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Abstract

Recently, a new distance has been introduced for the graphs of two point-to-set operators, one
of which is maximally monotone. When both operators are the subdifferential of a proper
lower semicontinuous convex function, this distance specializes under modest assumptions to
the classical Bregman distance. We name this new distance the generalized Bregman distance, and
we shed light on it with examples that utilize the other two most natural representative func-
tions: the Fitzpatrick function and its conjugate. We provide sufficient conditions for convexity,
coercivity, and supercoercivity: properties that are essential for implementation in proximal
point type algorithms. We establish these results for both the left and right variants of this new
distance. We construct examples closely related to the Kullback–Leibler divergence, which was
previously considered in the context of Bregman distances, and whose importance in informa-
tion theory is well known. In so doing, we demonstrate how to compute a difficult Fitzpatrick
conjugate function, and we discover natural occurrences of the Lambert W function, whose
importance in optimization is of growing interest.
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1 Introduction

Throughout, unless stated otherwise, (X, ‖·‖) is a real Banach space with dual (X∗, ‖·‖∗), and
Γ0(X) is the set of all proper lower semicontinuous convex functions from X to R∞ := ]−∞,+∞].

In 1967, Bregman introduced the distance constructed for a differentiable convex function f ,

D f : X× X → [0,+∞] : (x, y) 7→
{

f (x)− f (y)− 〈∇ f (y), x− y〉 if y ∈ int dom f ,
+∞ otherwise,

(1)

which now bears his name [14] and whose corresponding envelopes and proximity operators spec-
ify to the Moreau proximity operator [1, 2, 36] and envelope when f is the energy ‖·‖2 /2. The
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study of Bregman distances has become popular, following their 1981 reintroduction by Censor
and Lent [27]. Bregman functions were introduced to solve feasibility problems, and then used
for producing more general versions of the classical proximal-point algorithm, both for convex
minimization and for monotone variational inequality problems. The use of Bregman distances in
prox-like methods for convex minimization is found in [15, 6, 24, 25, 28, 29, 30, 35, 38, 39], while
the use for monotone variational inequalities can be found in [16, 17, 18, 20, 22, 32]. Properties of
Bregman functions have been the focus of research since the late 1990s, see [3, 4, 26]. A good, brief
bibliographic overview of their history is found in [33, p.1233], and the book of Censor and Zenios
is also instructive [29]. When f is not the energy, the distance may fail to be symmetric, and so one
is led to consider the left and right versions of envelopes and their associated proximity operators.
The asymptotic properties of Bregman envelopes with respect to a parameter were explored in [7].

From [3, Proposition 3.2], we have a dual characterization of the Bregman distance for a differ-
entiable convex function f :

D f (x, y) = f (x)− f (y)− 〈∇ f (y), x− y〉 (2a)

= f (x) + f ∗(∇ f (y))− 〈∇ f (y), x〉 (2b)

Here (2a) is the definition of the Bregman distance and (2b) uses the Fenchel–Young equality:
(∀v ∈ ∇ f (y)) f (y) + f ∗(v) = 〈y, v〉. From (2b), they made the observation that

D f (x, y) = 0 ⇐⇒ ∇ f (x) = ∇ f (y), (3)

and so D f has the dual characterization of serving as a distance between gradients1. Based on this
characterization, they introduced a distance based on the representative function h of a monotone
operator:

D[,h
T (x, y) := inf

v∈Ty
(h(x, v)− 〈x, v〉) , (4a)

D],h
T (x, y) := sup

v∈Ty
(h(x, v)− 〈x, v〉) . (4b)

This distance generalizes the Bregman distance, specializing—under the mild domain conditions
in 2.2—thereto when h is the Fenchel–Young representative for T = ∇ f , which is defined by f ⊕
f ∗(x, y) = f (x) + f ∗(y).

Naturally, we name this more general distance the generalized Bregman distance (GBD). In lieu
of the Fenchel–Young representative, the Fitzpatrick function and its conjugate are the two other
functions that are most natural to consider. As with the Bregman distance, we obtain left and
right variants; these admit new left and right coercivity and supercoercivity properties, along with
envelopes and corresponding proximity operators, when the GBD replaces the Bregman distance
in the construction of envelopes.

1.1 Outline and contributions

This article is outlined as follows. In Section 2, we recall the GBD as introduced in [21]. We
provide its basic properties and clarify the domain conditions under which the Fenchel–Young
representative case specializes to the Bregman distance. We also introduce the closed variant,
which may specialize to the Bregman distance at more points on the boundary of the domain.

1To show ⇐= , simply substitute∇ f (x) for∇ f (y) and apply Fenchel–Young once more, this time for the variable x
instead of y.
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In Section 3, we show how to compute the new GBDs. We first illustrate with the energy,
which specifies to the Moreau case when the Fenchel–Young representative is used. We also illus-
trate with the Boltzmann–Shannon entropy, whose derivative is the logarithm and whose Breg-
man distance, the Kullback–Leibler divergence, is commonly used as a measure of the difference
between positive vectors in information theory and elsewhere. We compare the Kullback–Leibler
divergence with the similar Fenchel–Young representative GBD for the logarithm, and also with its
closed version. We also illustrate how to compute with the two other most natural representatives
to consider: the book-end cases for the representative function set. These are the smallest repre-
sentative, named the Fitzpatrick function, and the biggest representative, which is obtained using
the conjugate of the Fitzpatrick function.

Interestingly, while the Fitzpatrick function for the logarithm was discovered in [9], the present
work contains the first computation of its conjugate. The discovery and proof rely upon the graph-
ical characterizations of representative functions, and the special function Lambert W plays an
important role in the computational aspects of discovery. The way that we tackle this problem is
very prototypical of the approach that one might need to use when computing other representa-
tive functions and GBDs. We furnish a full discussion of the process in Section 3.1, so that it may
serve as a tutorial for other researchers.

Section 4 contains our most important results. We provide a framework of sufficient conditions
for coercivity and supercoercivity of the left and right GBDs. This framework uses the fact that
the GBDs majorize a set distance. We illustrate with figures in 2 dimensions, and we provide
examples of what may go wrong when the sufficient conditions provided by our framework are
not satisfied. In Section 4.3, we explain how these coercivity and supercoercivity conditions may
be used to guarantee the coercivity of the sum of the distance together with a Legendre function.

Such sums are the basis of the corresponding envelope functions and their proximity operators.
In the Bregman case, these coercivity conditions admit the further analysis of the envelopes and
proximity operators, including their asymptotic behaviour as the scalar parameter varies [7]. Our
work lays the necessary foundation for such an analysis in the case of envelopes built from GBDs.
The study of envelopes is important, because many optimization algorithms may be viewed as
special cases of gradient descent applied to envelopes; see, for example, [37, 41]. We conclude in
Section 5.

2 Preliminaries on generalized Bregman distances

Given a function f : X → R∞, its domain (or effective domain) is defined by dom f := {x ∈ X :
f (x) < ∞} and its lower level set at height ξ ∈ R by lev≤ξ f := {x ∈ X : f (x) ≤ ξ}. The function f
is said to be proper if dom f 6= ∅; lower semicontinuous (lsc) at x̄ if f (x̄) ≤ lim infx→x̄ f (x); convex if

∀x, y ∈ X, ∀λ ∈ [0, 1], f ((1− λ)x + λy) ≤ (1− λ) f (x) + λ f (y); (5)

coercive if lim‖x‖→∞ f (x) = ∞; and supercoercive if lim‖x‖→∞ f (x)/‖x‖ = ∞.

Let f : X → R∞ be proper. The subdifferential of f is the point-to-set mapping ∂ f : X ⇒ X∗

defined by

∂ f (x) :=

{
{v ∈ X∗ : ∀y ∈ X, 〈y− x, v〉+ f (x) ≤ f (y)} if x ∈ dom f ,
∅ otherwise.

(6)
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The Fenchel conjugate of f is the mapping

f ∗ : X∗ → R∞ : v 7→ sup
x∈X
{〈x, v〉 − f (x)}. (7)

From the definition, we have the Fenchel-Young inequality

∀(x, v) ∈ X× X∗, f (x) + f ∗(v) ≥ 〈x, v〉, (8)

and if f is convex, then

f (x) + f ∗(v) = 〈x, v〉 ⇐⇒ v ∈ ∂ f (x). (9)

Given a point-to-set operator T : X ⇒ X∗, its domain is dom T := {x ∈ X : Tx 6= ∅}, its range is
ran T := T(X), and its graph is G(T) := {(x, x∗) ∈ X× X∗ : x∗ ∈ Tx}. Additionally, T is said to be
maximally monotone if

(x, u) ∈ G(T) ⇐⇒ (∀(y, v) ∈ G(T)) 〈x− y, u− v〉 ≥ 0. (10)

A detailed study of maximally monotone operators can be found in [5, Chapters 20 and 21] for
Hilbert spaces, and in [19, Chapter 4] for the Banach space case.

2.1 Representative functions

Let S : X ⇒ X∗ be a maximally monotone operator. We recall from [21, Definition 2.3] that h : X ×
X∗ → R∞ represents S and denote h ∈ H(S) if the following three conditions hold:

(a) h is convex and norm × weak∗ lower semicontinuous in X× X∗.
(b) ∀(x, v) ∈ X× X∗, h(x, v) ≥ 〈x, v〉.
(c) h(x, v) = 〈x, v〉 ⇐⇒ (x, v) ∈ G(S).

We will make use, in particular, of several representative functions. These are as follows.

(i) The Fitzpatrick function FS : (x, y) 7→ sup(z,w)∈G(S) (〈z− x, y− w〉+ 〈x, y〉) is the smallest
member ofH(S); see Fitzpatrick’s 1998 paper [34, Theorem 3.7].

(ii) The largest member of H(S) we denote by σS; it may be computed using the identities in
Fact 2.1(iii).

(iii) The Fenchel–Young representative f ⊕ f ∗ ∈ H(∂ f ), where f ∈ Γ0(X) and f ⊕ f ∗ : X× X∗ →
R∞ is defined by

∀(x, v) ∈ X× X∗, f ⊕ f ∗(x, v) := f (x) + f ∗(v). (11)

The Fitzpatrick function has proven quite useful in monotone operator theory; see, for example,
[5, 12].

Fact 2.1. Let S : X ⇒ X∗ be a maximally monotone operator and X a real Banach space. We have the
following characterizations of σS and F∗S .

(i) From [23, Equation (33)], we have that

epi σS = co
(

epi
(

π + ιG(S)

))
, where π : (p, p∗) 7→ 〈p, p∗〉 (12)

is the duality product defined in X × X∗, and co(A) is an abbreviation for the closure of the convex
hull of a set A.
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(ii) From [5, Proposition 10.56]2, we have that FS =
(

ιG(S−1) + π
)∗

.
(iii) From [23, Equation (39)], we have that σS(x, y) = F∗S (y, x).
(iv) From [23, Corollary 4.2], if h is convex and lower semicontinuous on X× X∗ and FS ≤ h ≤ σS, then

h ∈ H(S).

The astute reader will notice that (iii) may be obtained by combining (i) and (ii), since

(
ιG(S) + π

)
(y, x) =

{
∞ if (y, x) /∈ G(S),
〈y, x〉 otherwise

=

{
∞ if (x, y) /∈ G(S−1),
〈x, y〉 otherwise

=
(

ιG(S−1) + π
)
(x, y).

Additionally, (iv) is quite pleasing, because it admits as representative functions the convex combinations of
other representative functions.

2.2 A new “generalized Bregman” distance between point-to-set operators

From now on, we assume that S : X ⇒ X∗ is a maximally monotone operator, h ∈ H(S), and
T : X ⇒ X∗. Following [21, Definition 3.1], for fixed (x, y) ∈ dom S× dom T, we define

D[,h
T (x, y) := inf

v∈Ty
(h(x, v)− 〈x, v〉) , (13a)

D],h
T (x, y) := sup

v∈Ty
(h(x, v)− 〈x, v〉) . (13b)

If y 6∈ dom T, then D[,h
T (x, y) = D],h

T (x, y) := +∞ for every x ∈ X. If x 6∈ dom S, then D[,h
T (x, y) =

D],h
T (x, y) := +∞ for every y ∈ X. When T is point to point, we simply write Dh

T := D[,h
T = D],h

T .

For our examples, T = S = ∂ f is point-to-point on int dom f in which case we simply write
Dh. Additionally, when employing a specific representative function, we will use the name of the
representative function used in place of h. If a distance is of the form (13b) or (13a) we call it a
generalized Bregman distance or GBD for short. The GBD specializes to the Bregman distance under
certain circumstances, which we now recall. To a proper and convex function f : X → R∞, we
associate two Bregman distances (see [35]) defined by

D[
f (x, y) := f (x)− f (y) + inf

v∈∂ f (y)
〈y− x, v〉 (14a)

and D]
f (x, y) := f (x)− f (y) + sup

v∈∂ f (y)
〈y− x, v〉. (14b)

Burachik and Martı́nez-Legaz observed that the GBD specializes to the Bregman distance in
the case where the Fenchel–Young representative distance is used. The following proposition fills
a minor omission from [21, Proposition 3.5], namely that the Fitzpatrick distance specializes to the
Bregman distance under the mild condition that (x, y) /∈ (dom f \ dom ∂ f )× dom ∂ f . In the case
when dom f \ dom ∂ f = ∅, they are everywhere equal. We will see later in an example that when

2Note that the setting in the exposition [5] is a Hilbert space, although the veracity of (ii) in a Banach space follows
from (i) and (iii). The setting of [23] is a Banach space.
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f is the Boltzmann–Shannon entropy (21), we have dom f \ dom ∂ f = {0}, and the two distances
fail to be equal on the set {(0, y)| y > 0}.

Proposition 2.2 (The GBD generalizes the Bregman distance). Let f ∈ Γ0(X). Then

D[
f⊕ f ∗(x, y) = D[

f (x, y) and D]
f⊕ f ∗(x, y) = D]

f (x, y) (15)

whenever (x, y) /∈ (dom f \ dom ∂ f )× dom ∂ f .

Proof. If y /∈ dom ∂ f , then D[
f⊕ f ∗(x, y) = D[

f (x, y) = ∞. If y ∈ dom ∂ f and x /∈ dom f , we also

have that D[
f⊕ f ∗(x, y) = D[

f (x, y) = ∞.

It suffices to assume that y ∈ dom ∂ f and x ∈ dom ∂ f ⊆ dom f . Then, since f (y) + f ∗(v) =
〈y, v〉 for all v ∈ ∂ f (y), we derive that

D[
f⊕ f ∗(x, y) = inf

v∈∂ f (y)
( f (x) + f ∗(v)− 〈x, v〉) (16a)

= inf
v∈∂ f (y)

( f (x)− f (y) + 〈y, v〉 − 〈x, v〉) (16b)

= f (x)− f (y) + inf
v∈∂ f (y)

〈y− x, v〉 = D[
f (x, y). (16c)

Similarly, D]
f⊕ f ∗(x, y) = D]

f (x, y). The conclusion follows. �

We recall now the following results regarding the lower semicontinuity of the left and right
distances; these apply to each of our computed examples.

Lemma 2.3 ([21, Lemma 3.17]). Let y ∈ dom T. Then the following hold:

(i) The function D[,h
T (·, y) : X → R∞ is lsc at every x ∈ int dom(S) with respect to the strong topology

in X provided that Tz is weakly closed for any z in its domain;
(ii) The function D],h

T (·, y) : X → R∞ is lsc at every x ∈ dom(S) with respect to the strong topology in
X.

Lemma 2.4 ([21, Lemma 3.18]). Supose that T is locally bounded in the interior of its domain and that the
graph of T is closed with respect to the strong-weak topology. Fix y ∈ int dom T and x ∈ dom S. Then the
function D[,h

T : X → R∞ is lsc at y with respect to the strong topology in X.

Remark 2.5 (The lower closed distance). Notice that in Lemma 2.3(ii), D?,h
T (·, y) may not be lower

semicontinuous at x ∈ dom∂ f \ dom ∂ f , a case we will encounter in our examples. Notice also
that in Lemma 2.4, for y /∈ int dom T, the distance may not be lower semicontinuous with respect
to the second variable, a phenomenon we will encounter in our examples.

For these two reasons, we also introduce the notion of the lower closed GBD, denoted by D?,h
T ,

which satisfies

epiD?,h
T = epiD?,h

T , (17)

where ? may be either [ or ]. The lower closed GBD is the lower semicontinuous regularization of
the function D?,h

T , as described in [40]; its direct formula is given by

D?,h
T (x, y) := lim inf

(x′,y′)→(x,y)
D?,h

T (x′, y′).

The lower closed distances DFS , DσS , and D f⊕ f ∗ are defined analogously.
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3 How to compute generalized Bregman distances

Example 3.1 (Energy). Let f : x 7→ 1
2 x2 be the energy. If we have hId as the Fitzpatrick function for

∂ f = Id, then our GBD distance is

DFId(x, y) =
1
4
(x− y)2, (18)

which is equivalent to a scaled version of the usual Moreau distance. On the other hand, the largest
element ofH(Id) is just

σId(x, y) =

{
x2 x = y,
∞ otherwise.

(19)

One can obtain this result by computing F∗Id straight from the definition of the conjugate and using
Fact 2.1(iii). One can also obtain this result by using Fact 2.1(i), because the graph of Id is simply
the diagonal. The corresponding distance is

DσId(x, y) =

{
0 x = y,
∞ otherwise.

(20)

In [7], the asymptotic properties of Bregman envelopes are illustrated using Bregman distances
constructed from three functions. One of these was the energy from Example 3.1, for which the
Bregman proximity operator and envelope specialize to the Moreau case. While the choice of
representative function FId is equivalent to the Moreau case up to a change in parameter, notice
that the example DσId illustrates that this is not the case for any choice of representative function.
This is an important distinction in our context.

3.1 Boltzmann–Shannon entropy

Another function whose translated version was early considered by Censor and Lent [27], and
whose Bregman envelopes are studied in [7], is the (negative) Boltzmann–Shannon entropy:

ent : R→ R : x 7→


x log x− x if x > 0,
0 if x = 0,
∞ otherwise.

(21)

The Boltzmann-Shannon entropy is particularly important and natural to consider, because its
derivative is log, its conjugate is ent∗ = exp, and its associated Bregman distance is the Kullback–
Leibler divergence,

Dent : (x, y) 7→


x(log(x)− log(y))− x + y if y > 0,
y if y > 0 and x = 0,
∞ otherwise,

(22)

which is frequently used as a measure of distance between positive vectors in information the-
ory, statistics, and portfolio selection. The GBD associated with the Fenchel–Young representative
ent⊕ ent∗ ∈ H(log) is

Dent⊕ ent∗ : (x, y) 7→
{

x(log(x)− log(y))− x + y if x, y > 0,
∞ otherwise.

(23)
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Thus it may be seen that the Bregman distance of the Boltzmann–Shannon entropy is the special
case of the GBD for the Fenchel–Young representative of the logarithm function, except on the set
(dom f \ dom ∂ f )× dom ∂ f = {0} × ]0, ∞[ (see Proposition 2.2 and Remark 2.5). Its lower closure
is given by3

Dent⊕ ent∗ : (x, y) 7→


x(log(x)− log(y))− x + y if y > 0, x > 0,
y if y > 0, x = 0,
0 if y = x = 0,
∞ otherwise

(24)

and is shown in Figure 3b, while the Fenchel–Young representative ent⊕ ent∗ is shown in Fig-
ure 2b.

We will consider new distances built from the maximally monotone operator log, and compare
these to the known special case of the Bregman distance for the Boltzmann-Shannon entropy. The
corresponding Fitzpatrick function (as computed in [9]) and shown in Figure 2a is

Flog : (x, y) 7→


+∞ if x < 0,
exp(y− 1) if x = 0,

xy + x
(
W(xe1−y) + 1

W(xe1−y)
− 2
)

if x > 0,
(25)

whereW is the real principal branch of the LambertW function that satisfiesW(x)eW(x) = x on
[−1/e, ∞[. See, for example, [31]. Its occurrences in convex analysis and its relationship to the
Boltzmann–Shannon entropy have been discussed in, for example, [8, 10, 11].

Example 3.2 (GBD DFlog). The corresponding (closed) GBD is

DFlog : R+ ×R+ → R+ ∪ {∞} (26)

(x, y) 7→


∞ if x < 0 or y < 0 or (x > 0 and y = 0),
ye−1 if x = 0 and y ≥ 0,

x

(
W
(

xe
y

)
+ 1
W
(

xe
y

) − 2

)
otherwise, .

This distance is shown in Figure 3a.

Proof. Combining Definitions 13 and 26 with the fact that dom log = ]0,+∞[, we have

DFlog(x, y) =

{
Flog(x, log(y))− 〈x, log(y)〉 if x, y ∈ dom log,
+∞ otherwise

(27a)

=

{
+∞ if x ≤ 0 or y ≤ 0,

x log(y) + x
(
W(xe1−log(y)) + 1

W(xe1−log(y))
− 2
)
− x log(y) otherwise.

(27b)

This simplifies, by a bit of arithmetic, to the form in (26), except on the set {0} × [0, ∞[. Taking
the closure of the epigraph admits DFlog(0, y) = ye−1. This example is particularly interesting,

3One may rewrite the first case as y > 0, x ≥ 0 and omit writing the separate case x = 0, y > 0 in (24), as long as one
remembers to use the convention that 0 log(0) = 0.
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x1

y1

L1

x2

y2

L2L3

y3

x3

z

(z1, log(z1)) = limn→∞yn

limn→∞xn = (0,−∞)

G(S)

Figure 1: Construction of sequence in proof of Theorem 3.3

because we see the loss of the left lower semicontinuity property at 0 because 0 ∈ dom f \ dom log,
and we also see the loss of the right lower semicontinuity property because 0 /∈ int dom log; see
Remark 2.5. �

3.2 Computation of a difficult representative function and the conjugate of a Fitz-
patrick function

Next we consider the case where S = log is the logarithm function on ]0, ∞[. Even though we
know the form of Flog, it is not straightforward to compute σlog using the equality σlog(x, y) =
F∗log(y, x) from Fact 2.1(iii) by subdifferentiating with the latter and solving. Instead, we use the
characterization from Fact 2.1(i).

Recall that, for an arbitrary function g and its convex hull function co(g), the lower semicontin-
uous regularization or lower closure, denoted as co(g), has the property

epi(co(g)) = co(epi(g)). (28)

See, for example, [40, Chapter 1].

Theorem 3.3 (The representative σlog). Let T = S = log. Then

σlog : (x, y) 7→
{

x log(x) if y ≤ log(x),
∞ otherwise,

(29)

whose graph is shown in Figure 2c.

Proof. Using Fact 2.1 together with the fact that G(S) = {(z1, log(z1))|z1 ∈ ]0, ∞[} and the fact
that log is a concave function, we have that z2 > log(z1) implies σ∂ f (z1, z2) = ∞. Indeed, let
g : R2 → R∞ be defined as g := π+ ιG(S); the graph of g is shown as the dark curve at the boundary
of the surface in Figure 2c. By Fact 2.1 we have that σ∂ f = co(g). If co(g)(z1, z2) < ∞ then there

9



exists a ∈ R such that (z1, z2, a) ∈ epi co(g). By (28) this is equivalent to (z1, z2, a) ∈ co epi(g).
The last inclusion means that there exists a sequence wn := (zn

1 , zn
2 , an) ∈ conv epi(g) such that

(z1, z2, a) = limn→∞(zn
1 , zn

2 , an). Note that we can assume that

(zn
1 , zn

2 , an) =
4

∑
i=1

λn,i(zn
1,i, zn

2,i, ai,n), with (zn
1,i, zn

2,i, ai,n) ∈ epi(g),

thanks to Carathéodory’s theorem. Using the fact that (zn
1,i, zn

2,i, ai,n) ∈ epi(g), we have that

∑4
i=1 λn,i = 1, λn,i ≥ 0, ∀ i = 1, . . . , 4,

zn
1 = ∑4

i=1 λn,izn
1,i , zn

2 = ∑4
i=1 λn,izn

2,i ,

zn
1,i > 0, zn

2,i = log zn
1,i , ∀ i = 1, . . . , 4,

Using the above expression for zn
2 and the fact that zn

2,i = log zn
1,i , we can write

zn
2 =

4

∑
i=1

λn,izn
2,i =

4

∑
i=1

λn,i log zn
1,i ≤ log

(
4

∑
i=1

λn,izn
1,i

)
= log zn

1 ,

where we used the fact that log(·) is concave. Taking limits and using the continuity of the log(·)
we deduce that z2 ≤ log(z1). This implies that, when z2 > log(z1) we must have σ∂ f (z1, z2) = ∞.
This shows the second part of the definition in the statement of the theorem. We proceed now to
prove the first part of the definition of σ∂ f . Let z ∈ R2 be such that z1 > 0 and z2 ≤ log(z1). For any
x, y ∈ G(S) that satisfy λx + (1− λ)y = z for some λ ∈ [0, 1], we have that g(x) = 〈x1, x2〉 = x1x2
and that g(y) = 〈y1, y2〉 = y1y2. Thus

(x1, x2, 〈x1x2〉) = (x1, x2, x1x2) ∈ epi g, (30a)
and (y1, y2, 〈y1y2〉) = (y1, y2, y1y2) ∈ epi g. (30b)

From the definition of convexity,

λ(x1, x2, x1x2) + (1− λ)(y1, y2, y1y2) ∈ conv (epi g) . (31)

This is just

(z1, z2, λx1x2 + (1− λ)y1y2) ∈ conv (epi g) . (32)

Using the fact that x, y ∈ G(S), this is just

(z1, z2, λx1 log(x1) + (1− λ)y1 log(y1)) ∈ conv (epi g) . (33)

Let (ϕn)n∈N ⊂ ]0, π/2[ be a sequence that satisfies limn→∞ ϕn = π/2. For any ϕn, we may find a
line in R2 that goes through z and has slope tan(ϕn), which is given by

Ln := {u ∈ R2 | u2 = tan(ϕn)(u1 − z1) + z2}. (34)

Now ϕn ∈ ]0, π/2[ and z2 ≤ log(z1) guarantees that Ln ∩ G(S) is a doubleton {xn, yn} where
xn

1 < z1 and yn
1 > z1 and z = pnxn + qnyn with qn + pn = 1, pn, qn ∈ [0, 1]. The construction of this

10



(a) Flog (b) ent⊕ ent∗ (c) σlog

Figure 2: Constructing representative functions for the logarithm.

sequence is shown in Figure 1. As ϕn → π/2, the slope tan(ϕn) of Ln goes to infinity, and so we
have that

lim
n→∞

yn = (z1, log(z1)) and lim
n→∞

xn = (0,−∞), (35a)

and so lim
n→∞

xn log(xn) = 0, and lim
n→∞

pn = 0, and lim
n→∞

qn = 1. (35b)

Thus we have that

lim
n→∞

(z1, z2, pnxn log(xn) + qnyn log(yn)) = (z1, z2, z1 log(z1)) ∈ co(epi g) = epi σlog. (36)

Thus z1 log(z1) ≥ σ∂ f (z) for every (z1, z2) such that z1 > 0 and z2 ≤ log(z1). For the converse
inequality, define the function

w(t1, t2) :=
{

t1 log t1 if t1 > 0,
0 if t1 = 0.

(37)

The function w is convex and lsc. It is easy to check that w ≤ g in R2. Therefore,

epi w ⊃ epi g. (38)

Using the fact that w is convex and lsc we deduce that

epi w = co(epi w) ⊃ co(epi g) = epi σlog, (39)

equivalently, w ≤ σlog. This implies that z1 log(z1) ≤ σlog(z) for every (z1, z2) such that z1 > 0 and
z2 ≤ log(z1). Consequently, we showed that

σlog(z) = z1 log(z1) , ∀(z1, z2) s.t. z1 > 0 and z2 ≤ log(z1), (40)

which is the claim of the theorem. �

Corollary 3.4 (The conjugate of the Fitzpatrick function Flog ). We have that

F∗log : (x, y) 7→
{

y log(y) if x ≤ log(y),
∞ otherwise.

(41)

11



Proof. This immediately follows from Theorem 3.3 together with Fact 2.1(iii). �

Remark 3.5. In the proof of Theorem 3.3, the sequences xn, yn may be given explicitly by

xn
1 = exp (−W0 (− tan(ϕn) exp (−z1 tan(ϕn) + z2))) , (42a)

yn
1 = exp (−W−1 (− tan(ϕn) exp (−z1 tan(ϕn) + z2))) , (42b)

whereW0 andW−1 are the principal and secondary real branches of the LambertW function.

Most of the analysis of Lambert W in the context of convex optimization has focused on its
principal branch. However, in order to experimentally discover the true form for σ∂ f from The-
orem 3.3, we had to make use of both real branches. The reason for this is that our attempts to
explicitly solve the systems

sup
y∈R2

{
〈x, y〉 − F∂ f (y)

}
(43a)

or inf
z=λx+(1−λ)y

x,y∈G(∂ f ), λ∈[0,1]

{λx1x2 + (1− λ)y1y2} (43b)

were not successful. Seeking to compute σlog numerically, we constructed a numerical procedure
that evaluated λxn

1 xn
2 + (1 − λ)yn

1 yn
2 for a finite sequence (ϕn)N

n=1 and chose the smallest value
to represent σlog(z). The fast evaluation of Lambert W obviated the implementation of slower
numerical routines to solve the equation system

log(η) = tan(ϕn)(η − z1) + z2. (44)

We observed that the smallest value was always the last value, corresponding to ϕn nearest to π/2.
Once we observed that the values were consistently approaching z1 log(z1) for any z chosen, we
“knew” the true form. Upon further scrutiny of the geometry, we realized that the sequences that
led to the discovery also yielded the proof.

Corollary 3.6 (GBD for σlog). The corresponding (closed) conjugate Fitzpatrick distance is

Dσlog : (x, y) 7→


x log(x)− x log(y) if 0 < y ≤ x,
0 if x = y = 0,
∞ otherwise,

(45)

which is shown in Figure 3c.

Proof. From the definition and Theorem 3.3:

Dσlog : (x, y) 7→ σlog(x, log(y))− 〈x, log(y)〉 (46a)

= −x log(y) +

{
x log(x) if log(y) ≤ log(x),
∞ otherwise,

(46b)

which may be recognized as the form in (45) except at the point (0, 0). Taking the closure of the epi-
graph ofDσlog , we obtainDσlog(0, 0) = 0. This example is illustrative, because lower semicontinuity
is lost, but only at the point (0, 0), since 0 /∈ dom log; see Remark 2.5. �
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(a) DFlog (b) Dent⊕ ent∗ (c) Dσlog

Figure 3: Distances constructed fromH(log).

4 A coercivity framework for generalized Bregman distances

In this section, we will establish important properties of the GBD. From now on, X is a reflexive
real Banach space. For the sake of simplicity, when we make use of the norms ‖ · ‖X⊕X∗ , ‖ · ‖X, and
‖ · ‖X∗ , we allow context to make clear which norm is being used.

4.1 Convexity

Proposition 4.1. Let x ∈ dom S and y ∈ dom T. Then the following hold:

(i) D],h
T (·, y) is convex.

(ii) If T is an affine mapping, then Dh
T(x, ·) is convex.

Proof. We first note that h is convex on X× X∗ by definition.

(i): As h(·, v) − 〈·, v〉 is convex for all v ∈ Ty, it follows from [19, Proposition 3.4.3(iii)] that
D],h

T (·, y) is convex.

(ii): Since T is single-valued, we have for all y ∈ dom T that

Dh
T(x, y) = D[,h

T (x, y) = D],h
T (x, y) = h(x, Ty)− 〈x, Ty〉. (47)

Therefore, Dh
T(x, ·) = (h(x, ·) − 〈x, ·〉) ◦ T is convex because it is the composition of a convex

function with an affine function; see, e.g., [13, Lemma 2.1.8(b)]. �

4.2 Coercivity and supercoercivity

We now turn our attention to coercivity and supercoercivity. These properties of distances are im-
portant, because they are essential to the analysis of associated envelopes and proximity operators.
After first providing a framework for verifying these properties of the GBDs, we will show in Sec-
tion 4.3 how these properties admit corresponding coercivity properties for the sum of the GBDs
together with Legendre functions. These results on sums are the key to analysing the envelopes;
see [6, Lemma 2.12] and [7].
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From now on, as mentioned, we assume our spaces to be reflexive, so that we may make use
of the following fact from [21, Remark 3.12].

Fact 4.2 ([21, Remark 3.12]). When X is a reflexive space, it holds that

∀x, y ∈ X, D[,h
T (x, y) ≥ 1

4
inf

v∈Ty
d2 ((x, v),G(S)) = 1

4
d2 ({x} × Ty,G(S)) , (48)

where d denotes the distance on X × X∗ defined by d((x, v), (y, w)) :=
√
‖x− y‖2 + ‖v− w‖2. Con-

sequently, we can see D[,h
T (x, y) as providing us with an upper estimate of the distance between the sets

{x} × Ty and G(S).

Throughout this section, we exploit the fact that the GBD is minorized by the distance between
the sets {x} × Ty and G(S) in order to establish left and right coercivity and supercoercivity of the
distance. The intuition behind the results is shown in Figure 4.

The following elementary lemma will be useful for our analysis.

Lemma 4.3. Let (xn)n∈N, (yn)n∈N, and (zn)n∈N be sequences in X such that ‖xn‖ → ∞ as n → ∞.
Then the following hold:

(i) Suppose that ‖zkn‖ → ∞ whenever (ykn)n∈N is a subsequence of (yn)n∈N with ‖ykn‖ → ∞. Then,
for all α ∈ R++,

‖xn − yn‖α + ‖zn‖α → ∞ as n→ ∞. (49)

(ii) Suppose that ‖zkn‖2/‖ykn‖ → ∞ whenever (ykn)n∈N is a subsequence of (yn)n∈N with ‖ykn‖ → ∞.
Then

‖xn − yn‖2 + ‖zn‖2

‖xn‖
→ ∞ as n→ ∞. (50)

Proof. (i): Suppose to the contrary that there exist subsequences (xkn)n∈N, (ykn)n∈N, and (zkn)n∈N

such that the sequence (‖xkn − ykn‖α + ‖zkn‖α)n∈N is bounded. Then both (xkn − ykn)n∈N and
(zkn)n∈N are bounded. By assumption, passing to another subsequence if necessary, we obtain
that the sequence (ykn)n∈N is also bounded, and so is (xkn)n∈N since

∀n ∈N, ‖xkn‖ ≤ ‖xkn − ykn‖+ ‖ykn‖. (51)

This contradicts the assumption that ‖xn‖ → ∞.

(ii): Suppose that there exist subsequences (xkn)n∈N, (ykn)n∈N, (zkn)n∈N and a constant µ > 0
such that

∀n ∈N,
‖xkn − ykn‖2 + ‖zkn‖2

‖xkn‖
< µ. (52)

Then, by Cauchy–Schwarz inequality,

2‖ykn‖ ≥
2〈xkn , ykn〉
‖xkn‖

=
‖xkn‖2 + ‖ykn‖2 − ‖xkn − ykn‖2

‖xkn‖
(53a)

≥ ‖xkn‖ −
‖xkn − ykn‖2

‖xkn‖
> ‖xkn‖ − µ. (53b)
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As n → ∞, since ‖xn‖ → ∞, it follows from (53) that ‖ykn‖ → ∞ and, by assumption,
‖zkn‖2/‖ykn‖ → ∞. On the other hand, combining (52) with (53) yields

‖zkn‖2

‖ykn‖
< µ
‖xkn‖
‖ykn‖

≤ µ
2‖ykn‖+ µ

‖ykn‖
= 2µ +

µ2

‖ykn‖
→ 2µ. (54)

A contradiction is thus obtained, and we complete the proof. �

Remark 4.4. (i) SinceD],h
T (x, y) ≥ D[,h

T (x, y) for all (x, y) ∈ dom S× dom T, ifD[,h
T is coercive or

supercoercive with respect to the first or second variable, then so is D],h
T . We will thus focus

on the coercivity and supercoercivity of D[,h
T .

(ii) Assume that Ty is compact with respect to the strong topology. Then {x} × Ty is also com-
pact. This, together with Fact 4.2 and the fact that G(S) is closed, allows us to choose v ∈ Ty
and (a, b) ∈ G(S) such that

‖x− a‖2 + ‖v− b‖2 = d2((x, v), (a, b)
)
= d2({x} × Ty,G(S)) ≤ 4D[,h

T (x, y). (55)

Theorem 4.5 (Left coercivity and left supercoercivity of D[,h
T ). Let y ∈ dom T. Then

(i) If dom S is bounded, then D[,h
T (·, y) is supercoercive and hence coercive.

Suppose further that Ty is compact with respect to the strong topology. Then the following hold:

(ii) If S is coercive in the sense that (an, bn) ∈ G(S) and ‖an‖ → ∞ imply ‖bn‖ → ∞, then D[,h
T (·, y)

is coercive.
(iii) If (an, bn) ∈ G(S) and ‖an‖ → ∞ imply ‖bn‖2/‖an‖ → ∞, then D[,h

T (·, y) is supercoercive.

Proof. Let (xn)n∈N satisfy ‖xn‖ → ∞ as n→ ∞.

(i): As dom S is bounded, there exists N ∈ N such that for n ≥ N we have xn /∈ dom S. Fixing
an arbitrary n ≥ N, by definition, D[,h

T (xn, y) = ∞, so D[,h
T (xn, y)/‖xn‖ = ∞, and we are done.

To prove (ii) and (iii), we derive from Remark 4.4(ii) that, since Ty is compact, there exist vn ∈ Ty
and (an, bn) ∈ G(S) such that

∀n ∈N, 4D[,h
T (xn, y) ≥ ‖xn − an‖2 + ‖vn − bn‖2. (56)

Here, we note that ‖xn‖ → ∞ as n→ ∞ and that (vn)n∈N is bounded due to compactness of Ty.

(ii): If (akn)n∈N is a subsequence of (an)n∈N with ‖akn‖ → ∞, then by assumption (ii), ‖bkn‖ →
∞, which implies that ‖vkn − bkn‖ → ∞. Applying Lemma 4.3(i) to the sequences (xn)n∈N, (an)n∈N,
and (vn − bn)n∈N, we obtain that ‖xn − an‖2 + ‖vn − bn‖2 → ∞ and, by (56), D[,h

T (xn, y) → ∞ as
n→ ∞.

(iii): If (akn)n∈N is a subsequence of (an)n∈N with ‖akn‖ → ∞, then by assumption (iii),
‖bkn‖2/‖akn‖ → ∞, so ‖bkn‖ → ∞ and

‖vkn − bkn‖2

‖akn‖
≥ ‖bkn‖2 − 2‖vkn‖‖bkn‖

‖akn‖
=
‖bkn‖2

‖akn‖

(
1− 2‖vkn‖
‖akn‖‖bkn‖

)
→ ∞. (57)

Now, using Lemma 4.3(ii) yields

‖xn − an‖2 + ‖vn − bn‖2

‖xn‖
→ ∞ as n→ ∞, (58)

which together with (56) completes the proof. �
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{(z, z1/2+ε),
z ∈ R}G(S) = G(T)

y× Ty

(y, 0)

xn × Ty

(xn, 0)

(xn, vn)

d(xn × Ty,G(S))

(an, bn)

{(z, z), z ∈ R}

G(S) =
G(T)

(x, 0) (yn, 0)

an × San

(an, bn)

yn × Tyn
(yn, vn)

x× Tyn

(x, vn)

|yn − an|
|vn − bn|

d(x× Tyn,G(S))

Figure 4: Left: the motivation for Theorem 4.5 is exemplified by Example 4.9. Right: the motivation
for Theorem 4.6 is exemplified by Example 4.11.

Theorem 4.6 (Right coercivity and right supercoercivity of D[,h
T ). Let x ∈ dom S. Then

(i) If dom T is bounded, then D[,h
T (x, ·) is supercoercive and hence coercive.

Suppose further that T has strongly compact images. Then the following hold:

(ii) If (an, bn) ∈ G(S), (yn, vn) ∈ G(T), and ‖yn − an‖ → ∞ imply ‖vn − bn‖ → ∞, then D[,h
T (x, ·) is

coercive.
(iii) If (an, bn) ∈ G(S), (yn, vn) ∈ G(T), and ‖yn− an‖ → ∞ imply ‖vn− bn‖2/‖yn− an‖ → ∞, then
D[,h

T (x, ·) is supercoercive.

Proof. Let (yn)n∈N satisfy ‖yn‖ → ∞ as n→ ∞.

(i): By the boundedness of dom T, there exists N ∈ N such that for n ≥ N, yn /∈ dom T. Fixing
n ≥ N, the definition of D[,h

T yields D[,h
T (x, yn) = ∞, which implies that D[,h

T (x, yn)/‖yn‖ = ∞, and
we are done.

(ii) & (iii): Since T has strongly compact images, Tyn is compact with respect to the strong
topology. By Remark 4.4(ii), there exist vn ∈ Tyn and (an, bn) ∈ G(S) such that

∀n ∈N, 4D[,h
T (x, yn) ≥ ‖x− an‖2 + ‖vn − bn‖2 = ‖(yn − x)− (yn − an)‖2 + ‖vn − bn‖2. (59)

As n→ ∞, ‖yn − x‖ → ∞ since ‖yn‖ → ∞.

Now we show (ii). Suppose that (an, bn) ∈ G(S), (yn, vn) ∈ G(T), and ‖yn − an‖ → ∞ imply
‖vn− bn‖ → ∞. We have that if (ykn − akn)n∈N is a subsequence of (yn− an)n∈N with ‖ykn − akn‖ →
∞, then ‖vkn − bkn‖ → ∞. Applying Lemma 4.3(i) to the sequences (yn − x)n∈N, (yn − an)n∈N, and
(vn − bn)n∈N, we obtain that ‖(yn − x)− (yn − an)‖2 + ‖vn − bn‖2 → ∞, and so D[,h

T (x, yn) → ∞
as n→ ∞. This shows (ii).

Now we show (iii). Suppose that (an, bn) ∈ G(S), (yn, vn) ∈ G(T), and ‖yn − an‖ → ∞ imply
‖vn− bn‖2/‖yn− an‖ → ∞. We derive that if (ykn − akn)n∈N is a subsequence of (yn− an)n∈N with
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‖ykn − akn‖ → ∞, then ‖vkn − bkn‖2/‖ykn − akn‖ → ∞. Now, Lemma 4.3(ii) completes the proof.
This shows (iii). �

As we will see in the following example, the conditions in Theorem 4.5 (resp. Theorem 4.6) are
not necessary conditions for the left (resp. right) coercivity or supercoercivity of D[,h

T .

Example 4.7. Suppose that X = R. Let f = Id : R → R, S = ∇ f = 1, and h : R×R → R∞ given
by

h(x, v) = f (x) + f ∗(v) = x + ι{1}(v). (60)

Let also T = 0. Then

∀(x, y) ∈ R2, Dh
T(x, y) = h(x, 0)− 〈x, 0〉 = h(x, 0) = ∞. (61)

Therefore, both Dh
T(·, y) and Dh

T(x, ·) are supercoercive and hence coercive (for all x, y ∈ R), while
S and T do not satisfy the assumptions in Theorem 4.5 nor in Theorem 4.6.

Corollary 4.8 (Left supercoercivity of Dh). Let f ∈ Γ0(X) be such that ∂ f is point-to-point, T = S =
∂ f , h ∈ H(S), and y ∈ dom S. Then the following hold:

(i) If dom S is bounded, Dh(·, y) is supercoercive and hence coercive.
(ii) If S satisfies the property that (an, bn) ∈ G(S) and ‖an‖ → ∞ implies ‖bn‖ → ∞, then Dh(·, y) is

coercive.
(iii) If (an, bn) ∈ G(S) and ‖an‖ → ∞ imply ‖bn‖2/‖an‖ → ∞, then Dh(·, y) is supercoercive.

Proof. Apply Theorem 4.5 with T = S = ∂ f . Because f ∈ Γ0(H), we have that ∂ f is maximally
monotone. The compactness of ∂ f (y) comes from the fact that ∂ f is point-to-point. �

Example 4.9 (Left supercoercive distances on R). Let X = R and f := x 7→ |x|3/2+ε for some
ε > 0, and let h ∈ H(∇ f ). Then Dh is left supercoercive.

To check, we need only show that f satisfies the criteria for Corollary 4.8.

Since ∇ f : x 7→ (3/2 + ε)sign(x)|x|1/2+ε, we have that

‖∇ f (x)‖2

‖x‖ ≥ |x|
1+2ε

|x| = |x|2ε → ∞ as |x| → ∞, (62)

showing the sufficient conditions for Corollary 4.8. This example is illustrated in Figure 4, which
shows the geometric intuition underpinning Theorem 4.5.

Corollary 4.10 (Right supercoercivity of Dh). Let f ∈ Γ0(X) be such that ∂ f is point-to-point, T =
S = ∂ f , h ∈ H(∂ f ), and x ∈ dom ∂ f . Then the following hold:

(i) If ∂ f is bounded, then Dh is supercoercive and hence coercive.
(ii) If (an, bn), (yn, vn) ∈ G(∂ f ) and ‖yn − an‖ → ∞ imply ‖vn − bn‖ → ∞, then Dh is coercive.

(iii) If (an, bn), (yn, vn) ∈ G(∂ f ) and ‖yn − an‖ → ∞ imply ‖vn − bn‖2/‖yn − an‖ → ∞, then Dh is
supercoercive.

Proof. Apply Theorem 4.6 with T = S = ∂ f . Here ∂ f automatically has compact images because it
is point-to-point. �
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Example 4.11 (Right supercoercive distances on R). Let X = R and f := x 7→ |x|p for some p ≥ 2
and h ∈ H(∂ f ). Then Dh is right supercoercive.

To check, we need only show that f satisfies the criteria for Corollary 4.10.

Since∇ f : x → sign(x)p|x|p−1 and p ≥ 2 we have that (|x− y| ≥ 2) =⇒ ‖∇ f (x)−∇ f (y)‖ ≥
|x− y|. Thus, for |x− y| ≥ 2,

‖∇ f (x)−∇ f (y)‖2

‖y− x‖ ≥ |y− x|2
|y− x| = |y− x| → ∞ as |y− x| → ∞, (63)

showing the sufficient conditions for Corollary 4.10. This example is illustrated at right in Figure 4.

Example 4.12 (Functions on R which fail the assumptions of Theorems 4.5 and 4.6). Let X = R

and f := x 7→ |x|3/2.

Let xn := n and yn := 0. Then, since ∇ f : x 7→ sign(x)|x|1/2, we have that

d((xn,∇ f (yn)),G(∇ f )) = d((n, 0),G(∇ f )) ≤ d((n, 0), (n, n1/2)) = n1/2 = x1/2
n , (64)

and so d((xn,∇ f (yn),G(∇ f ))2 = xn for all n.

Example 4.13 (Theorem conditions sufficient but not necessary). The conditions of Theorem 4.5
are sufficient but not necessary. Let f be the Boltzmann-Shannon entropy, and we have that for
x > 1:

‖∇ f (x)‖2

‖x‖ =
log(x)2

x
≤ x

x
= 1→ 1 as x → ∞, (65)

so the sufficient conditions from Theorem 4.5 fail.

The form of Dσlog is given in (45). If x or y is less than or equal zero, Dσlog(x, y) = ∞. Fixing
y > 0, we have that for x > 1:

Dσ∂ f (x, y)
‖x‖ =

x(log(x)− log(y))
x

= log(x)− log(y)→ ∞ as x → ∞, (66)

and so Dσlog is left supercoercive.

4.3 Coercivity of the sum of D and a convex function

The following propositions and their accompanying proofs extend and follow the template of
Bauschke, Combettes, and Noll in [6, Lemma 2.12], with modifications necessary in order to
handle the greater generality of D[,h

T . In the following, X is assumed to be a real Hilbert space,
US := int dom S, and UT := int dom T.

Proposition 4.14 (Left coercivity of the sum of D[,h
T and a convex function). Let θ ∈ Γ0(X) be such

that US ∩ dom θ 6= ∅ and let γ ∈ R++. Suppose that one of the following holds:

(a) US ∩ dom θ is bounded and for all y ∈ UT, D[,h
T (·, y) is coercive.

(b) inf θ(US) > −∞ and for all y ∈ UT, D[,h
T (·, y) is coercive.

(c) For all y ∈ UT, D[,h
T (·, y) is supercoercive.

Then

∀y ∈ UT, θ(·) + 1
γ
D[,h

T (·, y) is coercive. (67)
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Proof. We will show that (a) =⇒ (b) =⇒ (67) and that (c) =⇒ (67). First, we have from [5,
Theorem 9.20] that there exists (u, α) ∈ X×R such that

θ ≥ 〈u, ·〉+ α. (68)

(a) =⇒ (b): By Cauchy–Schwarz inequality,

∀x ∈ X, θ(x) ≥ 〈u, x〉+ α ≥ −‖u‖‖x‖+ α, (69)

which yields

inf θ(US) = inf θ(US ∩ dom θ) ≥ −‖u‖ sup
x∈US∩dom θ

‖x‖+ α > −∞ (70)

since US ∩ dom θ is bounded. Hence, (a) =⇒ (b).

(b) =⇒ (67): Let y ∈ UT. Suppose for a contradiction that there exist a sequence (xn)n∈N in X
and a constant µ ∈ R++ such that ‖xn‖ → ∞ and

∀n ∈N, θ(xn) +
1
γ
D[,h

T (xn, y) ≤ µ. (71)

For each n ∈ N, since θ(xn) > −∞, it follows that D[,h
T (xn, y) < ∞, and so xn ∈ dom S.

Next, according to [5, Proposition 11.1(iv)], inf θ(dom S) = inf θ(US), which implies that θ(xn) ≥
inf θ(US) > −∞ for all n ∈N. Combining with (71), we obtain that

∀n ∈N, D[,h
T (xn, y) ≤ γ(µ− inf θ(US)) < ∞, (72)

which contradicts the coercivity of D[,h
T (·, y).

(c) =⇒ (67): Notice that

θ(·) + 1
γ
D[,h

T (·, y) ≥ 〈u, ·〉+ α +
1
γ
D[,h

T (·, y). (73)

The right-hand side is the sum of a supercoercive function and an affine function, and hence a
coercive function due to [5, Corollary 16.21]. Since θ(·) + 1

γD
[,h
T (·, y) is bounded from below by a

coercive function, it is coercive. �

Proposition 4.15 (Right coercivity of the sum of D[,h
T and a convex function). Let θ ∈ Γ0(X) be

such that UT ∩ dom θ 6= ∅ and let γ ∈ R++. Suppose that one of the following holds:

(a) UT ∩ dom θ is bounded and for all x ∈ US, D[,h
T (x, ·) is coercive.

(b) inf θ(UT) > −∞ and for all x ∈ US, D[,h
T (x, ·) is coercive.

(c) For all x ∈ US, D[,h
T (x, ·) is supercoercive.

Then

∀x ∈ US, θ(·) + 1
γ
D[,h

T (x, ·) is coercive. (74)

Proof. This is analogous to the proof of Proposition 4.14. �
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5 Conclusion

In Section 2, we illuminated the similarities between Bregman distances and the new GBDs, ex-
plaining the domain conditions under which they are equal when the Fenchel–Young represen-
tative is employed. We also introduced the lower closed GBD, a variant whose advantages we
motivated in Sections 3 and 4.

In Section 3, we provided detailed examples of how to compute the new GBDs, illustrating
with the energy and the Boltzmann–Shannon entropy, whose Bregman distances respectively cor-
respond to the classical Moreau case and the Kullback–Leibler divergence. We compared the
Fenchel–Young representative case with the two cases of the Fitzpatrick representative and its
conjugate. These are the two other most natural representative functions to consider, because they
serve as book-ends for the representative setH(S), as motivated in Section 2.

In Section 3.2 we answered the open question of finding the conjugate for the Fitzpatrick func-
tion of the logarithm. In so-doing, we demonstrated how to use the graphical characterizations of
representative functions in order to compute GBDs, and we illustrated the role that special func-
tions like Lambert W play in computational discovery. The method of computational discovery
that we used is prototypical of what one might employ in similar situations where the symbolic
computation poses a challenge.

Section 4 contains the most important theoretical contribution of this work: a framework for
verifying the coercivity and supercoercivity of the left and right distances, as well as the coercivity
of the sum of these distances together with a Legendre function. We have also illustrated how this
framework for sufficiency possesses a useful geometric interpretation, because the GBDs provide
an upper estimate on a set distance. In our examples, we illustrated what might go wrong when
sufficient criteria do not hold. These coercivity properties are important, because of the role they
play in establishing asymptotic properties for envelopes and proximity operators in the classical
Bregman case, and also in establishing existence of minimizers of regularized problems; see, for
example, [7, 16, 17, 18, 22]. Such properties are important, because many optimization algorithms
may be viewed as special cases of gradient descent applied to envelope functions.

Future work

The coercivity framework we have established makes possible several new avenues of inquiry.
While the conditions we provide for verifying coercivity and supercoercivity in Section 4 are suffi-
cient, they are not always necessary. An important future work is to catalogue useful (computable)
distances for which the coercivity results hold. In particular, by establishing the aforementioned
coercivity framework, we have set the table for a study of the left and right envelopes, along with
their corresponding proximity operators. A much more interesting question is whether certain op-
timization algorithms might be viewed as gradient descent applied to GBD envelopes other than
already-known Fenchel–Young cases. Another natural question is: what do the dual characteriza-
tions of such algorithms look like?
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