λ(u)e−λtdλ189

= −2c
∞∑
k=1

(−1)kexp

[
−kc
ν

(x− ct)
]
,(2.15)190

191

valid for x > ct. Both the downstream expansion (2.15) and the upstream expansion (2.13),192

truncated at N = 10 terms, are overlayed onto the true travelling front solution in figure193

Figure 1. The loss of convergence in both expansions at x− ct = 0 is clear.194

There is a simple dynamical systems interpretation to the results above: under the195

ansatz of travelling-wave dynamics u = f(x − ct), the Burgers equation with these bound-196

ary conditions reduces to a simple one-dimensional (nonlinear) ordinary differential equation197

f ′ = 1
2ν f

2− c
ν f . The front depicted in Figure 1 is a heteroclinic connection between the (unsta-198

ble) trivial solution at f = 0 and the (stable) equilibrium f = U∞ = 2c. The pair of Koopman199

decompositions found above thus corresponds to expansions about these two equilibria, which200

both breakdown at the same “crossover point” in state space [see also 26]. These equilibria201

have one-dimensional linear subspaces, and the associated Koopman decompositions begin202

with eigenvalues corresponding to these unstable/stable linear dynamics, ∓c2/ν. The higher203

order terms in the expansion then correspond to integer powers of the associated Koopman204

eigenfunction.205
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3. Koopman decomposition of Korteweg-de-Vries equation. The Korteweg-de-Vries206

(KdV) equation is the canonical and simplest example of a nonlinear dispersive wave equation.207

It is defined by208

(3.1) F (u) := −∂3xu+ 6u∂xu.209

The term ∂3xu makes this a dispersive wave equation, and u∂xu is a nonlinear self-advection210

term. Equation (3.1) naturally arises as the inclusion of simple nonlinearity in a number of211

wave phenomena, including internal waves in a stratified fluid. We consider the KdV equation212

on the real line with boundary conditions u→ 0 as x→ ±∞.213

In an early example of the numerical solution of PDEs, Zabusky & Kruskal [37] simulated214

the KdV equation and discovered the rich behaviour of so-called ‘solitons’. These exact215

coherent structures of the PDE are strongly stable. They can interact with one another and216

preserve their form post-interaction. The behaviour of solitons led to the development of the217

inverse scattering transform (IST), which can be used to analytically solve KdV as well as a218

number of other, more complicated, so-called ‘integrable’ equations.219

3.1. Single-soliton solution. The canonical one-soliton solution to KdV is given by220

(3.2) u(x, t) = −2 sech2 (x− 4t) ,221

which is a simple travelling wave propagating to the right. Note that u < 0, which is the case222

for all soliton solutions of (3.1).223

We will follow the methodology outlined for the front in the Burgers equation in sub-224

section 2.1 and assume that the Koopman eigenvalues required to described the evolution of225

(3.2) are real. This assumption will be justified subsection 3.3, where we derive the Koopman226

eigenfunctions required to describe arbitrary soliton evolutions.227

Expressing the evolution as an integral over a Koopman mode density (see subsection 2.1),228

v(λ;x),229

(3.3) − 2 sech2 (x− 4t) =

∫ ∞
−∞

v(−λ;x)ϕ−λ(u)e−λtdλ.230

This Laplace transform (transform variable t) can be inverted in the normal way to give231

v(−λ;x)ϕ−λ(u) =
1

2πi

∫ γ+i∞

γ−i∞
−2 sech2 (x− 4t) eλtdt

= − 1

πi

∫ x−4γ+i∞

x−4γ−i∞

eλ(x−ξ)/4

(eξ + e−ξ)
2dξ,

(3.4)232

233

where ξ := x − 4t. Similar to the Burgers equation example presented in subsection 2.1, we234

can close the contour for this integral in two different directions, yielding a pair Koopman235

decompositions which hold upstream/downstream of the soliton.236

Closing the contour to the left, we label the Koopman modes as v+, with v+(λ;x) = 0 for237

λ > 2. Then (3.3) becomes238

(3.5) − 2 sech2 (x− 4t) =

∫ 2

−∞
v+(−λ;x)ϕ−λ(u)e−λtdλ.239
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Equation (3.4) has second order poles at ξn = iπ(2n+ 1)/2, n ∈ Z. The residue theorem240

gives, for λ < 2,241

v+(−λ;x)ϕ−λ(u) = −2

∞∑
n=−∞

Res

(
eλ(x−ξ)/4

(eξ + e−ξ)
2 , iπ(2n+ 1)/2

)

= −λeλx/4e−iπλ/8
∞∑

k=−∞
δ (8k − λ) .

(3.6)242

243

Substituting this into (3.5), we find a decomposition244

(3.7) − 2 sech2 (x− 4t) =
∞∑
k=1

8k(−1)ke−2kxe8kt.245

This expansion involves Koopman eigenvalues {8k : k ∈ N}, with corresponding Koopman246

modes e−2kx. In this derivation, it is not possible to determine the Koopman eigenfunctions247

{ϕλ(u)} in their general form.248

Equation (3.7) is a convergent expansion for x > 4t, i.e. downstream of the peak of the249

soliton. Analogous behaviour was seen in the front solution to Burgers equation (e.g. (2.13)),250

which suggests that the need for multiple Koopman decompositions to describe nonlinear251

wave evolution is generic. The upstream expansion for the one soliton solution to KdV can252

be obtained by closing the contour to the right, which yields253

(3.8) 2 sech2 (x− 4t) =
∞∑
k=1

8k(−1)ke2kxe−8kt,254

which could also be anticipated from symmetry. The upstream expansion is convergent for255

x < 4t and involves Koopman eigenvalues {−8k : k ∈ N} – temporally decaying modes.256

Similar to the Burgers equation, there is a simple dynamical systems interpretation to these257

results which rests on the fact that Koopman expansions appear to be defined about simple258

invariant solutions of the governing equation, and connecting orbits between such solutions259

contain a crossover point where one expansion fails and another takes over. Supposing that260

u = f(x − ct) for some c, the KdV equation with u → 0 as x → ∞ boundary conditions261

reduces to the two-dimensional ODE262

f ′ = g,(3.9a)263

g′ = 3f2 + cf,(3.9b)264265

where we have defined g = f ′. For c > 0, this system has a centre at f = −c/3, g = 0, which266

does not satisfy our boundary conditions, and a saddle point at f = 0, g = 0, the trivial zero267

solution of KdV. The one soliton solution for this particular value of c is a homoclinic orbit268

from the latter fixed point back to itself, encircling the centre at f = −c/3. The crossover269

point at x = ct divides the trajectory into a ‘repelling’ and an ‘attracting’ section. The270

Koopman expansions for these sections of the orbit are built from eigenfunctions which are271

8
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integer powers of the Koopman eigenfunctions associated with the linear subspace around272

u = 0 and have eigenvalues ±√c (i.e. ±c3/2 in the lab frame)273

These effects have interesting consequences for describing more complex dynamics – soliton274

interactions – in terms of Koopman expansions. In order to generalise the approach above,275

we will use the inverse scattering transform [e.g. 12] to derive Koopman eigenfunctions for the276

KdV equation in their general form, which will allow us to examine these more interesting277

situations.278

3.2. Inverse scattering method. The inverse scattering method is one the most celebrated279

results of twentieth century mathematics. It can be used to solve a variety of nonlinear PDEs,280

including the nonlinear Schrödinger equation and the sine-Gordon equation [2]. In the inverse281

scattering approach, the solution to the nonlinear PDE, u(x, t), is treated as a potential in282

a linear scattering problem in which time appears parametrically. It can be shown that the283

scattering data (the eigensolutions of the scattering problem) evolve linearly as u(x, t) evolves284

according to its nonlinear evolution equation. Therefore, the scattering data can be obtained285

for all time from the initial condition u(x, 0) alone. The solution to the nonlinear PDE at286

any time can then be extracted from the scattering data via an inverse scattering transform,287

which amounts to the solution of a linear integral equation. The existence of a linearising288

transform allows us to derive Koopman eigenfunctions, which can then be used to construct289

Koopman decompositions for the state variable itself.290

Here we concentrate on the specific case of KdV, for which the inverse scattering method291

was first developed [13]. Throughout, we follow the notation and conventions of [12]. Let292

u0(x) be some initial condition for the KdV equation on the real line, with u0(x) → 0 as293

x→ ±∞. The time evolution can then be obtained as follows:294

1. Solve the eigenvalue Sturm-Liouville scattering problem ψxx + (λ − u0)ψ = 0. The295

eigenvalue spectrum has a discrete negative part λ = −κ2n for n = 1, 2, . . . , N , and a296

continuous positive part λ = k2. The eigenvalues and their corresponding eigenfunc-297

tions are called the ‘scattering data’.298

2. It is then possible to predict how the scattering data will evolve as u evolves from u0299

according to the KdV equation. In particular, it is sufficient to consider the ‘reflection300

coefficient’ b(k) for the continuous spectrum and {cn} for the discrete spectrum. These301

are defined by requiring that the eigenfunctions ψ ∼ e−ikx + b(k)eikx or ψ ∼ cne
−κnx302

as x→∞. The latter (discrete) case is normalised so that
∫∞
−∞ ψ

2dx = 1.303

The scattering data evolve according to the linear equations304

db

dt
= 8ik3b,(3.10a)305

dcn
dt

= 4κ3ncn,(3.10b)306
307

as the potential u(x) evolves according to the KdV equation.308

3. Given the scattering data at initial time, one can then calculate u(x, t) at some future309

time t through ‘inverse scattering’, which amounts to solving the Marchenko equation,310

(3.11) K(x, z, t) + F (x+ z, t) +

∫ ∞
x

K(x, y, t)F (y + z, t)dy = 0,311
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for K, where312

F (x, t) =
N∑
n=1

c2n exp (8κ3nt− κnx) +
1

2π

∫ ∞
−∞

b(k) exp (8ik3t+ ikx)dx.313

In all but the simplest cases, this must be done numerically. The velocity is then314

obtained via u(x, t) = −2 (∂xK(x, z, t)|z=x + ∂zK(x, z, t)|z=x).315

3.3. Koopman eigenpairs of the KdV equation. With the inverse scattering transform316

in mind, we now define a family of observables cκ(u), where κ is a positive real number, on317

the state space for the unbounded KdV equation. The value of cκ(u), a real number, can be318

computed as follows: First, determine whether the ordinary differential equation ψxx − (κ2 +319

u(x))ψ = 0 has a non-trivial, square-integrable solution, with ψ decaying exponentially as320

x → ±∞. If it does, the solution is made unique by requiring
∫∞
−∞ ψ

2dx = 1. In the limit321

x → ∞, ψ ∼ Ae−κx for some A, which allows us to define cκ(u) = A. If there is no solution322

to the Sturm-Liouville problem, define cκ(u) = 0. Although this does not give a closed-form,323

explicit expression for cκ in terms of u, it defines a functional valid for any state in the solution324

space of the equation, albeit a discontinuous one.325

Due to their linear evolution equations Eq. (3.10b), it is clear that the scattering data are326

Koopman eigenfunctions of the nonlinear KdV equation,327

(3.12) K tcκ(u) = cκ(f t(u)) = e4κ
3tcκ(u),328

i.e. cκ(u) = ϕλκ(u), the Koopman eigenfunction with Koopman eigenvalue λκ = 4κ3.329

We note that the same approach can be used to construct a family of Koopman eigen-330

functions with purely imaginary Koopman eigenvalues from the reflection coefficients b(k)331

associated with the continuous spectrum of the scattering problem. This would give rise to332

a continuous spectrum of Koopman eigenvalues. Because of difficulties solving the integral333

equation in cases where b(k) 6= 0, we consider only ‘reflectionless potentials’ where b(k) ≡ 0.334

Since the scattering data are sufficient to reconstruct the whole solution to the KdV335

equation, we therefore assume that these Koopman eigenpairs, and their products, as discussed336

below, are sufficient to find decompositions.337

3.4. Single-soliton revisited. Before examining soliton interactions, we will first revisit338

the one soliton solution of the KdV equation considered in subsection 3.1,339

(3.13) u(x, 0) = −2 sech2 x,340

and use knowledge of the Koopman eigenfunctions and the inverse scattering approach to341

construct the Koopman decompositions. From our family of Koopman eigenfunctions cκ,342

only c1(u) is non-zero in this case, with c1(u0) =
√

2, and there is no continuous spectrum343

in the scattering problem. However, note that cκ can be raised to any power a to give a344

Koopman eigenfunction with Koopman eigenvalue 4aκ3 [21].345

Initially, we introduce as an ansatz a Koopman decomposition using only positive integer346

powers of c1(u) – i.e. one associated with exponential growth in time. We will see that347

this approach yields the upstream expansion (3.7) found via the Laplace transform approach348
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in subsection 3.1. Rather than seeking a decomposition for u(x) directly, we first decompose349

K(x, z), the solution to the Marchenko equation described in subsection 3.2. With our ansatz,350

we write351

(3.14) K(u;x, z) =
∞∑
n=1

K̂n(x, z)cn1 (u) =
∞∑
n=1

K̂n(x, z)cn1 (u0)e
4nt,352

where cn1 (u0) = 2n/2. Note the change in notation to reflect that K is an observable of the353

state, u, parameterised by x and z. The Marchenko equation (3.11) now reads354

∞∑
n=1

K̂n(x, z)cn1 (u0)e
4nt + 2e8t−x−z +

∫ ∞
x

∞∑
n=1

K̂n(x, y)cn1 (u0)e
4nt2e8t−y−zdy = 0.355

Examining the z dependence of the terms, it is apparent that K̂n(x, z) = L̂n(x)e−z for some356

L̂n(x). We can therefore perform the integration, to give357

∞∑
n=1

L̂n(x)cn1 (u0)e
4nt + 2e8t−x +

∞∑
n=1

L̂n(x)cn1 (u0)e
(8+4n)t−2x = 0.358

Comparing coefficients of e4pt, we have359

L̂p(x)cp1(u0) + L̂p−2(x)cp−21 (u0)e
−2x =

{
−2e−x, p = 2,

0, otherwise.
360

Assuming that the Koopman modes associated with the exponentially decaying eigenfunctions361

not included in the ansatz (c−n1 (u0)) are zero, L̂n(x) = 0 for n < 0, this recurrence may be362

solved directly to give363

(3.15) L̂n(x) =

{
0, n odd,

(−1)n/221−n/2e−(n−1)x, n even.
364

The resulting Koopman decomposition for K is then365

(3.16) K(u;x, z) =

∞∑
n=1

(−1)n21−ne−(2n−1)x−zc2n1 (u0)e
8nt,366

and a Koopman decomposition for u can be obtained from u = −2 (∂xK|z=x + ∂zK|z=x),367

giving368

u(x, t) =

∞∑
n=1

(−1)n23−ne−2nxc2n1 (u0)e
8nt,369

=
∞∑
n=1

(−1)n8ne−2n(x−4t).(3.17)370

371
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This is a Koopman decomposition, using Koopman eigenfunctions c2n1 (u) with Koopman ei-372

genvalues 8n, and Koopman modes û2n(x) = 8n(−1/2)ne−2nx.373

Equation (3.17) matches that found in subsection 3.1 using the inverse Laplace transform374

(3.7). To find the second Koopman expansion, valid downstream of the soliton, we would375

begin with the ansatz,376

(3.18) K(u;x, z) =
∞∑
n=1

K̂n(x, z)c−n1 (u),377

i.e. an expansion in exponentially decaying Koopman eigenfunctions.378

In summary, we have used the inverse scattering transform approach to identify Koopman379

eigenfunctions and eigenvalues of the KdV equation and shown how different sets of eigen-380

functions are required in different regions of space-time to express localised nonlinear wave381

evolution in the form of a Koopman decomposition. We now extend this approach to examine382

more complex dynamics involving soliton interactions, where the number of possible Koopman383

decompositions increases dramatically. Selecting the appropriate decomposition for a given384

region of the x− t plane depends on the relative positions of all solitons.385

3.5. Multiple solitons. The method presented in subsection 3.4 can be generalised to386

an arbitrary but finite number of solitons, so long as the initial condition has no continuous387

spectrum in the scattering problem. To demonstrate the approach, we examine in detail the388

interaction of two solitons.389

With two solitons, we now have two non-zero scattering eigenvalues κ1 and κ2, with390

corresponding Koopman eigenfunctions cκ1(u) and cκ2(u) and Koopman eigenvalues 4κ31 and391

4κ32. The eigenfunctions cκ1(u) and cκ1(u) can be raised to arbitrary powers to produce392

further Koopman eigenfunctions, but we can now also multiply them [21]. As was found393

in the one-soliton case, only even powers are required, since c2κ rather than cκ appears in394

the Marchenko equation. The possible combinations of cκ1(u) and cκ2(u) thus yield a set of395

Koopman eigenfunctions of the form396

c2jκ1(u)c2kκ1(u), (j, k) ∈ Z2,397

with corresponding Koopman eigenvalues 4κ31 · 2j + 4κ32 · 2k = 8(κ31j + κ32k). If κ1 and κ2 are398

both rational numbers then the Koopman eigenvalues will be degenerate, an effect that has399

also been observed in Koopman decompositions of the Burgers equation [25].400

With two scattering eigenvalues, the Marchenko equation (3.11) becomes401

K(x, z, t) + c2κ1 exp (8κ31t− κ1(x+ z)) + c2κ2 exp (8κ32t− κ2(x+ z))

+

∫ ∞
x

K(x, y, t)c2κ1 exp (8κ31t− κ1(y + z))dy

+

∫ ∞
x

K(x, y, t)c2κ2 exp (8κ32t− κ2(y + z))dy = 0.

(3.19)402

403

The z-dependence of the terms in (3.19) implies K(x, z, t) is of the form404

(3.20) K(x, z, t) = L(1)(x, t)e−κ1z + L(2)(x, t)e−κ2z,405
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which reduces (3.19) to a pair of coupled equations:406

L(1)(x, t) + c2κ1e
8κ31t−κ1x +

1

2κ1
L(1)(x, t)c2κ1e

8κ31t−2κ1x

+
1

κ1 + κ2
L(2)(x, t)c2κ1e

8κ31t−(κ1+κ2)x = 0,

(3.21)407

L(2)(x, t) + c2κ2e
8κ32t−κ2x +

1

κ1 + κ2
L(1)(x, t)c2κ1e

8κ31t−(κ1+κ2)x

+
1

2κ2
L(2)(x, t)c2κ1e

8κ31t−2κ2x = 0.

(3.22)408

409

We propose Koopman decompositions for the observables L(1) and L(2) of the form410

(3.23) L(1,2)(u;x) =
∑
j

∑
k

L̂
(1,2)
j,k (x, z)c2jκ1(u0)c

2k
κ1(u0)e

8(κ31j+κ
3
2k)t.411

As found in the single soliton case, the range of values over which we sum j and k, or412

equivalently whether the expansion is constructed using exponentially growing or decaying413

modes (or a combination), implicitly selects a region of space-time in which the expansion414

converges.415

Substituting (3.23) into (3.21) and comparing coefficients of exponentials (assuming no416

degeneracy) yields the recurrence relations417

L̂
(1)
j,k +

1

2κ1
L̂
(1)
j−1,ke

−2κ1x +
1

κ1 + κ2
L̂
(2)
j−1,ke

−(κ1+κ2)x

=

{
−e−κ1x, j = 1, k = 0,

0, otherwise,

(3.24)418

L̂
(2)
j,k +

1

κ1 + κ2
L̂
(1)
j,k−1e

−(κ1+κ2)x +
1

2κ2
L̂
(2)
j−1,ke

−2κ2x

=

{
−e−κ2x, j = 0, k = 1,

0, otherwise.

(3.25)419

420

With some rearrangement, these can be solved straightforwardly for j and k either increasing421

or decreasing, and various boundary conditions are therefore possible. The solutions are422

too complicated to include here, but can be found using a computer algebra system. As423

described previously in the one soliton calculation, the Koopman decomposition for the pair424

of observables L(1,2)(u;x) can be converted into a Koopman decompositions for K(u;x, z)425

via equation (3.20), before the decomposition for the velocity is obtained from u(x, t) =426

−2 (∂xK(x, z, t)|z=x + ∂zK(x, z, t)|z=x) [12].427

The various possible boundary conditions, which we now discuss in more detail, are based428

on the interpretation of an isolated soliton as a homoclinic orbit. The two-soliton decom-429

positions are somewhat analogous to what one would expect for trajectories shadowing two430

orthogonal homoclinic orbits connected to the origin, each with a crossover point. In that431

scenario we anticipate three decompositions: one using (products of) the attracting eigenfunc-432

tions of both orbits (downstream of both solitons); one using the eigenfunctions associated433
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Figure 2: Truncated Koopman decompositions with 10 modes for the 2-soliton solution (3.27)
(shown as dashed line), at different times. For t < 0, the decomposition with Koopman
eigenfunctions cj1c

k
2 with j ≤ 0 and k ≥ 0 (in green) must be used between the solitons,

whereas k ≥ 0 and j ≤ 0 (in pink) does not converge, and is completely off the scale of the
plot. The reverse is true for t > 0. The j ≤ 0, k ≤ 0 expansion (blue) and j ≥ 0, k ≥ 0 (red)
are needed at all times, upstream and downstream, respectively, of both solitons.

with the repelling halves of each homoclinic orbit (upstream of both solitons); one using the434

eigenfunctions of the attracting half of one orbit and the repelling half of the other (between435

the solitons). This analogy is not quite complete as the origin is not a fixed point – there436

is no frame in which the dynamics are steady. Furthermore, the expansion between the soli-437

tons will change when the faster structure overtakes the slower, yielding a fourth Koopman438

decomposition. However, we will see that these intuitive arguments do result in a set of four439

Koopman decompositions that together describe the entire spatio-temporal dynamics.440

First, we seek an expansion valid downstream of both solitons by assuming that L̂
(1)
j,k and441

L̂
(2)
j,k are zero for j < 0 and k < 0, or equivalently seek to build a solution using only temporally442

growing modes. The velocity field resulting from this solution for L(1,2) is reported in Figure 2443

(the red curves) for a particular choice of κ1 and κ2 which is discussed further below.444

On the other hand, if both L̂
(1)
j,k and L̂

(2)
j,k are assumed to be zero for j > 0 and k >445
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0, an expansion is obtained which converges upstream of both solitons and involves only446

temporally decaying modes. This decomposition is also show in Figure 2 (blue curves). Note447

that, for both the temporally decaying and growing expansions, the inclusion of products448

of the Koopman eigenfunctions allows the ‘linear’ Koopman decompositions to represent the449

dynamics upstream and downstream of the solitons during their interaction. As shown in450

Figure 2, these expansions apply both before and after the faster soliton overtakes the slower.451

The more interesting case is the expansion between the solitons. One possibility is to452

assume L̂
(1)
j,k = 0 and L̂

(2)
j,k = 0 for j < 0 but k > 0. This amounts to a decomposition453

involving growing modes associated with the κ1 eigenvalue (i.e. those that describe the evolu-454

tion upstream of soliton 1) but decaying modes associated with the κ2 eigenvalue (describing455

the evolution downstream of soliton 2). An example of this expansion, which describes the456

evolution between the solitons up to (and including part of) their interaction, is shown in457

Figure 2 (green curves). The products in the Koopman expansion of the form cjκ1(u)ckκ2(u)458

allow for a ‘linear’ representation of the strongly nonlinear dynamics between the solitons as459

they interact.460

However, as the faster soliton approaches the slower, the region of space in which this461

decomposition holds shrinks and eventually vanishes. For a Koopman decomposition which462

holds between the solitons post-interaction, it is necessary to instead assume L̂
(1)
j,k = 0 and463

L̂
(2)
j,k = 0 for j > 0 and k < 0, i.e. an ansatz using the unstable eigenvalues for the κ2 soliton464

and the stable eigenvalues associated with the κ1 soliton. This expansion is shown in pink in465

Figure 2.466

The particular two soliton interaction reported in Figure 2 is the ‘classical’ two soliton467

solution [see e.g. 12] defined by the initial condition,468

(3.26) u(x, 0) = −6 sech2 x,469

for which the KdV equation has the known analytical solution,470

(3.27) u(x, t) = −12
3 + 4 cosh(2x− 8t) + cosh(4x− 64t)

(3 cosh(x− 28t) + cosh(3x− 36t))2
.471

This solution is particularly useful when assessing the crossover between the multiple Koopman472

decompositions owing to the fact that the initial condition (3.26) corresponds to the temporal473

“midpoint” in the interaction between the two solitons which separate as t → ±∞. In fact,474

precisely when t = 0, neither of the interior decompositions (the green and pink curves in475

Figure 2) are valid, and they are nowhere pointwise convergent to a finite value (not shown).476

When t is very small, a very large number of terms is required for the expansions to well477

approximate the true solution near the solitons.478

Another consequence of using the solution defined by (3.27) is the occurrence of degen-479

eracy in the Koopman eigenvalues. The scattering problem for this potential gives discrete480

eigenvalues of κ1 = 1 and κ2 = 2. These values correspond to Koopman eigenvalues 4κ31 = 4481

and 4κ32 = 32 and normalisation coefficients (Koopman eigenfunctions) c1(u0) =
√

6 and482

c2(u0) = 2
√

3 respectively [12]. The fact that the two Koopman eigenvalues are both propor-483

tional to perfect cubes, coupled with allowance for both exponentially decaying and growing484

modes, causes the degeneracy. For example, the combinations (j, k) = (0, 2) (eigenfunction485
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Figure 3: Two soliton solution to the KdV equation (3.26) visualized with contours of −u.
Dashed lines identify DMD observation windows A1 = (π, 2π) and A2 = (−2π,−π).

c42(u)) and (j, k) = (8, 1) (eigenfunction c161 (u)c22(u)) both share the eigenvalue 128. In the486

degenerate case, the recurrence relations presented above (3.24) and (3.25) are now only one487

possible solution to the Marchenko equation. However, considering the nondegenerate situa-488

tion with κ1 = 1 and κ2 = 2 + ε as ε → 0, which does not become invalid, implies that our489

solution is the correct one.490

To summarise, we have demonstrated that four Koopman decompositions are required to491

describe the interaction of a pair of solitons in the KdV equation. Each expansion is convergent492

in a particular region of space-time, either: (i) upstream of both solitons, (ii) downstream of493

both solitons, (iii) between the solitons with the slower wave upstream of the faster or (iv)494

between the solitons with the faster wave upstream of the slower. There is a simple logic to495

selecting the eigenfunctions required for any given expansion: Alone, any individual soliton496

has a pair of Koopman decompostions; an expansion describing the solution upstream of the497

soliton requires exponentially growing eigenfunctions while temporally decaying eigenfunctions498

are needed downstream. In the two-soliton interaction, this continues to apply. However,499

products of the two sets of eigenfunctions must also be included to account for interaction500

between the solitons.501

The approach outlined above naturally extends to arbitrary numbers of solitons, where502

construction of a Koopman decomposition at any point in space requires products of all the503

growing eigenfunctions for any solitons downstream of that point and all of the decaying504

eigenfunctions from the upstream solitons. For N solitons, this would involve the solution of505

N recurrence relations similar to (3.24) and (3.25) simultaneously. The existence of multiple506

Koopman decompositions which partition the spatiotemporal domain to describe the full507

solution to a nonlinear PDE has important consequences for DMD, which we now examine.508
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Figure 4: Real part of eigenvalues obtained in DMD calculations with a windowed observable
g(u) = u(x ∈ Ai) against the end time, tF , of each DMD computation. Each DMD calculation
is performed within a time window of length Tw = 0.4 with snapshots available at a resolution
of δt = 0.005. The DMD timestep separating snapshots is δtDMD = 0.01 and M = 50
snapshot pairs are used. Left: observation window A1. Right: observation window A2. Note
that blue circles identify purely real eigenvalues, red squares are complex conjugate pairs.

4. Dynamic mode decomposition. Dynamic mode decomposition (DMD) can be an ef-509

fective way to extract Koopman eigenvalues, modes and eigenfunctions from numerical data.510

A rigorous connection between Koopman decompositions and DMD has been established un-511

der certain conditions [36, 28]. The key requirements are (i) that the Koopman eigenfunctions512

can be expressed as a linear combination of the elements of the DMD observable vector,513

{gi(u)}, and (ii) that sufficient data is available.514

A variety of methods have been proposed to augment DMD and aid its ability to extract515

Koopman eigenfunctions from data. For example, in ‘extended’ DMD, the observable vector g516

is built from a dictionary of functionals of the state. For the nonlinear PDEs considered in this517

paper, we will see that standard DMD (where the observable is simply the state variable itself,518

gi = u(x = xi)), is sufficient to perform numerical Koopman decompositions, provided that519

the observations are restricted to a particular region of space-time where a single Koopman520

decomposition holds.521

As a first example, consider the two-soliton KdV dynamics in Figure 3. The parame-522

ters match those considered in §3. Two groups of DMD calculations are considered with a523

windowed observable524

(4.1) g(u) = u(x ∈ Aj),525

where the elements of u are observations of the state u at the grid points, (u)i := u(x = xi),526

and the choices for the window Aj are identified in Figure 3. The DMD methodology is as527

described in [35].528

For each of the two observation windows Aj , we perform many DMD calculations over529

short time intervals Tw = 0.2. The real parts of the eigenvalues obtained in these calculations530
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are reported in Figure 4, as a function of the final time of each individual DMD computa-531

tion. For the window A1, while tF . 0, the DMD identifies eigenvalues λn = 8n, n ∈ N.532

This corresponds to the analytical prediction for the Koopman decomposition upstream of533

both solitons, where the set of Koopman eigenvalues required to correctly describe the time534

evolution is the product of the unstable eigenvalues associated with each individual soliton.535

Near tF = 0, complex-conjugate pairs of eigenvalues (shown in red in Figure 4) emerge and536

DMD is unable to find a robust representation that remains consistent between subsequent537

calculations. This behaviour coincides with the observation window viewing regions of the538

solution which are expressed in terms of multiple Koopman decompositions; namely the top539

of the faster soliton is included in the observation window. In this case, DMD is unable to540

build a consistent linear representation for the dynamics.541

When 0.5 . tF . 1, the observation windows occupy a region of space-time between the542

two solitons, and the DMD algorithm is able to correctly identify the exponentially growing543

and decaying eigenvalues required in one of the central Koopman decompositions. As well544

as the exponentially growing terms associated with being upstream of the slower soliton,545

λn = 8n, n ∈ N, the rapidly decaying eigenvalue λn = −64 is also obtained. This is the546

slowest-decaying eigenvalue associated with being downstream of the faster soliton. Note547

that the other visible decaying eigenvalue (λn = −56) in this region is associated with the548

product of the first unstable Koopman eigenfunction associated with the slower soliton and549

the first stable Koopman eigenfunction connected with the faster wave, ϕ8(u)ϕ−64(u) (see550

§3). Other decaying eigenvalues λn = −8n n ∈ N are also anticipated based on interactions551

ϕj8ϕ
k
−64, though these terms are all much smaller in amplitude and are not picked up by the552

DMD. These results are quickly contaminated with pairs of complex-conjugate modes that are553

associated with the appearance of the second crossover point – the top of the slower soliton –554

in the observation window. Finally, towards the end of the later-time DMD calculations for555

window A1, DMD starts to recover the purely decaying Koopman eigenvalues associated with556

the expansion downstream of both solitons.557

Similar behaviour is observed for observation window A2, which also shows evidence of558

three expansions. In this instance, the eigenvalues identified between the solitons are similar559

to those seen for window A1, but appear to be flipped about λr = 0 as the observation560

window is upstream of the faster solution and downstream of the slower wave. Therefore,561

while the upstream-of-both and downstream-of-both results are unchanged, the Koopman562

decomposition between the the two solitons involves the product of the unstable eigenvalues563

associated with the faster soliton and the stable eigenvalues of the slower pulse, i.e. the564

opposite of window A1.565

These observations suggest that the use of a spatially-restricted observable is a sensible566

choice in nonlinear problems involving spatially-localised dynamics. This observable choice567

will allow individual Koopman eigenvalues and modes to be extracted by avoiding the inclusion568

of crossover points between multiple decompositions, for which DMD is unable to build a569

consistent linear operator. In order to demonstrate the utility of such an approach, we examine570

a solution of the sine-Gordon equation,571

(4.2) ∂2t u = ∂2xu− sinu,572

which arises in a variety of physical situations, including the propagation of dislocations573
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Figure 5: Moving breather solution to the sine-Gordon equation (4.3). Contours of u, with
the observation windows for the DMD calculations in Figure 6 identified by black boxes.

through a crystal and as a unitary theory for elementary particles [33]. Though analytical574

solution of the sine-Gordon equation is possible via the inverse scattering method [1], we do575

not attempt to analytically find Koopman decompositions. Instead, we will use the rules of576

thumb developed above for KdV to use DMD to identify Koopman eigenvalues.577

As an example, we focus on the moving breather solution [12],578

(4.3) ub(x, t) = 4arctan

[√
1− l2
l

sin(γl(t− V x))

cosh(γ
√

1− l2(x− V t))

]
,579

where γ := 1/
√

1− l2. This solution is shown in Figure 5 for l = V = 1/2, and is a localised580

relative periodic orbit.581

Based on our analysis of both the Burgers and KdV equations, we anticipate the exis-582

tence of a pair of Koopman decompositions upstream/downstream of the breather in terms of583

exponentially decaying/growing eigenvalues respectively. In order to extract these represen-584

tations, we conduct a pair of DMD computations with our observations restricted to windows585

upstream or downstream of the breather (marked in Figure 5).586

The output of these calculations is reported in Figure 6. As anticipated, the calculations587

produce robust results both upstream and downstream of the oscillating pulse in terms of588

(temporal) exponential growth and decay. Note that, unlike the Burgers and KdV equations,589

the eigenvalues are complex. The upstream and downstream spectra are related via a reflection590

through λr = 0.591

In the one soliton solution of KdV, we demonstrated in a reduced dynamical system592

that the soliton may be regarded as a homoclinic connection from the zero state to itself,593

with a crossover point in the middle. We can interpret the results of the calculation on the594
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Figure 6: DMD applied to the sine-Gordon upstream (left) and downstream (right) of the
breather (see Figure 5). In each calculation the observable is the state vector for x ∈ (−π, π)
and the time window length Tw = 5. M = 400 snapshot pairs are used with δt = 0.1.

sine-Gordon dynamics similarly: in a co-moving coordinate, the moving breather may be595

interpreted as a homoclinic orbit about the trivial solution u = 0, and the DMD calculations596

identify the Koopman decompositions associated with the ‘repelling’ and ‘attracting’ halves597

of this trajectory.598

4.1. Periodic computational domains. All of the problems studied so far in this work599

have been classical analytical solutions of integrable nonlinear PDEs on infinite domains.600

However, studies of localised solutions to more complex systems (e.g. the Navier-Stokes601

equations [32]) are conducted in large periodic computational domains. As pointed out by602

Sharma et al. [34], Koopman decompositions for exact coherent structures in spatially-periodic603

problems naturally take the form of travelling waves and the (temporal) Koopman eigenvalues604

should all be purely imaginary. This should be contrasted with the Koopman decompositions605

presented in this paper, which have all involved Koopman eigenvalues with non-zero real part.606

To examine the connection between the assertions of [34] and the analytical Koopman607

decompositions derived in this paper, we consider again the one-soliton solution to the KdV608

equation (see subsection 3.1 and subsection 3.4). Here, we supply the soliton u = −2sech2x as609

an initial condition in a numerical simulation where the KdV equation is solved numerically on610

a periodic domain of length 8π. A Fourier transform is applied in x; the nonlinear terms are611

evaluated in physical space before the transform is applied. For time advancement, explicit612

Adams-Bashforth is used for the nonlinear terms and implicit Crank-Nicolson is used for the613

dispersive term. The domain is long enough such that the error between the periodic numerical614

simulation and the true one-soliton solution, ‖uper − usol‖2/‖usol‖2, is about 4 × 10−4 after615

& 3 flow-through times.616
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Figure 7: Two alternative DMD computations for the ‘one soliton’ solution of the KdV equa-
tion evolving in a periodic computational domain of length L = 8π. Top: full (unwindowed)
state observable, g = u, observed over a time window Tw = 15 with M = 400 snapshot pairs.
Vertical dashed lines identify multiples of the first non-zero frequency (ω = 1). Bottom: win-
dowed state observable, g = u(x ∈ A), where A = (7π/2, 4π). Multiple DMD computations
are performed with time window length Tw = 0.2 and the real part of the DMD eigenvalues
are plotted against the start time of their respective DMD calculation. M = 40 snapshot
pairs are used. Throughout, δt = 0.0125.

In Figure 7 we report the results of two sets of DMD calculations on this one soliton KdV617

evolution. In the first, a single computation, we perform standard DMD on the full state618

vector (i.e. over the entire spatial domain) for a time window spanning many flow-through619

times. As anticipated, the DMD eigenvalues are all purely imaginary and are multiples of a620

fundamental harmonic ω = 1 (on this domain the flow-through time of the isolated soliton is621

T = 2π). The DMD modes (not shown) are Fourier modes.622

In the second set of calculations, we adopt the approach we have advocated for the623

infinite domains. We perform DMD on a windowed observable g(u) = u(x ∈ A), where624

A = (7π/2, 4π), conducting a sequence of DMD calculations on short time windows Tw = 0.2.625

The real part of the eigenvalues obtained in each calculation are shown in the lower panel626
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of Figure 7. As the soliton repeatedly passes through the domain, the DMD calculations627

continually pick up the upstream/downstream eigenvalues associated with the solution on an628

unbounded domain (i.e. one of λn = ±8n, n ∈ N).629

In this problem the “correct” decomposition is the one involving purely imaginary eigen-630

values, regardless of domain length (as long as it remains finite). This can be demonstrated631

explicitly by considering the periodic ‘cnoidal’ solutions of the KdV equation [17],632

(4.4) u(x, t) = A−Bm cn2 (C(x− ct)) ,633

where cn is the Jacobi elliptic cosine function with modulus m ∈ [0, 1], and we require634
B

2C2 = 1 and c = −2(3A − 2Bm + 2C2) to be a solution to KdV [12]. Equation (4.4) is a635

right-moving travelling wave with phase speed c, and is spatially periodic with period 2K/C,636

where K = K(m) is the complete elliptic integral of the first kind [3]. Concentrating on the637

special case A = −2
3 (1 + (1− 2m)p), B = 2p and C =

√
p, where p := 1/

√
1−m+m2, in638

the limit as m→ 0, (4.4) becomes the small-amplitude solution to the linearised KdV, a pure639

cosine. As m→ 1 however, the peaks become repeated copies of the one-soliton solution, very640

widely separated in x: on any finite spatial interval at fixed t, (4.4)→(3.2) as m→ 1.641

The Fourier series for (4.4) can be calculated using the series for dn2 given by [24] and642

the identity dn2(x) = 1−m+m cn2(x), giving643

(4.5) u(x, t) = A−B
(
E

K
+m− 1

)
− 2Bπ2

K2

∞∑
n=1

nqn

1− q2n cos

(
nπC

K
{x− ct}

)
,644

where E is the complete elliptic integral of the second kind, and q(m) = e−πK(1−m)/K(m) is645

the ‘nome’ [3].646

Viewing (4.5) as a Koopman mode decomposition by writing the cosine in terms of expo-647

nentials, we identify Koopman eigenvalues inπcC/K for n ∈ Z. These are purely imaginary648

(or zero), as anticipated from periodicity, and should be contrasted to the purely real Koopman649

eigenvalues found for the single soliton in isolation (3.2).650

Despite the correspondence between the one-soliton solution to KdV and the limiting form651

of the periodic cnoidal wave, the isolated soliton Koopman decomposition is not obtained in652

the large-domain limit due to the fact that an infinite domain is required to obtain the scat-653

tering data that define the Koopman eigenfunctions. Furthermore, in contrast to Koopman654

decompositions constructed in section 3 for solitons on infinite domains, the Koopman modes655

and eigenvalues obtained in this periodic example are dependent on the domain length rather656

than being purely tied to the soliton itself. There are additional numerical issues too – the657

periodic Koopman decomposition can be difficult to obtain in the large-domain limit since658

very many Fourier modes are required to resolve the evolution (see Appendix).659

The striking difference between the periodic Koopman decomposition and the decompo-660

sition for a truly localised structure is somewhat disconcerting, since simulations of localised661

structures are often conducted on large periodic domains under the assumption that the true662

isolated structure is well approximated. However, the windowed DMD results reported in663

Figure 7 indicate that the Koopman decompositions for the localised structure can still be664

obtained in periodic computations by using a spatially localised observable. The reason for665
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this is clear if we return to the simplified system describing travelling wave solutions to KdV,666

Eq. (3.9). There is a continuous family of periodic orbits around the centre – the cnoidal waves667

– contained within a homoclinic orbit from the saddle, which corresponds to the one-soliton668

solution. The periodic configuration described here corresponds to one of these periodic or-669

bits. As m → 0, the orbits are close to the centre, and as m → 1, the orbits approximate670

the homoclinic orbit, but with finite period. DMD on the short time windows identifies the671

eigenvalues of the nearby homoclinic orbit, instead of the much longer periodic orbit it is672

actually computed on.673

These results suggest that the two alternative strategies for DMD are both equally valid,674

depending on what the computation is designed to find: (i) the ‘standard’ approach using675

the full state vector which will identify purely imaginary, domain-dependent Koopman eigen-676

values (if the structure is allowed to pass through the entire domain) and (ii) the windowed677

observable which can identify the growing/decaying Koopman eigenvalues associated with678

upstream/downstream expansions for a truly localised structure.679

5. Conclusions. In this paper, we have derived Koopman decompositions in a number of680

problems involving the propagation and interaction of isolated structures, namely a front in681

the Burgers equation and solitons in the KdV equation. The results indicate that isolated682

nonlinear waves require two Koopman decompositions to describe their evolution, which con-683

verge either upstream of downstream of the structure. In many-soliton interactions, multiple684

Koopman decompositions are required, and selecting the convergent expansion at any point685

requires knowledge of the relative positions of all solitons (i.e. whether they are upstream or686

downstream of the observation point).687

We proposed a simple modification to the standard DMD methodology that allows al-688

lows the algorithm to identify the individual Koopman decompositions around the isolated689

structures. This approach was used to identify the various Koopman decompositions in a two-690

soliton interaction solution of KdV, before we applied it to the sine-Gordon equation where the691

analytical eigenvalues are at present unknown. The results suggest that the need for multiple692

Koopman decompositions to cover the full spatio-temporal domain may be a generic feature693

of nonlinear PDEs.694

The Koopman expansions derived in this paper all rely on the existence of a linearis-695

ing transform for the PDE in question (Burgers and KdV), from which a subset of Koopman696

eigenfunctions and eigenvalues were derived. These eigenfunctions were then used to construct697

solutions for the nonlinear state variable u. This approach is consistent with the very general698

space of all nonlinear observables on which the Koopman operator is defined. However, a699

more specific choice of functional space has the potential to alter the spectral properties of700

the Koopman operator, which would affect the expansions that can be constructed. This issue701

connects to interesting open questions around the existence and uniqueness of Koopman de-702

compositions, which as far as we are aware are largely open questions even in ODE dynamics703

and which we are unable to address here, as we identify only the subset of Koopman eigen-704

functions associated with the linearising observables. However, the spectral decompositions705

we have presented match those identified by the DMD algorithm, and so these are the most706

relevant decompositions from a practical point of view.707

Further work is required to assess the extent to which our results apply in more complex708
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systems, such as the full Navier-Stokes equations. As a starting point, the windowing approach709

could be applied to some of the known localised relative periodic solutions in pipe flow [6].710

In addition, our analysis of the KdV equation was restricted to pure soliton evolution – i.e.711

dispersive effects were absent. The inclusion of dispersion will introduce a continuous spectrum712

of purely imaginary Koopman eigenvalues. It would be of interest to know how the presence713

of these effects impacts the capability of DMD to identify the eigenvalues associated with the714

coherent structures, and whether some of the recent proposed modifications to the algorithm,715

such as augmenting the observable with other functionals, can help.716

Appendix A. Further details on the cnoidal wave. In this appendix we briefly discuss717

the behaviour of the Koopman decomposition for the cnoidal wave (4.5) in the large-domain718

limit.719

In the limit m→ 1, the elliptic integral K(1−m)→ π/2, so q ∼ e−π2/2K and720

(A.1) K ∼ − π2

2 log q
.721

Therefore the nth Fourier coefficient from (4.5) obeys722

(A.2) − 2Bπ2

K2

nqn

1− q2n ∼ −
8B (log q)2

π2
nqn

1− q2n .723

Since q → 1 as m→ 1, we expand with ε = 1− q to give724

−2Bπ2

K2

nqn

1− q2n ∼ −
8B (−ε)2

π2
n

2nε
→ 0.(A.3)725

726

Since every Fourier coefficient approaches 0 as m→ 1, but the cnoidal wave peaks tend to a727

fixed height of −2, an increasing number of Fourier modes (which are Koopman modes here)728

must be used to approximate the solution. This means that for very isolated solitons in a729

periodic domain, a large number of DMD modes will be required.730
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