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Abstract. This paper is concerned with a priori error estimates for the local incremental
minimization scheme, which is an implicit time discretization method for the approximation of rate-
independent systems with non-convex energies. We first show by means of a counterexample that
one cannot expect global convergence of the scheme without any further assumptions on the energy.
For the class of uniformly convex energies, we derive error estimates of optimal order, provided that
the Lipschitz constant of the load is sufficiently small. Afterwards, we extend this result to the case
of an energy, which is only locally uniformly convex in a neighborhood of a given solution trajectory.
For the latter case, the local incremental minimization scheme turns out to be superior compared to
its global counterpart, as a numerical example demonstrates.
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1. Introduction. This paper is concerned with a-priori error estimates for the
numerical approximation of rate-independent processes. The system under investiga-
tion is of the form

(RIS) 0 ∈ ∂R(z′(t)) +DzI(t, z(t)) a.e. in [0, T ],

where I denotes the energy functional and R is a positive 1-homogeneous dissipa-
tion. The precise assumptions on the data are given in Section 2.1 below. The rate-
independence manifests itself through the 1-homogeneity of the dissipation, which in
fact induces that the system is invariant under time-rescaling. This simply means
that rescaling the time in (RIS) results in a likewise rescaled solution.

By now, there exists a variety of different solution concepts for (RIS) being capable
of handling time-discontinuities, which may occur due to non-convexity of the energy
functional. We refer to [14] for an overview. In this paper, we focus on the notion
of parameterized solutions. Loosely speaking, the main idea behind this solution
concept is to parameterize the graph of an evolution satisfying (RIS) by arc-length.
The process is thus described in an artificial time s by the following system

(1.1)


t(0) = 0, z(0) = z0, t′(s) + ‖z′(s)‖ = 1,

0 ∈ ∂R(z′(s)) + λ(s)z′(s) +DzI(t(s), z(s))

λ(s) ≥ 0, λ(s)(1− ‖z′(s)‖) = 0,

see [4, 14] for details. Existence of solutions in the sense of (1.1) can be established in
multiple ways, for instance by means of a vanishing viscosity analysis, see e.g. [12, 13].
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Another approach to show existence is to apply particularly chosen time dis-
cretization schemes and pass to the limit with the time step size. A prominent exam-
ple for this procedure is the so-called local incremental minimization scheme of the
form

zk ∈ arg min{I(tk−1, z) +R(z − zk−1) : z ∈ Z, ‖z − zk−1‖V ≤ τ}(1.2a)
tk = min{tk−1 + τ − ‖zk − zk−1‖V, T}.(1.2b)

This approach is for instance pursued in [4] for the finite dimensional and in [16, 6] for
the infinite dimensional case. The authors show (weak) convergence of subsequences
to solutions of (1.1) as τ ↘ 0. In [8], a finite element discretization is incorporated
into the convergence analysis. Moreover, as also demonstrated in [8], the scheme in
(1.2) is not only interesting from a theoretical point of view, but can also be efficiently
realized in practice for instance by means of a semi-smooth Newton method. Let us
mention that there exist other discretization methods to approximate parameterized
solutions, such as relaxed local minimization schemes as proposed in [2] or alternating
minimization schemes, if a second variable enters the energy functional. Moreover,
time discretization and viscous regularization can be coupled to approximate a pa-
rameterized solution, see [7, 13]. For a detailed overview, we refer to [6].

However, when it comes to rates of convergence for discretizations using (1.2),
the literature becomes rather scarce. Since, in case of non-convex energies, the (pa-
rameterized) solution of (RIS) is in general not unique, not even locally, as there
might be a whole continuum of solutions, one can in general hardly expect any a
priori estimates. The situation changes, if one turns to uniformly convex energies. In
this case, however, there is no need for a localized scheme as in (1.2) so that one can
drop the additional constraint in (1.2a) and simply use the a time-update of the form
tk = tk−1 + τ . The method arising in this way is called global incremental minimiza-
tion scheme and can be shown to converge to the global energetic solution, which is
unique in case of a uniformly convex energy. Even more, in [15, 11], the authors show
that the error between the discrete solution of this scheme and the global energetic
solution is of order O(

√
τ). This result has been improved in [9] and, more generally,

in [3] to rates of order O(τ) for the case of a quadratic and coercive energy. An energy
functional with these properties arises for instance in case of quasi-static elastoplas-
ticty with linear kinematic hardening, where several convergence results have been
obtained by various authors, see e.g. [5, 1] and the references therein. Recently, in
[17], the authors provide an a priori error estimate for the global minimization scheme
in case of a semilinear and uniformly convex energy including a spatial discretization.

By contrast, to the best of our knowledge, there exists no such convergence results
for the local incremental minimization scheme in (1.2), even not in the case of a
uniformly convex energy. With the present paper, we aim to fill this gap. Moreover,
we provide an a priori estimate, if the energy functional is only locally uniformly convex
along a given solution trajectory. At this point, the local incremental minimization
scheme turns out to be superior to the global one, since the latter does in general not
satisfy such an a priori estimate as we will demonstrate by means of a counterexample.
In summary, the overall picture concerning the local incremental minimization scheme
now looks as follows:

• For an arbitrary non-convex energy, there exists a subsequence of discrete
solutions that converges (weakly) to a parameterized solution as τ ↘ 0.

• If the energy is locally uniformly convex along a solution trajectory, then the
discrete solution converges with optimal rate to this solution, provided that
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the time step size is sufficiently small.
• If the energy is uniformly convex, one obtains the same convergence rates as

for the global incremental minimization scheme.
The paper is organized as follows. In Section 2, we lay the foundations for our

a priori error analysis. We present our standing assumptions, the solution concepts
for (RIS) underlying our analysis, and the local incremental minimization scheme in
a rigorous manner. The section ends with a simple one-dimensional example which
shows that one can indeed not expect any convergence result for the whole sequence
of discrete solutions without any further assumption on the energy such as (local)
uniform convexity. The third section is then devoted to the derivation of our a priori
estimates. In the first subsection, we provide some basic estimates that are frequently
used throughout the convergence analysis. In Sections 3.2 and 3.3, it is assumed
that the energy is (globally) uniformly convex. We start our a priori analysis with
an additional assumption saying that the driving force is Lipschitz continuous with
a sufficiently small Lipschitz constant. In Section 3.3, we then drop the smallness
assumption on the Lipschitz constant. It is to be noted that, in this case, we do not
obtain the optimal order of convergence, see Remark 3.21 below. Finally, Section 3.4
is concerned with the a priori analysis in case of locally uniformly convex energies.
The numerical experiments in Section 4 illustrate our theoretical findings.

2. Notation and standing assumptions. Let us start with some basic nota-
tion used throughout the paper. Unless indicated, C > 0 always is a generic constant.
Moreover, given two normed linear spaces X,Y , we denote by 〈·, ·〉X∗,X the dual pair-
ing and suppress the subscript, if there is no risk for ambiguity. By ‖ · ‖X , we denote
the norm in X and L(X,Y ) is the space of linear and bounded operators from X to
Y . Furthermore, BX(x, r) is the open ball in X around x ∈ X with radius r > 0.

2.1. Assumptions on the data. Let us now introduce the assumptions on the
quantities in (RIS).

Spaces. Throughout the paper, X is a Banach space and Z,V are Hilbert spaces

such that Z
c,d
↪→ V ↪→ X , where d

↪→ and
c
↪→ refer to dense and compact embedding,

respectively. For convenience, we will assume w.l.o.g. that the embedding constant
cZ of Z → V fulfills cZ = 1. Otherwise only the constants in the corresponding
estimates will change. For the same reason, we will use the natural norm in V rather
than an equivalent one as carried out in [6]. The Riesz isomorphism associated with
V is denoted by JV : V → V∗.

Energy. For the energy functional we require that I has the following semilinear
form:

I : [0, T ]×Z → R, I(t, z) =
1

2
〈Az, z〉Z∗,Z + F(z)− 〈`(t), z〉V∗,V .

wherein A ∈ L(Z,Z∗) is a self-adjoint and coercive operator, i.e., there is a constant
α > 0 such that 〈Az, z〉Z∗,Z ≥ α‖z‖2Z . In addition, we assume that ` ∈ C0,1([0, T ];V∗)
and F ∈ C2(Z;R) with F ≥ 0 and write |`|Lip for the Lipschitz constant. The
restriction of `(·) to a functional on Z is, for convenience, denoted by the same
symbol.

For the non-quadratic part, we assume that F is of lower order compared to A
which means that

(2.1) DzF ∈ C1(Z,V∗), ‖D2
zF(z)v‖V∗ ≤ CF (1 + ‖z‖qZ)‖v‖Z
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for some q ≥ 1 so that, for every z ∈ Z, DzF(z) can uniquely be extended to a
bounded and linear functional on V, which we again denote by the same symbol for
convenience.

Moreover, we additionally assume that I(t, ·) ∈ C2,1
loc (Z;R), that is to say, for all

r > 0 there exists C(r) ≥ 0 such that for all z1, z2 ∈ BZ(0, r) it holds

(2.2) 〈
[
D2
zI(t, z1)−D2

zI(t, z2)
]
v, v〉Z∗,Z ≤ C(r)‖z1 − z2‖Z‖v‖2Z .

Note that, due to the structure of the energy functional I, the constant C(r) does
not depent on the time t and, moreover, this assumptions holds iff F ∈ C2,1

loc (Z;R).
Lastly, we require I to be (at least locally) uniformly convex, see Assumption 3.1 and
Assumption 3.22 below, which we will indicate at the appropriate places.

Dissipation. In the following, we denote byR the dissipation potential and assume
R : V → [0,∞) to be lower semicontinuous, convex, and positively homogeneous of
degree one. Moreover, we require the dissipation to be bounded, i.e., there exist
constants ρ, ρ > 0 such that, for all v ∈ V there holds ρ‖v‖X ≤ R(v) ≤ ρ‖v‖V . Since
R is convex and l.s.c., it is locally Lipschitz continuous so that its subdifferential is
bounded for every point of the domain.

Initial data. Finally we assume that the initial state z0 satisfies z0 ∈ Z and
0 ∈ ∂R(0) +DzI(0, z0), i.e., z0 is locally stable.

2.2. Solution Concepts. We now turn to our notion of solutions and give a
rigorous definition thereof. For a broad overview over the various solution concepts
for rate independent systems, we refer to [10, 14] and the references therein.

Definition 2.1. We call z : [0, T ]→ Z a differential solution of the rate-independent
system (RIS), if z ∈ W 1,1(0, T ;Z) with z(0) = z0 and 0 ∈ ∂R(z′(t)) + DzI(t, z(t))
f.a.a. t ∈ [0, T ].

Due to the 1-homhogeneity of R, it holds ∂R(v) ⊂ ∂R(0) for all v ∈ V. Thus,
sinceW 1,1(0, T ;Z) ↪→ C(0, T ;Z) andDzI is continuous, a differential solutions fulfills
0 ∈ ∂R(0) + DzI(t, z(t)) for all t ∈ [0, T ]. The set S(t) := {z ∈ Z : 0 ∈ ∂R(0) +
DzI(t, z)} is often called set of local stability. Accordingly, a state z ∈ S(t) is called
locally stable. The notion of a differential solution plays a crucial role in our error
analysis. In case of a (globally) uniformly convex energy, one can prove that such a
solution exists and is unique, see Appendix B.

As indicated above, there exists multiple other notions of solutions for (RIS),
among them (global) energetic solutions and parameterized solutions. These two solu-
tion concepts will appear in context of our numerical examples. They come into play,
when one drops the uniform convexity assumption on the energy. In the non-convex
case, both solution concepts are especially essential in the context of incremental
minimization time stepping schemes, as (weak) limits of the sequence of iterates are
precisely of this type. To be more precise, weak accumulation points of the local
scheme in (1.2) for τ ↘ 0 are parameterized solutions, whereas weak accumulation
points of its global counterpart (where the additional inequality constraint in (1.2a)
is dropped and the time update is just tk+1 = tk + τ) are global energetic solutions.
For a precise definition of these two solution concepts and the convergence analysis
in case of non-convex energies, we refer to [6] and the references therein. Since only
differential solutions will appear in our a priori analysis, we do not go into further
details concerning the other notions of solutions.

2.3. Local Minimization Algorithm. In [4], an implicit time stepping scheme
based on a local minimization of dissipation plus energy was proposed to approximate
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parametrized solutions. This algorithm serves as a basis for our a priori analysis. Its
iterates are determined by

zk ∈ arg min{I(tk−1, z) +R(z − zk−1) : z ∈ Z, ‖z − zk−1‖V ≤ τ}(2.3a)
tk = min{tk−1 + τ − ‖zk − zk−1‖V , T}.(2.3b)

Note that the iterates implicitly depend on the choice of τ . Nevertheless, we will omit
any indexing of tk and zk for the sake of better readibility. Now, for every τ > 0,
we know from [6] that this algorithm reaches the final time T in a finite number of
iterations (depending on τ) which we will denote by N(τ). Moreover, by definition of
zk as a solution of (2.3a), it satisfies the necessary optimality conditions

(2.4) 0 ∈ ∂(R+ Iτ )(zk − zk−1) +DzI(tk−1, zk),

where Iτ : V → [0,∞] denotes the indicator functional associated with the constraint
v ∈ BV(0, τ). From (2.4), we obtain the following optimality system:

Lemma 2.2 (Discrete optimality System). Let k ≥ 1 and zk be an arbitrary
solution of (2.3a) with associated tk given by (2.3b). Then the following optimality
properties are satisfied: There exists a Lagrange multiplier λk ≥ 0 such that

λk(‖zk − zk−1‖V − τ) = 0(2.5a)

τ distV∗{−DzI(tk−1, zk), ∂R(0)} = λk‖zk − zk−1‖2V(2.5b) {
R(zk − zk−1) + τ distV∗{−DzI(tk−1, zk), ∂R(0)}

= 〈−DzI(tk−1, zk), zk − zk−1〉Z∗,Z
(2.5c)

R(v) ≥ −〈λkJV(zk − zk−1) +DzI(tk−1, zk), v〉V∗,V ∀v ∈ V.(2.5d)

For a proof of this statement, see [6] or [8]. Note that (2.5b)–(2.5d) and the
1-homogeneity of R imply

(2.6) 0 ∈ ∂R(zk − zk−1) + λkJV(zk − zk−1) +DzI(tk−1, zk).

In addition, (2.5a) and (2.5b) give

(2.7) λk =
1

τ
distV∗{−DzI(tk−1, zk), ∂R(0)}.

Remark 2.3. In order to keep the following arguments concise, we will proceed
the iteration for tN(τ) = T , until we find zN(τ)+n ∈ Z, which is locally stable again,
i.e., 0 ∈ ∂R(0)+DzI(tN(τ), zN(τ)+n). In Lemma 3.15 and Lemma 3.10 below, we will
see that, under suitable assumptions, this condition is fulfilled after a finite number of
steps, which is bounded independent of τ . Eventually we denote N̂(τ) := N(τ) + n.

Remark 2.4. Due to the convexity of I(t, ·) and the assumption on the initial
state z0, i.e., 0 ∈ ∂R(0) + DzI(t0, z0), there holds I(0, z0) ≤ I(0, z) +R(z − z0) for
all z ∈ Z so that z1 = z0 is the unique minimizer of (2.3a) and consequently, the
first iterate of the local minimization algorithm always equals the initial state. This
also entails t1 − t0 = τ . We will use this fact at some places of the paper. Note
that the uniform convexity of I(t0, ·) on BZ(z0, τ) is perfectly sufficient for the above
argument, which will become important in Section 3.4 below.
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2.4. A Counterexample in Case of a Non-Convex Energy. Before we
continue our error analysis, let us take a look at a first numerical example for the
local minimization algorithm, which illustrates that on cannot expect any convergence
result going beyond [6, 8] without further assumptions. For this example, we set
Z = V = X = R as well as:

R(v) = |v| and I(t, z) =
1

2
z2 + F(z)− `(t)z(2.8)

with

F(z) =

{
2z3 − 5/2 z2 + 1 , z ≥ 0
−2z3 − 5/2 z2 + 1 , z < 0

and `(t) = −24(t− 1/4)2 + 5/3.

The fact that the energy functional is not (strictly) convex induces that solutions
are in general not unique. However, it is a priori not clear, whether the discrete
approximations converge to some particular parameterized solution (potentially even
with some rate) or not. The following example demonstrates that this is in general
not the case. For z0 = −1/3 straight forward calculations show that

z1(t) ≡ −1/3 and z2(t) =

{
−1/3 , t ∈ [0, 1/4)

1/3(1 +
√

2) , t ∈ [1/4, 1/2]

are solutions of the rate-independent system (2.8). The numerical results depicted
in Figure 2.1 show that, although z2 is continuous, the discrete solution either ap-
proximates z1 or z2 depending on the choice of τ . Consequently, as indicated above,
without any form of (uniform) convexity of the energy-functional, it is not clear, if any
of the solutions is preferred by the algorithm. In addition an a priori error estimate
can hardly be expected. As a consequence of this example, we will impose additional
assumptions on the energy to derive a priori error estimates. First we will assume
that the energy is uniformly convex (Sections 3.2 & 3.3) and later on generalize our
results for the case of locally uniformly convex energies (Section 3.4).

3. A Priori Error Estimates. As mentioned above, the first part of our error
analysis is based on the following

Assumption 3.1 (κ-uniform convexity).
We say that I is κ-uniformly convex, if there exists a κ > 0 such that, for all t ∈ [0, T ]
and all z, v ∈ Z, it holds 〈D2

zI(t, z)v, v〉Z∗,Z ≥ κ‖v‖2Z .
It is to be noted that, due to the structure of I, the κ-uniform convexity is not

depending on the time. Thus it suffices to require that z 7→ 〈Az, z〉+F(z) is κ-uniform
convex. This property especially implies that

〈DzI(t, z2)−DzI(t, z1), z2 − z1〉Z∗,Z ≥ κ‖z2 − z1‖2Z ∀z1, z2 ∈ Z.

Later on, in Section 3.4, we will relax this assumption and turn to locally uniformly
convex energies, see Assumption 3.22 below.

Before we start with our error analysis, we derive several auxiliary results that
are frequently used throughout the whole paper.

3.1. Basic Estimates. In this section, we provide some basic estimates which
will be useful for the error analysis in the upcoming subsections.
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Figure 2.1: Approximations of two different parameterized solutions. Depending on
the choice of τ either of two solutions is approximated. The set of local stability, i.e.
∪t∈[0,0.5]S(t), is depicted in gray.

Lemma 3.2 (Uniform a-priori estimate for iterates). The iterates of Algorithm 2.3
fulfill supτ>0, k∈N‖zk‖Z <∞.

Proof. see [6] or [8].

Thus, we have that zk ∈ BZ(0, r0) for all k ∈ N for some r0 independent of τ . The
next result is essential in the context of parameterized solutions, since it implies that
the artificial time is bounded and that the final time T is reached within a finite
number of iteration.

Proposition 3.3 (Bound on artificial time). For every τ > 0, there exists an
index N(τ) ∈ N such that tN(τ) = T . Moreover, it holds

∑N(τ)
k=1 ‖zk − zk−1‖Z ≤ CΣ

for some CΣ = CΣ(α,F , |`|Lip, z0, T ) > 0 independent of τ .

Proof. see [6] or [8].

In what follows, we denote by N(τ) the number of necessary iterates to reach the
final time at fineness τ . Finally, we state the following three auxiliary results, which
will be used several times throughout this paper.

Lemma 3.4. There exists CF,r0 > 0, such that for all z1, z2 ∈ BZ(0, r0):

|〈DzF(z1)−DzF(z2), v − w〉V∗,V | ≤ CF,r0 ‖z1 − z2‖Z ‖v − w‖V

for all v, w ∈ Z.
Proof. The proof is a direct consequence of the growth-condition on D2

zF . Let
v, w ∈ Z be arbitrary. Using the aforementioned growth condition in (2.1) together
with the embedding Z ↪→ V yields

|〈DzF(z1)−DzF(z2), v − w〉V∗,V | ≤ C(1 + rq0) ‖z1 − z2‖Z ‖v − w‖V .
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Remark 3.5. Thanks to Lemma 3.2 and 3.4, there is a constant CF > 0 such that,
for all iterates zk, zj ∈ Z it holds

|〈DzF(z1)−DzF(z2), v − w〉V∗,V | ≤ C(1 + rq0) ‖z1 − z2‖Z ‖v − w‖Z .

Lemma 3.6. Under the Assumption 3.1 we have for all iterates k ∈ N, k ≤ N(τ):

0 ≥ κ‖zk+1 − zk‖2Z − |`|Lip(tk − tk−1)‖zk+1 − zk‖V + (λk+1 − λk)τ2.(3.1)

Proof. First of all, we observe that, due to the complementarity condition in
(2.5a), it holds λk‖zk − zk−1‖2V = λkτ

2. Now, by inserting (2.5b) in (2.5c) and
writing the resulting equation for the iteration k + 1, we obtain

R(zk+1 − zk) = 〈−DzI(tk, zk+1), zk+1 − zk〉Z∗,Z − λk+1τ
2.(3.2)

Testing the inequality (2.5d) with v = zk+1 − zk yields

R(zk+1 − zk) ≥ 〈−DzI(tk−1, zk), zk+1 − zk〉Z∗,Z − λk‖zk − zk−1‖V‖zk+1 − zk‖V
≥ 〈−DzI(tk−1, zk), zk+1 − zk〉Z∗,Z − λkτ2

Subtracting hereof the terms in (3.2), exploiting the κ-uniform convexity of I(t, ·) and
the Lipschitz-continuity of `, we obtain

0 ≥ 〈DzI(tk, zk+1)−DzI(tk, zk), zk+1 − zk〉Z∗,Z
+ 〈DzI(tk, zk)−DzI(tk−1, zk), zk+1 − zk〉Z∗,Z + (λk+1 − λk)τ2

≥ κ‖zk+1 − zk‖2Z − |`|Lip(tk − tk−1)‖zk+1 − zk‖V + (λk+1 − λk)τ2(3.3)

which was claimed.

Remark 3.7. Revisiting the proof of Lemma 3.6, we only needed the κ-uniform
convexity in the last estimate. Since this will become important in the local uniform
convex case, we state this estimate explicitly here: For all k ∈ N, k ≤ N(τ), it holds
(without assuming I to be uniformly convex):

0 ≥ 〈DzI(tk, zk+1)−DzI(tk, zk), zk+1 − zk〉Z∗,Z
+ 〈DzI(tk, zk)−DzI(tk−1, zk), zk+1 − zk〉Z∗,Z + (λk+1 − λk)τ2.(3.4)

Lemma 3.8. Under Assumption 3.1 it holds for any k ∈ N with k ≤ N(τ):

0 ∈ ∂R(0) +DzI(tk−1, zk) =⇒ ‖zk+1 − zk‖Z ≤
|`|Lip
κ

(tk − tk−1)

Proof. Let 0 ∈ ∂R(0) + DzI(tk−1, zk), which directly implies that λk = 0, due
to (2.7). Thanks to Lemma 3.6 and the non-negativity of λk+1, we thus arrive at
κ‖zk+1 − zk‖2Z − |`|Lip(tk − tk−1)‖zk+1 − zk‖Z ≤ 0, where we used the embedding
Z ↪→ V with constant cZ = 1.

3.2. Globally Uniformly Convex Energy (in case |`|Lip is small). We are
now in the position to start our error analysis. We begin with the case of a uniformly
convex energy, see Assumption 3.1. Beside this, we additionally assume

Assumption 3.9 (Bound on the Lipschitz constant of the driving force).
There exists δ ∈ (0, κ] so that |`|Lip ≤ κ− δ.
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We will drop this assumption in the next subsection for the price of losing the
optimal rate of convergence, see Theorem 3.20 below.

In order to define a discrete solution, we first introduce suitable interpolants in
the artificial time:
For s ∈ [sk−1, sk) ⊂ [0, Sτ ), the continuous and piecewise affine interpolants are
defined through

(3.5) ẑτ (s) := zk−1 +
(s− sk−1)

sk − sk−1
(zk− zk−1), t̂τ (s) := tk−1 +

(s− sk−1)

sk − sk−1
(tk− tk−1),

while the piecewise constant interpolants are given by

zτ (s) := zk, tτ (s) := tk, zτ (s) := zk−1, tτ (s) := tk−1.

The basic idea of our convergence proof is to transform the affine-interpolant back
into the physical time and then to compare it with the unique differential solution
of the rate-independent system (RIS), which exists due to [15, Thm 7.4]. In order
to guarantee that the back-transformation exists and fulfills some upper bounds, we
need the following Lemma:

Lemma 3.10. Let Assumption 3.9 hold. Then it holds that

(3.6) ‖zk+1 − zk‖Z ≤
κ− δ
κ

(tk − tk−1) ∀ 1 ≤ k ≤ N(τ)

and (1 − κ−δ
κ ) = δ

κ ≤ t̂′τ (s) ≤ 1 for almost all s ∈ [0, Ŝτ ]. Moreover it holds N̂(τ) =
N(τ) + 1.

Proof. We argue by induction. Since z1 = z0 by Remark 2.4, we have ∂R(z1 −
z0) +DzI(t0, z1) = ∂R(0) +DzI(t0, z0) 3 0 so that Lemma 3.8 and Assumption 3.9
imply

‖z2 − z1‖Z ≤
|`|Lip
κ

(t1 − t0) ≤ κ− δ
κ

(t1 − t0),

which is (3.6) for k = 1. Now, let k ≥ 2 be arbitrary and assume that (3.6) holds for
k−1, i.e., ‖zk− zk−1‖Z ≤ κ−δ

κ (tk−1− tk−2) < τ . Consequently, the complementarity
conditions in (2.5a) and (2.6) imply

0 ∈ ∂R(zk − zk−1) +DzI(tk−1, zk) ⊂ ∂R(0) +DzI(tk−1, zk).

Thus, by applying again Lemma 3.8 and Assumption 3.9, we obtain (3.6) for the next
iteration.

For s ∈ (0, τ), the lower bound on t̂′(s) follows immediately from t1 − t0 = τ , see
Remark 2.4. For s > τ , it is a direct consequence of (3.6), the embedding Z ↪→ V, and
the time-update formula (2.3b). Finally, by (3.6) and the complementarity condition
(2.5a), we have λN(τ)+1 = 0, so that indeed N̂(τ) = N(τ) + 1 thanks to (2.5b).

We are now in the position to proof our main result on the convergence rate for
parameterized solutions. By the Lemma above, there exists an unique inverse function
ŝτ (t) : [0, T ] 7→ [0, Ŝτ ] of t̂τ . We will then denote by zτ (t) := ẑτ (sτ (t)) the retrans-
formed discrete parameterized solution (see also end of the proof of Theorem 3.11).

Theorem 3.11. Let I(t, ·) ∈ C2,1
loc (Z;R) (see (2.2)) as well as Assumption 3.1

and Assumption 3.9 hold. Moreover let ` ∈ W 1,∞([0, T ];V∗) with `′ ∈ BV ([0, T ];V).
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Then, the sequence {zτ}τ>0 of retransformed discrete parameterized solutions con-
verges to the unique (differential) solution z and satisfies the a-priori error estimate

(3.7) ‖zτ (t)− z(t)‖Z ≤ K τ ∀t ∈ [0, T ],

where K = K(α, κ, `, z0, T,F , ‖A‖L(Z,Z∗)) > 0 is independent of τ .

Proof. For convenience of the reader we split the rather lengthy proof into eight
parts, which are as follows:

0. First, we will see that, due to the uniform convexity of the energy, (RIS) even
admits a unique differential solution and not only a parameterized one.

1. Based on Lemma 3.10, we can transform the piecewise affine interpolants
introduced above to the physical time. This allows to compare the discrete
solution with the exact (differential) solution, which of course also “lives”
in the physical time. The error analysis however uses a slightly different
piecewise affine interpolant, denoted by z̃τ providing a certain shift in the
time steps.

2. In analogy to [15], we introduce a quantity γ(t), which dominates the point-
wise error ‖z̃τ (t) − z(t)‖Z . This error measure enables us to deal with uni-
formly convex energy functionals instead of just quadratic and coercive ones.

3. The error measure is essentially estimated by two contributions, denoted by
E(t) and R(t). Both contributions depend only differences of DzI evaluated
at different time points and different discrete solutions.

4. & 5. E(t) and R(t) are estimated by using the smoothness properties of F and the
load `. In addition, the uniform convexity of I plays an essential role for the
estimate of R. In this way, one obtains a estimate of O(τ2) for the L1-norms
of E and R.

6. Together with Gronwall’s lemma, this estimate yields a bound of O(τ) for
the error indicator γ and thus also for the error ‖z̃τ (t)− z(t)‖Z .

7. Finally, we relate the ‖z̃τ (t)− z(t)‖Z with the auxiliary interpolant z̃τ to the
“true error” containing the “correct” interpolant zτ = ẑτ ◦ sτ as introduced
above.

Step 0: Differential Solution
First of all, due to Theorem B.1, there exists a unique (differential) solution z ∈
C0,1(0, T ;Z) of the rate-independent system. In particular, it holds f.a.a. t ∈ [0, T ]
that 0 ∈ ∂R(z′(t)) +DzI(t, z(t)), which can be reformulated as (see (B.2)):

∀v ∈ Z : R(v) ≥ 〈−DzI(t, z(t)), v〉Z∗,Z ∀t ∈ [0, T ](3.8a)
R(z′(t)) = 〈−DzI(t, z(t)), z′(t)〉Z∗,Z f.a.a. t ∈ [0, T ].(3.8b)

Since z ∈ C0,1(0, T ;Z), it additionally holds

(3.9) ‖z′(t)‖Z ≤ C f.a.a. t ∈ [0, T ].

Step 1: Construction of interpolants in the physical time
Given t ∈ [tτk−1, t

τ
k) with k ≤ N(τ), we define the following affine interpolant

z̃τ (t) = zτk +
t− tτk−1

tτk − tτk−1

(zτk+1 − zτk ).(3.10)

Note that [tk−1, tk) is nonempty and that λk = 0 due to Lemma 3.10. Thus, from the
first order optimality condition for the local minimization problem, i.e. (2.6), we know
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that 0 ∈ ∂R(z̃′τ (t)) + DzI(tk, zk+1). Analogous to Step 0, this can be reformulated
as

∀v ∈ Z : R(v) ≥ 〈−DzI(tk, zk+1), v〉Z∗,Z ∀k ∈ {0, . . . , N(τ)}(3.11a)
R(z̃′τ (t)) = 〈−DzI(tk, zk+1), z̃′τ (t)〉Z∗,Z f.a.a. t ∈ [0, T ](3.11b)

Exploiting Lemma 3.10, we additionally have

(3.12) ‖z̃′τ (t)‖Z ≤ C f.a.a. t ∈ [0, T ].

Step 2: Introduction of an error measure
We now basically follow the lines of [15, Thm 7.4], but have to adapt the underlying
analysis at some points. Therefore we present the arguments in detail. Let us define

(3.13) γ(t) := 〈DzI(t, z̃τ (t))−DzI(t, z(t)), z̃τ (t)− z(t)〉Z∗,Z .

Due to the κ-uniform convexity of I(t, ·), we have

(3.14) γ(t) ≥ κ‖z̃τ (t)− z(t)‖2Z
so that γ measures the discretization error. In full analogy to [15, Thm 7.4], we can
estimate (see Appendix A)

(3.15) γ̇(t) ≤ C ‖z̃τ (t)− z(t)‖2Z + 2〈DzI(t, z̃τ (t))−DzI(t, z(t)), z̃′τ (t)− z′(t)〉Z∗,Z ,

for almost all t ∈ [0, T ]. We split the second term into two parts, namely

e1(t) := 2 〈DzI(t, z(t))−DzI(t, z̃τ (t)), z′(t)〉Z∗,Z
and e2(t) := 2 〈DzI(t, z̃τ (t))−DzI(t, z(t)), z̃′τ (t)〉Z∗,Z .

Step 3: Estimates for the error ei
Let again k ≤ N(τ) and t ∈ [tk−1, tk) be arbitrary. First observe that, due to the
convexity of ∂R(0), it holds for

θ(t) =
t− tk−1

tk − tk−1

that −(1 − θ(t)) ξk−1 − θ(t) ξk ∈ ∂R(0) with ξk−1 := DzI(tk−1, zk) and ξk :=
DzI(tk, zk+1). From the characterization of ∂R(0), we inferR(v) ≥ −〈(1−θ(t)) ξk−1+
θ(t) ξk, v〉Z∗,Z for all v ∈ Z. Inserting herein v = z′(t) and substracting (3.8b), we
can estimate

e1(t) = 2 〈DzI(t, z(t))− (1− θ(t)) ξk−1 − θ(t) ξk, z′(t)〉Z∗,Z
+ 2〈(1− θ(t)) ξk−1 + θ(t) ξk −DzI(t, z̃τ (t)), z′(t)〉Z∗,Z

≤ 2 ‖(1− θ(t)) ξk−1 + θ(t) ξk −DzI(t, z̃τ (t))‖Z∗‖z′(t)‖Z(3.16)

for almost all t ∈ [tk−1, tk).
Next we turn to the term e2. Similarly, we take v = z̃′τ (t) in (3.8a) and substract

(3.11b) to obtain 0 ≥ 〈DzI(tk, zk+1)−DzI(t, z(t)), z̃′τ (t)〉Z∗,Z , from which we deduce

e2(t) ≤ 2 〈DzI(t, z̃τ (t))−DzI(tk, zk+1), z̃′τ (t)〉Z∗,Z
≤ 2〈DzI(t, z̃τ (t))− (1− θ(t)) ξk−1 − θ(t) ξk, z̃′τ (t)〉Z∗,Z

+ 2〈(1− θ(t)) ξk−1 + θ(t) ξk −DzI(tk, zk+1), z̃′τ (t)〉Z∗,Z
≤ 2 ‖(1− θ(t)) ξk−1 + θ(t) ξk −DzI(t, z̃τ (t))‖Z∗‖z̃′τ (t)‖Z

+ 2(1− θ(t))〈DzI(tk−1, zk)−DzI(tk, zk+1), z̃′τ (t)〉Z∗,Z .



12 CHRISTIAN MEYER AND MICHAEL SIEVERS

Next, let us define

E(t) := ‖(1− θ(t)) ξk−1 + θ(t) ξk −DzI(t, z̃τ (t))‖Z∗(3.17)
and R(t) := 2(1− θ(t))〈DzI(tk−1, zk)−DzI(tk, zk+1), z̃′τ (t)〉Z∗,Z .(3.18)

Then we insert (3.17) and (3.18) in (3.16) and (3.17). The resulting estimates for e1

and e2 are in turn inserted in (3.15), which, together with the boundedness of ‖z′(t)‖Z
and ‖z̃′τ (t)‖Z by (3.9) and (3.12), yields

(3.19) γ̇(t) ≤ C(‖z̃τ (t)− z(t)‖2Z + E(t) +R(t)).

Step 4: Estimate for E(t)
The particular structure of I together with the linearity of A and the definition of z̃τ
gives

E(t) ≤ ‖(1− θ(t))DzF(zk) + θ(t)DzF(zk+1)−DzF ((1− θ(t))zk − θ(t)zk+1)‖Z∗
+ ‖(1− θ(t))`(tk−1) + θ(t)`(tk)− `(t)‖Z∗

=: I1(t) + I2(t).

Exploiting the regularity of F , we can estimate

I1(t) ≤ θ(t)‖zk+1 − zk‖Z∫ 1

0

∥∥D2
zF(zk + s(zk+1 − zk))−D2

zF(zk + sθ(t)(zk+1 − zk))
∥∥
L(Z,L(Z,Z∗)) ds

≤ C‖zk+1 − zk‖2Z ,

where we also used θ(t) ∈ [0, 1] and the boundedness of the iterates zk in Z indepen-
dent of τ from Lemma 3.2. For I2, we proceed similarly by exploiting the regularity
of `:

I2(t) ≤
∫ t

tk−1

∥∥∥∥`(tk)− `(tk−1)

tk − tk−1
− `′(s)

∥∥∥∥
V
ds ≤ τ‖`′‖BV ([tk−1,tk];V) ds.

Since ‖zk+1 − zk‖Z ≤ Cτ by Lemma 3.10, the above estimates for I1(t) and I2(t)
imply for all t ∈ [tk−1, tk) that E(t) ≤ Cτ2 + τ‖`′‖BV ([tk−1,tk];V). Now integrating E
yields

(3.20)
∫ T

0

E(t)dt ≤ Cτ2 + τ2‖`′‖BV ([0,T ];V) ≤ Cτ2.

Step 5: Estimate for R(t)
First, we abbreviate E(z) := 〈Az, z〉 + F(z) so that I(t, z) = E(z) − 〈`(t), z〉, as well
as

∆tk := tk − tk−1, dτ `k :=
`(tk)− `(tk−1)

∆tk
, k = 1, ..., N(τ),

dτzk+1 :=
zk+1 − zk

∆tk
, dτDzEk+1 :=

DzE(zk+1)−DzE(zk)

∆tk
, k = 1, ..., N(τ)− 1,

as well as dτ `0 = 0, dτz1 = 0, and dτDzE1 = 0. By Lemma 3.10, we have

(3.21) ‖dτzk‖Z ≤ C.
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Now, on account of −DzI(tk−1, zk) ∈ ∂R(zk − zk−1), we deduce from (3.11a) tested
with zk− zk−1 that 0 ≥ 〈DzI(tk−1, zk)−DzI(tk, zk+1), zk− zk−1〉Z∗,Z . Inserting the
definitions of z̃ and θ(t), we thus obtain for t ∈ [tk−1, tk):

R(t) = 2(tk − t)〈(∆tk)−1[DzI(tk−1, zk)−DzI(tk, zk+1)], dτzk+1 − dτzk〉Z∗,Z
+ 2(tk − t)〈(∆tk)−1[DzI(tk−1, zk)−DzI(tk, zk+1)], dτzk〉Z∗,Z

≤ 2(tk − t)〈(∆tk)−1[DzI(tk−1, zk)−DzI(tk, zk+1)], dτzk+1 − dτzk〉Z∗,Z
= 2(tk − t)〈−dτDzEk+1 + dτ `k, dτzk+1 − dτzk〉Z∗,Z .

Integrating then gives∫ T

0

R(t)dt ≤
N(τ)∑
k=1

(∆tk)2〈−dτDzEk+1 + dτ `k, dτzk+1 − dτzk〉Z∗,Z

≤ τ2

N(τ)∑
k=1

〈−dτDzEk+1, dτzk+1 − dτzk〉Z∗,Z + 〈dτ `k, dτzk+1 − dτzk〉Z∗,Z .(3.22)

For the terms involving ` we have

N(τ)∑
k=1

〈dτ `k, dτzk+1 − dτzk〉V∗,V

=

N(τ)∑
k=1

〈dτ `k, dτzk+1〉V∗,V − 〈dτ `k − dτ `k−1, dτzk〉V∗,V − 〈dτ `k−1, dτzk〉V∗,V ,

where we used dτ `0 = 0. The second term is estimated analogously to I2, exploiting
the regularity of ` as well as the boundedness of ‖dτzk‖V from (3.21), which yields

|〈dτ `k − dτ `k−1, dτzk〉V∗,V |

=
∣∣∣ ∫ 1

0

〈`′(tk−1 + s(tk − tk−1))− `′(tk−2 + s(tk−1 − tk−2))ds,dτzk〉V∗,V
∣∣∣

≤ ‖`′‖BV ([tk−2,tk];V) ‖dτzk‖V ≤ C‖`′‖BV ([tk−2,tk];V).

Hence, thanks to dτ `0 = 0 and (3.21),

N(τ)∑
k=1

〈dτ `k, dtzk+1 − dtzk〉V∗,V

≤
N(τ)∑
k=1

〈dτ `k,dτzk+1〉V∗,V − 〈dτ `k−1, dτzk〉V∗,V + C‖`′‖BV ([tk−2,tk];V)

≤ 〈dτ `N(τ)−1, dτzN(τ)〉V∗,V + 2C‖`′‖BV ([0,T ];V) ≤ C(|`|Lip + ‖`′‖BV ([0,T ];V)).(3.23)

Now, for the terms involving DzE , we first calculate

〈dτDzEk+1, dτzk〉Z∗,Z =
〈DzE(zk+1)−DzE(zk)

tk − tk−1
,dτzk

〉
Z∗,Z

=

∫ 1

0

〈D2
zE(zk + s(zk+1 − zk))[dτzk+1], dτzk〉Z∗,Z ds.
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Since D2
zE is symmetric, we obtain

2

∫ 1

0

〈D2
zE(zk + s(zk+1 − zk))[dτzk+1], dτzk〉Z∗,Z ds

= −
∫ 1

0

〈D2
zE(zk + s(zk+1 − zk))[dτzk+1 − dτzk], dτzk+1 − dτzk〉Z∗,Z ds

+

∫ 1

0

〈D2
zE(zk + s(zk+1 − zk))[dτzk+1], dτzk+1〉Z∗,Z ds

+

∫ 1

0

〈(D2
zE(zk + s(zk+1 − zk))−D2

zE(zk−1 + s(zk − zk−1)))[dτzk],dτzk〉Z∗,Z ds

+

∫ 1

0

〈D2
zE(zk−1 + s(zk − zk−1))[dτzk], dτzk〉Z∗,Z ds

Thus, thanks to the convexity of E , we have

〈dτDzEk+1,dτzk〉Z∗,Z ≤
1

2
〈dτDzEk, dτzk〉Z∗,Z +

1

2
〈dτDzEk+1,dτzk+1〉Z∗,Z

+
1

2
C‖dτzk‖2Z(‖zk+1 − zk‖Z + ‖zk − zk−1‖Z),

where we also used the regularity of E . Exploiting Proposition 3.3 and (3.21), we
eventually end up with

N(τ)∑
k=1

〈dτDzEk+1,dτzk〉 − 〈dτDzEk+1,dτzk+1〉Z∗,Z

≤ 1

2

N(τ)∑
k=1

{〈dτDzEk, dτzk〉Z∗,Z − 〈dτDzEk+1, dτzk+1〉Z∗,Z
+ C‖dτzk‖2Z(‖zk+1 − zk‖Z + ‖zk − zk−1‖Z)}

≤ CCΣ +
1

2
〈dτDzE1,dτz1〉Z∗,Z −

1

2
〈dτDzEN(τ)+1, dτzN(τ)+1〉Z∗,Z ≤ C.

wherein the last estimate is due to Remark 2.4, i.e., 〈dτDzE1, dτz1〉 = 0, and the
convexity of E , that is 〈dτDzEN(τ)+1,dτzN(τ)+1〉 ≥ 0. Combining this with (3.20),
(3.23) and (3.22), we have overall shown that

(3.24)
∫ T

0

E(t)dt+

∫ T

0

R(t)dt ≤ Cτ2.

Step 6: Obtain Convergence Rate by Gronwall Lemma
Exploiting that γ(t)/κ ≥ ‖z̃τ (t)−z(t)‖2Z in (3.19), one obtains γ̇(t) ≤ C(γ(t)+E(t)+
R(t)). Integrating this and using Gronwall’s Lemma as well as the estimates (3.24) on
E and R yield γ(t) ≤ (γ(0) + Cτ2) expCt ≤ C(γ(0) + τ2). Due to z̃τ (0) = z(0) = z0,
we have γ(0) = 0. Using another time the κ-uniform convexity of I, we therefore
finally obtain

(3.25) ‖z̃τ (t)− z(t)‖2Z ≤ γ(t)/κ ≤ Cτ2.

Step 7: Comparing interpolants
By ẑτ we denote the affine interpolation of the discrete approximations with stepsize τ
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in the artificial time, see (3.5). From Lemma 3.10, we conclude that t̂τ (s) is monoton-
ically increasing and t̂′τ (s) ≥ 1− κ−δ

κ a.e. in [0, Ŝτ ]. Thus, there exists a unique inverse
function sτ : [0, T ]→ [0, Ŝτ ] with 1 ≤ s′τ (t) ≤ 1

1−κ−δκ
a.e. in [0, T ]. Given this inverse,

one can define ẑτ as the retransformed affine interpolant, i.e., zτ (t) := ẑτ (sτ (t)). By
elementary calculations, the explicit formula for zτ is:

zτ (t) = zτk−1 +
t− tτk−1

tτk − tτk−1

(zτk − zτk−1), t ∈ [tτk−1, t
τ
k),

i.e., zτ is just the affine interpolant in the physical time. Comparing zτ with z̃τ from
(3.10) results in

‖zτ (t)− z̃τ (t)‖Z = ‖zτk−1 + θ(t)(zτk − zτk−1)− zτk − θ(t)(zτk+1 − zτk )‖Z
≤ (1− θ(t))‖zτk−1 − zτk‖Z + θ(t)‖zτk − zτk+1‖Z ≤ τ.

where we exploited (3.6) once more. Now, since k ≤ N(τ) was arbitrary, we have
‖zτ (t) − z̃τ (t)‖Z ≤ τ for all t ∈ [0, T ]. In combination with (3.25), this finally gives
‖zτ (t) − z(t)‖Z ≤ Kτ , which is the desired result. A careful analysis of the used
estimates and the corresponding constants yields that K provides the claimed depen-
dencies.

Some remarks and comments concerning the assertion of Theorem 3.11 and its
proof are in order:

Remark 3.12. In preparation of Section 3.4 below, we note that the uniform con-
vexity of the energy is only needed at three places in the above analysis: firstly for
the estimate in (3.6), secondly for the lower bound on γ in (3.14), and thirdly for the
inequality

(3.26)
∫ 1

0

〈D2
zE(zk + s(zk+1 − zk))[dτzk+1 − dτzk], dτzk+1 − dτzk〉Z∗,Z ds ≥ 0.

However (3.6) and (3.26) remain valid, if I(tk, ·) is only κ-uniformly convex on a ball
BZ(z,∆) with radius ∆ > τ > 0 and zk, zk+1 ∈ BZ(z,∆). To see this, note that (3.6)
follows from estimate (3.1), see proof of Lemma 3.10, which itself is a consequence of
〈DzI(tk, zk+1)−DzI(tk, zk), zk+1−zk〉Z∗,Z ≥ κ‖zk+1−zk‖2Z . This inequality, just as
inequality (3.26), only require that zk and zk+1 lay in a region of uniform convexity
of I. The estimate on γ finally necessitates that z̃τ (t) ∈ BZ(z(t),∆) and that I is
uniformly convex on BZ(z(t),∆) for all t ∈ [0, T ], cf. the definition of γ in (3.13).

Remark 3.13. In view of the regularity of the differential solution, i.e., z ∈W 1,∞(0, T ;Z),
the convergence rate of O(τ) in Theorem 3.11 can be regarded as optimal, since the
piecewise affine interpolation of the solution does not yield a better convergence rate.

Remark 3.14. We expect that a spatial discretization can also be included in the
above a priori estimates, following e.g. the lines of [11]. This would however go beyond
the scope of the paper and is subject to future research.

3.3. The General Case (w/o smallness assumption on |`|Lip). Let us now
turn to the general case, where the Lipschitz-constant does not necessarily fulfill
|`|Lip < κ. In this case, we can no longer guarantee that the algorithm always makes
progress w.r.t. time, which implies that the back-transformation onto the physical
time need not exist. In order to handle these cases, we will neglect all iterates for
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which the time-update does not proceed. Consequently, we need to ensure that the
algorithm only needs a finite number of iterates (independent of τ) to reach a new
local minimum in the interior of BV(zk−1, τ) so that, after a maximum number of
M iterates, the algorithm again performs a timestep. This is part of the next two
Lemmata.

Lemma 3.15. Let Assumption 3.1 hold. Then there exists m ∈ N, independent of
τ , such that, for all iterates k ∈ N, k < N̂(τ), there exists an index k̂ ∈ [k, k +m] so
that 0 ∈ ∂R(0) + DzI(tk̂−1, zk̂), i.e., after at most m iterations, the iterate is again
locally stable.

Proof. W.l.o.g. let k be the last iterate with tk − tk−1 > 0 (otherwise we choose
k̃ < k as the last iterate, where a time-step took place and apply the same argumen-
tation with k̃ instead of k, which will then give the same m). By Remark 2.4 we have
t1 − t0 > 0 so that there always exists such an index k ≤ N(τ). We will first show
that λk+1 is bounded by the Lipschitz-constant of `. Afterwards, we will show that
the sequence {λk+l}l≥1 is monotonically decreasing by some constant factor. Since
all multipliers are non-negative, this will lead to λk+m = 0, which yields the desired
result.
Step 1: Boundedness of λk+1

Since tk − tk−1 > 0, we have λk = 0 by (2.3b) and (2.5a) so that Lemma 3.6 implies

0 ≥ κ‖zk+1 − zk‖2Z − |`|Lip(tk − tk−1)‖zk+1 − zk‖V + λk+1τ
2

≥ −|`|Lip(tk − tk−1)‖zk+1 − zk‖V + λk+1τ
2 ≥ −|`|Lipτ2 + λk+1τ

2

so that indeed λk+1 ≤ |`|Lip.
Step 2: Monotonicity of {λk+l}l≥1

To proceed, let l ≥ 2 iterations be given without time-progress (otherwise m = 2),
which means that

tk+l = tk+l−1 = · · · = tk(3.27)
and ‖zk+l − zk+l−1‖V = ‖zk+l−1 − zk+l−2‖V = · · · = τ.(3.28)

We will now show that the sequence {λk+l}l≥1 is monotonically decreasing by some
constant factor. Together with (3.1) for the index k + l, (3.27) implies

0 ≥ κ‖zk+l − zk+l−1‖2Z + λk+lτ
2 − λk+l−1τ

2.

Using the embedding Z ↪→ V and inserting (3.28), we obtain 0 ≥ κτ2 + λk+lτ
2 −

λk+l−1τ
2. Combining this with the bound on λk+1 from above and rearranging terms

then yields

λk+l ≤ λk+l−1 − κ =⇒ λk+l ≤ λk+1 − (l − 1)κ ≤ |`|Lip − (l − 1)κ,

which finally gives that λk+m = 0 for m = d|`|Lip/κe+ 1 due to the non-negativity of
the multipliers. Thus, by (2.6), we have 0 ∈ ∂R(0) +DzI(tk+m−1, zk+m).

Lemma 3.16. Let Assumption 3.1 hold. Then there exists M ∈ N, independent of
τ and ε, such that, for all iterates k ∈ N, k < N(τ), there exists an index k̂ ∈ [k, k+M ]
so that tk̂+1 − tk̂ > 0, i.e., after at most M iterations, the algorithm performs a
timestep.

Proof. From Lemma 3.15 there exists m ∈ N such that

(3.29) 0 ∈ ∂R(0) +DzI(tk+m−1, zk+m).
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Therefore, it either holds ‖zk+m−zk+m−1‖V < τ , which implies that tk+m−tk+m−1 >
0, or ‖zk+m − zk+m−1‖V = τ and (3.29) in combination with the time-update (2.3b)
implies that

‖zk+m − zk+m−1‖Z ≤
|`|Lip
κ

(tk+m − tk+m−1) =
|`|Lip
κ

(τ − ‖zk+m − zk+m−1‖V) = 0.

Again, from the time-update (2.3b), it follows tk+m+1− tk+m = τ > 0. In both cases,
we have proven the assertion for M = m+ 1.

We finally need an estimate for the iterates in the stronger Z-norm, in order to get a
uniform bound for the derivative of the linear-interpolants.

Lemma 3.17. Let Assumption 3.1 be satisfied. Then there exists a constant C =
C(|`|Lip, κ) > 0 such that ‖zk − zk−1‖Z ≤ C τ for all iterations k ≤ N̂(τ).

Proof. For k = 1 this easily follows from Remark 2.4. Hence, let k ≥ 2. In the
proof of Lemma 3.15, we have seen that the multipliers λk are bounded by |`|Lip for
all k ≤ N̂(τ). Another application of Lemma 3.6 thus gives

κ‖zk − zk−1‖2Z ≤ |`|Lip(tk−1 − tk−2)‖zk − zk−1‖V − (λk − λk−1)τ2

≤ |`|Lipτ2 + λk−1τ
2 ≤ 2|`|Lipτ2,

where we exploited the positivity of the multiplier λk.

As mentioned above, the time-discrete parametrized solution will only include the
iterates for which the time-update proceeds. Thus we set

• N(τ) = number of iterations to reach the end-time T (with stepsize τ)
• N̂(τ) = number of iterations to reach the final locally stable state zN̂(τ) (see

Remark 2.3)
• N (τ) := {k ∈ {1, . . . , N(τ)} : tk − tk−1 > 0} ∪ {0, N̂(τ)}

In what follows, the iterations in N (τ) are numbered from 1 to |N (τ)| and the
corresponding mapping is denoted by k, i.e.,

k : {0, 1, . . . , |N (τ)|} → N (τ) so that N (τ) = {k(0), k(1), . . . , k(N (τ))}.

Therewith, we define for t ∈ [tk(j−1), tk(j))

z̃τ (t) = zk(j) +
t− tk(j−1)

tk(j) − tk(j−1)

(
zk(j+1) − zk(j)

)
, z̃τ (T ) = zN̂(τ)

as well as zτ (t) = zk(j), tτ (t) = tk(j)−1. Note that it holds

(3.30) tk = · · · = tk(j−1) ∀k ∈ {k(j − 1), k(j − 1) + 1, . . . , k(j)− 1}

and consequently

(3.31) 0 ∈ ∂R(0) +DzI(tk(j)−1, zk(j)) = ∂R(0) +DzI(tτ (t), zτ (t)).

Moreover we have the following estimates:

Lemma 3.18. Let Assumption 3.1 and −DzI(0, z0) ∈ ∂R(0) hold. Then there
exists constants M ∈ N and C1, C2 > 0 independent of τ and ε so that

k(j)− k(j − 1) ≤M ∀j = 1, . . . , |N (τ)|(3.32)
‖(z̃τ )′(t)‖Z ≤ C1 ∀a.a. t ∈ [0, T ],(3.33)

‖z̃τ (t)− zτ (t)‖Z ≤ C2τ ∀ t ∈ [0, T ],(3.34)
|t− tτ (t)| ≤ τ ∀ t ∈ [0, T ].(3.35)
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Proof. The first statement is a direct consequence of Lemma 3.15. Let ε :=
κ

κ+|`|Lip ≤ 1. In order to estimate the derivative of the affine interpolants, let j ∈
{1, . . . , |N (τ)| − 1}. We then distinguish the following two cases:

i) If (tk(j) − tk(j−1)) ≥ ετ then

(3.36)
∥∥∥∥zk(j+1) − zk(j)

tk(j) − tk(j−1)

∥∥∥∥
Z
≤

k(j)−1∑
i=k(j−1)

‖zi+1 − zi‖Z
ετ

≤ MC

ε
.

ii) Otherwise ετ > (tk(j)− tk(j−1)) > 0. Since k(j) ∈ N (τ), the complementarity
condition (2.5a) and the time-update (2.3b) imply λk(j) = 0. Consequently,
Lemma 3.8 in combination with (3.30) give

(3.37) ‖zk(j)+1 − zk(j)‖Z ≤
|`|Lip
κ

(tk(j) − tk(j)−1) =
|`|Lip
κ

(tk(j) − tk(j−1)).

Therefore, if tk(j) < T , then the time update (2.3b) and the embedding
Z ↪→ V give

tk(j)+1 − tk(j) = τ − ‖zk(j)+1 − zk(j)‖V ≥ (1− |`|Lip
κ

ε)τ = ετ > 0

and consequently, k(j+1) = k(j)+1. If tk(j) = tN(τ) = T , then (3.37) implies

‖zk(j)+1 − zk(j)‖V ≤
|`|Lip
κ

ετ < τ

so that zk(j)+1 is locally stable, which in turn yields N̂(τ) = k(j) + 1 and
hence k(j + 1) = N̂(τ) = k(j) + 1. Thus, in both cases, k(j + 1) = k(j) + 1
and consequently, (3.37) yields

(3.38)
∥∥∥∥zk(j+1) − zk(j)

tk(j) − tk(j−1)

∥∥∥∥
Z
≤ |`|Lip

κ
.

Hence, (3.36) and (3.38) give (3.33) with C1 = max{MC(κ+|`|Lip)
κ ,

|`|Lip
κ }. For (3.34),

we first calculate

‖z̃τ (t)− zτ (t)‖Z =

∣∣∣∣ t− tk(j−1)

tk(j) − tk(j−1)

∣∣∣∣ ‖zk(j+1) − zk(j)‖Z .

Another application of (3.32) and Lemma 3.17 then yield for all t ∈ [0, T ]

‖z̃τ (t)− zτ (t)‖Z ≤
k(j+1)−1∑
i=k(j)

‖zi+1 − zi‖Z ≤MCτ =: C2τ.

Finally (3.35) is a direct consequence of the construction of tτ (t).

Remark 3.19. Taking a closer look to the proof of Lemma 3.18 we observe that
it actually holds

(3.39)
1

tk(j) − tk(j−1)

k(j+1)−1∑
i=k(j)

‖zi+1 − zi‖Z ≤ C

for all j < N̂(τ).
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With all this at hand, we are now in the position to show an a-priori estimate in
the general case:

Theorem 3.20. Let Assumption 3.1 be fulfilled. Then there exists C > 0, inde-
pendent of τ , such that for the affine interpolants z̃τ : [0, T ]→ Z, defined as above, it
holds:

‖z(t)− z̃τ (t)‖Z ≤ C
√
τ ∀t ∈ [0, T ],

where z ∈ C0,1([0, T ];Z) is the unique (differential) solution of the RIS.

Proof. First of all, from Theorem B.1 we have the existence of a unique differential
solution z ∈ C0,1(0, T ;Z), that fulfills for all v ∈ Z

(3.40) R(z′(t)) ≥ R(v) + 〈−DzI(t, z(t)), v − z′(t)〉Z∗,Z f.a.a. t ∈ [0, T ].

On the other hand, according to (3.31), we have for all v ∈ Z that

(3.41) −DzI(tτ (t), zτ (t)) ∈ ∂R(0) ⇐⇒ R(v) ≥ 〈−DzI(tτ (t), zτ (t), v〉Z∗,Z .

Moreover, for t ∈ [tk(j−1), tk(j)), the positive homogeneity and convexity of R together
with (2.5c) give

R(z̃′τ (t)) = R
(
zk(j) − zk(j−1)

tk(j) − tk(j−1)

)
≤ 1

tk(j) − tk(j−1)

k(j)−1∑
i=k(j−1)

R(zi+1 − zi)

≤ 1

tk(j) − tk(j−1)

k(j)−1∑
i=k(j−1)

〈−DzI(ti, zi+1), zi+1 − zi〉Z∗,Z

= 〈−DzI(tτ (t)), zτ (t), z̃′τ (t)〉Z∗,Z

+
1

tk(j) − tk(j−1)

k(j)−1∑
i=k(j−1)

〈DzI(tτ (t), zτ (t))−DzI(ti, zi+1), zi+1 − zi〉Z∗,Z .

For the last term, we further estimate

〈DzI(tτ (t), zτ (t))−DzI(ti, zi+1), zi+1 − zi〉Z∗,Z
≤ 〈A(zτ (t)− zi+1), zi+1 − zi〉Z∗,Z + 〈DzF(zτ (t))−DzF(zi+1), zi+1 − zi〉Z∗,Z
≤ ‖A‖L(Z,Z∗)‖zk(j) − zi+1‖Z‖zi+1 − zi‖Z + CF‖zk(j) − zi+1‖Z‖zi+1 − zi‖Z
≤ C τ‖zi+1 − zi‖Z ,

where we used Lemma 3.4, Lemma 3.17, (3.32), and the fact that ti = tk(j) = tτ (t)
for all i ∈ {k(j − 1), . . . , k(j) − 1}, see (3.30). Exploiting (3.39), and combining the
resulting estimate with (3.41) gives for all w ∈ Z:

(3.42) R(w)−R(z̃′τ (t))+〈DzI(tτ (t), zτ (t)), w−z̃′τ (t)〉Z∗,Z ≥ −C τ f.a.a. t ∈ [0, T ] .

Testing (3.40) with v = z̃′τ (t) and (3.42) with w = z′(t), respectively, and summing
up the resulting inequalities yields

C τ ≥ 〈DzI(tτ (t), zτ (t))−DzI(t, z(t)), z̃′τ (t)− z′(t)〉Z∗,Z
= 〈DzI(tτ (t), zτ (t))−DzI(t, zτ (t))

+DzI(t, zτ (t))−DzI(t, z̃τ (t)) +DzI(t, z̃τ (t))−DzI(t, z(t)), z̃′τ (t)− z′(t)〉Z∗,Z .
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Since z is Lipschitz continuous, we have ‖z′(t)‖Z ≤ C a.e. in [0, T ]. In combination
with (3.33) as well as Lemma 3.4 (note that z̃τ and zτ are bounded independent of
τ), we can thus estimate

〈DzI(t, z̃τ (t))−DzI(t, z(t)), z̃′τ (t)− z′(t)〉Z∗,Z
≤ |〈DzI(tτ (t), zτ (t))−DzI(t, zτ (t)), z̃′τ (t))− z′(t)〉Z∗,Z |

+ |〈DzI(t, zτ (t))−DzI(t, z̃τ (t)), z̃′τ (t))− z′(t)〉Z∗,Z |+ C τ

≤ ‖`(tτ (t))− `(t)‖V‖z̃′τ (t)− z′(t)‖V
+ |〈Azτ (t)−Az̃τ (t), z̃′τ (t)− z′(t)〉Z∗,Z |
+ |〈DzF(zτ (t))−DzF(z̃τ (t)), z̃′τ (t))− z′(t)〉Z∗,Z |+ C τ

≤
(
C‖zτ (t)− z̃τ (t))‖Z + CF‖zτ (t)− z̃τ (t)‖Z

+|`|Lip|tτ (t)− t|
)
‖z̃′τ (t)− z′(t)‖Z + C τ

≤ Cτ (‖z̃′τ (t)‖Z + ‖z′(t)‖Z) + C τ ≤ C τ,(3.43)

where we used (3.34) and (3.35) in the next-to-last inequality. We can now in principle
follow the lines of [15, Thm 7.4]. Since an additional error Cτ arise in (3.43), we need
to adapt some estimates of [15] and therefore we give the main details: Again we
define the error measure γ(t) := 〈DzI(t, z̃τ (t))−DzI(t, z(t)), z̃τ (t)− z(t)〉Z∗,Z . Due
to the κ-uniform convexity of I(t, ·), we have γ(t) ≥ κ‖z̃τ (t)− z(t)‖2Z . In full analogy
to [15, Thm 7.4], we can estimate (see Appendix A)

γ̇(t) ≤ C‖z̃τ (t)− z(t)‖2Z + 2〈DzI(t, z̃τ (t))−DzI(t, z(t)), z̃′τ (t)− z′(t)〉Z∗,Z ,

wherein we use the essential boundedness of z̃′τ and z′. Inserting (3.43) and exploiting
that γ(t)/κ ≥ ‖z̃τ (t) − z(t)‖2Z we obtain γ̇(t) ≤ Cγ(t) + Cτ . Now, we proceed as in
the end of the proof of Theorem 3.11. Integrating and using Gronwall’s Lemma
yields γ(t) ≤ (γ(0) + CTτ) expCt ≤ C(γ(0) + τ). Due to ẑ(0) = z(0) = z0, we
have γ(0) = 0. Exploiting again the κ-uniform convexity of I, we finally obtain
‖z̃τ (t)− z(t)‖2Z ≤ γ(t)/κ ≤ C τ , which was claimed.

Remark 3.21. In contrast to Theorem 3.11, we do not obtain the optimal rate
of convergence in case the Lipschitz constant of ` is too big. The critical part of
the proof is the estimate of

∑k(j)−1
i=k(j−1)〈DzI(tτ (t), zτ (t)) − DzI(ti, zi+1), zi+1 − zi〉,

that only yields an order O(τ) instead of O(τ2), which would be necessary to obtain
the optimal order. A potential resort could be to replace z̃τ by a more sophisticated
interpolant that does not simply neglect all iterations without progress in the physical
time. Note that, due to the 1−homogeneity of the dissipation, it is always possible
to achieve |`|Lip < κ by rescaling the time accordingly. Then, Theorem 3.24 applies
giving the optimal order in the rescaled time scale. Of course, depending on the
Lipschitz constant of `, the rescaled time scale might become rather small so that
a large number of iterations is necessary, but this rescaling argument indicates that
it should be possible to achieve the optimal order in case of large |`|Lip, too. This
however gives rise to future research.

3.4. A priori Analysis for Locally Uniformly Convex Energies. As al-
ready mentioned in the introduction, the local incremental minimization algorithm is
actually not necessary, if the energy is globally uniformly convex. In this case, one
could also use the global incremental minimization scheme, which is easier to imple-
ment, since the additional inequality constraint in (2.3a) is omitted. The situation
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changes however, if the energy is no longer globally uniformly convex, but only lo-
cally around a given evolution z. Then the local incremental minimization scheme
still approximates the (local) solution with optimal order (provided that |`|Lip is not
too large), while the global scheme might fail to converge, as we will demonstrate by
means of a numerical example in Section 4.2. Our precise notion of local uniform
convexity is as follows:

Assumption 3.22 (Local κ-uniform convexity).
We call I locally κ-uniform convex around z : [0, T ] → Z if there exist κ,∆ > 0,
independent of t, such that I(t, ·) is κ-uniformly convex on BZ(z(t),∆) for all t ∈
[0, T ], i.e.

(3.44) 〈D2
zI(t, z̃)v, v〉Z∗,Z ≥ κ‖v‖2Z ∀z̃ ∈ BZ(z(t),∆), v ∈ Z.

Note that local uniform convexity is always referred to an evolution z. The Assump-
tion 3.22 especially implies that

(3.45) 〈DzI(t, z2)−DzI(t, z1), z2−z1〉Z∗,Z ≥ κ‖z2−z1‖2Z ∀z1, z2 ∈ BZ(z(t),∆)

Indeed, using (3.44), we obtain

〈DzI(t, z2)−DzI(t, z1), z2 − z1〉Z∗,Z

=

∫ 1

0

〈D2
zI(t, z1 + s(z2 − z1))[z2 − z1], z2 − z1〉Z∗,Zds ≥ κ‖z2 − z1‖2Z

where we used that z1 + s(z2 − z1) ∈ BZ(z(t),∆) for all s ∈ [0, 1]. Now, in order
to prove a convergence-rate in the local uniform convex case, we again have to esti-
mate the difference of iterates in the Z-norm. Since it is not a-priori clear that the
iterate remains in the neighbourhood of convexity of I, we need to alter the proof of
Lemma 3.17.

Lemma 3.23. Let 0 ∈ ∂R(0) + DzI(tk−1, zk) for some k ∈ N. Then ‖zk+1 −
zk‖Z ≤ Cloc τ . for some constant Cloc = Cloc(F , α, |`|Lip) > 0.

Proof. Let k ∈ N be given. From (3.4) we know

0 ≥ 〈DzI(tk, zk+1)−DzI(tk, zk), zk+1 − zk〉Z∗,Z
+ 〈DzI(tk, zk)−DzI(tk−1, zk), zk+1 − zk〉Z∗,Z + (λk+1 − λk)τ2

Since 0 ∈ ∂R(0) +DzI(tk−1, zk) holds by assumption, (2.7) implies λk = 0. Inserting
the definition of I and exploiting Remark 3.5, we can thus further estimate

0 ≥ 〈A(zk+1 − zk), zk+1 − zk〉Z∗,Z + 〈DzF(zk+1)−DzF(zk), zk+1 − zk〉Z∗,Z
+ 〈`(tk−1)− `(tk), zk+1 − zk〉+ λk+1τ

2

≥ α‖zk+1 − zk‖2Z − CF‖zk+1 − zk‖Z‖zk+1 − zk‖V − |`|Lip(tk − tk−1)‖zk+1 − zk‖V .

Therefor, by applying the generalized Young-inequality, it follows from the constraint
in (2.3a) that

0 ≥ α‖zk+1 − zk‖2Z −
α

2
‖zk+1 − zk‖2Z − CF,α‖zk+1 − zk‖2V − |`|Lip τ2

≥ α

2
‖zk+1 − zk‖2Z − CF,ατ2 − |`|Lip τ2

so that indeed Cloc τ2 ≥ ‖zk+1 − zk‖2Z with Cloc = 2
α (CF,α + |`|Lip).
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With this at hand, we can now show an a-priori estimate in the case of an energy-
functional, which is only locally uniform convex around a differential solution.

Theorem 3.24. Let z ∈ C0,1([0, T ];Z) be a (differential) solution. Furthermore
let I be locally κ-uniform convex around z with radius ∆ > 0 and assume that ` ∈
W 1,∞([0, T ];V) with |`|Lip ≤ κ−δ (see Assumption 3.9) and `′ ∈ BV ([0, T ];V). Then
there exists a constant Kloc > 0, independent of τ , such that, for the back-transformed
parameterized solution zτ : [0, T ]→ Z and all τ ≤ τ̄ with τ̄ sufficiently small, it holds:

(3.46) ‖zτ (t)− z(t)‖Z ≤ Kloc τ ∀t ∈ [0, T ].

Proof. The proof basically follows the Steps in the proof of Theorem 3.11. Though
we need to ensure that the iterates remain in the region of uniform convexity of I,
see Remark 3.12. Therefor, we will show by means of induction, that zk, zk+1 ∈
BZ(z(t),∆) for t ∈ [tk−1, tk]. As an easy consequence, the affine interpolant z̃τ ,
defined in (3.48) below, fulfills z̃τ (t) ∈ BZ(z(t),∆) for t ∈ [tk−1, tk], which yields that
the estimates in Remark 3.12 also hold in the local convex case and we can proceed
as in the proof of Theorem 3.11.
Step 0: Preparation
We start by choosing

(3.47) τ ≤ min

(
∆

3Cloc
,

∆

3K ′
,

∆

3 |z|Lip
,

∆

3

)
=: τ̄ ,

where Cloc denotes the constant from Lemma 3.23 and K ′ the constant from Theo-
rem 3.11. To be precise here, assume that I is globally κ-uniform convex. Then, by
Theorem 3.11, there would exist a constant K ′ such that the a-priori estimate (3.7)
would hold on [0, T ]. This is the constant we refer to here. To proof (3.46), we will
now successively show that the affine-interpolant defined by

(3.48) z̃τ (t) := zk +
t− tk−1

tk − tk−1
(zk+1 − zk) t ∈ [tk−1, tk),

fulfills (3.46) on every interval [tk−1, tk]. Since we might have [tk−1, tk) = ∅, this
definition is at first only formally. However, we will successively show by means of
induction w.r.t k, that tk − tk−1 ≥ ετ for some ε ∈ [0, 1) independent of τ .
Step 1: Initialization
We show (3.46) for t ∈ [t0, t1]. To do so, we observe that, due to the choice of τ , we
have BZ(z0, τ) ⊂ BZ(z0,∆). Hence, I(0, ·) is convex on BZ(z0, τ) and consequently,
we can argue exactly as in Remark 2.4 to obtain z1 = z0 ∈ BZ(z(0),∆) and t1−t0 = τ
so that z̃τ is well defined and equals z0 on [t0, t1]. Since z0, z1 ∈ BZ(z(0),∆) and
I(t0, ·) is uniformly convex there by assumption, the estimates (3.6) and (3.26) hold
for k = 1 (see Remark 3.12). Moreover, we obviously have z̃τ (t) ≡ z0 ∈ BZ(z(t),∆)
for all t ∈ [t0, t1], due to the Lipschitz-continuity of z and the choice of τ . Therefore,
we can exploit the convexity of I(t, ·) on BZ(z(t),∆), giving that (3.14) holds for
t ∈ [t0, t1], too. Then, as illustrated in Remark 3.12, we can argue analogous to the
proof of Theorem 3.11 (steps 2–6) to obtain ‖z̃τ (t)− z(t)‖Z ≤ K ′ τ for all t ∈ [t0, t1].
Step 2: Induction
Let k ∈ N be given with

zk ∈ BZ(z(tk−1),∆), ‖zk − zk−1‖V < τ,(3.49)
‖z̃τ (t)− z(t)‖Z ≤ K ′ τ ∀ t ∈ [t0, tk].(3.50)
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In the first step of the proof, we have seen that these conditions are fulfilled for k = 1
and will now show that we can then extend these estimates to [t0, tk+1]. For this, we
observe that, since τ ≤ ∆

3K′ , the inequality (3.50) gives zk = z̃τ (tk) ∈ B∆/3(z(tk)).
Thus, by exploiting Lemma 3.23 and (3.47), it follows that ‖zk+1 − z(tk)‖Z ≤ ∆ so
that again the estimates (3.6) and (3.26) hold true (see Remark 3.12).

It remains to show that z̃τ (t) ∈ BZ(z(t),∆) for all t ∈ [tk, tk+1] so that we have
(3.14) on the next time interval, see again Remark 3.12. By (3.49), it holds λk = 0
such that the inequality (3.4), in combination with λk+1 ≥ 0, reduces to

0 ≥ 〈DzI(tk, zk+1)−DzI(tk, zk), zk+1 − zk〉Z∗,Z
+ 〈DzI(tk, zk)−DzI(tk−1, zk), zk+1 − zk〉Z∗,Z .

The κ-uniform convexity of I(tk, ·) on BZ(z(tk),∆) thus gives 0 ≥ κ‖zk+1 − zk‖2Z −
|`|Lip(tk − tk−1)‖zk+1 − zk‖V , which implies

‖zk+1 − zk‖Z ≤ |`|Lip/κ τ ≤
κ− δ
κ

τ < τ

by the assumption on |`|Lip. By the time-update (2.3b), we consequently have

(3.51) tk − tk−1 ≥ δ/κ τ,

which gives the well-posedness of our interpolant and the boundedness of its derivative
in Z due to Lemma 3.23. From this Lemma and again the choice of τ , we moreover
conclude for t ∈ [tk, tk+1]

‖z̃τ (t)− z(t)‖Z ≤ ‖zk − z(tk)‖Z + ‖z(tk)− z(t)‖Z +
t− tk

tk+1 − tk
‖zk+1 − zk‖Z

≤ K ′ τ + ‖z‖Lip(tk+1 − tk) + Clocτ ≤ ∆/3 + ∆/3 + ∆/3 = ∆.

Hence z̃τ (t) ∈ BZ(z(t),∆) for all t ∈ [t0, tk+1] so that the uniform convexity of
I(t, ·) on BZ(z(t),∆) implies that (3.14) holds on [t0, tk+1]. Thus we can again argue
as in the proof of Theorem 3.11 (steps 2–6) to show (3.50) on the extended time
interval [t0, tk+1]. In summary, we therefore have shown that (3.49)–(3.50) holds with
k + 1 instead of k, which completes the induction step. Hence, iterating this yields
‖z̃τ (t)− z(t)‖Z ≤ K ′ τ on the whole time interval [0, T ].
Step 3: Comparing Interpolants
We again define the affine interpolant t̂τ as in (3.5). From (3.51), it follows that t̂′τ ≥
δ/κ for all s ∈ [0, Sτ ]. Thus, there exists a unique inverse function sτ : [0, T ]→ [0, Ŝτ ]
with 1 ≤ s′τ (t) ≤ 1

1−κ−δκ
a.e. in [0, T ]. In full analogy to the proof of Theorem 3.11

(step 7), we obtain ‖zτ (t) − z̃τ (t)‖Z ≤ τ , where again zτ is the retransformed affine
interpolation, i.e. zτ (t) := ẑτ (sτ (t)). Thus we finally get

‖zτ (t)− z(t)‖Z ≤ ‖zτ (t)− z̃τ (t)‖Z + ‖z̃τ (t)− z(t)‖Z ≤ Kloc τ,

which was claimed.

4. Numerical tests. In the next subsections, we provide two numerical exam-
ples in order to illustrate the theoretical findings of the previous section.
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4.1. Globally uniformly convex energy. We start with an infinite-dimensional
example. For that, we let Ω = [0, 1]2 and choose

I(t, z) =
1

2
〈Az, z〉Z∗,Z − 〈`(t), z〉V

with A = −∆ : H1
0 (Ω) 7→ H−1(Ω) and `(t, x) = 1Ω − 1

π cos(π t/2)f(x), wherein
f(x) = 2(x1(1−x1)+x2(1−x2)). Moreover, the dissipation functional is given by the
L1-norm, i.e., R(v) = ‖v‖L1(Ω). Consequently, the underlying spaces are Z = H1

0 (Ω),
V = L2(Ω), and X = L1(Ω). In this setting, the unique (differential) solution to (RIS)
reads

(4.1) z(t, x) =

 0 , t ∈ [0, 1)
− 1
π cos(π2 t) v(x) , t ∈ [1, 2)

− 1
π v(x) , t ∈ [2, 3]

with v(x) = x1x2(1 − x1)(1 − x2). For the spatial discretization of this system,
we choose linear finite elements on a Friedrich-Keller triangulation with mesh size
h =
√

2/100 and use a mass-lumping scheme for the discretization of R. The detailed
implementation is described in [8]. The resulting errors are shown in Figure 4.1. It
can be seen that the error decreases in a linear fashion (w.r.t. the time-parameter τ)
until the error of the spatial-discretization is dominating.

10 -2 10 -1 10 0
10 -3

10 -2

10 -1

||z -z||
L ([0,T];H

1
)

O( )

O( )

Figure 4.1: Errors for the approximation of the parameterized solution (4.1) using the
local minimization scheme.

4.2. Locally uniformly convex energy. We next give a one-dimensional ex-
ample, in which the energy is not globally uniformly convex. In particular, the ener-
getic solution will no longer be continuous in time, which is seen in Figure 4.2. How-
ever, the parametrized solution is still Lipschitz-continuous and moreover remains in
a region, where the energy is uniformly convex, see Figure 4.2. For this example, we
set Z = V = X = R as well as:

R(v) = |v| and I(t, z) =
1

2
z2 + F(z)− `(t)z(4.2)
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with

F(z) =

{
2z3 − 5/2 z2 + 1 , z ≥ 0
−2z3 − 5/2 z2 + 1 , z < 0

and `(t) = −1/2(t− 3/2)2 + 3/2.

For z0 = −2/3, a (differential) solution to (RIS) with (4.2) reads

(4.3) z(t) =


−2/3 , t ∈ [0, 1/2)

− 1
3 (1 + 1/2

√
1 + 3(t− 3/2)2) , t ∈ [1/2, 2)

−1/2 , t ∈ [2, 3]

By direct calculations, one verifies that z indeed stays in a region, where I is uniformly
convex. Thus, from the analysis in Section 3, we expect the error in the approximation
to be of order O(τ), which can be nicely observed in the Figure 4.2 below.
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Figure 4.2: Left: Errors for the approximation of a parametrized solution using the
local minimization scheme depending on the stepsize τ ; Right: Corresponding differ-
ential solution (black) as well as the numerical approximations using the global (blue)
and the local iterated minimization scheme (red) as functions of the time t.

Appendix A. Estimation of the error measure γ. In the proofs of Theo-
rem 3.11 and Theorem 3.20, we use an adapted version of an estimate that is part of
the proof of uniqueness for solutions of RIS from [15]. For convenience of the reader,
we present this adapted version here. Therefor let z1, z2 ∈W 1,∞([0, T ];Z) and again
γ(t) := 〈DzI(t, z1(t))−DzI(t, z2(t)), z1(t)− z2(t)〉Z∗,Z . First of all we calculate

γ̇(t) = 〈D2
zI(t, z1(t))[z1(t)− z2(t)], z′1(t)〉Z∗,Z − 〈D2

zI(t, z2(t))[z1(t)− z2(t)], z′2(t)〉Z∗,Z
+ 〈DzI(t, z1(t))−DzI(t, z2(t)), z′1(t)− z′2(t)〉Z∗,Z ,

where we used the symmetry of D2
zI. Note that, due to the special structure of I,

the partial derivative w.r.t. t is equal to zero. Rearranging terms, we arrive at

γ̇(t) = 〈D2
zI(t, z1(t))[z1(t)− z2(t)] +DzI(t, z2(t))−DzI(t, z1(t)), z′1(t)〉Z∗,Z

− 〈D2
zI(t, z2(t))[z1(t)− z2(t)] +DzI(t, z1(t))−DzI(t, z2(t)), z′2(t)〉Z∗,Z

+ 2〈DzI(t, z1(t))−DzI(t, z2(t)), z′1(t)− z′2(t)〉Z∗,Z
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Now, due to z1, z2 ∈ W 1,∞([0, T ];Z) and the regularity on I(t, ·) (see (2.2)), we find
that

γ̇(t) ≤ C‖z1(t)− z2(t)‖2Z‖z′1(t)‖Z + C‖z1(t)− z2(t)‖2Z‖z′2(t)‖Z
+ 2〈DzI(t, z1(t))−DzI(t, z2(t)), z′1(t)− z′2(t)〉Z∗,Z
≤ C‖z1(t)− z2(t)‖2Z + 2〈DzI(t, z1(t))−DzI(t, z2(t)), z′1(t)− z′2(t)〉Z∗,Z

which is the desired estimate.

Appendix B. Existence and Uniqueness of differential solutions. The
statements of Theorem 3.11 and Theorem 3.20 each refer to the unique differential
solution of (RIS), which exists due to [15, Thm. 7.4]. However, in [15], the energy
functional is assumed to be slightly more regular than as in (2.2). For completeness,
we therefor bring together the necessary results from the literature to obtain the
existence and uniqueness of differential solutions in our setting.

Theorem B.1. Let I fulfill Assumption 3.1, i.e., it is κ-uniformly convex . Then
there exists a unique differential solution z ∈W 1,∞(0, T ;Z), i.e. it holds

(B.1) 0 ∈ ∂R(z′(t)) +DzI(t, z(t)) f.a.a. t ∈ [0, T ].

Proof. First of all, the existence of a differential solution satisfying z ∈W 1,∞(0, T ;Z)
follows from [14, Cor. 3.4.6(i)] combined with [14, Cor. 3.1.2]. Moreover, since I(t, ·)
is uniform convex, every differential solution has to fulfill z ∈ W 1,∞(0, T ;Z) as a
result of [14, Thm. 3.4.4] (with α = 2, β = 1) and [14, Cor. 3.4.6(i)]. Now,
let z1, z2 ∈ W 1,∞(0, T ;Z) be two differential solutions. We again define γ(t) :=
〈DzI(t, z1(t))−DzI(t, z2(t)), z1(t)− z2(t)〉. Since z′ ∈ L1([0, T ];Z), (B.1) is equiva-
lent to

(B.2) R(z′(t)) ≥ R(v) + 〈−DzI(t, z(t)), v − z′(t)〉Z∗,Z ∀v ∈ Z.

Testing this variational inequality for z1 with z2 and vice versa and adding up the
resulting inequalities, we obtain

0 ≥ 〈DzI(t, z1(t))−DzI(t, z2(t)), z′1(t)− z′2(t)〉Z∗,Z .

Exploiting the estimate from Section A, we thus have γ̇(t) ≤ C‖z1(t)− z2(t)‖2Z . The
κ-uniform convexity of I implies γ(t) ≥ κ‖z1(t) − z2(t)‖2Z , so that γ̇(t) ≤ Cγ(t) and
we obtain the uniqueness result by applying the Gronwall-Lemma.
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