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UNIFORM BOUNDEDNESS FOR REACTION-DIFFUSION SYSTEMS

WITH MASS DISSIPATION

BRIAN P. CUPPS, JEFF MORGAN, AND BAO QUOC TANG

Abstract. We study the global existence and uniform-in-time bounds of classical solu-
tions in all dimensions to reaction-diffusion systems dissipating mass. By utilizing the
duality method and the regularization of the heat operator, we show that if the diffusion
coefficients are close to each other, or if the diffusion coefficients are large enough compared
to initial data, then the local classical solution exists globally and is bounded uniformly in
time. Applications of the results include the validity of the Global Attractor Conjecture for
complex balanced reaction systems with large diffusion.
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1. Introduction and Main Results

Let n ≥ 1 and Ω ⊂ R
n be a bounded domain with smooth boundary ∂Ω, e.g. ∂Ω is

of C2+α-class for some α > 0. We consider the following reaction-diffusion system for the
vector of concentrations u = (u1, . . . , um) : Ω× [0,∞) → R

m:




∂tui − di∆ui = fi(u), x ∈ Ω, t > 0,

∇ui · ν = 0, x ∈ ∂Ω, t > 0,

ui(x, 0) = ui,0(x) ≥ 0, x ∈ Ω.

(S)

We study global existence of classical solutions to (S) where the domain and initial data
satisfy

(A0) Ω ⊂ R
n is a bounded domain with smooth boundary ∂Ω and unit outward normal ν;

The diffusion coefficients are positive, i.e. di > 0 for all i = 1, . . . , m;
The initial data ui0 ∈ L∞(Ω) is nonnegative for all i = 1, . . . , m,

and the nonlinearities satisfy
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(A1) (Local Lipschitz continuity) fi : Rm → R
m is locally Lipschitz continuous, for all

i = 1, . . . , m.
(A2) (Quasi-positivity) For all z ∈ R

m
+ , fi(z) ≥ 0 provided zi = 0, for all i = 1, . . . , m.

(A3) (Mass dissipation) For all u ∈ R
n
+,
m∑

i=1

fi(u) ≤ 0. (1)

The local Lipschitz continuity (A1) of the nonlinearities implies the existence of a local strong
solution to (S) on a maximal interval [0, Tmax). From (A0), the initial data are nonnegative,
so the quasi-positivity (A2) ensures that the solution stays nonnegative as long as it exists.
The assumption (A3) gives an upper bound on the total mass of the system. Indeed, by
summing the equations in (S), integrating on Ω, and using the homogeneous Neumann
boundary conditions and (A3), it follows that

m∑

i=1

∫

Ω

ui(x, t)dx ≤
m∑

i=1

∫

Ω

ui0(x)dx (2)

for all t ∈ (0, Tmax). Note that, together with the nonnegativity, (2) gives a bound on the
L1-norm of the solution, uniform in time. Moreover, if all diffusion coefficients are the same,
i.e. di = d for i = 1, . . . , m, then by setting z =

∑m
i=1 ui, one gets from (S)

∂tz − d∆z ≤ 0 ∇z · ν = 0 z(x, 0) =

m∑

i=1

ui0(x) ≥ 0

thanks to (A3). It follows from the maximum principle that ‖z(t)‖L∞(Ω) ≤ ‖z(0)‖L∞(Ω) and
therefore, due to the nonnegativity of ui we get

‖uj(t)‖L∞(Ω) ≤
∥∥

m∑

i=1

ui0
∥∥
L∞(Ω)

for all t ≥ 0, and j = 1, . . . , m,

and hence the global existence and uniform bounds of the solution to (S). However, the
condition of equal diffusion is much too restrictive, and when the diffusion coefficients are
different, the situation changes dramatically, and it seems there exists no elegant argument
to obtain global existence of solution to (S).

Reaction-diffusion systems satisfying (A0)–(A3) appear frequently in applications, espe-
cially biology or chemistry, and therefore have been studied decades ago, see e.g. the works
[CHS78, Rot84, Ama85, HMP87, Mor89, Mor90, FHM97] and many references therein. De-
spite this long list of publications, and the fact that the local existence is standard, global
existence to (S) under conditions (A0)–(A3) remains as a delicate issue. A famous example in
[PS97] shows that there exist systems satisfying assumptions (A0)–(A3), yet still have strong
solutions blowing up in finite time1. This indicates that one should either look for the global
existence of weaker notions of solutions or impose extra assumptions to the system. Concern-
ing the former direction, it was proved that (S) has a weak solution if one knows in prior that
the nonlinearities belong to L1(Ω × (0, T )) [Pie03], or when the nonlinearities are at most
quadratic [DFPV07]. We refer the interested reader to the extensive review [Pie10] for more

1It should be remarked that the example in [PS97] considered a system with inhomogeneous Dirichlet
boundary conditions. An explicit example of blow-up solutions for (S) with homogeneous Neumann boundary
conditions, up to our knowledge, is unknown.
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references. An even weaker notion called renormalized solution has also been investigated
recently [Fis15, PSZ17]. On the other hand, conditional existence for global strong solutions
is also an active research direction. In small dimensions, n ≤ 2, global strong solution is
shown provided (S) has at most quadratic nonlinearities [PSY19, GV10]. Recent results have
shown that global strong solutions in fact exist in all dimensions [FMT, CGV19, Sou18], in
which the two latter references impose a stronger condition called entropy inequality. It
should be also noted that the case where Ω = R

n and (1) satisfies with an equality sign
was solved in an almost unnoticed paper [Kan90]. For nonlinearities of higher order, it was
shown in [CDF14, FLS16] that if the diffusion coefficients are close enough to each other,
and (1) is satisfied with an equality sign, then strong solutions exist globally.

We emphasize that most of the existing works about global existence of strong solutions
do not give control of the solution in time, i.e. strong solutions could blow up in infinite
time, except for special cases, e.g. in [PSZ17] when n ≤ 2 and the nonlinearities are at
most quadratic. Therefore, the main motivation of this work is to show the global existence
and uniform bounds in time of strong solutions to (S) in all dimensions under (A0)–(A3)
and an extra assumption on the diffusion coefficients. More precisely, we show that if the
diffusion coefficients are close enough to each other, or they are large enough, then the local
strong solution to (S) exists globally and is bounded uniformly in time in the L∞-norm. The
central idea is to combine the duality method, the regularization of the heat operator, and
the L1-norm bound (2).

In the first part of this paper, we prove the uniform boundedness of solutions to (S) when
the diffusion coefficients are close enough to each other. This is usually referred to as the
case of quasi-uniform diffusion coefficients.

Theorem 1.1. Assume the conditions (A0)–(A3), and the nonlinearities have polynomial
growth, i.e.

(A4) there exists µ > 0 such that for all u ∈ R
n,

|fi(u)| ≤ C(1 + |u|µ) for all i = 1, . . . , m,

for some C > 0.

Then there exists a constant δ > 0 depending on the dimension n and the growth of nonlin-
earities µ, but independent of the diffusion coefficients, such that if

max{di} −min{di} < δ (3)

then (S) has a unique strong solution which is bounded uniformly in time, i.e.

lim sup
t>0

‖ui(t)‖L∞(Ω) < +∞ for all i = 1, . . . , m.

Remark 1.1.

• It’s worthwhile to remark that the constant δ can be quantified explicitly in terms
of the diffusion coefficients and a constant arising from the maximal regularity of
parabolic equations. See (15) and Lemma 2.2.

• One can see Theorem 1.1 as a perturbation to the case of equal diffusion coefficients,
as it does not allow diffusion coefficients to differ too much from each other. Yet, to
prove the result in this ”perturbation” setting, we still need the additonal polynomial
growth condition for the nonlinearities. Proving Theorem 1.1 without this polynomial
growth remains an interesting open problem.
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• The result of Theorem 1.1 generalizes immediately when (1) is replaced by
m∑

i=1

αifi(u) ≤ 0

for some α1, . . . , αm ∈ (0,∞).

To prove Theorem 1.1, we first use a duality technique to show that the local strong
solution exists globally. Note that this already improves the results in [CDF14] by extending
it to the case of mass dissipation (1) instead of mass conservation (the case when (1) is
satisfied with an equality). The obtained solution, however, might have L∞-norm growing in
the time horizon T . To show the uniform boundedness in time, we need to exploit the uniform
bound in the L1-norm (2). Moreover, we use a truncated function in time ψ : R → [0, 1]
which is smooth and increasing, with ψ(t) = 0 on (−∞, 0], and ψ(t) = 1 on [1,∞) and
|ψ′(t)| ≤ 2, together with its shifted version ψτ (·) = ψ(· − τ). By multiplying (S) with ψτ ,
one gets the new equation for ψτui

∂t(ψτui)− di∆(ψτui) = uiψ
′
τ + ψτfi(u)

with zero initial data at time τ , i.e. (ψui)(x, τ) = 0. This helps get rid of the usual technical
issue of choosing a sequence of initial time points in the bootstrap process, see e.g. [Mor90,
Theorem 2.5] or [FHM97, Theorem 2.6].

The second part of this paper deals with the case when the diffusion coefficients are large
enough. To state the main result, we first consider a truncation of (S). For r > 0, let
Φr : R

n → [0, 1] be a C∞ function such that Φr(x) = 1 on |x| ≤ r and Φr(x) = 0 on |x| ≥ 2r
and |∇Φr(x)| ≤ 2 for all x ∈ R

n. Consider the following truncated system




∂tui − di∆ui = Φr(u)fi(u), (x, t) ∈ QT ,

∇ui · ν = 0, (x, t) ∈ ∂Ω× (0, T ),

ui(x, 0) = ui,0(x) ≥ 0, x ∈ Ω.

(4)

Since Φr(u)fi(u) is uniformly bounded, it is obvious that the system (4) has a global classical
solution which is uniformly bounded in time. Moreover, the solution of (4) coincides with
that of (S) as long as this solution remains in the ball B0(r) ⊂ R

m. For simplicity, we will
denote by f(u) = (f1(u), . . . , fm(u)) the vector of nonlinearities.

Theorem 1.2. Assume (A1) and the initial data is bounded, and additionally, there exists
z0 ∈ R

m with f(z0) = 0. Let M > 0. Suppose that there exist R,LM > 0 such that if r ≥ R,
‖ui,0‖L∞(Ω) ≤M for all i = 1, . . . , m, and u solves (4), then supt≥0 ‖u(t)‖L1(Ω) ≤ LM . Then
there exists constants BM , dM such that if di ≥ dM for all i = 1, . . . , m then the solution to
(S) exists globally and satisfies

sup
t≥0

‖ui(t)‖L∞(Ω) ≤ BM for all i = 1, . . . , m.

Remark 1.2. We would like to remark here that the nonnegativity of solutions is not needed
for Theorem 1.2.

To prove Theorem 1.2, we first use a scaling argument and maximal regularity of the heat
equation to obtain the estimate

‖∆φ‖Lp(Ω×(0,T )) ≤
C(p)

d
‖θ‖Lp(Ω×(0,T ))
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for any p ∈ (1,∞), where φ solves φt − d∆φ = θ with homogeneous Neumann boundary
condition ∇φ · ν = 0 and zero initial data φ(x, 0) = 0. This already hints that the larger
the diffusion coefficient is, the better control we have on the second spatial derivatives, or
more precisely the Laplacian, of the solution. Next, as mentioned above, the solutions to (4)
and (S) coincide in the ball B0(r). Therefore, if we can obtain a bound for the solution to
(4) which is independent of r, then it is also a bound for the solution of (S), and the global
existence and uniform bound for (S) follows. To obtain such a bound, we apply a bootstrap
argument to (4), again with the trick of multiplying with a truncated function to remove the
initial data, together with some rescaled unknowns, to ultimately obtain for all i = 1, . . . , m

‖ui‖L∞(Ω×[0,∞)) ≤ K(aLr,M)

where the constant K depends increasingly on M and the product aLr, in which a =
min{di}

−1 ≤ d−1
M , and Lr is the common Lipschitz constant of the functions Φr(u)fi(u)

for all i = 1, . . . , m. Note that if aLr ≤ 1 then K(aLr,M) ≤ K(1,M) which is independent
of r. We thus process as follows: first, we choose r large enough so that r ≥ K(1,M), then
choose dM large enough such that aLr ≤ 1. Thanks to the arguments above, the solution to
(4) remains in the ball B0(K(1,M)) ⊂ R

m, and this gives a bound that for solutions of (4)
and (S).

Remark 1.3.

• The largeness of the diffusion coefficients depends on the size of the initial data. The
global existence of strong solutions with large diffusion coefficients regardless of the
size of initial data remains open.

• Theorem 1.2 does not impose the dissipation of mass condition (A3), but instead
only a uniform-in-time control for the L1-norm, and the nonlinearities need not to
be polynomial. This allows us to deal with a larger class of systems. Consider, for
instance, 





∂tu− d1∆u = (−u+ 2v)ev − uveu
2
, x ∈ Ω,

∂tv − d2∆v = −v2ev + u2veu
2
, x ∈ Ω,

∇u · ν = ∇v · ν = 0, x ∈ ∂Ω,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

It’s obvious to check that (A1) is satisfied, while (A3) and (A4) are not. Nevertheless,
by multiplying the first equation by u and summing with the second equation, one gets

d

dt

∫

Ω

(
1

2
u2 + v)dx+ d1

∫

Ω

|∇u|2dx = −

∫

Ω

ev(u− v)2dx ≤ 0

and therefore

1

2
‖u(t)‖L2(Ω) + ‖v(t)‖L1(Ω) ≤

1

2
‖u0‖L2(Ω) + ‖v0‖L1(Ω).

This, together with ‖u(t)‖L1(Ω) ≤ C‖u(t)‖L2(Ω), shows that the result of Theorem 1.2
can be applied.

The first part of Remark 1.3 suggests that if the diffusion coefficients are fixed, then when
the initial data are close enough to a zero of the nonlinearity, which in turn means that the
diffusion is very large in comparison with initial data, then we also obtain the same result
as Theorem 1.1.
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Theorem 1.3. Assume (A1) and initial data is bounded and moreover, there exists z0 ∈ R
m

with f(z0) = 0. Assume that the diffusion coefficients are fixed. Then there exist M > 0 and
LM > 0 small enough such that if ‖ui,0 − zi0‖L∞(Ω) ≤ M and supt≥0 ‖ui(t)‖L1(Ω) ≤ LM for
all i = 1, . . . , m, then the solution to (S) is global and uniformly bounded in time.

One crucial common condition in Theorems 1.2 and 1.3 is the uniform-in-time bound of
the L1-norm of solutions, which is independent of diffusion coefficients. Due to (2), this
condition is easily satisfied if the mass dissipation (A3) holds. Therefore, we have the
following corollary.

Corollary 1.1. Assume (A0)–(A3) for the system (S). Then

(i) for any M ≥ 0, there exists dM > 0 such that if ‖ui,0‖L∞(Ω) ≤M and di ≥ dM for all
i = 1, . . . , m, then the solution to (S) is global and uniformly bounded in time.

(ii) for any fixed diffusion coefficients, there exists 0 < M ≪ 1 such that if ‖ui,0‖L∞(Ω) ≤
M for all i = 1, . . . , m, then the solution to (S) is global and uniformly bounded in
time.

We would like to point out that the point (ii) of Corollary 1.1 was proved in [FHM97] in
an even more general context (see Theorem 2.6 and Proposition 4.1 therein).

Another important corollary of Theorem 1.2 is that one can compare the trajectory of the
reaction-diffusion system (S) to the corresponding ordinary differential system.

Corollary 1.2. Assume that the assumptions in Theorem 1.2 or (A0)–(A3) are satisfied.
Then there exists dmin such that, if di ≥ dmin for all i = 1, . . . , m then there exist C, λ > 0
such that

m∑

i=1

‖ui(t)− ui(t)‖L∞(Ω) ≤ Ce−λt (5)

for all t ≥ 0, where the spatial average is defined by ui =
1
|Ω|

∫
Ω
uidx. Moreover, the vector

of averages u = (ui)i=1...m satisfies the differential system

∂tu = f(u) + g(t) (6)

where g(t) : R → R
m is a function decaying exponentially, i.e. |g(t)| ≤ Ce−γt for some

C, γ > 0.

To highlight the importance of our results, we devote the third part of this paper to some
applications. The first application is about the Global Attractor Conjecture (or GAC for
short). GAC is one of the central problems in chemical reaction network theory as it pro-
vides the large time asymptotics of a very large class of reaction networks. More precisely,
GAC states that the positive complex balanced equilibrium is the global attractor within the
compatibility class for any complex balanced system (see more details in Subsection 4.1).
There exists a large amount of work partly solving the GAC, and also a recent proposed full
proof [Cra]. However, most (if not all) of them dealt with the ODE setting, i.e. the chemical
concentrations are homogeneous spatially. Recent works concerning the PDE setting con-
sidered only special systems, due to the fact that even the global well-posedness for those
PDE systems are largely open, see e.g. [DFT17, FT18, CJPT, PSY19]. Here we will use
Corollary 1.2 to show that the GAC holds true for reaction systems with large diffusion, as
long as it holds true for the corresponding differential systems.
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The second application of our results concerns the convergence to equilibrium for a re-
versible chemical reaction system possessing boundary equilibria

α1A1 + . . .+ αmAm

kb
⇌
kf
β1A1 + . . .+ βmAm.

Of course the issue is resolved when diffusion is large as the GAC is valid in this case.
However, with smaller diffusion the question is much more delicate. It was shown in [PSY19]
that the trajectory to this system either converges exponentially to the positive equilibrium
or to the boundary ∂Rm

+ . Under the assumption that the solution is bounded uniformly in
time, it can be shown that the positive equilibrium is the only attracting point. Therefore,
we can apply here Theorem 1.1 to obtain the uniform bounds of the solution provided the
diffusion coefficients are close enough to each other.

Our results also have an application in the so-called close-to-equilibrium regularity for
reaction-diffusion systems. In recent works [CC17] and [Tang18], it was shown that in small
dimensions, n ≤ 4, one gets global strong solutions for systems with restricted polynomial
nonlinearities assuming initial data to be close enough to an equilibrium in the sense L2-
distance. By Corollary 1.1 we remove the restrictions on the growth of nonlinearities and
smallness of dimensions, provided the closeness to equilibrium is measured in L∞-distance.

The plan of the paper is as follows: the next two sections prove the main results,
namely Theorem 1.1 is proved in Section 2 while Theorems 1.2 and 1.3 and their corollaries
are proved in Section 3. Section 4 is devoted to the applications.

Notation: Throughout this paper, we use the following notation: For any 1 ≤ p ≤ ∞,
the norm in Lp(Ω) is denoted by ‖ · ‖p,Ω. The Bochner space Lp(τ, T ;Lp(Ω)) is written as
Lp(Ω× (τ, T )) and associated with the norm

‖f‖p,Ω×(τ,T ) =

[∫ T

τ

∫

Ω

|f(x, t)|pdxdt

]1/p
for 1 ≤ p <∞,

and

‖f‖∞,Ω×(τ,T ) = ess sup
Ω×(τ,T )

|f(x, t)|.

The space W 2,1,p(Ω× (τ, T )) consists of functions f ∈ Lp(Ω× (τ, T )) whose following norm
is finite

‖f‖
(2,1)
p,Ω×(τ,T ) =

∑

2r+s≤2

‖∂rt ∂
s
xf‖p,Ω×(τ,T ) < +∞.

If a function u depends both on x ∈ Ω and t ∈ R, then we write for convenient u(t) instead
of u(·, t).

For any constant 1 < p <∞, we denote by p′ the Hölder conjugate exponent of p, i.e.

p′ =
p

p− 1
.

2. Quasi-uniform diffusion coefficients

Definition 2.1 (Classical (or strong) solutions). A vector of concentrations u = (u1, . . . , um)
is called a classical (or strong) solution on (0, T ) to (S) if for all i = 1, . . . , m, ui ∈
C([0, T );Lp(Ω))∩C2((0, T )×Ω) for all p > n and u satisfies each equation in (S) pointwise.
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Theorem 2.1 (Local existence of solutions). [Ama85] If the initial data is bounded and
(A1) holds, the system (S) has a unique local classical (or strong) solution on some maximal
interval (0, Tmax). Moreover, if

lim
t→T−

max

‖ui(t)‖∞,Ω < +∞, for all i = 1, . . . , m,

then Tmax = +∞. In addition, if (A0) and (A2) hold then the solution is componentwise
nonnegative.

Lemma 2.1 (Embedding inequalities). [LSU68] Let 1 < p <∞.

(i) if p ≤ n+2
2

then it holds for all f ∈ W 2,1,p(Ω× (τ, T ))

‖f‖q,Ω×(τ,T ) ≤ C(p, T − τ)‖f‖
(2,1)
p,Ω×(τ,T ) for all 1 ≤ q <

(n+ 2)p

n+ 2− 2p
.

We use the convention 1
0
= +∞ in the case p = n+2

2
.

(ii) if p > n+2
2

then

‖f‖∞,Ω×(τ,T ) ≤ C(p, T − τ)‖f‖
(2,1)
p,Ω×(τ,T ).

The constant C(p, T − τ) depends only on Ω, p and T − τ .

Lemma 2.2 (Maximal regularity). [Lam87] Let 0 < τ < T and p ∈ (1,∞). Assume that
0 ≤ θ ∈ Lp(Ω× (τ, T )) and ‖θ‖p,Ω×(τ,T ) = 1. Let φ be the weak solution to





∂tφ+ d∆φ = −θ, in Ω× (τ, T ),

∇φ · ν = 0, on ∂Ω× (τ, T ),

φ = 0, on Ω× {T}.

(7)

Then φ ≥ 0,

‖φ‖
(2,1)
p,Ω×(τ,T ) ≤ CT−τ,d,p

and

‖∆φ‖p,Ω×(τ,T ) ≤ Cd,p.

where Cd,p is an optimal constant depending on p and the diffusion coefficient d, and not
depending on τ, T .

Remark 2.1. At first glance, equation (7) might appear to be a backwards heat equation.
However, the substitution s = T − t reveals that this is not the case.

Proposition 2.1. Define

dmax = max
i=1,...,m

{di}, dmin = min
i=1,...,m

{di}, and d =
dmax + dmin

2
. (8)

If p′ = p
p−1

and

dmax − dmin

2
Cd,p′ < 1 for some p >

(µ− 1)(n+ 2)

2
,

where µ is given in (A4), then (S) has a unique global classical solution.
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Proof. By adding to (S) the new equation

∂tum+1 −∆um+1 = −
m∑

i=1

fi(u), ∇um+1 · ν = 0, um+1(x, 0) = 0

we can assume (1) (now for the new vector of concentrations (u1, . . . , um, um+1)) with an
equality sign. Therefore, the result of this Proposition follows from [CDF14, Proposition
1.4]. We will reproduce the proof here since it is needed in the proof of Theorem 1.1.

Let p > (µ − 1)(n + 2)/2 as in the assumption of the Proposition. Pick 0 ≤ θ ∈ Lp′(Ω ×
(0, T )) such that ‖θ‖p′,Ω×(0,T ) = 1 and let φ be the solution to (7). Since θ ≥ 0 we have φ ≥ 0.
By integration by parts and the homogeneous Neumann boundary conditions ∇ui · ν = 0
and ∇φ · ν = 0 we have

∫ T

0

∫

Ω

uiθdxdt =

∫ T

0

∫

Ω

ui(−∂tφ− d∆φ)dxdt

=

∫

Ω

ui(x, 0)φ(0)dx+ (di − d)

∫ T

0

∫

Ω

ui∆φdxdt+

∫ T

0

∫

Ω

φfi(u)dxdt.

Summing this equality with respect to i we obtain
m∑

i=1

∫ T

0

∫

Ω

uiθdxdt ≤
m∑

i=1

∫

Ω

ui(x, 0)φ(x, 0)dx+
m∑

i=1

(di − d)

∫ T

0

∫

Ω

ui∆φdxdt (9)

since φ ≥ 0 and
∑m

i=1 fi(u) ≤ 0. By Hölder’s inequality

m∑

i=1

∫ T

0

∫

Ω

uiθdxdt ≤
m∑

i=1

‖ui0‖p,Ω‖φ(·, 0)‖p′,Ω +
dmax − dmin

2

∥∥∥∥∥

m∑

i=1

ui

∥∥∥∥∥
p,Ω×(0,T )

‖∆φ‖p′,Ω×(0,T ).

(10)
From Lemma 2.2, it follows that

‖∆φ‖p′,Ω×(0,T ) ≤ Cd,p′. (11)

On the other hand, since φ(·, T ) = 0, it follows from Hölder’s inequality that

‖φ(·, 0)‖p
′

p′,Ω =

∫

Ω

∣∣∣∣
∫ T

0

∂tφdt

∣∣∣∣
p

dx ≤ T
p−1
p ‖∂tφ‖

p′

p′,Ω×(0,T ) ≤ Cd,p′T
p′−1
p′ (12)

Inserting (11) and (12) into (10), and using duality lead to
∥∥∥∥∥

m∑

i=1

ui

∥∥∥∥∥
p,Ω×(0,T )

≤ C
1/p′

d,p′ T
p′−1

m∑

i=1

‖ui0‖p,Ω +
dmax − dmin

2
Cd,p′

∥∥∥∥∥

m∑

i=1

ui

∥∥∥∥∥
p,Ω×(0,T )

.

By assumption (dmax − dmin)Cd,p′/2 < 1 we get
∥∥∥∥∥

m∑

i=1

ui

∥∥∥∥∥
p,Ω×(0,T )

≤ CT p′−1

and using the nonnegativity of ui, it follows that

‖ui‖p,Ω×(0,T ) ≤ CT p′−1 for all i = 1, . . . , m and some p >
(µ− 1)(n+ 2)

2
. (13)
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We now show that using the maximal regularity in Lemma 2.2, one can bootstrap the
integrability (13) up to L∞-estimate, and therefore obtain global existence.

For simplicity, we will write f ∈ Lα−(Ω× (0, T )) if f ∈ Lβ(Ω× (0, T )) for all β < α. Let’s
denote p0 = p. From (13) and the growth condition (A4) we have

∂tui − di∆ui = fi(u) ∈ L
p0
µ (Ω× (0, T )).

Using Lemma 2.2 we have ui ∈ W 2,1,
p0
µ (Ω × (0, T )). From the embedding Lemma 2.1, if

p0
µ
> n+2

2
then ui ∈ L∞(Ω× (0, T )), and if p0

µ
≤ n+2

2
then

ui ∈ Lp1−(Ω× (0, T )) with p1 =
(n + 2)p0

µ

n+ 2− 2p0
µ

with the convention 1
0
= +∞. Hence

∂tui − di∆ui = fi(u) ∈ L
p1
µ
−(Ω× (0, T )).

Repeating the above argument we have

ui ∈ Lp2−(Ω× (0, T )) with p2 =
(n+ 2)p1

µ

n + 2− 2p1
µ

.

We therefore can construct a recursive sequence {pk} such that ui ∈ Lpk−(Ω× (0, T )) and

pk+1 =
(n + 2)pk

µ

n+ 2− 2pk
µ

as long as pk
µ
≤ n+2

2
. Using

pk+1

pk
=

n+ 2

µ(n+ 2)− 2pk

and the fact that p0 >
(µ−1)(n+2)

2
we have

pk >

(
(n+ 2)p0

µ(n+ 2)− 2p0

)k

.

Therefore, there exists a k0 such that pk0/µ >
n+2
2
. Applying Lemma 2.2 again for

∂tui − di∆ui = fi(u) ∈ L
pk0
µ (Ω× (0, T ))

we get the uniform bound ui ∈ L∞(Ω × (0, T )), which completes the proof of Proposition
2.1. �

We are now in the position to prove the main result of this section.

Proof of Theorem 1.1. Define qk =
(
n+2
n+1

)k
for k ∈ N and let K ∈ N be the smallest number

such that

qK >
(µ− 1)(n+ 2)

2
. (14)

Now assume that
dmax − dmin

2
Cd,q′

k
< 1 (15)

for k = 1, . . . , K, where dmax, dmin, d are defined in (8), q′k is the Hölder conjugate exponent
of qk, and Cd,q′

k
is the constant defined in Lemma 2.2.
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Thanks to (14) and (15), it follows immediately from Proposition 2.1 that (S) has a unique
global classical solution. It remains to prove that the L∞-norm is bounded uniformly in time.
To do that we define an increasing smooth function ψ : R → [0, 1] as

ψ(t) =

{
0 for t ≤ 0,

1 for t ≥ 1
and |ψ′(t)| ≤ 2 for all t ∈ R.

For any τ ≥ 0, we define the shifted function ψτ (·) = ψ(· − τ). Let u = (u1, u2, . . . , um) be
the global classical solution to (S) obtained by Proposition 2.1. Direct computations lead to

∂t(ψτui)− di∆(ψτui) = ψ′
τui + ψτfi(u) (16)

for all τ ≥ 0. Let M ∈ N be a large integer, which will be fixed later. Since ψτ ≥ 0 and
ψτ (τ) = 0, similar arguments to (9) gives

m∑

i=1

∫ T

τ

∫

Ω

ψτuiθdxdt ≤
m∑

i=1

∫ T

τ

∫

Ω

ψ′
τuiφdxdt+

dmax − dmin

2

m∑

i=1

∫ T

τ

∫

Ω

ψτui∆φdxdt (17)

for any 0 < τ < T . Let T = τ + M . Take 0 ≤ θ ∈ Ln+2(Ω × (τ, τ + M)) such that
‖θ‖n+2,Ω×(τ,τ+M) = 1 we obtain from Lemma 2.2

‖∆φ‖n+2,Ω×(τ,τ+T ) ≤ Cd,n+2

and Lemma 2.1

‖φ‖∞,Ω×(τ,τ+M) ≤ C(n,M)‖φ‖
(2,1)
n+2,Ω×(τ,τ+M) ≤ C0(M).

Using ‖ui‖L∞(0,∞;L1(Ω)) ≤M0 we can use Hölder’s inequality in (17) to get

∫ τ+M

τ

∫

Ω

(
m∑

i=1

ψτui

)
θdxdt ≤ 2

m∑

i=1

‖φ‖∞,Ω×(τ,τ+M)

∫ τ+M

τ

‖ui(t)‖1,Ωdt

+
dmax − dmin

2
Cd,n+2

∥∥∥∥∥

m∑

i=1

ψτui

∥∥∥∥∥
n+2
n+1

,Ω×(τ,τ+M)

≤ C0(M,M0, m) +
dmax − dmin

2
Cd,n+2

∥∥∥∥∥

m∑

i=1

ψτui

∥∥∥∥∥
n+2
n+1

,Ω×(τ,τ+M)

.

By duality we get
∥∥∥∥∥

m∑

i=1

ψτui

∥∥∥∥∥
n+2
n+1

,Ω×(τ,τ+M)

≤ C0 +
dmax − dmin

2
Cd,n+2

∥∥∥∥∥

m∑

i=1

ψτui

∥∥∥∥∥
n+2
n+1

,Ω×(τ,τ+M)

.

Since B−A
2
Cd,n+2 < 1 (applying (15) with k = 1) we get

∥∥∥∥∥

m∑

i=1

ψτui

∥∥∥∥∥
n+2
n+1

,Ω×(τ,τ+M)

≤ C0

where C0 is independent of τ (but dependent on M). Since ψτ (t) = 1 for all t ≥ τ + 1, we
use the non-negativity of ui to get

‖ui‖n+2
n+1

,Ω×(τ+1,τ+M) ≤ C1 for all i = 1, . . . , m



12 B. CUPPS, J. MORGAN, AND B.Q. TANG

for C3 independent of τ . Recall that qk =
(
n+2
n+1

)k
. By induction we will prove that for all

k = 1, . . . , K,
‖ui‖qk,Ω×(τ+k,τ+M) ≤ Ck for all i = 1, . . . , m, (18)

where Ck is independent of τ . Indeed, assume (18) holds for some k ≥ 1. Choose 0 ≤ θ ∈
Lq′

k+1(Ω× (τ + k, τ +M)) such that ‖θ‖q′
k+1,Ω×(τ+k,τ+M) = 1. If φ solves (7) we have, thanks

to Lemma 2.2,
‖∆φ‖q′

k+1,Ω×(τ+k,τ+M) ≤ Cd,q′
k+1

(19)

and by Lemma (2.1),

‖φ‖s,Ω×(τ+k,τ+M) ≤ C(M) for all 1 ≤ s <
(n+ 2)q′k+1

n+ 2− 2q′k+1

. (20)

We now use Hölder’s inequality in (17) with (τ, T ) is replaced by (τ + k, τ +M), to have
∫ τ+M

τ+k

∫

Ω

(
n∑

i=1

ψτ+kui

)
θdxdt

≤ 2
n∑

i=1

‖ui‖qk,Ω×(τ+k,τ+M)‖φ‖q′
k
,Ω×(τ+k,τ+M)

+
dmax − dmin

2

∥∥∥∥∥

n∑

i=1

ψτ+kui

∥∥∥∥∥
qk+1,Ω×(τ+k,τ+M)

‖∆φ‖q′
k+1,Ω×(τ+k,τ+M).

(21)

From (20), it remains to check that

q′k <
(n + 2)q′k+1

n+ 2− 2q′k+1

. (22)

This is equivalent to

(n+ 2)k

(n+ 2)k − (n + 1)k
<

(n + 2)k+1

(n + 2)k+1 − (n+ 1)k+1 − 2(n+ 2)k

or
(n + 1)k < 2(n+ 2)k

which confirms (22). Therefore, by inserting (18), (19), (20) into (21) one gets
∫ τ+M

τ+k

(
n∑

i=1

ψτ+kui

)
θdxdt ≤ C(M) +

dmax − dmin

2
Cd,q′

k+1

∥∥∥∥∥

m∑

i=1

ψτ+kui

∥∥∥∥∥
qk+1,Ω×(τ+k,τ+M)

.

With B−A
2
Cd,q′

k+1
< 1 from (15) one gets by duality

∥∥∥∥∥

m∑

i=1

ψτ+kui

∥∥∥∥∥
qk+1,Ω×(τ+k,τ+M)

≤ C(M)

which implies

‖ui‖qk+1,Ω×(τ+k+1,τ+M) ≤ C(M) for all i = 1, . . . , m,

and therefore the induction is complete. Taking k = K we get

‖ui‖qK ,Ω×(τ+K+1,τ+M) ≤ C(M) for all i = 1, . . . , m, (23)



REACTION-DIFFUSION SYSTEMS WITH DISSIPATION OF MASS 13

where C(M) is independent of τ . Since qK =
(
n+2
n+1

)K
> (µ−1)(n+2)

2
by assumption, we will

bootstrap similarly to Proposition 2.1, with an extra effort to make the constants independent
of time. For simplicity we denote by J = K + 1 and define p0 = qK . From (16) we have

∂t(ψτ+Jui)− di∆(ψτ+Jui) = ψ′
τ+Jui + ψτ+Jfi(u). (24)

By (23) and (A4) we have

‖ui‖ p0
µ
,Ω×(τ+J,τ+M) ≤ C(M)‖ui‖p0,Ω×(τ+J,τ+M) ≤ C(M)

and
‖fi(u)‖ p0

µ
,Ω×(τ+J,τ+M) ≤ C(M)(‖u‖µp0,Ω×(τ+J,τ+M) + 1) ≤ C(M).

Therefore, by applying Lemma 2.2 to (24) it leads to

‖ψτ+Jui‖
(2,1)
p0
µ
,Ω×(τ+J,τ+M)

≤ C(M)‖ψ′
τ+Jui + fi(u)‖ p0

µ
,Ω×(τ+J,τ+M) ≤ C(M).

With the embeddings in Lemma 2.1 it yields

‖ψτ+Jui‖s,Ω×(τ+J,τ+M) ≤ C(M) for all s < p1 :=
(n+ 2)p0

µ

n+ 2− 2p0
µ

,

which leads to
‖ui‖s,Ω×(τ+J+1,τ+M) ≤ C(M) for all s < p1.

We therefore can construct a recursive sequence {pk} where

pk+1 =
(n + 2)pk

µ

n+ 2− 2pk
µ

as long as pk
µ
≤ n+2

2
, such that

‖ui‖s,Ω×(τ+J+n,τ+M) ≤ C(M) for all s < pk.

Since p0 = qK > (µ−1)(n+2)
2

, similarly to the proof of Theorem 2.1, we see that {pk} is strictly

increasing with pk+1/pk >
n+2

µ(n+2)−2p0
> 1. Therefore, there exists k0 ∈ N such that

pk0
µ
> n+2

2
.

By applying Lemma 2.2 to

∂t(ψτ+J+k0ui)− di∆(ψτ+J+k0ui) = ψ′
τ+J+k0

ui + ψτ+J+k0fi(u)

with

‖ψ′
τ+J+k0

ui + ψτ+J+k0fi(u)‖ pk0
µ

,Ω×(τ+J+k0,τ+M)

≤ C(M)
(
‖ui‖ pk0

µ
,Ω×(τ+J+k0,τ+M)

+ ‖ui‖
µ
pk0 ,Ω×(τ+J+k0,τ+M) + 1

)
≤ C(M)

we get
‖ψτ+J+k0ui‖∞,Ω×(τ+J+k0,τ+M) ≤ C(M)

which implies
‖ui‖∞,Ω×(τ+J+k0+1,τ+M) ≤ C(M)

for all τ ≥ 0 where C(M) is a constant independent of τ . By choosing M = J + k0 + 2 we
get

‖ui‖∞,Ω×(j,j+1) ≤ C(M) for all j ≥ J + k0 + 1.

Therefore,
sup

t≥J+k0+1
‖ui(t)‖∞,Ω ≤ C(M) for all i = 1, . . . , N,
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which completes the proof of Theorem 1.1. �

Remark 2.2. Due to the duality arguments in the proof of Proposition 2.1, we see that as
the q′k is decreasing, or correspondingly qk is increasing, we obtain higher integrability of
the solutions. It is therefore expected that the constant Cd,q′

k
is increasing as k is increasing

from 1 to K. Thus it should suffice to assume (15) only for Cd,q′
K
. However, estimating the

constant Cd,p in the maximal regularity seems to be a delicate issue. We leave the details for
the interested reader.

3. Large diffusion coefficients or small initial data

The following lemma plays an important role in the analysis of this section.

Lemma 3.1. Let d ≥ 1, 1 < p <∞, θ ∈ Lp(Ω× (τ, T )), and φ be the solution to




∂tφ− d∆φ = θ, in Ω× (τ, T ),

∇φ · ν = 0, on ∂Ω × (τ, T ),

φ(x, τ) = 0, in Ω.

Then there exists a constant C(p) depending on p such that

‖∆φ‖p,Ω×(τ,T ) ≤
C(p)

d
‖θ‖p,Ω×(τ,T ) ≤ C(p)‖θ‖p,Ω×(τ,T ) (25)

and

‖∂tφ‖p,Ω×(τ,T ) ≤ C(p)‖θ‖p,Ω×(τ,T ). (26)

Proof. Let w(x, t) = φ(x, t/d). Direct computations lead to





∂tw −∆w = 1
d
θ̃ in Ω× (dτ, dT ),

∇φ · ν = 0, on ∂Ω × (dτ, dT ),

φ(x, dτ) = 0, in Ω

where θ̃(x, t) = θ(x, t/d). Thanks to Lemma 2.2 we have

‖∆w‖p,Ω×(dτ,dT ) ≤ C1,p

∥∥∥∥
1

d
θ̃

∥∥∥∥
p,Ω×(dτ,dT )

or equivalently ∫ dT

dτ

∫

Ω

|∆w|pdxdt ≤

(
C1,p

d

)p ∫ dT

dτ

∫

Ω

|θ̃|pdxdt.

By changing variable s = t/d, we obtain

d

∫ T

τ

∫

Ω

|∆φ(x, s)|pdxds ≤
Cp

1,p

dp−1

∫ T

τ

∫

Ω

|θ(x, s)|pdxds

which proves (25). For (26) we have

‖∂tφ‖p,Ω×(τ,T ) ≤ d‖∆φ‖p,Ω×(τ,T ) + ‖θ‖p,Ω×(τ,T ) ≤ (C(p) + 1)‖θ‖p,Ω×(τ,T ).

�

We are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2. We first notice that the truncated nonlinearities Φr(u)fi(u) are Lips-
chitz continuous and bounded (depending on r), therefore the global existence of a classical
solution follows immediately once the initial data is bounded. We are going to show that for
large enough diffusion coefficients, the solution to (4) is bounded by some BM independent
of r, i.e.

sup
t≥0

‖ui(t)‖∞,Ω ≤ BM for all i = 1, . . . , m,

and therefore conclude Theorem 1.2 by choosing r large enough.
Recalling dmin = min{di : i = 1, . . . , m} and define a = d−1

min. Defining the rescaled
function vi(x, t) = ui(x, at), we obtain the rescaled system for v = (v1, . . . , vm)




∂tvi − d̃i∆vi = af̃i(v), (x, t) ∈ Ω× R+,

∇vi · ν = 0, (x, t) ∈ ∂Ω× R+,

vi(x, 0) = ui0(x), x ∈ Ω,

(27)

where
d̃i = adi ≥ 1 and f̃i(v(x, t)) = Φr(v(x, t))fi(v(x, t)).

Without loss of generality we assume that z0 = 0, which implies f̃i(0) = 0. Since fi(u) is

locally Lipschitz, f̃i(v) is Lipschitz with some constant depending on r, i.e. there exists Lr

such that

|f̃i(v)| = |f̃i(v)− f̃i(0)| ≤ Lr|v| for all v ∈ R
m, i = 1, . . . , m. (28)

For simplicity, we denote by

‖v(t)‖∞,Ω = max
i=1,...,m

‖vi(t)‖∞,Ω and ‖v‖∞,Ω×R+ = max
i=1,...,m

‖vi‖∞,Ω×R+.

Let K ∈ N be the smallest number such that

2

(
n+ 2

n

)K

>
n+ 2

2
(29)

and define L = K + 2. Let τ ≥ 0. We multiply (27) by vi and integrate on (τ, t) for
t ∈ (τ, τ + L) to get

1

2
‖vi(t)‖

2
2,Ω + d̃i‖∇vi‖

2
2,Ω×(τ,t) =

1

2
‖vi(τ)‖

2
2,Ω + a

∫ t

τ

∫

Ω

vif̃i(v)dxds. (30)

The terms on the right hand side of (30) are estimated as

‖vi(τ)‖
2
2,Ω ≤ ‖vi(τ)‖∞,Ω‖vi(τ)‖1,Ω ≤ ‖v‖∞,Ω×R+LM

and, by using (28),
∣∣∣∣a
∫ t

τ

∫

Ω

vif̃i(v)dxds

∣∣∣∣ ≤ aLr

∫ τ+L

τ

‖vi‖1,Ω‖v‖∞,Ωds

≤ C(L)aLr‖v‖∞,Ω×R+LM .

Inserting these into (30) and recalling d̃i ≥ 1

sup
t∈(τ,τ+L)

‖vi(t)‖
2
2,Ω + ‖∇vi‖

2
2,Ω×(τ,τ+L) ≤ C(L)(1 + 2aLr)‖v‖∞,Ω×R+LM . (31)

By embedding theorem [LSU68], we know that

L∞(τ, τ + L;L2(Ω)) ∩ L2(τ, τ + L;H1(Ω)) →֒ L2n+2
n (Ω× (τ, τ + L))
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with an embedding constant depending only on L and Ω. Let q = n+2
n
. It follows then from

(31) that

‖vi‖2q,Ω×(τ,τ+L) ≤ C(L)(1 + 2aLr)
1/2‖v‖

1/2
∞,Ω×R+

L
1/2
M (32)

for all τ ≥ 0. We will show by induction that for each 1 ≤ k ≤ K, there exist C(k, L) and
0 < εk < 1 independent of τ such that

‖vi‖2qk,Ω×(τ+k,τ+L) ≤ C(k, L)[aLr + (1 + 2aLr)
1/2]L

1/2
M ‖v‖εk∞,Ω×R+

. (33)

Thanks to (32), (33) is true for k = 1. Assume that (33) is true for some k ≥ 1. Recall the
smooth cutoff function ψ : R → [0, 1] defined in the proof of Theorem 1.1 and its shifted
function ψτ (·) = ψ(· − τ). By multiplying the equation of vi in (27) by ψτ+k we have





∂t(ψτ+kvi)− d̃i∆(ψτ+kvi) = ψ′
τ+kvi + aψτ+k f̃i(v), (x, t) ∈ Ω× (τ + k, τ + L)

∇(ψτ+kvi) · ν = 0, (x, t) ∈ ∂Ω × (τ + k, τ + L)

ψτ+kvi(x, τ + k) = 0, x ∈ Ω.

(34)

Since d̃i ≥ 1, we can now apply Lemma 3.1 to get

‖ψτ+kvi‖
(2,1)

2qk,Ω×(τ+k,τ+L)
≤ C(2qk)(‖ψ′

τ+kvi‖2qk,Ω×(τ+k,τ+L) + a‖ψτ+kf̃i(v)‖2qk,Ω×(τ+k,τ+L)).

(35)
Since 0 ≤ |ψ′

τ+k| ≤ 2 it follows from (33) that

‖ψ′
τ+kvi‖2qk,Ω×(τ+k,τ+L) ≤ C(k, L)[aLr + (1 + 2aLr)

1/2]L
1/2
M ‖v‖εk∞,Ω×R+

. (36)

On the other hand, using 0 ≤ ψτ+k ≤ 1 and the Lipschitz property of f̃i,

‖ψτ+kf̃i(v)‖2qk,Ω×(τ+k,τ+L) ≤

(∫ τ+L

τ+k

∫

Ω

|f̃i(v)|
2qkdxds

) 1

2qk

≤ Lr

(∫ τ+L

τ+k

‖v‖2q
k−1

∞,Ω ‖v‖1,Ωds

) 1

2qk

≤ C(L)Lr‖v‖
2qk−1

2qk

∞,Ω×R+
L

1

2qk

M .

(37)

Inserting (36) and (37) into (35) one gets (w.l.o.g. we assume LM ≥ 1),

‖ψτ+kvi‖
(2,1)

2qk,Ω×(τ+k,τ+L)
≤ C(k + 1, L)[aLr + (1 + 2aLr)

1/2]L
1/2
M ‖v‖

εk+1

∞,Ω×R+

where εk+1 is chosen as either εk or 1
2qk

to maximize ‖v‖
εk+1

∞,Ω×R+
. Direct computation shows

2qk+1 <
(n+ 2)(2qk)

n + 2− 2(2qk)
,

and it thus follows from embedding results in Lemma 2.1 that

‖ψτ+kvi‖2qk+1,Ω×(τ+k,τ+L) ≤ C(k + 1, L)[aLr + (1 + 2aLr)
1/2]L

1/2
M ‖v‖

εk+1

∞,Ω×R+
.

Hence

‖vi‖2qk+1,Ω×(τ+k+1,τ+L) ≤ C(k + 1, L)[aLr + (1 + 2aLr)
1/2]L

1/2
M ‖v‖

εk+1

∞,Ω×R+

since ψτ+k(t) = 1 for all t ≥ τ + k + 1, which proves (33).
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Now we apply maximal regularity in Lemma 3.1 for (34) with k = K to get

‖ψτ+Kvi‖
(2,1)

2qK ,Ω×(τ+K,τ+L)

≤ C(2qK)(‖ψ′
τ+Kvi‖2qK ,Ω×(τ+K,τ+L) + a‖ψτ+K f̃i(v)‖2qK ,Ω×(τ+K,τ+L))

≤ C(K)

(
‖vi‖2qK ,Ω×(τ+K,τ+L) + aLr‖v‖

2qK−1

2qK

∞,Ω×R+
L

1

2qK

M

)

≤ C(K)[aLr + (1 + 2aLr)
1/2]L

1/2
M ‖v‖

εK+1

∞,Ω×R+

where εK+1 is chosen to be εK or 2qK−1
2qK

to maximize ‖v‖
εK+1

∞,Ω×R+
. Since 2qK > n+2

2
from (29)

we can use the embedding in Lemma 2.1 to obtain

‖vi‖∞,Ω×(τ+K+1,τ+L) ≤ C(K,L)[aLr + (1 + 2aLr)
1/2]L

1/2
M ‖v‖

εK+1

∞,Ω×R+
.

Since the right hand side is independent of τ ≥ 0 and this inequality is true for all i =
1, . . . , m, it yields

‖v‖∞,Ω×(K+1,∞) ≤ C(K)[aLr + (1 + 2aLr)
1/2]L

1/2
M ‖v‖

εK+1

∞,Ω×R+
. (38)

We now consider two cases:

Case 1. If supt≥0 ‖v(t)‖∞,Ω is attained at t > K + 1 then ‖v‖∞,Ω×R+ = ‖v‖∞,Ω×(K+1,∞).
From Young’s inequality

X ≤ AXǫ for some ǫ ∈ (0, 1) =⇒ X ≤ 2(1− ǫ)(2ǫ)
ǫ

1−ǫA
1

1−ǫ ,

so we get from (38) that

‖v‖∞,Ω×R+ ≤ C(K, εK+1)[aLr + (1 + 2aLr)
1/2]

1
1−εK+1L

1
2(1−εK+1)

M . (39)

Case 2. In the case supt≥0 ‖v(t)‖∞,Ω is attained at some point between 0 and K + 1, we
use the Duhamel’s formula to write

vi(t) = ed̃it∆ui,0 + a

∫ t

0

e−d̃i(t−s)∆f̃i(v(s))ds.

Using ‖ed̃it∆f‖∞,Ω ≤ ‖f‖∞,Ω, we have

‖vi(t)‖∞,Ω ≤ ‖ui,0‖∞,Ω + a

∫ t

0

‖f̃i(v(s))‖∞,Ωds ≤M + aLr

∫ t

0

‖v(s)‖∞,Ωds.

Since ‖v(t)‖∞,Ω = maxi=1,...,m ‖vi(t)‖∞,Ω it follows from Gronwall’s lemma that

‖v(t)‖∞,Ω ≤MeaLrt ≤MeaLr(K+1) (40)

for all t ∈ (0, K + 1). Therefore, in Case 2,

‖v‖∞,Ω×R+ = ‖v‖∞,Ω×(0,K+1) ≤MeaLr(K+1). (41)

From (39) and (41), by imposing a small enough, or equivalently dmin large enough, such
that aLr ≤ 1 one gets

‖v‖∞,Ω×R+ ≤ BM (42)

where

BM = max

{
C(K, εK+1)3

1
1−εK+1L

1
2(1−εK+1)

M ; eK+1M

}
. (43)
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Since this BM is independent of r, we can conclude the proof of Theorem 1.2 by choosing r
large enough. �

Proof of Theorem 1.3. We proceed exactly as the proof of Theorem 1.2, until we get the
bounds (39) and (41). We see from (43) that if M → 0 and LM → 0 then BM → 0.

Moreover, if r → 0 then Lr → 0, recalling Lr is the Lipschitz constant for f̃i(v) on the ball
{|x| ≤ r}. Therefore, by demanding BM to be small enough, we can get a small r > BM

such that aLr ≤ 1 where a = d−1
min. The estimate (42) then follows, which finishes the proof

of Theorem 1.3. �

Proof of Corollary 1.1.

(i) The quasi-positivity of the nonlinearities in (A2) and the mass dissipation assump-
tion

∑m
i=1 fi(u) ≤ 0 implies immediately that f(0) = 0. It remains to check the

L∞(0,∞;L1(Ω)) bound. Indeed, by summing the equations of ui in (4)

m∑

i=1

∂tui −
m∑

i=1

di∆ui =
m∑

i=1

Φr(u)fi(u) ≤ 0.

Integrating on Ω × (0, t) and using the homogeneous Neumann boundary condition
give

sup
t≥0

m∑

i=1

‖ui(t)‖1,Ω ≤
M∑

i=1

‖ui,0‖1,Ω ≤ m|Ω|M =: LM , (44)

where we used ‖ui,0‖∞,Ω ≤M at the last step.
(ii) The proof is similar to that of part (i) with the observation in (44) that LM → 0 as

M → 0.

�

Proof of Corollary 1.2. By integrating the equation of ui and taking into account the homo-
geneous Neumann boundary condition, we have

∂tui =
1

|Ω|

∫

Ω

fi(u)dx.

Taking the difference with the equation of ui leads to

∂t(ui − ui)− di∆ui = fi(u)−
1

|Ω|

∫

Ω

fi(u)dx. (45)

We multiply (45) by ui − ui in L
2(Ω) and sum over i = 1, . . . , m to obtain

1

2

d

dt

m∑

i=1

‖ui − ui‖
2
2,Ω +

m∑

i=1

di‖∇ui‖
2
2,Ω =

m∑

i=1

∫

Ω

(
fi(u)−

1

|Ω|

∫

Ω

fi(u)dx

)
(ui − ui)dx. (46)
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Due to the uniform boundedness ‖ui(t)‖∞,Ω ≤ M and the local Lipschitz continuity of fi,
we estimate ∣∣∣∣fi(u)−

1

|Ω|

∫

Ω

fi(u)dx

∣∣∣∣ ≤ |fi(u)− fi(u)|+

∣∣∣∣fi(u)−
1

|Ω|

∫

Ω

fi(u)dx

∣∣∣∣

≤ C(M)|u− u|+
1

|Ω|

∫

Ω

|fi(u)− fi(u)|dx

≤ C(M)|u− u|.

(47)

Therefore the right hand side of (46) can be estimated above by
∣∣∣∣∣

m∑

i=1

∫

Ω

(
fi(u)−

1

|Ω|

∫

Ω

fi(u)dx

)
(ui − ui)dx

∣∣∣∣∣ ≤ C(M)
m∑

i=1

‖ui − ui‖
2
2,Ω

It follows then from (46) and the Poincaré inequality ‖∇h‖22,Ω ≥ CΩ‖h− h‖22,Ω that

d

dt

m∑

i=1

‖ui − ui‖
2
2,Ω + 2

m∑

i=1

diCΩ‖ui − ui‖
2
2,Ω ≤ C(M)

m∑

i=1

‖ui − ui‖
2
2,Ω.

By using di ≥ dmin and choosing dmin large enough so that δ := 2dminCΩ −C(M) > 0 we get

d

dt
‖ui − ui‖

2
2,Ω + δ

m∑

i=1

‖ui − ui‖
2
2,Ω ≤ 0,

and therefore by Gronwall’s lemma
m∑

i=1

‖ui(t)− ui(t)‖
2
2,Ω ≤ e−δt

m∑

i=1

‖ui0 − ui0‖
2
2,Ω.

By the uniform boundedness ‖ui(t)‖∞,Ω ≤M , we get by interpolation for 2 < p <∞

‖h‖p,Ω ≤ ‖h‖
2/p
2,Ω‖h‖

(p−2)/p
∞,Ω

so we get
m∑

i=1

‖ui(t)− ui(t)‖p,Ω ≤ C(M)e−λpt (48)

for some λp > 0. To prove the decay in L∞(Ω)-norm we will use the following estimates of
the heat semigroup

‖etdi∆f‖∞,Ω ≤ C‖f‖∞,Ω and ‖etdi∆f‖∞,Ω ≤ C‖f‖p,Ωt
− n

2p . (49)

From (45) it holds

∂t(ui − ui)− di∆(ui − ui) = h := fi(u)−
1

|Ω|

∫

Ω

fi(u)dx.

From (47) and (48) it holds for all 1 ≤ p <∞

‖h(s)‖p,Ω ≤ C‖u(s)− u(s)‖p,Ω ≤ Ce−λpt. (50)

By Duhamel’s formula

ui(t+ 1)− ui(t + 1) = edi∆(ui(t)− ui(t)) +

∫ 1

0

e(1−s)di∆h(t+ s)ds.
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Taking L∞(Ω) norm of both sides and using (49) and (50) lead to

‖ui(t+ 1)− ui(t+ 1)‖∞,Ω ≤ ‖edi∆(ui(t)− ui(t))‖∞,Ω +

∫ 1

0

∥∥e(1−s)di∆h(t + s)
∥∥
∞,Ω

ds

≤ C‖ui(t)− ui(t)‖p,Ω + C

∫ 1

0

(1− s)−
n
2p‖h(t + s)‖p,Ωds

≤ Ce−λpt + C

∫ 1

0

(1− s)−
n
2p e−λp(t+s)ds

≤ Ce−λpt

[
1 +

∫ 1

0

(1− s)−
n
2p e−λpsds

]

≤ Ce−λpt

by choosing p > n
2
, which proves (5). To get (6) we integrate the equation of ui to have

∂tui =
1

|Ω|

∫

Ω

fi(u)dx = fi(u) + gi(t) with gi(t) =
1

|Ω|

∫

Ω

fi(u)dx− fi(u).

By (47) and (48) we have

|gi(t)| ≤
1

|Ω|

∫

Ω

|fi(u)− fi(u)|dx ≤ C

∫

Ω

|u− u|dx ≤ Ce−λ1t.

�

4. Applications

4.1. Global Attractor Conjecture with large diffusions. By applying Corollary 1.2,
we will show that if the Global Attractor Conjecture holds in the ODE setting of a complex
balanced reaction system, then it is also true for the corresponding PDE setting provided
the diffusions are large enough.

To describe the Global Attractor Conjecture, we consider m chemical species A1, . . . , Am

reacting via R reactions of the form

α1
rA1 + . . .+ αm

r Am
kr−→ β1

rA1 + . . .+ βm
r Am, for all r = 1, . . . , R, (51)

where αi
r, β

i
r ∈ {0}∪[1,∞) are stoichiometric coefficients, kr > 0 is the reaction rate constant.

Let ui(x, t) be the concentration density of Si at position x ∈ Ω ⊂ R
n, a bounded domain

with smooth boundary ∂Ω, and time t > 0. Assuming that the species Ai diffuses at the rate
di > 0, we obtain the following reaction-diffusion system (thanks to the mass action law)

∂tui − di∆ui = fi(u) :=

R∑

r=1

kr(β
i
r − αi

r)u
αr (52)

subject to homogeneous Neumann boundary condition ∇ui · ν = 0 on ∂Ω and nonnegative
initial data ui(x, 0) = ui0(x). Here we use the notation αr = (α1

r , . . . , α
m
r ), βr = (β1

r , . . . , β
m
r )

and

uαr :=

m∏

i=1

u
αi
r

i .
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In parallel, one can also consider the spatially homogeneous systems for (51). More precisely,
denote by vi(t) the concentration of Si at time t > 0. Then we get the differential system

∂tvi = fi(v) (53)

subject to initial data v0 = (vi0)i=1,...,m ∈ (0,∞)m.
One of the main interests in chemical reaction network theory is to determine the dynam-

ical system behavior of (53), or more generally (52). One large class under consideration
is call a complex balanced systems. A spatially homogeneous state u∞ ∈ [0,∞)m is called
a homogeneous equilibrium (or simply an equilibrium) if fi(u∞) = 0 for all i = 1, . . . , m.
An equilibrium u∞ is called complex balanced equilibrium (or CBE for short) if for any
y ∈ {αr, βr}r=1,...,R it holds

∑

r∈{1,...,R}| αr=y

kfr u
αr

∞ =
∑

r∈{1,...,R}| βr=y

kbru
αr

∞ . (54)

The left hand side of (54) represents the total out-flow at the complex y while the right hand
side represents the total in-flow. Note that if u∞ is a CBE of (52) then it is also a CBE of
(53) and vice versa. It is well known that if (51) has a CBE, then all other equilibria are also
complex balanced. Therefore, we call the reactions system (51) (or (52) or (53)) complex
balanced if it has at least one CBE.

One crucial consequence of the complex balance condition is the existence of a dissipating
entropy function (or Lyapunov function) which reads as

E[u|u∞] =
m∑

i=1

ui log
ui
ui∞

− ui + ui∞

for the ODE setting and

E [u|u∞] =

m∑

i=1

∫

Ω

ui log
ui
ui∞

− ui + ui∞dx

for the PDE setting (see [DFT17] for more details). Especially, the entropy function E [u|u∞]
gives a bound of solutions to (52) in L∞((0,∞);L1(Ω)) (see [FT18, Lemma 2.5]), which is
needed for our results in Section 3.

To state the Global Attractor Conjecture, we denote by S = span{βr − αr}r=1,...,m. It is
easy to see that the solution v(t) to (53) satisfies

v(t) ∈ (v0 + S) ∩ R
m
+ for all t > 0,

and (v0 + S) ∩ R
m
+ is called the positive compatibility class. It is known that in the interior

of each compatibility class, there exists a unique CBE u∞. We emphasize that there might
exist (possibly infinitely many) CBE on the boundary of the compatibility class, which will
be called boundary equilibria.

Global Attractor Conjecture. A CBE contained in the interior of a positive com-
patibility class is a global attractor of the interior of that positive class.

Lemma 4.1 (Exponential Convergence to equilibrium). Assume that the reaction network
is complex balanced, and the GAC is true for the ODE setting (53). Then for each positive
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initial data v0, the solution converges exponentially to the positive equilibrium u∞ in the
interior of the corresponding compatibility class, i.e.

m∑

i=1

|vi(t)− ui∞| ≤ Ce−λt for all t > 0,

where C, λ > 0.

Proof. The GAC already implies that limt→∞ vi(t) = ui∞ for all I = 1, . . . , m. It also follows
that

inf
t>0

inf
i=1,...,m

vi(t) > 0. (55)

There are two ways to show the exponential convergence. Firstly, one can wait long enough
for the trajectory to be in a neighborhood of the equilibrium, and then uses the exponential
convergence to equilibrium for the linearized system (see [Tang18]). Second approach is to
use the entropy method using (55) as it was proved in [DFT17, Proposition 2.3]. �

Theorem 4.1. Assume the reaction system (51) is complex balanced. Then if the GAC is
true for the differential system (53), then it is also true for the partial differential system
(52) and moreover, the convergence to equilibrium is exponential, i.e.

m∑

i=1

‖ui(t)− ui∞‖∞,Ω ≤ Ce−λt.

Proof. From Corollary 1.2 we know that the averages of concentrations solve the system

∂tu = f(u) + g(t) with |g(t)| ≤ Ce−γt. (56)

Using a classical result, e.g. [Mar56], this shows that the large time behaviors of (56) and
(53) are the same under the condition u(0) = v(0), or in other words,

lim
t→∞

m∑

i=1

|ui(t)− ui∞| = 0.

From Corollary 1.2 we also get

lim
t→∞

m∑

i=1

‖ui(t)− ui∞‖∞,Ω = 0

which already means that the GAC is true for the PDE setting (52). To get the exponential
convergence, we first apply [DFT17, Remark 3.9] to argue that the solution to (52) converges
exponentially to u∞ in L1(Ω)-norm. The convergence in L∞(Ω) can be obtained similarly
as in Corollary 1.2 so we omit it here. �

4.2. Equilibration for single reversible reactions with boundary equilibria. We
show in this section the application of the global existence and uniform boundedness to
the asymptotic behavior of chemical reactions with boundary equilibria. More precisely, we
consider the reversible reaction

α1A1 + . . .+ αmAm

kb
⇌
kf
β1A1 + . . .+ βmAm
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where Ai, i = 1, . . . , m, are chemical substances, and αi, βi ∈ {0}∪ [1,∞) are stoichiometric
coefficients. Applying mass action kinetics we have the reaction-diffusion system





∂tui − di∆ui = Ri(u), x ∈ Ω, t > 0,

∇ui · ν = 0, x ∈ ∂Ω, t > 0,

ui(x, 0) = ui,0(x), x ∈ Ω,

(57)

where di > 0 are diffusion coefficients, and the reaction terms are

Ri(u) = (βi − αi)

(
kf

m∏

i=1

uαi

i − kb

m∏

i=1

uβi

i

)
. (58)

The initial data are assumed to be nonnegative ui0 ≥ 0 with positive mass, i.e.
∫
Ω
ui0(x)dx >

0.
A the natural assumption is that αi + βi > 0 for all i = 1, . . . , m. From that we define

the index sets I = {i ∈ {1, . . . , n} : αi − βi > 0} and J = {1, . . . , n}\I, to which we assume
that I, J 6= ∅. Thanks to the homogeneous Neumann boundary condition and the form of
nonlinearities (58) we see that the system (57) possesses the following conservation laws

ui(t)

αi − βi
+

uj(t)

βj − αi

=Mij :=
ui,0

αi − βi
+

uj,0
βj − αi

, ∀i ∈ I and j ∈ J

where Mij are called the initial masses, and the average ui is defined as ui =
1
|Ω|

∫
Ω
ui(x)dx.

We remark that from all the conservation laws there are precisely k laws which are linearly
independent, where k = ker{(β1 − α1, . . . , βm − αm)}. It is easy to show that, see e.g.
[FT17, Lemma 3.2], for fixed positive initial masses Mij > 0, there exists a unique positive
equilibrium u∞ = (u1∞, . . . , um∞) ∈ (0,∞)m satisfying

kf

m∏

i=1

uαi

i∞ = kb

m∏

i=1

uβi

i∞, and
ui∞

αi − βi
+

uj∞
βj − αj

=Mij , ∀i ∈ I and j ∈ J. (59)

It is remarked, however, that there might exist many boundary equilibria, i.e. u∗ ∈ ∂Rm
+

satisfying the conditions in (59).

It’s obvious that the nonlinearities satisfy the assumptions (A1)–(A3). The global exis-
tence of classical solutions to (S) is in general open, while the global existence of a renor-
malized solution was shown in [Fis15].

Concerning the large time behavior of solutions to (S), when αiβi = 0 for all i = 1, . . . , m,
it was shown in [FT17] and [PSZ17] that all renormalized solutions to (S) converge expo-
nentially to the unique positive equilibrium defined in (59). This is also a consequence of
the more general results for complex balanced reaction-diffusion systems in [FT18]. This is
due to the fact that when αiβi = 0 for all i = 1, . . . , m, (59) possesses a unique positive
equilibrium and there is no boundary equilibrium.

When it happens that αiβi 6= 0 for some i ∈ {1, . . . , m}, the system (S) might have, in
additional to the positive equilibrium, a boundary equilibrium, which makes the convergence
to the positive one more delicate. It was in fact shown in [PSU18] that the renormalized
solutions to (S) in this case either converge to the positive or to a boundary equilibrium. It
was moreover shown that, if the solutions are uniformly bounded in time in L∞(Ω)-norm,
i.e. lim supt→∞ ‖ui(t)‖∞,Ω < +∞ for all i = 1, . . . , m, then they will converge to the positive
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equilibrium. Thanks to the Theorem 1.1, this can be obtained in the case that the diffusion
coefficients are close enough to each other. For convenient, we define

µ = max{α1 + . . .+ αm; β1 + . . .+ βm}. (60)

It follows immediately that the nonlinearities Ri(u) defined in (58) satisfy the growth con-
dition (A4). Therefore, we have

Theorem 4.2. Assume that the conditions (14) and (15) with µ is defined in (60). Assume
moreover that ui0 > 0 for all i = 1, . . . , m. Then (S) has a unique global classical solution
which is uniformly bounded in time, i.e.

sup
i=1,...,m

sup
t>0

‖ui(t)‖∞,Ω < +∞. (61)

Moreover, this solution converges exponentially to the positive equilibrium defined by (59) in
L∞-norm, i.e.

m∑

i=1

‖ui(t)− ui∞‖∞,Ω ≤ Ce−λt, for all t > 0,

for some C, λ > 0.

Proof. The global existence and uniform boundedness (61) follow directly from Theorem 1.1,
while the exponential convergence in L1-norm follows from [PSU18]. More precisely,

‖ui(t)− ui∞‖1,Ω ≤ C1e
−λ1t, for all i = 1, . . . , m and t > 0,

where C1, λ1 > 0. It remains to show the exponential convergence in L∞-norm. Firstly, by
interpolation inequality and the uniform boundedness in L∞-norm, we have for all 1 < p <
∞,

‖ui(t)− ui∞‖p,Ω ≤ ‖ui(t)− ui∞‖
1/p
1,Ω‖ui(t)− ui∞‖

(p−1)/p
∞,Ω ≤ Cpe

−λpt

where λp = λ1/p. Let S(t) = et(di∆) be the heat semigroup subject to homogeneous Neumann
boundary condition, we have

‖S(t)f‖∞,Ω ≤ Ct−n/(2p)‖f‖p,Ω.

From the uniform bounds (61) and Ri(u∞) = 0, it follows that

‖Ri(u)‖p,Ω = ‖Ri(u)−Ri(u∞)‖p,Ω ≤ C‖u− u∞‖p,Ω

By using the fact that ui∞ is also a solution to (57) we have

ui(t + 1)− ui∞ = S(1)(u(t)− ui∞) +

∫ 1

0

S(1− s)Ri(u(t+ s))ds.

Hence

‖ui(t + 1)− ui∞‖∞,Ω ≤ C‖ui(t)− ui∞‖p,Ω + C

∫ 1

0

(1− s)−n/(2p)‖u(t+ s)− u∞‖p,Ωds

≤ Ce−λpt + C

∫ 1

0

(1− s)−n/(2p)e−λp(t+s)ds

≤ Ce−λpt

[
1 +

∫ 1

0

(1− s)−n/(2p)ds

]

≤ Ce−λpt

by choosing p > n/2 at the last step. The proof is therefore complete. �
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4.3. Close-to-equilibrium regularity. Consider the reaction-diffusion system (52) arising
from chemical reaction network theory. A global solution to (52) of any kind is a challenging
question as there are not enough good a priori estimates available. The most general result
in this direction is the recent work of Fischer [Fis15] in which he proved the global existence
of renormalized solutions assuming the system is dissipating entropy. This assumption is
satisfied when, for example, the reaction network is complex balanced. Global classical or
strong solutions are obtained under more restrictive conditions, for instance the nonlinearities
are at most quadratic [FMT, CGV19, Sou18]. Recently, there’s a regime where (52) is
considered with initial data which is close to an equilibrium. More precisely, let r be the
growth rate of nonlinearities, it was shown in [CC17] that with µ = 2 and n ≤ 4, (52) has
a global classical solution when the initial data is close to an equilibrium in L2-norm. This
result was later improved in [Tang18] for µ = 1 + 4/n and n ≤ 4 still with the L2-close-
to-equilibrium assumption. In this section, we apply the results in Section 2 to show that
by assuming the closeness to equilibrium in L∞-norm, we can remove the restriction on the
dimension as well as the growth of nonlinearities.

Theorem 4.3. Assume that the system (52) has an equilibrium u∞ ∈ [0,∞)N , i.e. fi(u∞) =
0 for all i = 1, . . . , m. Moreover, assume that there exists M > 0 with the property

sup
t≥0

‖ui(t)‖1,Ω ≤ M for all i = 1, . . . , m. (62)

Then there exists ε > 0 such that, for all initial data u0 such that ‖u0 − u∞‖∞,Ω ≤ ε, (52)
has a unique global classical solution which is uniformly bounded in time, i.e.

sup
t≥0

‖u(t)‖∞,Ω ≤ C.

Moreover, if the system is complex balanced, then the solution converges exponentially to
equilibrium in L∞-norm, i.e.

m∑

i=1

‖ui(t)− ui∞‖∞,Ω ≤ Ce−λt

for C, λ > 0.

Remark 4.1. The L1-bound (62) is frequently satisfied in chemical reaction networks. For
instance, if the network is complex balanced, then (62) follows from the dissipation of entropy,
see [FT18, Lemma 2.5].

Proof. We define wi(x, t) = ui(x, t) − ui∞, and consequently obtain the system for w =
(w1, . . . , wm) 




∂twi − di∆wi = fi(w + u∞),

∇wi · ν = 0,

wi(x, 0) = ui0(x)− ui∞.

(63)

By the assumption we have ‖wi(0)‖∞,Ω ≤ ε. Therefore, Corollary 1.3 is applicable, i.e.,
for ε small enough, the system (63) has a unique global classical solution which is uni-
formly bounded in time. The same follows immediately for system (52) due to the definition
wi(x, t) = ui(x, t)− ui∞.



26 B. CUPPS, J. MORGAN, AND B.Q. TANG

To show the convergence to equilibrium, we first use the spectral gap in [Tang18, Lemma
3.3] to get that

m∑

i=1

‖ui(t)− ui∞‖2,Ω ≤ Ce−γt

for C, γ > 0. The convergence in L∞-norm follows similarly the arguments in Theorem 4.2,
so we omit it here. �
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espaces Lp, J. Functional Anal., 72 (1987) pp. 252– 262.
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