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Abstract

We consider linear parabolic equations on a random non-cylindrical domain. Utilizing the
domain mapping method, we write the problem as a partial differential equation with random
coefficients on a cylindrical deterministic domain. Exploiting the deterministic results concern-
ing equations on non-cylindrical domains, we state the necessary assumptions about the veloc-
ity filed and in addition, about the flow transformation that this field generates. In this paper
we consider both cases, the uniformly bounded with respect to the sample and log-normal type
transformation. In addition, we give an explicit example of a log-normal type transformation
and prove that it does not satisfy the uniformly bounded condition. We define a general frame-
work for considering linear parabolic problems on random non-cylindrical domains. As the first
example, we consider the heat equation on a random tube domain and prove its well-posedness.
Moreover, as the other example we consider the parabolic Stokes equation which illustrates the
case when it is not enough just to study the plain-back transformation of the function, but in-
stead to consider for example the Piola type transformation, in order to keep the divergence free
property.

Keywords: random domain, non-cylindrical domain, uncertainty quantification
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1 Introduction
Partial differential equations (PDEs) appear in the mathematical modeling of a great variety of pro-
cesses. Often in these models uncertainty appears for various reasons, such as incomplete knowledge
about the given data. The given data can be a source term, an initial state, parameters, a domain etc.
In this work we study the situation where the uncertainty of the model comes from the geometrical
aspect. For example, the computational domain is often given by scanning, or some other digital
imaging technique with limited resolution which leads to the variance between the shape of the real
body and the model (for a mathematical model of this problem see [2]). A well established and ef-
ficient way to deal with this problem is to adopt the probabilistic approach, i.e. construct models of
geometrical uncertainty and describe the phenomena by PDEs on a random domain. More precisely,
one considers the fixed initial deterministic domain D0 ⊂ Rd and its evolution in a time interval

1

ar
X

iv
:1

80
8.

06
97

0v
2 

 [
m

at
h.

A
P]

  1
0 

D
ec

 2
01

9



2

[0, τ ] by a random velocity V , defined on a probability space (Ω,A,P). In this way one obtains a
non-cylindrical, i.e. time-dependent, random domain

Q(ω) :=
⋃

t∈(0,τ)

Dt(ω)× {t},

also known as a random tube domain, where ω is a sample from Ω.
Random domains appear in many applications, such as biology, surface imaging, manufacturing

of nano-devices etc. One particular application example occurs in the wind engineering as presented
in [7]. More precisely, the authors study how small uncertain geometric changes in the Sunshine
Skyway Bridge deck affect its aerodynamic behavior. The geometric uncertainty of the bridge is
due to its specific construction and wind effect. This model results in a parabolic PDE on a random
domain. Another class of examples comes from the modeling in Cardiovascular Biomechanics. In
particular there are papers that consider uncertainty in these models, that are mainly presented by
flow equations [38, 39] and of specific interest is the uncertainty that comes from the geometry.
Another application was suggested in [41], where authors suggest to treat rough surfaces, i.e. highly
irregular surfaces such as glaciers, as random domains. In the light of their practical relevance, the
analysis and numerical analysis of random domains have been considered by many authors, see
[9, 10, 26, 28, 44]. Notice that of the application point of view, in particular biological applications,
it is of big interest to consider these equations on curved domains. Elliptic PDEs on random surface
domains have been considered in [11].

In Figure 1, we visualize the difference between the deterministic cylindrical domain, the ran-
dom cylindrical domain and the random non-cylindrical domain. The first plot presents a standard
cylindrical domain. The second one is a realization of a random tube given by

S1 3 (x0, y0) 7→ (x(ω), y(ω)) := (2x0Y1(ω), 3y0Y2(ω)) ∈ D(ω)

where Y1, Y2 ∼ U(0, 1) are independent RVs. The last two plots are two realizations of a random
non-cylindrical tube defined by

S1 3 (x0, y0) 7→ (x(ω, t), y(ω, t)) :=

(Y1(ω)(sin(Y2(ω))+1.5)x0+0.3 cos(Y3(ω)t), Y4(ω)(sin(Y5(ω))+1.5)y0+0.3 sin(Y6(ω)t))∈Dt(ω)

where Y1, . . . , Y6 ∼ U(0, 1) are independent RVs.
The approach that we consider in this paper is known as the domain mapping method [26, 44].

The other well-known approaches are the perturbation method (cf. [27]), eXtended stochastic FEM
[35] and fictitious domain approach [8] . The domain mapping method requires knowledge about
the transformation field T on the closer of the fixed initial domain D0:

T (ω) : D0 7→ Rd.

The main idea of this method is to reformulate the PDE on the random domain into the PDE with
random coefficients on a fixed reference domain. This reformulation allows us to apply numerous
available analysis and numerical methods for solving random PDEs and to avoid the construction
of a new mesh for every realization of a random domain.

We assume that we are given a deterministic domain D0 that evolves with a given random veloc-
ity field V , and as a result we build a random tube. To a random velocity, we will associate its flow
TV that will map a domain D0 into a random domain Dt(ω) at a time t.
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Figure 1: Cylindrical domain, realization of a random cylindrical domain and realizations of random
non-cylindrical domains, respectively.

Notice that, in the previous work on random domains, mainly elliptic PDEs have been consid-
ered. Very few papers consider parabolic PDEs on random domains, such as [9, 7, 41]. In addition,
to the best of our knowledge, there are no results on random domains that change in time, which is
exactly the goal of this work. This paper is based on the draft presented in [19], that resulted from
the thesis [20]. We will consider the well-posedness of linear parabolic PDEs posed on random
moving domains and necessary conditions about the initial data, the random velocity field and the
induced transformation, that will ensure the well-posedness of the equation.

In the deterministic case, PDEs on the so-called non-cylindrical domains, i.e. domains chang-
ing in time, are a well-established topic regarded analysis and numerical analysis (see [3, 5, 6, 13,
15, 31, 33]), with numerous applications. Various physical examples concerning phenomena on
time dependent spatial domains are presented in the survey article [32]. Some of the examples are:
fluid flows with a free or moving solid-fluid interface, the Friedmann model in astrophysics that
describes the scaling of key densities in the Universe with its time-dependent expansion factor, and
many examples of biological processes that involve time-dependent domains, such as the formation
of patterns and shapes in biology. In [31, 33] authors focus on appropriate formulation of the heat
equation on a random domain and on proving the existence and uniqueness of strong, weak and
ultra weak solutions, as well as providing energy estimates. These papers use coordinate transfor-
mation to reformulate the PDE into a cylindrical domain and Lions’ general theory for proving the
well-posedness. Moreover, in [15, 23, 24] similar results were obtained but with a greater focus on
the connection of the non-cylindrical domain and the velocity field. Since we are particularly inter-
ested in how the velocity field induces a non-cylindrical domain, we will follow this approach. In
this paper we exploit these deterministic results, to derive necessary regularity results in the random
setting about the given velocity field. In addition to it, we consider assumptions about the measura-
bility and Lp(Ω) bounds. The random velocity field could be presented in many ways, for example
in numerics it is common to assume that the velocity field is given by its truncated Karhunen-Loeve
expansion.

In this paper, we consider both cases, the uniformly bounded in ω and log-normal type, of the
flow transformation. To the best of our knowledge up to now all the analysis in the random domain
setting, has been regarding the uniformly bounded domain transformation. We construct an explicit
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example of the transformation that does not satisfy this condition. The type transformation is of the
exponential of the regularized Brownian motion. We prove that this type of transformation still sat-
isfies necessary regularity assumptions, but not uniformly bounded assumption. In [18] the authors
present the big variety of applications of log-normal field in ecology, in particular in growth models.
One could then consider PDEs whose computational domain is given by these growth models. Ex-
ploiting domain mapping method we prove well-posedness in both types of previously mentioned
random transformations of the domain. The first step is to transform the equation to the determinis-
tic cylindrical domain, using the pull back transformation that is a transformation, of the so-called
plain pull-back of the considered function u on the random domain QT (ω), i.e.

û(ω, x, t) := Fu(ω, t, Tt(x)) ω ∈ Ω, t ∈ [0, τ ], x ∈ D0,

where F is a suitable transformation. As a standard example of a linear parabolic PDE we consider
the heat equation on the tube domain, and in this case F is identity. In the uniformly bounded
setting the well-posedness, is a direct consequence of the general theory of parabolic PDEs. In the
log-normal type case, one needs in addition to prove measurability of the solution, and its Lp(Ω)
bounds. To achieve that, we exploit the proof of the general deterministic result in order to exactly
determine the constants that appear in a path-wise setting. Under suitable assumptions, we can
control these constants and prove well-posedness of the pulled-back equation.

As a next example, we consider the parabolic Stokes equation. Parabolic Stokes and Navier-
Stokes equations on a non-cylindrical domain have been investigated by many authors. In particular
they studied the well-posedness and regularity results. This equation on a non-cylindrical deter-
ministic domain has been considered by many authors [30, 37]. This example illustrates that it is
not always enough to choose a plain pull-back transformation, as in the case of the heat equation,
but instead one has to cleverly choose the transformation F in order to preserve certain properties
(such as divergence free) or to obtain more simple form of the pulled-back equation. In this case,
we choose a Piola type transformation and derive the pulled-back equation. The well-posedness of
this equation is briefly commented, and its proof is the subject of future work.

This paper is organized as follows. In Section 2, we introduce the general function spaces that
will be exploited in the formulation of PDEs on random moving domains. Namely, on the cylindrical
domain we consider the standard Sobolev-Bochner type spaces, and for the path-wise consideration
on the random tube we utilize the general setting for the PDEs on moving domains defined in [1]. In
Section 3 we define precisely what we mean by a random tube, in particular we specify the needed
regularity assumptions based on the work presented in [24, 23]. In addition, we give an example of a
transformation field that does not satisfy the uniformly bounded assumption. Section 4 is devoted to
the heat equation on a random tube, as a typical example of a linear parabolic equation. We prove its
well-posedness, in the case of uniformly-bounded and long-normal type transformation, exploiting
the domain decomposition method. In Section 5 we consider the parabolic Stokes equation, where
more complicated Piola type transformation is applied. We conclude in Section 6, by giving a brief
conclusion of the paper and suggest further possible directions of a research.

2 General Setting
Let (Ω,F ,P) be a complete probability space with a sample space Ω, a σ-algebra of events F and a
probability P. In addition, we assume that L2(Ω) is a separable space. For this assumption it suffices
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to assume that (Ω,F ,P) is a separable measure space [4, Theorem 4.13], i.e. that F is generated
by a countable collection of subsets. Under this assumption, for any separable Hilbert space H , it
holds (see [36, Theorem II.10])

L2(Ω)⊗H ∼= L2(Ω, H). (2.1)

We only consider a fixed finite time interval [0, τ ], where τ ∈ (0,∞). Furthermore, we denote
by D([0, τ ],H) the space of all C∞-smooth H-valued functions with compact support in [0, τ ]. In
the special case, when H equals R, we just write D([0, τ ]). We will reuse the same constants C
in calculations multiple times if their exact value is not important. When there is no confusion,
integrals will be usually written without measure. Let D0 ⊂ Rd be an open, bounded domain with a
Lipschitz boundary. The curly notation for spaces, such as V ,H and hat for functions û, will be used
for the deterministic cylindrical domain. When we utilize some deterministic result in a path-wise
sense, if there is no confusion, we omit writing the dependence on the sample ω to simplify the
notation.

2.1 Function spaces on the cylindrical domain
The Bochner spaces are straightforward generalization of the Lebesgue spaces to Banach space val-
ued functions and are natural spaces to use for the pulled-back formulation of a PDE on a cylindrical
(deterministic) domain. One can define the integral of an E-valued random variable X : Ω → E,
where (E,B(E)) is a separable Banach space. The precise definition of Bochner spaces and its
properties can be found for example in [16], and here we follow the summary of results from [1].
Let

V ↪−→
i
H ∼= H∗ ↪−→

i′
V∗

be a Gelfand triple. Every vector-valued distribution u ∈ L2(0, τ ;H) defines a vector-valued distri-
bution Su : D((0, τ))→ H through theH-valued integral

ϕ 7→
∫ τ

0

y(t)ϕ(t)dt.

We will identify Su and u. We say that u ∈ L2(0, τ ;H) has a weak derivative u′ ∈ L2(0, τ ;H∗) if
there exists w ∈ L2(0, τ ;H∗) such that

S′u(ξ) =

∫ τ

0

ξ′(t)(u(t), v)L = −
∫ τ

0

ξ(t) 〈w(t), v〉H∗,H , ∀ξ ∈ D(0, τ), ∀v ∈ H (2.2)

and we write w = u′. Recall that the standard Sobolev-Bochner space is defined as

W(V ,V∗) := {u ∈ L2(0, τ ;V) | u′ ∈ L2(0, τ ;V∗)}. (2.3)

The spaceW(H,H∗) is a Hilbert space with the inner product defined via:

(u, v)W(V,V∗) :=

∫ τ

0

(u(t), v(t))V +

∫ τ

0

(u′(t), v′(t))V∗ .

Theorem 2.1. The following properties of the spaceW(H,H∗) hold

i) The embeddingW(V ,V∗) ⊂ C([0, τ ],H) is continuous.
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ii) The embeddingW(V ,V∗) ⊂ D([0, τ ],V) is dense.

iii) Let u, v ∈ W(V ,V∗), then the mapping t 7→ (u(t), v(t))H is absolutely continuous on [0, τ ]
and

d

dt
(u(t), v(t))H = 〈u′(t), v(t)〉V∗,V + 〈u(t), v′(t)〉V,V∗

holds for almost every t ∈ [0, τ ]. The last expression implies the integration by parts formula

(u(τ), v(τ))H − (u(0), v(0))H =

∫ τ

0

〈u′(t), v(t)〉V∗,V +

∫ τ

0

〈u(t), v′(t)〉V,V∗ .

Proof. For the density result see [34, Theorem 2.1] and for other statements see [40].

In the definition of a weak material derivative, we utilize that the weak derivative can be charac-
terized in terms of vector-valued test-functions. We state this standard result for completeness.

Theorem 2.2. The weak derivative condition (2.2) is equivalent to∫ τ

0

(u(t), ψ′(t))H = −
∫ τ

0

〈u′(t), ψ(t)〉V∗,V ∀ψ ∈ D((0, τ),V). (2.4)

Proof. The direct implication follows from Theorem 2.1, iii). To see that (2.4) implies (2.2), test
(2.4) with ξv ∈ D((0, τ),H), where ξ ∈ D((0, τ)) and v ∈ H.

2.2 Bochner-type spaces

In order to treat the evolving family of Hilbert spaces X = (X(t))t∈[0,τ ], the idea is to connect the
space X(t) at any time t ∈ [0, τ ] with some fixed space, for example with the initial space X(0).
Thus we construct the family of functions φt : X(0)→ X(t), which we call the (plain) pushforward
map. We denote the inverse of φt by φ−t : X(t) → X(0) and call it the (plain) pullback map. We
want to introduce the special Bochner-type function space such that for every t ∈ [0, τ ] we have
u(t) ∈ X(t). These spaces are introduced in [1] and we exploit them to define the solution space for
the path-wise problem on a random tube domain. Note that in a random setting we have for every
path ω a random family X(ω) = (X(ω, t))t∈[0,τ ], where X(ω, t) denotes an appropriate function
space on a random domain Dt(ω) and X(0) is a fixed initial deterministic space. We state the main
definitions and results from [1], that we apply in our setting.

Definition 2.1. The pair {X, (φt)t∈[0,τ ]} is compatible if the following conditions hold:
• for every t ∈ [0, τ ], φt is a linear homeomorphism such that φ0 is the identity map
• there exists a constant CX which is independent of t such that

‖φtu‖X(t) ≤ CX‖u‖X(0) for every u ∈ X(0)

‖φ−tu‖X(0) ≤ CX‖u‖X(t) for every u ∈ X(t)

• the map t 7→ ‖φtu‖X(t) is continuous for every u ∈ X(0).
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Note that for the given family (X(t))t∈(0,τ) there are usually many different mappings φt such
that the pair {X, (φt)t∈[0,τ ]} is compatible.

We denote the dual operator of φt by φ∗t : X∗(t) → X∗(0). As a consequence of the previous
conditions, we obtain that φ∗t and its inverse are also linear homeomorphisms which satisfy the
following conditions

‖φ∗tf‖X∗(0) ≤ CX‖f‖X∗(t) for every f ∈ X∗(t)
‖φ∗−tf‖X∗(t) ≤ CX‖f‖X∗(0) for every f ∈ X∗(0).

Now we can define the spaces of time-dependent functions whose domain is also changing in
time by requiring that the pull-back of u belongs to the fixed initial space.

Definition 2.2. For a compatible pair {X, (φt)t∈[0,τ ]} we define spaces

L2
X :=

u : [0, τ ] 3 t 7→ (ū(t), t) ∈
⋃

s∈[0,τ ]

X(s)× {s} | φ−(·)ū(·) ∈ L2(0, τ ;X(0))

 ,

L2
X∗ :=

f : [0, τ ] 3 t 7→ (f̄(t), t) ∈
⋃

s∈[0,τ ]

X∗(s)× {s} | φ−(·)f̄(·) ∈ L2(0, τ ;X∗(0))

 .

Like the standard Bochner spaces, these spaces consist of equivalence classes of functions agree-
ing almost everywhere in [0, τ ]. Observe that previous spaces strongly depend on the map φt. In the
following we identify u(t) = (u(t), t) with u(t), for brevity of notation.

In order to understand these spaces better, we state their most important properties, stated in [1,
Lemma 2.10, Lemma 2.11].

Lemma 2.1. (The isomorphism with standard Bochner spaces and the equivalence of norms) The
maps

L2(0, τ ;X0) 3 u 7→ φ(·)u(·) ∈ L2
X

L2(0, τ ;X∗0 ) 3 f 7→ φ−(·)f(·) ∈ L2
X∗

are isomorphisms. Furthermore, the equivalence of norms holds

1

CX
‖u‖L2

X
≤ ‖φ(·)u(·)‖L2(0,τ ;X0) ≤ CX‖u‖L2

X
∀u ∈ L2

X

1

CX
‖f‖L2

X∗
≤ ‖φ−(·)f(·)‖L2(0,τ ;X∗0 ) ≤ CX‖f‖L2

X
∀f ∈ L2

X∗ .

The spaces L2
X and L2

X∗ are separable Hilbert spaces ([1, Corollary 2.11]) with the inner product
defined as

(u, v)L2
X

:=

∫ τ

0

(u(t), v(t))X(t)dt

(f, g)L2
X∗

:=

∫ τ

0

(f(t), g(t))X∗(t)dt.
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For f ∈ L2
X∗ and u ∈ L2

X the map

t 7→ 〈f(t), u(t)〉X∗(t),X(t)

is integrable on [0, τ ], see [1, Lemma 2.13]. Utilizing the integrability of this map and Fubini’s
theorem, in [1, Lemma 2.15] the authors prove that the spaces L2

X∗ and (L2
X)∗ are isometrically

isomorphic. Furthermore, the duality pairing of f ∈ L2
X∗ with u ∈ L2

X is given by

〈f, u〉L2
X∗ ,L

2
X

=

∫ τ

0

〈f, u〉X∗(t),X(t) dt.

2.3 Function spaces on a random non-cylindrical domains
In order to treat the path-wise formulation on a random non-cylindrical domain we will consider for
every t and ω, a path-wise Gelfand triple

V (ω, t) ↪−→
i
H(ω, t) ∼= H∗(ω, t) ↪−→

i′
V ∗(ω, t).

Given random velocity filed v induces a random flow Tv such that Tv(ω, t) : D0 → Dt(ω), more
details on this will be presented in the next section. For every ω ∈ Ω we define the path-wise
pullback operator φ−t(ω) : H(ω, t)→ H(0) in the following way

(φ−t(ω)u(ω))(x) := u(ω)Tv(ω, t, x) for every x ∈ D0, ω ∈ Ω. (2.5)

Lemma 2.2. For every ω, the pairs
(
H(ω), (φt(ω))t∈[0,τ ]

)
and

(
V (ω), (φt(ω)

∣∣
V0

)t∈[0,τ ]

)
are com-

patible.

Proof. The proof is similar to the proof of [42, Lemma 3.3] and the constantsCX from the Definition
2.1 do not depend on the sample ω, under suitable uniform bound assumption about the velocity
field. However, note that in the log-normal case, constants do depend on the sample.

From the previous lemma and Definition 2.2 it follows that we can consider spaces L2
V (ω) and

L2
H(ω). To define the solution space for parabolic PDEs on a random non-cylindrical domain, we

introduce a material derivative which takes into account the spatial movement of the domain. In
order to consider the material derivative of random functions, we apply the abstract setting from [1,
Chapter 2.4].
We define the spaces of pushed-forward continuously differentiable functions by

CjX := {u ∈ L2
X | φ−(·)u(·) ∈ Cj([0, τ ], X0} for j ∈ {0, 1, . . . }.

In a random setting, the evolving family Xt also depends on a sample on ω, in a sense that Xt =
Xt(ω). Since we use the path-wise perspective for the equations on a random domain, for the sim-
plicity of the notation we formulate the next results in the deterministic framework, i.e. omit writing
ω.

Definition 2.3. For u ∈ C1
H the strong material derivative u̇ ∈ C0

X is defined by

u̇(t) = φt

(
d

dt
φ−tu(t)

)
for every t ∈ [0, τ ]. (2.6)
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We can derive the following explicit formula for the strong material derivative, (see [1])

u̇(t, ω, x) = ut(t, ω, x) +∇u(t, ω, x) · v(ω, t, x), for every x ∈ D(ω, t), ω ∈ Ω, (2.7)

where v is the velocity of the domain.
Just as in the static case, it might happen that the equation does not have a solution if requesting

u ∈ C1
H . One can define a weak material derivative that needs less regularity. In addition to the

case when we consider a fixed domain, an extra term, defined by the bilinear form c, that takes into
account the movement of the domain, appears.

Definition 2.4. We say that ∂•u ∈ L2
V ∗ is a weak material derivative of u ∈ L2

V if and only if∫ τ

0

〈∂•u(t), η(t)〉V ∗(t),V (t) = −
∫ τ

0

(u(t), η̇(t))H(t) −
∫ τ

0

c(t;u(t), η(t)) (2.8)

holds for all η ∈ Dv(0, τ) = {η ∈ L2
V | φ−(·)η(·) ∈ D((0, τ);V0)} and c(t, u(t), η(t)) =∫

D(t)
u(t, x)η(t, x)∇Γ(t) · v(t, x).

In a probabilistic setting the bilinear form c(t, u(t), η(t)) is defined in the analogue way, includ-
ing the dependence on a sample. Note that it can be directly shown that if it exists, the weak material
derivative is unique and every strong material derivative is also a weak material derivative.

The solution space, based on the general framework, is defined by

W (V (ω), V ∗(ω)) := {u ∈ L2
V (ω) | ∂•u ∈ L2

V ∗(ω)}. (2.9)

In order to prove that the solution space is a Hilbert space and that it has some additional properties,
one can connect W (V, V ∗) with the standard Sobolev-Bochner space W(V0, V

∗
0 ) defined by (2.3)

for which these properties are known. The previous two types of spaces are connected in a natural
way, i.e. that the pull-back of the functions from the solution space belongs to the Sobolev-Bochner
space and vice versa. In addition, we also have the equivalence of the norms. In this case we say
that there exists an evolving space equivalence between the spaces W (H,H∗) andW(H0, H

∗
0 ) (for

the proof see [1, Theorem 2.33]). As the consequence of this equivalence and Theorem 2.1 we have
the following results.

Lemma 2.3. The solution space W (V, V ∗) is a Hilbert space with the inner product defined via

(u, v)W (V,V ∗) =

∫ τ

0

(u(t), v(t))V (t) +

∫ τ

0

(∂•u(t), ∂•v(t))V ∗(t).

Lemma 2.4. The following statements hold:

i) Space W (V, V ∗) is embedded into C0
H .

ii) The embedding DV ([0, τ ]) ⊂ W (V, V ∗) is dense.

iii) For every u ∈ W (V, V ∗) it holds maxt∈[0,τ ] ‖u(t)‖H(t) ≤ C‖u‖W (V,V ∗).
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As a consequence, the evaluation t 7→ u(t) is well-defined and we are able to specify initial
conditions for the PDE. Furthermore, we can define the subspace

W0(V, V ∗) := {u ∈ W (V, V ∗)|u(0) = 0}. (2.10)

Note that W0(V, V ∗) is a Hilbert space, as a closed linear subspace of W (V, V ∗).
To discuss the case when more regularity is feasible, in particular if the weak derivative of a

function has more regularity, we define another function space.

Definition 2.5. Let
W (V,H) := {u ∈ L2

V | ∂•u ∈ L2
H}. (2.11)

In order to prove the properties of the previous space, similarly as before, we connect W (V,H)
with the standard Sobolev-Bochner spaceW(V0, H0) ≡ {v ∈ L2(0, τ ;V0) | v′∈ L2(0, τ ;H0)}. As a
consequence, W (V (ω), H(ω)) is a Hilbert space for every ω ∈ Ω.

3 Random tubes
Let D0 ⊂ Rd be an open, bounded domain with a Lipschitz boundary. Furthermore, let v : Ω ×
[0, τ ] × Rd → Rd be a random vector field, that determines a random tube Qv(ω), for any ω ∈ Ω.
In the uniformly bounded case we assume the existence of a hold-all domain, i.e. we assume that
there exists a bounded open set B such that Qv(ω) remains in (0, τ)×B, and that the velocity field
is defined on this domain B, and not on the whole space Rd. How much the set B varies from D0,
depends on how big the stochastic fluctuations are. Note that in the log-normal case B = Rd, and
we always write B to cover both situations.

To a vector field v(ω) we can associate its flow Tv(ω). First, for fixed ω ∈ Ω and X ∈ D0 we
consider the path-wise solution xv(ω, ·, X) of the ODE

dxv

dt
(ω, t,X) = V (ω, t, xv(ω, t,X)) t ∈ [0, τ ] (3.1)

xv(ω, 0, X) = X. (3.2)

For fixed t and X , by Fubini’s theorem, ω 7→ xv(ω, t,X) is a measurable function.
Then, for any ω ∈ Ω and t ∈ [0, τ ], we consider the transformation

Tv(ω, t) : B → B

X 7→ Tv(ω, t)(X) := xv(ω, t,X).

We denote the mapping (ω, t,X) 7→ Tv(ω, t)(X) by Tv. For brevity, and when there is no danger of
confusion, we do not write the associate vector field v but we just write Tt(ω,X) ≡ Tv(ω, t)(X).
The measurability of x implies the measurability of ω 7→ Tt(ω,X), for fixed t and X .

Now, to a sufficiently smooth vector field v(ω) we associate a tube Qv,τ (ω) defined by

Qv,τ (ω) :=
⋃

t∈(0,τ)

Dt(ω)× {t} Q0(ω) := D0,

where Dt(ω) := Tt(ω)(D0). Similarly as for the flow, we use the notation Qv(ω) ≡ Q(ω). Accord-
ing to this notation, one should consider Definition 2.2 of Bochner type spaces in path-wise sense
for Tt(ω) instead of φt, i.e. as already announced, Tt(ω) is a plain push-forward.
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Remark 3.1. Conversely, given a sample ω and a random tube Q(ω) with enough smoothness of
a lateral boundary that ensures the existence of the outward normal, we can associate to Q(ω) a
random smooth vector field v(ω) whose associated flow satisfies Tv(ω, t)(D0) = Dt(ω) ⊂ Rd,∀t ∈
[0, τ ].

The relation between the regularity of the velocity field v(ω) and the regularity of its associated
flow Tt(ω) has been investigated using the general theory of shape calculus (for general results see
for example [17, Ch 4, Th 5.1]). Here we state weaker results that are sufficient for our analysis.
These results are presented in [24, Proposition 2.1, Proposition 2.2] and [23]. First, let us state the
assumptions about the velocity field.

Assumption 3.2. The velocity field satisfies the following regularity assumption

v(ω) ∈ C([0, τ ],W k,∞(B,Rd)) for a.e. ω and k ≥ 1. (3.3)

Assumption 3.3. For the unit outward normal field nB ∈ Rd to B we assume

v(ω, t) · nB = 0 on ∂B, for a.e. ω. (3.4)

The assumption (3.4) ensures that the transformation Tt is one-to-one homeomorphism which
maps B to B (cf. [21, pp. 87—88]). In particular, it maps the interior points onto interior points
and the boundary points onto boundary points. Thus, for every t ∈ [0, τ ] we can consider the
transformation Tv(t)

−1 ≡ T−1
t : B → Rn. Note that T−1

t is the flow at s = t of the velocity filed
ṽt(s) := −v(t − s). In the log-normal setting, we assume that the velocity field v is defined on the
whole Rd, this could be assumed also in the uniformly bounded setting. In this case the assumption
(3.4) is not needed and the analogue regularity results hold for the flow, see [17, Theorem 4.1].

Remark 3.4. Instead of (3.4), one can make a more general assumption that ±v(ω, t, x) belongs to
a so-called s Bouligand’s contingent cone. For more details see [17, Ch. 5].

The following lemma [24, Proposition 2.1, 2.2] states the regularity results about the flow and
will be used in a path-wise sense.

Lemma 3.1. Let Assumption 3.2 hold. Then there exists a unique associated flow Tv that is a
solution of

d

dt
T (t, ·) = v(t, T (t, ·)), T (0) = Id. (3.5)

such that
Tv ∈ C1([0, τ ],W k−1,∞(B,Rd)) ∩ C([0, τ ],W k,∞(B,Rd)).

Moreover,
T−1

v ∈ C([0, τ ],W k,∞(B,Rd)).

For our analysis we need more regularity of the inverse transformation T−1
t , i.e. the same as for

Tt. Utilizing the implicit function theorem, better regularity result for T−1
t can be obtained on some

subinterval [0, τ ′], see [23, Proposition 2.2].

Lemma 3.2. There exists τ ′ ∈ (0, τ ] such that T−1
v ∈ C1([0, τ ′],W k−1,∞(B,Rd)).
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Observe that in our setting we consider Lemma 3.2 path-wise. Thus, for every ω there exists
τ ′(ω) ∈ (0, τ ]. For this reason we need to make an additional assumption to avoid that τ ′(ω) con-
verges to zero. From now on, without loss of generality, we assume the existence of a deterministic
constant τ0 such that

0 < τ0 ≤ τ ′(ω) ≤ τ ∀ω

and consider our problem on the time interval [0, τ0]. By abuse of notation, we continue to write τ
for τ0. Hence, we have that

Tv, T
−1
v ∈ C1([0, τ ],W k−1,∞(B,Rd)) ∩ C([0, τ ],W k,∞(B,Rd)). (3.6)

Assuming that B has enough regular shape, such as bounded, open, path-connected and locally
Lipschitz subset of Rd, from [17, Ch 2, Th 2.6], we infer

W k+1,∞(B,Rd)) = Ck,1(B,Rd) and Ck,1(B,Rd) ↪→ Ck(B,Rd).

In particular, in for our setting it is sufficient to assume that k = 2 and consider the following
regularity assumption:

Assumption 3.5. The velocity field satisfies the following regularity assumptions

v(ω) ∈ C([0, τ ], C2(B,Rd)) for a.e. ω. (3.7)

Assumption 3.6.
v(ω, t) · nB = 0 on ∂B for a.e. ω. (3.8)

Then, according to 3.6, we obtain the following regularity of the associated flow and its inverse

T (ω), T−1(ω) ∈ C1([0, τ ], C(B,Rd)) ∩ C([0, τ ], C2(B,Rd)). (3.9)

Remark 3.7. In the literature, a standard assumption for non-cylindrical problems is a monotone
or regular (Lipschitz) variation of the domain Dt. The weaker assumptions on time-regularity of
the boundary are considered in [3] . Namely, the authors assume only the Hölder regularity for
the variation of the domains. The motivating example for this kind of assumption is a stochastic
evolution problem in the whole space Rd.

Moreover, note that if D0 is a Lipschitz domain and the transformation T is bijective and bi-
Lipschitz, then the transformed domain Dt is not necessarily Lipschitz, see Zerner’s example. How-
ever, bijective bi-Lipschitz transformations that are also C1-diffeomorphisms of the space do pre-
serve the class of bounded Lipschitz domains [29, Thm. 4.1].

In view of Assumption 3.5, spatial domains Dt(ω) in Rd are obtained from a base domain D0 by
a C2-diffeomorphism, which is continuously differentiable in the time variable. The C1 dependence
in time indicates that we do not have an overly rough evolution in time, and C2 regularity in space
means that topological properties are preserved along time.

As a consequence of (3.9), the following path-wise bound holds

‖T (ω)‖C([0,τ ],C2(B,Rd)), ‖T−1(ω)‖C([0,τ ],C2(B,Rd)) ≤ CT (ω) for a.e. ω.
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LetDTt(ω) andDT−1
t (ω) denote the Jacobian matrices of Tt(ω) and T−1

t (ω), respectively. From
(3.9), we infer

DT (ω), DT−1(ω) ∈ C1([0, τ ], C1(B,Rd)) and
d

dt
T (ω) ∈ C([0, τ ], C(B,Rd)) for a.e. ω.

(3.10)
As a consequence we have

‖DT (ω)‖C([0,τ ],C1(B,Rd)), ‖DT−1(ω)‖C([0,τ ],C1(B,Rd)) ≤ CD(ω) (3.11)

and ‖ d
dt
T (ω)‖C([o,τ ],C(B,Rd)) ≤ Ct(ω) for a.e. ω. (3.12)

Since for the operator norm ‖ · ‖ of any square matrix M , it holds ‖MM τ‖ = ‖M τM‖ = ‖M‖2,
then from (3.11) we conclude

max
t,x
‖DTt(ω, x)DT>t (ω, x)‖ = max

x,t
‖DT>t (ω, x)DTt(ω, x)‖ ≤ C2

D(ω) for a.e. ω, (3.13)

and the analogue holds for the inverse Jacobian matrix. Moreover, let Jt(ω) := det(DTt(ω)) and
J−1
t (ω) := det(DT−1

t (ω)). Since Jt(ω) does not vanish, J0(ω) = 1, and because it is continuous, it
follows that Jt(ω) > 0, a.e. and the same holds for its inverse. From (3.11) we conclude

J(·)(ω), J−1
(·) (ω) ∈ C1([0, τ ], C1(B,R)) for a.e. ω. (3.14)

The previous result implies that the gradient of the inverse Jacobian is bounded path-wise

‖∇xJ
−1
t (ω, x)‖Rd ≤ CJ(ω). (3.15)

Remark 3.8. Since (M>)−1 = (M−1)>,M ∈ Rd×d, inverse and transpose operations commute,
we will just write M> for transpose and M−> for its inverse.

Furthermore, let σi(ω) = σi(DTt(ω, x)), i = 1, . . . , d denote the singular values of the Jaco-
bian matrix, i.e. the square root of eigenvalues of the matrix DTtDT>t or equivalently, the matrix
DT>t DTt. If we consider a matrix which has continuous functions as entries, it follows that its
eigenvalues are also continuous functions (see [45]). This argument is based on the fact that the
eigenvalues are roots of the characteristic polynomial and roots of any polynomial are continuous
functions of its coefficients. As the coefficients of the characteristic polynomial depend continuously
on the entries of the matrix and singular values are the square roots of eigenvalues of DTtDT>t , it
follows

σi(ω) ∈ C([0, τ ], C(B,R)).

Thus, for every i, σi(ω) achieves the minimum and maximum on [0, τ ] × B and from (3.11) it
follows

0 < σ(ω) ≤ min
x,t
{σi(ω, t, x)} ≤ max

x,t
{σi(ω, t, x)} ≤ σ(ω) <∞ (3.16)

for σ(ω) := CD(ω), σ(ω) := C−1
D (ω), for every i = 1, . . . , d and a.e. ω. Since J(ω) =

∏n
i=1 σi(ω),

the bound (3.16) implies

0 < σn(ω) ≤ Jt(ω, x) ≤ σn(ω) <∞ for every x ∈ B, t ∈ [0, τ ] and for a.e.ω. (3.17)
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The analogue reciprocal bounds hold for the J−1
t .

Note that all previous bounds are in a path-wise sense and are a direct consequence of a regularity
result (3.9). In the uniformly bounded case, we will in addition assume that these bounds Ci(ω) can
be uniformly bounded in ω. However, for the general setting we only need to assume that these
constants are random variables with finite moments of desired order.

Assumption 3.9. Assume that CT , CD, Ct, CJ belong to Lp(Ω) for every p ∈ [1,∞).

3.1 Unbounded transformation
In this section we construct an example for which the Assumption 3.9 is satisfied, but the constants
are not uniformly bounded in ω. This example is closely related to the exponential random field,
which appears in log-normal growth models. However, since we need time and space regularity of
the transformation stated in the previous subsection, we have to consider its regularization so that we
can study the time derivative of the transformation T . Let Bt be a standard d-dimensional Brownian
motion and define its regularization by

Bε
t :=

∫ t

0

ρε(t− u)Budu

where ρε is a standard mollifier function and Cε := ‖ρ‖C1[0,τ ], thus Bε
t belongs to C1([0, τ ],Rd) .

Now we define the transformation

Tt(ω, x) := xeB
ε
t (ω) x ∈ S1 ≡ D0 (3.18)

and the velocity transformation is given by vt(ω, x) = xeB
ε
t (ω)Ḃε

t (ω). Hence, by definition the
regularity assumptions concerning the space and time are full-filled, and thus path-wise bounds
hold. We want to prove that these bounds belong to Lp(Ω), for p ∈ [1,∞), and that uniform bounds
don’t hold.

Lemma 3.3. Let T be defined by (3.18), then the following holds

i) max
t∈[0,τ ],x∈D0

‖T (ω, t, x)‖ ≤ C1(ω) and max
t∈[0,τ ],x∈D0

‖DT (ω, t, x)‖ ≤ C2(ω) for a.e. ω

ii) max
t∈[0,τ ],x∈S1

‖ d
dt
T (ω, t, x)‖ ≤ C3(ω) for a.e. ω.

Moreover, it holds Ci ∈ Lp(Ω), i = 1, 2, 3 for every p ≥ 1 and for i = 1, 2, constants Ci are not in
L∞(Ω).

Proof. As already commented, the existence of the constants follows directly from the regularity
of the fields, i.e. their continuity on compact sets [0, τ ] and S1. The main part is to prove the reg-
ularity of constants. We choose norm on D0 s.t. maxx∈D0 ‖Tt(ω, x)‖ = eB

ε
t (ω) and we bound its

p−moments. Utilizing the Minkowski integral inequality we arrive at

CT (ω) := E[max
t∈[0,τ ]

eB
ε
t ] = E[max

t∈[0,τ ]

∑
n≥0

1

n!
(pBε

t )
n]

≤
∑
n≥0

pnCn
ε

n!
E[

∫ τ

0

|Bu|du]n ≤
∑
n≥0

pnCn
ε

n!
(

∫ s

0

(E[|Bu|n])1/nds)n. (3.19)



15

In order to bound the last term in (3.19) we exploit the formula for raw absolute moments of a
random variable and Stirling’s formula, which yields to

E[max
t∈[0,τ ]

eB
ε
t ] ≤

∑
n≥0

pnCn
ε

n!

1

23n
C(n− 1)n/2e(1−n)/2τ 2n =

c√
e

∑
n≥0

Cn
p,ε

(n− 1)n/2

23nn!
(3.20)

where Cp,ε := pCε√
e
τ 2. Ration test implies the absolute convergence of the last series, and thus we

showed that CT is bounded by a convergent series, it is also measurable as a maximum of a measur-
able function, and hence CT ∈ Lp(Ω), for any p ≥ 1.

For a lower bound, we use the formula for the expectation of exponential of a Gaussian random
variable pBε

τ

E[ max
t∈[0,τ ],x∈D0

‖Tt(ω, x)] ≥ EepBετ = e
σ2p2

2 .

Hence,

0 <
p

√
e
σ2p2

2 ≤ max
t∈[0,τ ],x∈D0

‖Tt(x)‖Lp(Ω) ≤ CT <∞,

i.e. C1 ∈ Lp(Ω), for any p ∈ [1,∞), but as p tends to infinity, the left hand side also tends to infinity,
thus C1 does not belong to L∞, which completes the proof of i). Since DT (ω, t, x) = eB

ε
t (ω)Id, the

second statement ii) follows in the same way as the previous one.
The first step in proving iii) is to apply the Cauchy-Schwartz inequality which implies

E
(

max
t∈[0,τ ],x∈D0

d

dt
‖T (t, x)‖

)p
≤
√

E(max
t∈[0,τ ]

e2pBεt )
√
E(max

t∈[0,τ ]
|Ḃε

t |2p). (3.21)

For the first square root in (3.21) we use the same bound from i). For the second square root, we
utilize again the bounds for the raw bounds of the moments of a random variable. Since

Ḃε
t = Btρ(0) +

∫ t

0

ρ′ε(t− u)Budu,

the binomial formula implies

E(max
t∈[0,τ ]

|Ḃε
t |2p) ≤ 2p−1Cp

ε

(
E[max

t∈[0,τ ]
|Bt|2p] + E[

∫ τ

0

|Bu|2pdu]

)
,

for simplicity of computations, we prove first for the even p, i.e. we use 2p, and the analogue holds
for 2p+ 1. To bound the first term in the last sum, we exploit the Doob’s inequality and arrive at

E[max
t
|Bt|2p] ≤

(
2p

2p− 1

)2p

2pτ 2pΓ(2p+1
2

)
√
π

=: C(p) ∈ Lp(Ω)

for foxed p ∈ [1,∞). For the second term in the sum it holds

E[

∫ τ

0

|Bu|2pdu] =

∫ τ

0

e2p2u2

du ≤ τ

2p2
e

τ
p
√

2 .

Hence, we proved

‖ max
t∈[0,τ ]

|Ḃε
t |‖L2p(Ω) ≤ C(p)1/2p2

2p−1
2p C̃1/2p

ε (C(p) +
τ

2p2
e

τ
p
√

2 )1/(2p) <∞
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for fixed p. All together we have

0 ≤ max
t∈[0,τ ],x∈S1

∥∥∥∥ ddtT (t, x, ω)

∥∥∥∥ ≤ C3(ω) <∞ ∀p <∞

where C3 ∈ Lp(Ω). Note however, that we do not have the below bound away from zero and we do
not prove that we do not have uniform bound for the C3. Since we do not need these results for our
example, and they are not straightforward, we will not address this question in this work.

Since Jt = eB
ε
t Id, it follows that ∇xJ

−1
t = 0, thus CJ = 0. From Lemma 3.3, it follows that we

have constructed the transformation Tt that does satisfy the required regularity assumptions and all
the bounds are random variables, however, this random field is not uniformly bounded in ω and thus
does not fit into the setting of Subsection 4.1 and is considered separately in the Subsection 4.2.

4 Heat equation on a random cylindrical domain
As a standard example of a linear parabolic PDE, we consider the following initial boundary value
problem for the heat equation in the non-cylindrical domain Q(ω)

u′ −∆u = f in Q(ω)

u = 0 on ∪t∈(0,τ) ∂Dt(ω)× {t}
u(ω, x, 0) = u0(x, ω) x ∈ D0.

(4.1)

We assume that the initial domain D0 is deterministic and u′ is a weak time derivative.

Remark 4.1. The general form of the point-wise conservation law on an evolving flat domain Dt,
derived in [25], is given by

∂•u+ u∇ · v +∇ · q = 0

where v is the velocity of the evolution, q is the flux and ∂• is the material derivative. Taking in
particular q = −∇u− vu, we obtain the form (4.1). Thus, although the material derivative does not
explicitly appear in the formulation of the equation, as we have already commented, the material
derivative is a natural notion for the derivative of a function defined on a moving domain. Thus, for
the solution u, we will ask that its material derivative is in the appropriate space and we will use the
solution space introduced in Section 2.3.

As already announced, in order to treat the path-wise formulation on a random tube, we define

V (ω, t) := H1
0 (Dt(ω)) H(ω, t) := L2(Dt(ω)), ∀ω ∈ Ω, ∀t ∈ (0, τ). (4.2)

Given random velocity filed v induces a random flow Tv and for every ω ∈ Ω and by (2.5) we define
the path-wise pullback operator φ−t(ω) : L2(Dt(ω))→ L2(D0).

By Lemma 2.2, the spaces L2
V (ω), L

2
V ∗(ω) and L2

H(ω) are well-defined for every ω. Moreover, iden-
tifyingL2

V ∗(ω) and (L2
V (ω))

∗ and exploiting the density of the spaceL2(0, τ ;V (ω)) inL2(0, τ ;H(ω)),
Lemma 2.1, we obtain the following result.

Lemma 4.1.
L2
H1

0 (Dt(ω)) ↪−→ L2
L2(Dt(ω)) ↪−→ L2

H−1(Dt(ω))

is a Gelfand triple, for every ω ∈ Ω.
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Assuming enough regularity for the initial data f and u0, we specify the weak path-wise formu-
lation of the boundary value problem (4.1). The path-wise solution space is a special case of the
space (2.11) and is defined by

W (H1
0 (Dt(ω), L2(Dt(ω))) := {u ∈ L2

H1
0 (Dt(ω) | ∂

•u ∈ L2
L2(Dt(ω))} ∀ω ∈ Ω. (4.3)

Note that it is possible to consider less regular setting, as we will do in the final result, and then
consider the solution space W (V (ω, t), V ∗(ω, t)).

Problem 4.1 (Weak path-wise form of the heat equation on Dt(ω)).
For any ω, find u(ω) ∈ W (H1

0 (Dt(ω)), L2(Dt(ω))) that point-wise a.e. satisfies the initial condition
u(0) = u0 ∈ L2(Ω, H1(D0)) and∫

Dt(ω)

(u′(ω, t)ϕ+ 〈∇u(ω, t),∇ϕ〉Rn) =

∫
Dt(ω)

f(ω, t)ϕ (4.4)

for every ϕ ∈ H1
0 (Dt(ω)) and a.e. t ∈ [0, τ ].

Since (4.1) is posed on a random domain, we would like to show that the solution u is also
a random variable and that it has finite moments. However, since the domain is random, we have
u(ω, t) ∈ Dt(ω). Thus defining the expectation of u or of the random domain is not straightforward.
The notion of a stochastic process with a random domain has already been analysed (see [22] and
references therein). The authors begin by defining what is meant by a random open convex set in
a probabilistic setting and then continue by explaining what a stochastic process with a random
domain is. Moreover, in [14], the authors give a possible interpretation of the notions of noise and
a random solution on time-varying domains. We believe that these ideas could be generalized to
our setting, but they will not be analysed in this work. Instead, motivated by the domain mapping
method, we consider the pull-back of the problem (4.1) on the fixed domain D0 and study the
solution û of the reformulated problem. We first derive the path-wise formulation for the function û
that is equivalent to Problem 4.1. For the function û it makes sense to ask û ∈ W(H1

0 (D0), L2(D0))
and it is clear what its expectation or other quantity of interest, are. Thus, exploiting the domain
mapping method, we translate the PDE on the random non-cylindrical domain into a PDE with
random coefficients on the fixed cylindrical domain Q̂ := D0 × [0, τ ].

Let û(ω) : [0, τ ]×D0 → R be defined by the plain pull-back transformation

û(ω, t, y) := u(ω, t, Tt(ω, y)) for every y ∈ D0, t ∈ [0, τ ]. (4.5)

Lemma 4.2 (Formulae for transformed ∇ and ∂t). Let f(ω) ∈ L2
V (ω,t) and f̂(ω) : Q̂ → R,

f̂(ω, t,X) := f(ω, t, Tt(ω,X)), for every ω ∈ Ω. Then

∇xf(ω, t, Tt(ω, y)) = DT−>t (ω, y)∇yf̂(ω, t, y) y ∈ D0 (4.6)

f ′(ω, t, Tt(ω, y)) = f̂ ′(ω, t, y)− V (ω, t, Tt(y))(DT−>t (ω, t, y)∇yf̂(ω, t, y)) y ∈ D0. (4.7)

Proof. We do the proof in a path-wise regime. The identity (4.6) follows directly from the chain rule
(see [4, Proposition IX.6]) and definition (4.5). Utilizing once more the chain rule for the derivative
w.r.t. time, the relation (4.6), and (3.5), we get

f̂ ′(t, y) = f ′(t, Tt(y)) + DT−>t (t, y)∇yf̂(ω, t, y)) · ∂T
∂t

(t, y)

= f ′(t, Tt(y)) + (DT−>t (ω, t, y)∇yf̂(ω, t, y)) · V (t, Tt(y))

which implies the relation (4.7).
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Problem 4.2 (Weak path-wise form of the heat equation onD0). For every ω, find û(ω) ∈ W (H1
0 (D0), L2(D0))

that point-wise a.e. satisfies the initial condition u(0) = u0, u0 ∈ L2(Ω, H1(D0)) and∫
D0

(
û′(t, y)−

〈
DT−>t (t, y)∇û(t, y), V (t, Tt(y))

〉
Rd
)
Jt(y)ϕ̂(y)

+ 〈A(t, y)∇û(t, y),∇ϕ̂(y)〉Rd dy =

∫
D0

f̂(t, y)ϕ̂(y)Jt(y)dy (4.8)

for every ϕ̂ ∈ H1
0 (D0) and a.e. t ∈ [0, τ ], where

A(ω, t, y) = Jt(ω, y)DT−1
t (ω, y)DT>t (ω, y)−1 y ∈ D0. (4.9)

Lemma 4.3 (Path-wise formulations onQT (ω) and Q̂T ). Letting f ∈ L2
L2(Ω,L2(Dt(ω))), the following

are equivalent:
i) u(ω) is a path-wise weak solution to Problem 4.1
ii) û(ω) is a path-wise weak solution to Problem 4.2.

Proof. Let us assume that i) holds. From the substitution rule x = Tt(y) and Lemma 4.2, we obtain∫
D0

u′(t, Tt(y))ϕ(t, Tt(y))Jt(y)dy +

∫
D0

∇u(t, Tt(y)) · ∇ϕ(t, Tt(y))Jt(y)dy =∫
D0

(
û′(t, y)− DT−>t (t, y)∇û(t, y) · V (t, Tt(y))

)
ϕ̂(t, y)Jt(y)dy +∫

D0

〈
DT−>t (y)∇û(t, y), DT−>t (y)∇ϕ̂(t, y)

〉
Rd Jt(y)dy =∫

D0

f̂(t, y)ϕ̂(t, y)Jt(y)dy.

Since∫
D0

〈
DT−>t (y)∇û(t, y), DT−>t (y)∇ϕ̂(t, y)

〉
Rd Jt(y)dy =

∫
D0

〈A(t, y)∇û(t, y),∇ϕ̂(y)〉Rd dy,

where the matrixA is defined by (4.9), it follows that that û is a path-wise weak solution of Problem
4.2. The proof of implication ii)⇒ i) is similar.

Note that according to Lemma 2.1, it holds

u(ω) ∈ L2
H1

0 (Dt(ω)) ⇔ û(ω) ∈ L2(0, τ ;H1
0 (D0)) for a.e. ω.

For the mean-weak formulation on the fixed domain we consider

V := L2(Ω, H1
0 (D0)) H := L2(Ω, L2(D0)). (4.10)

Utilizing the tensor structure (2.1) of such defined V and H, and the density argument, we obtain
that V ↪−→

i
H ∼= H∗ ↪−→

i′
V∗ is a Gelfand triple.

Remark 4.2. The spaces H1
0 (D0) and H1

0 (Dt(ω)) are isomorphic due to the isomorphism η 7→
η ◦ Tt(ω)−1. This implies that the space of test functions in the weak formulation is independent of
ω. For more details see [26, Lemma 2.2].
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4.1 Uniformly bounded transformation - well-posedness of the transformed
equation

In this subsection we make additional assumptions concerning uniformity in ω for the boundsCj(ω)
of the transformation T and its derivatives. We use the same notation for uniform constants as we
did for the random variables in Section 3. To ensure the uniform bound and the coercivity of the
bilinear form that will be considered, we suppose to have the uniform bound of the norm.

Assumption 4.3. We assume that there exists a constant CT > 0 such that

‖T (ω)‖C([0,τ ],C2(B,Rd)), ‖T−1(ω)‖C([0,τ ],C2(B,Rd)) ≤ CT for a.e. ω.

In addition, we assume a uniform bound for the Jacobian matrices, time derivative and gradient
of the inverse Jacobian. The regularity result (3.14) implies they are bounded, but not that these
bounds are uniform in ω.

Assumption 4.4. There exist constants CD, Ct, CJ > 0 s.t.

‖DT (ω)‖C([0,τ ],C1(B,Rd)), ‖DT−1(ω)‖C([0,τ ],C1(B,Rd)) ≤ CD (4.11)

‖ d
dt
T (ω)‖C([o,τ ],C(B,Rd)) ≤ Ct (4.12)

‖∇xJ
−1
t (ω, x)‖Rd ≤ CJ . for a.e. ω. (4.13)

The independence on ω of minimal and maximal values of σi(ω), for any i follows from (3.11).
To see this, recall that the Rayleigh quotient and the definition of the singular value imply

σi(ω, x, t) ≤ max
‖y‖Rd=1

‖DTt(ω, x)y‖Rd .

Thus, for σ := CD, σ := C−1
D , every i = 1, . . . , d and a.e. ω we have

0 < σ ≤ min
x,t
{σi(ω, t, x)} ≤ max

x,t
{σi(ω, t, x)} ≤ σ <∞. (4.14)

Since J(ω) =
∏n

i=1 σi(ω), the bound (3.16) implies the uniform bound for the determinant of the
Jacobian, i.e. for a.e. ω it holds

0 < σn ≤ Jt(ω, x) ≤ σn <∞ for every x ∈ B, t ∈ [0, τ ]. (4.15)

The analogue reciprocal bounds hold for the J−1
t .

After stating all the assumptions, we want to write (4.8) in a standard form, which is more
convenient to apply the general theory of well-posedness for parabolic PDEs presented in [43], i.e.
we remove the weight J−1

t in front of the time derivative û′. This form we can achieve by testing the
equation (4.8) with functions ϕ̂(t, y) = J−1

t (y)ϕ̃(t, y). The spatial regularity of Jt stated in (3.14),
implies

∀ϕ̂ ∈ H1
0 (D0)⇔ ∀ϕ̃ ∈ H1

0 (D0).

In this way we obtain the equivalent form of (4.8) given by∫
D0

(
û′(t, y)−

〈
DT−>t (t, y)∇û(t, y), V (t, Tt(y))

〉
Rd
)
ϕ̃(y)

+
〈
A(t, y)∇û(t, y),∇(J−1

t (y)ϕ̃(y))
〉
Rd dy =

∫
D0

f̂(t, y)ϕ̂(y)dy, (4.16)
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for all ϕ̃ ∈ H1
0 (D0). Utilizing the product rule for the gradient and symmetry of the matrix A, we

arrive at the equivalent weak path-wise form of the heat equation:

Problem 4.3 (Weak path-wise form of the heat equation onD0). For every ω, find û(ω) ∈ W (H1
0 (D0), L2(D0))

that point-wise a.e. satisfies the initial condition u(0) = u0, u0 ∈ L2(Ω, H1
0 (D0)) and∫

D0

(
û′(t, y) +

〈
A(t, y)∇J−1

t (y)−DT−1
t (y)V (t, Tt(y)),∇û(t, y)

〉
Rd
)
ϕ̃(y)

+
〈
DT−1

t (y)DT−>t (t, y)∇ϕ̃(t, y),∇û(t, y)
〉
Rd dy =

∫
D0

f̂(t, y)ϕ̃(y)dy (4.17)

for every ϕ̃ ∈ H1
0 (D0) and a.e. t ∈ [0, τ ].

Observe that the partial integration and the fact that a test function vanishes on the boundary
∂D0 imply∫

D0

〈
DT−1

t (y)DT−>t (y)∇ũ(t, y),∇ϕ̂(t, y)
〉
Rd dy =

−
∫
D0

div(DT−1
t (y)DT−>t (y)∇û(t, y))ϕ̃(t, y)dy.

Let us comment on the boundary condition and initial condition. Since T0 is the identity and D0 is
the deterministic initial domain, the initial condition stays the same:

u(ω, x, 0) = u0(ω, x)⇔ û(ω, x, 0) = u0(ω, x), ∀x ∈ D0,

for a.e. ω ∈ Ω. Moreover, as the boundary of ∂Dt(ω) is mapped to ∂D0, the reformulated boundary
condition stays the same:

u(ω, t, x) = 0 ∀(x, t) ∈ ∪t∈(0,τ)∂Dt(ω)× {t} ⇔
û(ω, t, y) = 0 ∀(y, t) ∈ ∂D0 × (0, τ)

for a.e. ω ∈ Ω. Hence, in the distribution sense, we are led to consider for a.e. ω

û′ − div(J−1
t A∇û) +

〈
∇û, A∇J−1

t −DT−1
t V ◦ Tt

〉
Rd = f̂ in (0, τ)×D0

û(ω, x, t) = 0 on ∂D0 × (0, τ)

û(ω, x, 0) = u0(ω, x) on D0.

Our goal is to show that û is a random variable and that it has finite moments, under suitable
assumptions on the initial data. Thus, we formulate a mean-weak formulation for û. Furthermore,
we prove a more general result, when we have less regularity in the initial data. The regularity results
can be obtained from the general theory on parabolic PDEs. In particular, assuming more regularity
on f̂ and u0, we obtain better regularity of the time derivative of û.

Observe that since L2(Ω) is separable, utilizing tensor product isomorphisms (2.1), we conclude

L2(Ω)⊗ L2(0, τ ;H) ∼= L2(Ω, L2(0, τ ;H)) ∼= L2(Ω× (0, τ);H)
∼= L2(0, τ ;L2(Ω;H)) ∼= L2(0, τ)⊗ L2(Ω, H)
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for any Hilbert space H . Thus, it holds

L2(Ω)⊗W(H1
0 (D0), H−1(D0)) ∼=W(L2(Ω, H1

0 (D0)), L2(Ω, H−1(D0))),

whereW(L2(Ω, H1
0 (D0)), L2(Ω, H−1(D0))) is a standard Bochner space defined by (2.3).

Problem 4.4 (Mean-weak formulation on D0). Find û∈W0(L2(Ω,H1
0 (D0)), L2(Ω,H−1(D0))) such

that a.e. in [0, τ ] it holds∫
Ω

∫
D0
〈û′, ϕ〉H−1(D0),H1(D0) dydP +

∫
Ω

∫
D0

〈
DT−1

t (ω, y)DT−>t (ω, y)∇û,∇ϕ
〉
Rd dydP +∫

Ω

∫
D0

〈
A(ω, t, y)∇J−1

t (ω, y)−DT−1
t (ω, y)V (t, Tt(y)),∇û

〉
Rd ϕdydP =

∫
Ω

∫
D0
f̂ϕdydP

for every ϕ ∈ L2(Ω, H1
0 (D0)).

Theorem 4.1. Let Assumptions 3.2, 3.3, 4.3 and 4.4 hold and f ∈ L2
L2(Ω,H−1(D0)). Then, there is a

unique solution û ∈ W(L2(Ω, H1
0 (D0)), L2(Ω, H−1(D0))) of Problem 4.4 and we have the a priori

bound
‖û‖W(L2(Ω,H1

0 (D0)),L2(Ω,H−1(D0))) ≤ C‖f‖L2
L2(Ω,H−1(D0))

(4.18)

with some deterministic constant C > 0.

Proof. For every t ∈ [0, τ ] we introduce the bilinear form a(t; ·, ·) : V × V → R by

a(t;ϕ, ψ) :=

∫
Ω

∫
D0

(〈
DT−1

t DT−>t ∇ϕ,∇ψ
〉
Rn+
〈
A∇J−1

t −DT−1
t V ◦ Tt,∇ϕ

〉
Rnψ
)
dxdP.

(4.19)
We will prove that a(t;ϕ, ψ) satisfies the following assumptions, which are necessary conditions for
the well-posedness of the parabolic PDE stated in [43, Theorem 26.1].

i) a(t;ϕ, ψ) is measurable on [0, τ ], for fixed ϕ, ψ ∈ V .

ii) There exists some c > 0, independent of t, such that

|a(t;ϕ, ψ)| ≤ c‖ϕ‖V‖ψ‖V for all t ∈ [0, τ ], ϕ, ψ ∈ V . (4.20)

iii) There exist real k0, α ≥ 0 independent of t and ϕ, with

a(t;ϕ, ϕ) + k0‖ϕ‖2
H ≥ α‖ϕ‖2

V for all t ∈ [0, τ ], ϕ ∈ V . (4.21)

i) Due to Assumptions 3.5 and 3.6 and regularity results (3.10) and (3.14), the integrand in the
definition (4.19) is B([0, τ ])-measurable. Consequently, according to Fubini’s theorem, we obtain
the Borel measurability on [0, τ ] of the mapping t 7→ a(t;ϕ, ψ) for fixed ϕ, ψ ∈ V .

ii) Applying the Cauchy-Schwartz inequality, we infer∫
Ω

∫
D0

|
〈
DT−1

t DT−>t ∇ϕ,∇ψ
〉
Rn| ≤

∫
Ω

∫
D0

‖DT−1
t DT−>t ∇ϕ‖Rd‖∇ψ‖Rd ≤ C1‖∇ϕ‖V‖∇ψ‖V ,

(4.22)
where the last inequality follows from (3.13) and (4.11), for C1 = σ2.
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According to the triangular inequality we have

‖A(ω, t, ·)∇J−1
t (ω, ·)−DT−1

t (ω, ·)V (t, Tt(·))‖∞ ≤
‖A(ω, t, ·)∇J−1

t (ω, ·)‖∞ + ‖DT−1
t (ω, ·)V (t, Tt(·))‖∞.

The uniform bound of the second term follows from (4.11) and (4.12). Concerning the first term,
utilizing Assumption 4.13 we get

‖A(ω, t, ·)∇J−1
t (ω, ·)‖∞ ≤ CJ‖A‖∞.

Moreover, from (4.14) and (4.15) we conclude

‖A‖∞ ≤ λmaxA ≤ σdλmax(DT−1
t DT−>t ) ≤ σdσ2,

which yields to the bound

‖A(ω, t, ·)∇J−1
t (ω, ·)−DT−1

t (ω, ·)V (t, Tt(·))‖∞
:= max

y∈D0

‖A(ω, t, y)∇J−1
t (ω, y)−DT−1

t (ω, y)V (t, Tt(y))‖Rd ≤ C2, (4.23)

for some C2 > 0 independent of t.
Utilizing the Cauchy-Schwartz inequality and 4.23 we infer∫

Ω

∫
D0

|
〈
∇ϕ(ω, t, y), A(ω, t, y)∇J−1

t (ω, y)−DT−1
t (ω, y)V (t, Tt(y))

〉
Rd ||ψ(ω, t, y)|

≤
∫

Ω

∫
D0

‖A(ω, t, y)∇J−1
t (ω, y)−DT−1

t (ω, y)V (t, Tt(y))‖Rd‖∇ϕ(ω, t, y)‖Rd |ψ(ω, t, y)|

≤ C2‖|∇ϕ|‖H‖ψ‖H .
(4.24)

Finally, inequalities (4.22) and (4.24), ensure the condition ii).
iii) The bound (4.14) that implies the bound for the eigenvalue λmin(DT−1

t DT−>t ) ≥ 1

σ2
=: C3.

Exploiting this bound and the Rayleigh quotient of the minimal eigenvalue of the symmetric matrix
DT−1

t DT−>t , we obtain

C3‖∇ϕ‖2
H ≤

∫
Ω

∫
D0

λmin(DT−1
t DT−>t )‖∇ϕ‖2

Rd

≤ a(t;ϕ, ϕ) +

∫
Ω

∫
D0

‖∇ϕ‖Rd‖DT−1
t V ◦ Tt − A∇J−1

t ‖Rd|ϕ|

≤ a(t;ϕ, ϕ) + C2‖∇ϕ‖H‖ϕ‖H

≤ a(t;ϕ, ϕ) + C2

(
2ε‖∇ϕ‖2

H +
1

2ε
‖ϕ‖2

H

)
,

where we used Young’s inequality in the last step. For small enough ε > 0, we get

(C3 − 2ε)‖∇ϕ‖2
H ≤ a(t;ϕ, ϕ) + k0‖ϕ‖2

H ,

for k0 := C2
1
2ε

. Applying Poincare’s inequality with the constant CP from

C3 − 2ε

1 + C2
P

‖ϕ‖2
V ≤ (C3 − 2ε)‖∇ϕ‖2

H ≤ a(t;ϕ, ϕ) + k0‖ϕ‖2
H ,

we conclude that iii) holds with α = C3−2ε
1+C2

P
.

After proving i), ii) and iii), the classical result [43, Theorem 26.1] yields the existence and
uniqueness of the solution û that satisfies an a priori bound (4.18).
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4.2 Path-wise bounded transformation - well-posedness of the transformed
equation

In this subsection we want to show that even if we don’t assume uniform bounds stated in As-
sumptions 3.5 and 3.6, which is the case for example stated in Subsection 3.1, we can still prove
existence and uniqueness of the solution of the transformed equation on the cylindrical domain, i.e.
Problem 4.3. However, in this case we can’t consider the mean-weak formulation and directly apply
the general theory, but instead, we prove the path-wise well-posedness and derive the path-wise a
priori bound. In addition, we prove the measurability of the solution and p−bound of its moments
p ∈ [1,∞).

For the path-wise setting, we define

V := H1
0 (D0) and H := L2(D0)

which form the Gelfand triple. We consider a path-wise bilinear form a(ω, t; ·, ·) : V× V→ R

a(ω, t;ϕ, ψ) :=

∫
D0

(〈
DT−1

t DT−>t ∇ϕ,∇ψ
〉
Rn +

〈
A∇J−1

t −DT−1
t V ◦ Tt,∇ϕ

〉
Rnψ

)
dx (4.25)

that is analogue to (4.19). Assume for simplicity that the initial data u0 is deterministic. The stochas-
tic case can be handled in an analogue way.

Theorem 4.2. Let Assumptions 3.2, 3.3, 3.9 hold and f ∈ L2([0, τ ], L2(Ω, H−1(D0))). Then, there
is a unique solution û ∈ W(V,V−1) of Problem 4.3 and we have the a priori bound

‖û(ω)‖W(V,V−1) ≤ C(ω)‖f(ω)‖L2([0,τ ],H−1(D0)) (4.26)

for a.e. ω and where
C(ω) = 2

(
CL(ω)C(ω) + 1

)
+ C(ω) (4.27)

where C(ω) := max
{

2(1+CM )
α(ω)

, 1
α2(ω)

}
and CL(ω) is a path-wise bound of the operator L(ω, t)v :=

−div(J−1
t A∇v)+

〈
∇v,A∇J−1

t −DT−1
t V ◦ Tt

〉
Rd +k0Id, for k0 from Gårding’s inequality. More-

over, for every ω the solution depends continuously on (f(ω), u0) as a map fromL2([0, τ ], L2(Ω,V∗))×
H toW(V,V′).

Proof. The proof is a path-wise analogue to the proof of Theorem 4.1 and it is based on the appli-
cation of the general result [43, Theorem 26.1]. However, unlike in the uniformly bounded case,
the constants that appear depend on the sample ω and in order to prove û ∈ W(V ,V∗), we need to
control those constants and show that C(ω) satisfies (4.27).

The condition i) is full field for the same reason as in the uniform case. In the condition ii), we
have that the bound in (4.20) satisfies

C1(ω) := σ2(ω)[1 + CJ(ω)σd(ω)] + CD(ω)Ct(ω). (4.28)

For the condition iii) we obtained α = C3(ω)−2ε(ω)

1+C2
P

where CP is a deterministic Poincare’s constant
that depends on the domain D0 and C3(ω) = σ−2. We chose ε(ω) small enough such that C3(ω)−



24

2ε(ω) > 0, since we can not uniformly bound C3(ω) from below, we choose for example ε(ω) =
C3(ω)

4
. Hence, we have

a(ω, t;ϕ, ϕ) + k0(ω)‖ϕ‖2
H ≥ α(ω)‖ϕ‖2

V

where

α(ω) =
1

2σ2(ω)(1 + C2
P )

and k0(ω) = 2σ2(ω)[CD(ω)Ct(ω) + CJ(ω)σd(ω)σ2(ω)]. (4.29)

and

C(ω) := max
{2(1 + CM)

α(ω)
,

1

α2(ω)

}
. (4.30)

As a consequence of [43, Theorem 26.1], for every fixed ω there exists a unique solution û(ω) ∈
W(V,V∗). To determine the constant C(ω) in (4.27), we revisit the proof of the general theorem, in
a path-wise sense. The general idea is to approximate the solution û(ω) by a sequence ûm(ω), for
every ω. Then show the bound of ‖û(ω)‖L2((0,τ),V) which implies the weak convergence of ûm(ω)
to some z(ω), which also solves the starting equation and hence, because of the uniqueness of the
solution, we have z(ω) = û(ω), for every ω. In the end, one proves that ûm(ω) strongly converges
to û(ω) in L2((0, τ),V).

Observe that we can set k0(ω) to be zero, by taking L1(ω, t) ≡ L(ω, t) + k0(ω)Id. We will
continue writing L(ω, t) and exploit that from the bound (4.28) and (4.29), we have that

‖L(ω)‖ ≤ C1(ω) + k0(ω) =: CL(ω). (4.31)

Let ω ∈ Ω be arbitrary but fixed, and define

ûm(ω, t) :=
m∑
i=1

gim(ω, t)wi

where {wi}i is an ONB of V and gim ∈ L2(Ω,V) are such that ûm(ω) is a path-wise solution of the
ODE

d

dt
ûm(ω)(ω, t) + L(ω, t)ûm(ω, t) = f(ω, t)

ûm(ω, 0) = u0m

where u0m → u0 in H, as m → ∞ and hence ‖u0m‖H ≤ ‖u0‖H + M , for some deterministic
M > 0. Such ûm(ω) is uniquely determined and it holds

‖ûm(ω, τ)‖2
H + 2α(ω)

∫ τ

0

‖ûm(ω, t)‖2
Vdt ≤

‖û0m‖2
H + α(ω)

∫ τ

0

‖ûm(ω, t)‖2
Vdt+

1

α(ω)

∫ τ

0

‖f(ω, t)‖V∗dt.

Hence, we have∫ τ

0

‖ûm(ω, t)‖2
Vdt ≤ max

{2(1 + CM)

α(ω)
,

1

α2(ω)

}(
‖u(0)‖2

H +

∫ τ

0

‖f(ω, t)‖V∗dt
)
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where CM is a deterministic constant such that M2 < CM‖u0‖2
H. Since ûm(ω, t) → z(ω) in

L2((0, τ),V), it follows∫ τ

0

‖z(ω, t)‖2
V dt ≤ C(ω)

(
‖u0‖2

H +

∫ τ

0

‖f(ω, t)‖V∗dt
)
. (4.32)

where C(ω) is defined by (4.30). Uniqueness of the solution implies thatz(ω) equals û(ω), for every
ω. Next step is to bound its time derivative. Utilizing d

dt
û(ω, t) = L(ω, t)û(ω, t) + f(ω, t) and

estimates (4.31) and (4.28), we obtain∫ τ

0

∥∥∥∥dû(ω, t)

dt

∥∥∥∥2

V∗
dt ≤ 2 (CL(ω)C2(ω) + 1)

∫ τ

0

(
‖f(ω, τ)‖2

V∗dt+ ‖u0‖2
H
)

(4.33)

where k0(ω) is defined by (4.29). Combining (4.32) and (4.33), we get the final estimate for every
ω

‖û(ω)‖W(V,V∗) ≤ (2(CL(ω)C(ω) + 1) + C(ω)) (

∫ τ

0

‖f(ω, t)‖2
V∗dt+ ‖u0‖2

H)

which shows (4.27).

One way to show measurability of the map ω 7→ û(ω) is to exploit that ω 7→ (f(ω), u0) is mea-
surable from L2(Ω) to L2((0, τ),V∗) × H. Moreover, from the previous theorem we have that the
map (f(ω), u0) 7→ û(ω) is continuous for every ω. Since, continuous function composed with mea-
surable function is measurable w.r.t. Borel σ−algebra, the measurability of the solution û follows.

Remark 4.5. Another approach to prove measurability of the solution û is to exploit that û is a
limit of the ûm that is a solution of an ODE. One could show that ω 7→ L(ω, t) is measurable and
(u0, L) 7→ ûm is continuous, which implies the measurability of ûm, and then the limit is as well
measurable.

Let for now f be deterministic or uniformly bounded in ω, then from (4.18) it follows

E[‖û(ω)‖W(V,V∗)] ≤ E[C(ω)](

∫ τ

0

‖f(ω, t)‖2
V∗dt+ ‖u0‖2

H)

Utilizing Cauchy-Schwartz inequality, we determine assumption on the path-wise constants that
will ensure that E[C(ω)] is finite. Namely, we need C ∈ L2(Ω) and CL(ω) ∈ L2(Ω), where CL(ω)
is defined by (4.31).

Assumption 4.6. Assume σ4 ∈ L2(Ω) and CL ∈ L2(Ω).

Corollary 4.7. Assuming in addition to conditions from Theorem 4.2, that f ∈ L2((0, τ),V∗) and
Assumption 4.6, it holds û ∈ W(L2(Ω,V), L2(Ω,V∗)).

Note that we can also assume that f ∈ L2((0, τ), L2(Ω,V∗)), without assuming uniform bound,
and then apply Cauchy-Schwartz inequality. In this case we need more regularity assumptions than
in Assumption 4.6. Moreover, analogue p−moment bounds, p ∈ [1,∞) can be obtain, utilizing
Hölder’s inequality and modifying the regularity assumption.
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5 Parabolic Stokes equation
As already announced in the introduction, linear parabolic Stokes equation is one of the examples
where it is not enough to consider just plain pull-back transformation of the function. The issue is
that we would like to preserve the divergence free property, and this is not the case if we use the
plain pull-back transformation. Instead, motivated by the work presented in [12, 30, 37] we consider
the Piola type transformation of the function. Note that this transformation will keep the divergence
free property just in the case of the volume preserving transformation. We consider the following
parabolic Stokes equation on a random non-cylindrical domain

∂tu−∆u+∇p = f

divu = 0

u = 0

u|t=0 = u0

in QT (ω),

in QT (ω),

in ∂QT (ω),

in D0,

(5.1)

with velocity field u and pressure p. Without loss of generality, we consider the system (5.1) with
zero boundary conditions. In this setting we make additional assumptions about the transformation.
As outlined in [37, Assum. 1.1], we assume that the transformation T (ω, t, ·) is aC3−diffeomorphism
and it is volume preserving∇xT (ω, t, x) ≡ 1. We define the transformation F of the function u by

û(ω, t, x̂) := DT (ω, t, x)u(ω, t, T (ω, t, x)).

From [30, Prop 2.4], it follows that divû = divu on QT (ω) for any ω. Uilizing the previous trans-
formation, we obtain the following transformed equation on Q0∫

Ω

∫
D0

det(Dφ)(ût +Dφ−1Dφtû−Dφ−1Dφ−TD(Dφû)φt +Dφ−1Dφ−T∇p̂) · v

−Dφ−1div
(
det(Dφ)Dφ−1Dφ−TD(Dφû)

)
· v =

∫
Ω

∫
D0

Dφ−1f̂ · v det(Dφ),

for divergence free test functions v. Observe that in [30, 37] authors consider different approach,
namely the Helmholtz projection and Cauchy problem formulation. Note that for the volume pre-
serving transformations, the pressure term disappears in the weak form for the divergence free test
functions. The example of these transformation is rotation about the z−axis by a random angle or
any arbitrary affine-orthogonal transformation. In this case, the well-posedness of the equation in
the random setting can be showed by the standard PDEs techniques. Notice that in [30], the local
existence is showed for any volume preserving transformation. However, in our setting the difficulty
is that we consider this problem path-wise, hence the local time will depend on a sample. For this
reason, the general case of a volume preserving transformation is out of the scope of this work and
is a topic of a future research.
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