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Abstract: We consider a problem of optimal distribution of conductivities in a system governed by a non-local
diffusion law. The problem stems from applications in optimal design and more specifically topology optimization.
We propose a novel parametrization of non-local material properties. With this parametrization the non-local
diffusion law in the limit of vanishing non-local interaction horizons converges to the famous and ubiquitously
used generalized Laplacian with SIMP (Solid Isotropic Material with Penalization) material model. The optimal
control problem for the limiting local model is typically ill-posed and does not attain its infimum without
additional regularization. Surprisingly, its non-local counterpart attains its global minima in many practical
situations, as we demonstrate in this work. In spite of this qualitatively different behaviour, we are able to
partially characterize the relationship between the non-local and the local optimal control problems. We also
complement our theoretical findings with numerical examples, which illustrate the viability of our approach to
optimal design practitioners.

Keywords: Nonlocal optimal design, nonlocal optimal control in the coefficients, convergence to local problems,
numerical approximation of nonlocal problems.

1 Introduction
Nonlocal problems receive a lot of attention nowadays owing to a wide range of applications they have in
a variety of contexts. In particular, we mention micromechanics [Rog91], image processing [GO08], phase
transitions [AB98], pattern formation [Fif03], population dispersal [CCEM07], optimal design [AM15a] and shape
optimization [FBRS18], optimal control [DG14] and inverse problems [DG16]; see also a very recent monograph
on the subject [Du19]. Among nonlocal problems, fractional or nonlocal diffusion plays a central role. It has
attracted enormous interest and a great deal of work has been done over the past twenty years. The number of
references on the subject and connections of nonlocal diffusion with remarkable applications is really overwhelming.
We refer the interested readers to the monographs [AVMRTM10,BV16] and the references therein. In the context
of continuum mechanics the non-local modelling goes back at least to the Eringen’s model [Eri02,EB18], and
more recently has been focused on peridynamical modelling [Kun75,Sil00,MO17,Voy14,EW07,MD15]. These
latter models refrain from using the gradients of the state fields with the goal of unified description of singular
phenomena, such as fracture or dislocation. When considering scalar equations, such as for example the steady
state heat equation, peridynamics equations may essentially be seen as a nonlocal diffusion equations on bounded
domains [AM10,AM15b].

In this paper we consider a prototypical optimal design problem for diffusion phenomena, in which one has
to determine the best way of distributing conducting materials inside a given computational domain. For models
governed by the local diffusion phenomena such problems have been studied for a long time and are quite well
understood, see for example [All12,BS03,Ped16] and references therein. As a very rough summary we can say
that these problems are typically ill-posed and do not attain their infimum. One possible way of dealing with this
issue is to bring the limits of minimizing sequences into consideration and interpret them as composite materials
obtained from mixing the original materials in the sense described by the theory of homogenization. Another
option is to restrict the set of considered material distributions by introducing constraints or penalty functions
with regularizing effect. An extremely successful example of the latter approach, which is nowadays widely
utilized in engineering practice, is the SIMP (Solid Isotropic Material with Penalization) material parametrization
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model combined with additional regularization techniques [BS03,BK88,Bou01,Sig97]. An interesting recent
study, which can be interpreted in the light of comparing the two outlined approaches in the context of the
steady state heat conduction, is [YSS18].

Research in optimal design of systems described by the non-local governing equations is in its infancy. Our
present model is inspired by the recent studies [AM15a,AM17], where a very similar optimal design problem for
a nonlocal diffusion state law was analyzed. The main novelty of our work is the way in which the material
properties (conductivities) enter into the model. We chose a nonlocal interpolation of material properties that
allows us to establish a natural link between the nonlocal optimal design problem and a local one in which
material properties are interpolated by the SIMP scheme. Our main objective is to analyze this nonlocal optimal
design problem and to characterize its relationship with the local optimal design problem as the nonlocal
parameter (the interaction horizon) goes to zero. We have documented our preliminary findings in a brief
note [EB19], where we have been primarily concerned with the qualitative relation between our non-local model
and a particular heuristic regularization method (“sensitivity filtering”, see [Sig97]) for the local model with
SIMP. This work includes the technical results, proofs, and numerical experiments, which have been omitted
from [EB19] owing to the space requirements.

The outline of the paper is as follows. In Section 2 we formulate the non-local state equations and discuss
their well-posedness. We also state the nonlocal optimal design problem, which is going to be the main subject of
our study, as well as its local counterpart. Section 2 also includes Theorem 3, an interesting result illustrating the
continuity of the conductivity-to-state map for the non-local problem. In Section 3 we include several existence
results for the nonlocal optimal design problem depending on the SIMP penalization parameter. In Section 4 we
address the convergence of the nonlocal problems to the local one and the connection of our proposed model
with SIMP in the local case. Finally, in Section 5, a numerical approach to the nonlocal optimal design problems
is described and several numerical examples are presented.

2 Problem formulation and perliminaries

2.1 Local control in the conduction coefficients
We begin our discussion with a well understood optimal control problem in the conduction coefficients of
generalized Laplace equation, or topology optimization through material distribution, see for example [CM70,
All12,BS03] and references therein. This problem will serve us both as a reference physical model and also as a
limiting problem later on.

Let Ω ⊂ Rn, n ≥ 2, be an open, bounded, and connected domain. In this domain we consider the generalized
Laplace equation with a volumetric source f ∈ L2(Ω), homogeneous Dirichlet boundary conditions, and a
spatially heterogeneous diffusion (conduction) coefficient κloc. Its weak solution u ∈ U0 = W 1,2

0 (Ω) satisfies the
variational statement

aκloc(u, v) = `(v), ∀ v ∈ U0, (1)

where the parametric bilinear form aκloc and the linear functional ` are given by

aκloc(u, v) =

∫
Ω

κloc(x)∇u(x) · ∇v(x) dx, and

`(v) =

∫
Ω

f(x)v(x) dx.

(2)

We recall that
u solves (1) ⇐⇒ u = arg min

v∈U0
Iκloc(v) :=

[
1

2
aκloc(v, v)− `(v)

]
, (3)

where Iκloc is an associated quadratic energy functional. We will utilize the shorthand notation S loc(κloc) :=
arg minv∈U0 Iκloc(v) for the control coefficient-to-state operator for this system.

In connection with this governing equation we consider a problem of optimal distribution of conductive
material in Ω under simple constraints. Specifically, we will define the following convex set of admissible material
distributions:

A =

{
ρ ∈ L∞(Ω) | ρ ≤ ρ(·) ≤ ρ, a.e. in Ω,

∫
Ω

ρ(x) dx ≤ γ|Ω|
}
, (4)

where γ ∈]ρ, ρ[ is a given volume fraction, and 0 < ρ < ρ < ∞ are given bounds.1 We assume that the local
material conductivity κloc is related to the control parameter ρ ∈ Aδ through the so-called SIMP (Simple
Interpolated Material with Penalization) model, see [BS03,All12]: κloc(x) = ρp(x), where p ≥ 1 plays a role of a

1Our setup can be easily generalized to the situation when ρ, ρ ∈ L∞(Ω).
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penalty parameter in certain optimal design problems. Each ρ ∈ Aδ is therefore mapped into κloc satisfying the
bounds κ = ρp ≤ κloc ≤ κ = ρp.

For a given performance functional J : A× U0 → R we consider the following optimization problem:

minimize
ρ∈A

J(ρ,S loc(ρp)). (5)

Note that the use of “minimize” instead of “inf” does not automatically mean that the infimum is attained in (5).
In fact, in most interesting situations this is not the case without additional regularization of the problem (5).
We will return to this issue in Section 3.

Of particular interest to us will be the case of J(ρ, u) = `(u), corresponding to compliance minimization.
Note that in this case the reduced compliance can be expressed in a variety of ways:

c(ρ) := `(S loc(ρp)) = aρp(S loc(ρp),S loc(ρp)) = −2Iρp(S loc(ρp)). (6)

The last expression in conjunction with (3) allows us to state the compliance minimization problem as a saddle
point problem, which will be used later on.

2.2 Non-local state equation
We will now introduce a non-local analogue of the local governing equations (1), (2). We will use δ > 0 to
denote the non-local interaction horizon, and B(x, δ) = { y ∈ Rn : |x− y| < δ } to denote an open ball of radius
δ centered at x ∈ Rn. Let Ωδ = ∪x∈ΩB(x, δ) be the set of points located within distance δ from points in Ω, and
Γnl = Ωδ \ Ω be the “non-local boundary” of Ω. We consider nonlocal linear diffusion equations, that in this
scalar framework can also be seen as peridynamics equations. Similarly to (1), they will be formulated with the
help of the following parametric bilinear form aδ,κ(·, ·):

aδ,κ(u, v) =

∫
Ωδ

∫
Ωδ

κ(x, x′)Aδ(|x− x′|)
u(x)− u(x′)

|x− x′|
v(x)− v(x′)

|x− x′|
dxdx′, (7)

while we use the same linear functional `(·) defined in (2). In the equations above, κ ∈ L∞(Ωδ × Ωδ) is a
“nonlocal conductivity”, and Aδ : R+ → R+ is a radial kernel satisfying certain conditions. More precisely, we
assume that

κ ∈ Kδ = { κ̃ ∈ L∞(Ωδ × Ωδ) | κ ≤ κ̃(x, x′) = κ̃(x′, x) ≤ κ,∀x, x′ ∈ Ωδ }, (8)

for some 0 < κ < κ < +∞2, and that Aδ satisfies the following conditions:

1

n

∫
Rn
Aδ(|x|) dx = 1, (9)

suppAδ(| · |) ⊂ B(0, δ), ∀ δ > 0, (10)

and there exists s ∈ (0, 1) and cδ > 0 such that

Aδ(|x|) ≥
cδ

|x|n+2s−2
, ∀ x ∈ B(0, δ/2) \ {0}, δ > 0. (11)

Let Uδ = {u ∈ L2(Ωδ) | aδ,1(u, u) < +∞}, and Uδ0 be the topological closure of C∞c (Ω) (where we extend
the functions in C∞c (Ω) by 0 outside of Ω) in Uδ with respect to the semi-inner product aδ,1(·, ·). Since the
nonlocal conductivities are uniformly bounded from above and away from zero, for any κ ∈ Kδ and u ∈ Uδ we
have the estimates

κaδ,1(u, u) ≤ aδ,κ(u, u) ≤ κaδ,1(u, u).

Consequently, u ∈ Uδ if and only if ‖u‖L2(Ωδ) < +∞ and aδ,κ(u, u) < +∞. In this notation, the non-local
governing equations we will study can be stated as follows: find u ∈ Uδ0 such that

aδ,κ(u, v) = `(v), ∀v ∈ Uδ0 . (12)
2Dependence on δ in the definition of the set Kδ could be omitted by considering nonlocal conductivities defined on the whole

space Rn × Rn.

3



2.3 Non-local control in the conduction coefficients
We will now introduce a non-local analogue of (5), where the local governing equations (1), (2) are replaced
with their non-local analogue introduced in the previous section. Similarly to (4), we define the following convex
set of admissible material distributions:

Aδ =

{
ρ ∈ L∞(Ωδ) | ρ ≤ ρ(·) ≤ ρ, a.e. in Ωδ,

∫
Ω

ρ(x) dx ≤ γ|Ω|
}
, (13)

where the parameters are exactly as in (4). We still assume that the local material conductivity κloc satisfies the
SIMP model κloc(x) = ρp(x), x ∈ Ωδ. In addition, we assume that the non-local conductivity κ(x, x′) entering (12)
is simply a geometric mean of κloc(x) and κloc(x′), that is, κ(x, x′) =

√
κloc(x)κloc(x′) = ρp/2(x)ρp/2(x′). For a

given performance functional J : Aδ × Uδ → R we consider the following optimization problem:

minimize
(ρ,u)∈Aδ×Uδ0

J(ρ, u),

subject to u solving (12) with κ(x, x′) = ρp/2(x)ρp/2(x′).
(14)

We will still refer to the case J(ρ, u) = `(u) as the compliance minimization problem.

Remark 1. Essentially, the only difference between the non-local optimal design problem considered here and
the one in [AM15a] is the way the control variables enter the bilinear form. In order to preserve the symmetry
of the form with respect to (x, x′) one takes an average between the local conductivities at x and x′ to be the
non-local conductivity in the bilinear form defining the non-local governing equations. The authors of [AM15a]
take an arithmetic mean, whereas we use a geometric mean (for p = 1) for the same purpose. Advantages of this
choice will become clear when we discuss the relationship between the nonlocal problem described in this section
and the incredibly popular and successful SIMP method for (local) optimal design outlined in Section 2.1.

2.4 Well-posedness and continuity of the conductivity-to-state operator
In this subsection we recall a couple of known results about the non-local equation (12).

Under the assumptions (9)–(11), aδ,1(·, ·) defines an inner product on Uδ0 thereby making it a Hilbert
space [AM15b]. We denote by ‖ · ‖Uδ0 the norm induced by this inner product. Furthermore, owing to (11),
there are constants c̃δ > 0, ĉδ > 0 independent from u such that for any δ > 0, κ ∈ Kδ and u ∈ Uδ0 we have the
inequalities

aδ,κ(u, u) ≥ cδ0κ
∫

Ωδ

∫
Ωδ∩B(x,δ/2)

(u(x)− u(x′))2

|x− x′|n+2s
dx′ dx ≥ c̃δκ

∫
Ωδ

∫
Ωδ

(u(x)− u(x′))2

|x− x′|n+2s
dx′ dx

≥ ĉδκ‖u‖2L2(Ω),

(15)

where the second inequality is a consequence of [BMC14, Proposition 6.1] and the third inequality is established
in [BMC14, Lemma 6.2]. When combined with Cauchy–Bunyakovsky–Schwarz inequality, (15) implies that
` : Uδ0 → R is a continuous linear functional with respect to ‖ · ‖Uδ0 . Consequently we have verified the necessary
assumptions for the application of Lax–Milgram Lemma (see, for example, [Bre10]) allowing us to conclude the
following.

Theorem 2. For each δ ∈]0, δ0[, κ ∈ Kδ and f ∈ L2(Ω) there is a unique solution u ∈ Uδ0 of (12). Furthermore,
this solution minimizes the associated quadratic energy functional:

u = arg min
v∈Uδ0

Iδ,κ(v) :=

[
1

2
aδ,κ(v, v)− `(v)

]
. (16)

This well-posedness result allows us to univocally define the coefficient-to-state operator Sδ(κ) :=
arg minv∈Uδ0 Iδ,κ(v), exactly as in the local case. Furthermore, we put the reduced non-local compliance to be

cδ(ρ) := `(Sδ(κ)) = aκ(Sδ(κ),Sδ(κ)) = −2Iδ,κ(Sδ(κ)), (17)

where κ(x, x′) = ρp/2(x)ρp/2(x′).
Nonlocal diffusion and peridynamics equations have been studied extensively. Existence results for a much

more general class of nonlinear and nonlocal variational principles have been obtained in [BMC14]. Particularly,
well-posedness of equation (12) has been shown in [AM15b, Theorem 1.2] for slightly more general conditions on
the kernel Aδ. More specifically, hypothesis (11) could be further relaxed without sacrificing the conclusions of
Theorem 2. Even though our assumption (11) is not optimal if one is only concerned with solvability of the
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non-local governing equations, it is convenient for us since it implies the compact embedding of Uδ0 into L2(Ωδ),
and ultimately a certain continuity of the coefficient-to-state operator for the non-local equation (12).

Indeed, let us revisit the string of inequalities (15). Note that the third term in (15) is nothing else but the
Gagliardo seminorm |u|2W s,2(Ωδ)

. Therefore, in addition to the continuous embedding of Uδ0 into L2(Ωδ), we
also have a continuous embedding of Uδ0 into the fractional Sobolev space W s,2(Ωδ). Since the latter space is
compactly embedded into L2(Ωδ) (see [DNPV12, Theorem 7.1]), we also have a compact embedding of Uδ0 into
L2(Ωδ).

Let us now discuss the conductivity-to-state operator for the non-local equation (12). In the case of the classical,
local diffusion (generalized Laplace) equation, the conductivity-to-state operator S loc is famously not continuous
with respect to weak∗ convergence of conductivities in Kδ. In fact a stronger H-convergence, or G-convergence in
our self-adjoint case, has been specifically defined to obtain such a result [Mur78,MT97,Spa67,Tar79a,Tar79b].
The notion of H-convergence has been recently extended to the nonlocal p-Laplacian in [FBRS17], proving its
sequential compactness for bounded coefficients. In stark contrast, the conductivity-to-state operator S for the
non-local equation (12) is continuous with respect to weak∗ convergence of conductivities in Kδ. This fact has
been established in [AM15a, Theorem 6]. For the sake of completeness and clarity we include a simpler proof of
this result, which is in the same spirit as the simple characterization of H-convergence for fractional p-Laplacian
equations given by the authors in [BE19].

Theorem 3. Let us fix δ ∈]0, δ0[ and f ∈ L2(Ω). Consider a sequence of conductivities κj ∈ Kδ, together with
the corresponding sequence uj = Sδ(κj) ∈ Uδ0 of solutions to (12). Assume that κj ⇀ κ̂, weak∗ in L∞(Ωδ × Ωδ),
and let û = S(κ̂) ∈ Uδ0 be the corresponding solution to (12). Then, we have limj→∞ ‖uj − û‖L2(Ωδ) =
limj→∞ ‖uj − û‖Uδ0 = 0.

Proof. Recall that û is the unique minimizer of Iδ,κ̂, and uj is that of Iδ,κj . Keeping in mind that κj ⇀ κ̂, weak∗
in L∞(Ωδ × Ωδ), and the inclusion

Aδ(|x− x′|)
(û(x)− û(x′))2

|x− x′|2
∈ L1(Ωδ × Ωδ)

we have the inequality
lim sup
j→∞

Iδ,κj (uj) ≤ lim
j→∞

Iδ,κj (û) = Iδ,κ̂(û). (18)

Let us now extract a subsequence {(κj′ , uj′)}, j′ = 1, 2, . . . from the original sequence such that
lim infj→∞ Iδ,κj (uj) = limj′→∞ Iδ,κj′ (uj′). Note that as a direct consequence of (15) we get an uniform

estimate κ‖uj‖2Uδ0 ≤ aδ,κj (uj , uj) = `(uj) ≤ ĉ
−1/2
δ (κ/κ)1/2‖f‖L2(Ω)‖uj‖Uδ0 , j = 1, 2, . . . Therefore there exists

u ∈ Uδ0 and a further subsequence, labelled by {uj′′}, j′′ = 1, 2, . . ., such that

uj′′ ⇀ u,weakly in Uδ0 , uj′′ → u, strongly in L2(Ωδ), and uj′′(x)→ u(x), a.e. in Ωδ.

Let us define the finite measures

µj(E) =

∫
E

κj(x, x
′) dxdx′ =

∫
Ωδ×Ωδ

χE(x, x′)κj(x, x
′) dx dx′, j = 1, 2, . . . and

µ̂(E) =

∫
E

κ̂(x, x′) dxdx′ =

∫
Ωδ×Ωδ

χE(x, x′)κ̂(x, x′) dxdx′,

where E ⊂ Ωδ × Ωδ is an arbitrary Lebesgue measurable set and χE ∈ L1(Ωδ × Ωδ) is its characteristic
function. Weak∗ convergence of κj to κ̂ implies the strong convergence of measures limj→∞ µj = µ̂ (i.e.
limj→∞ µj(E) = µ̂(E) for any measurable set E ⊂ (Ωδ × Ωδ)). Furthermore, in view of (18) and the continuity
of ` the non-negative sequence aδ,κj (uj , uj) = 2[Iδ,κj (uj) + `(uj)], j = 1, 2, . . . is bounded from above. Therefore
we can apply the generalized Fatou’s lemma [Roy88, Prop. 17, pg. 269]:

lim inf
j→∞

Iδ,κj (uj) = lim
j′′→∞

[
1

2

∫
Ωδ×Ωδ

Aδ(|x− x′|)
(uj′′(x)− uj′′(x′))2

|x− x′|2
dµj′′

]
− lim
j′′→∞

`(uj′′)

≥ 1

2

∫
Ωδ×Ωδ

Aδ(|x− x′|)
(u(x)− u(x′))2

|x− x′|2
dµ̂− `(u) = Iδ,κ̂(u) ≥ Iδ,κ̂(û).

In particular, limj→∞ Iδ,κj (uj) = Iδ,κ̂(û). The strong convergence of uj towards û in U , and owing to the
continuous embedding also in L2(Ωδ), follows from the already established facts as follows:

0 ≤ lim sup
j→∞

κ‖uj − û‖2Uδo ≤ lim
j→∞

[aδ,κj (uj , uj)︸ ︷︷ ︸
=−2Iδ,κj (uj)

−2aδ,κj (uj , û) + aδ,κj (û, û)︸ ︷︷ ︸
=2Iδ,κj (û)

] = −2Iδ,κ̂(û) + 2Iδ,κ̂(û) = 0.
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3 Existence of optimal conductivity distributions
Existence of solutions for the optimization problem (14) in the special case of compliance minimization, which
corresponds to J(ρ, u) = `(u), has been briefly outlined in [EB19]. For the sake of keeping this manuscript
self-contained, we include the short proofs of these results here. We also establish existence of solutions to (14)
for more general objective functions, but for a specific penalization value p = 2.

3.1 Compliance minimization, convex case: p = 1

Let us first consider the convex case of compliance minimization, which is obtained by setting p = 1, J(ρ, u) = `(u)
in (14). The argument appeals to the convexity of the problem3, see [CM70].

Proposition 4. The compliance minimization problem (14) (that is, J(ρ, u) = `(u)), admits an optimal solution
(ρ∗, u∗) ∈ Aδ × Uδ0 for p = 1.

Proof. In view of the existence of states for every conductivity distribution ρ ∈ Aδ, and also since these states
satisfy the energy minimization principle (16), our optimal design problem can be equivalently stated as the
following saddle point problem:

max
ρ∈Aδ

min
u∈Uδ0

Iδ,κ(u),

where κ(x, x′) = ρ1/2(x)ρ1/2(x′). Note that the map R2
+ 3 (ξ, η) 7→ ξ1/2η1/2 ∈ R is concave. Consequently, the

map Aδ 3 ρ 7→ Iδ,κ(u) ∈ R is concave and continuous (with respect to L∞(Ωδ)-norm) for each u ∈ Uδ0 , where
continuity is owing to the dominated Lebesgue convergence theorem. Therefore, the map Aδ 3 ρ 7→ Iδ,κ(u) ∈ R
is weak∗ sequentially upper semicontinuous in L∞(Ωδ). This property is preserved under taking the infimum,
therefore Aδ 3 ρ 7→ minu∈Uδ0 Iδ,κ(u) ∈ R is weak∗ sequentially upper semicontinuous in L∞(Ωδ). Finally, the set
Aδ is non-empty, closed and convex in L∞(Ωδ), thereby also weak∗ sequentially compact. It only remains to
apply the Weierstrass’ existence theorem to conclude the proof.

3.2 Compliance minimization, nonconvex case: 1 < p ≤ 2

Contrary to the case p = 1, where lower semicontinuity in the appropriate weak∗ topology holds in the local case
thereby ensuring the existence of optimal solutions [CM70], for p > 1 the nonlinear dependence on the control
variable in the state equation destroys these properties. Consequently, additional reqularization is required to
guarantee the existence of optimal solutions for the local compliance minimization problem with SIMP, which is
also confirmed and reflected in numerous numerical algorithms based on SIMP method [All12,BS03]. Surprisingly,
the non-local compliance minimization problem still attains its infimum even in the non-convex case 1 < p ≤ 2.
We begin with the following simple statement.

Lemma 5. The map Aδ 3 ρ 7→ ρ(x)ρ(x′) ∈ L∞(Ωδ × Ωδ) is sequentially continuous in the weak∗ topology of
L∞.

Proof. Consider a sequence ρk ∈ Aδ, k = 1, 2, . . . with ρk ⇀ ρ̂, weak∗ in L∞(Ωδ). Let us take an arbitrary
ψ ∈ L1(Ωδ×Ωδ). Owing to Fubini’s theorem, the sequence φk(x) =

∫
Ωδ
ψ(x, x′)ρk(x′) dx′, k = 1, 2, . . ., converges

towards φ̂(x) =
∫

Ωδ
ψ(x, x′)ρ̂(x′) dx′, for almost all x ∈ Ωδ. As the elements of this sequence are dominated

by an L1(Ωδ) function ρ
∫

Ωδ
|ψ(x, x′)|dx′, Lebesgue’s dominated convergence theorem applies implying that

limk→∞ ‖φk − φ̂‖L1(Ωδ) = 0. Finally,

0 ≤ lim
k→∞

∣∣∣∣ ∫
Ωδ

∫
Ωδ

ψ(x, x′)[ρk(x′)ρk(x)− ρ̂(x′)ρ̂(x)] dx′ dx

∣∣∣∣ = lim
k→∞

∣∣∣∣ ∫
Ωδ

[φk(x)ρk(x)− φ̂(x)ρ̂(x)] dx

∣∣∣∣
≤ lim
k→∞

∣∣∣∣ ∫
Ωδ

φ̂(x)[ρk(x)− ρ̂(x)] dx

∣∣∣∣+ lim
k→∞

ρ‖φk − φ̂‖L1(Ωδ) = 0.

With this in mind, we can extend Proposition 4 to the non-convex case.

Proposition 6. The compliance minimization problem (14) (that is, J(ρ, u) = `(u)), admits an optimal solution
(ρ∗, u∗) ∈ Aδ × Uδ0 for 1 < p ≤ 2.

Proof. As in the proof of Proposition 4 it is sufficient to establish the weak∗ sequential upper semicontinuity of
the map Aδ 3 ρ 7→ Iδ,κ(u) ∈ R with κ(x, x′) = ρp/2(x)ρp/2(x′), since upper semicontinuity is preserved under
taking minimum over u ∈ Uδ0 . The required property follows easily from the norm-continuity and concavity of
the map Kδ 3 κ̃ 7→ Iδ,κ̃p/2(u) ∈ R for 0 < p ≤ 2 and Lemma 5.

3Note that the same arguments apply to the practically uninteresting case 0 < p < 1 as well.
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3.3 More general objective functions: p = 2

SIMP has been successfully utilized within other contexts than compliance minimization, see [BS03]. The
non-local optimal design problem we consider admits optimal solutions without the need for further regularization
in the special case p = 2 for a wide class of objective functions.

Proposition 7. Let p = 2, and assume that the objective function (ρ, u) 7→ J(ρ, u) is sequentially lower
semicontinuous with respect to weak∗ topology of L∞(Ωδ) × norm topology of Uδ0 . Then the optimal design
problem (14) admits an optimal solution (ρ∗, u∗) ∈ Aδ × Uδ0 .

Proof. In view of weak∗ compactness of Aδ in L∞(Ωδ), in order to apply the direct method of calculus of
variations and conclude the existence of optimal solutions it is sufficient to establish that for an arbitrary
minimizing sequence (ρk, uk) ∈ Aδ × Uδ0 with ρk ⇀ ρ̂, weak∗ in L∞(Ωδ), we have the corresponding convergence
uk → û in Uδ0 , where û = Sδ(κ̂) with κ̂(x, x′) = ρ̂(x)ρ̂(x′). However, this follows immediately from Theorem 3 in
view of Proposition 5.

4 Convergence to the local problem as δ → 0: connection to SIMP
We will now turn our attention to the relationship between the non-local compliance minimization problem and
the local one, which arizes as a natural candidate for the limiting object for vanishing non-local interaction
horizons δ → 0. More specifically, we would like to understand whether infimum values of the nonlocal problems
converge to the infimum of the local problem, and/or whether sequences of minimizers of the nonlocal problems
converge towards minimizers of the local problem. The standard framework for studying variational convergence
of functionals, which is equipped with the precise vocabulary for formulating and answering such questions, is
that of Γ-convergence [Bra02]. Unfortunately, in our situation it is impossible to expect the local compliance
minimization problem to be the Γ-limit of the nonlocal compliance minimization problems for any p ∈ [1, 2].
Indeed, the Γ-limit is always a lower semicontinuous functional in the topology in which the Γ-convergence is
set [Bra02]. However, the local compliance functional in the presense of SIMP penalization with p > 1 is not
lower semicontinuous in a relevant topology. This is precisely the fundamental reason for the lack of optimal
solutions to the local compliance minimization problem in this situation, the fact which is well documented and
understood in the literature [BS03,All12]. In spite of this unfortunate insurmountable obstacle, in this section we
would like to investigate what kind of relationship between the two problems can be salvaged for any p ∈ [1, 2].

In order to succinctly discuss convergence of minimizers it would be convenient to put them into the same
function space, which is not a priori the case given the fact that Ωδ decreases to Ω as δ → 0. Since we are
only concerned with small δ > 0, we fix an arbitrary δ0 > 0 and will only consider δ ∈]0, δ0[. This allows us to
consider material distributions to be elements of the “largest” space L∞(Ωδ0), extending them by ρ outside of
their domain of definition Ωδ, 0 < δ < δ0. (The same applies to the limiting local model, if we “by continuity”
put Ω0 = Ω.) In a similar fashion we will extend the state functions by 0 outside of their domain of definition
Ωδ, 0 ≤ δ < δ0.

With such an extension we have that both cδ and c are defined on a subset of the same function space,
L∞(Ωδ0), which we equip with weak∗ topology. Convergence δ → 0 will be understood as convergence for any
sequence δj → 0 as j →∞.

4.1 “Γ-lower semi-continuity”
The first result is in the spirit of the lim inf-inequality of Γ-convergence, but with the unfortunate exception that
the functional arguments do not converge in the natural topology of the function space we work with, expect for
p = 1.

Proposition 8. Let ρδ ∈ L∞(Ωδ0) be such that ρ ≤ ρδ(x), ρ(x) ≤ ρ for almost all x ∈ Ωδ0 . Assume that
ρpδ ⇀ ρp, weak∗ in L∞(Ωδ0) as δ → 0. Let uδ = Sδ(κδ) be the solution of (12), where κδ(x, x′) = ρ

p/2
δ (x)ρ

p/2
δ (x′),

and let u = S(ρp) be the solution to (1). Then

lim inf
δ→0

cδ(ρδ) ≥ c(ρ).

Proof. For convenience we put κ(x, x′) = ρp/2(x)ρp/2(x′); then limδ→0 κδ(x, x
′) = κ(x, x′), for almost all

(x, x′) ∈ Ω2
δ0
. Note that owing to [BBM01, Theorem 1] we have the inclusion u ∈ Uδ0 , for all δ ∈]0, δ0[. Therefore,

we can test (12) with v = u to get the equality

aδ,κδ(uδ, u) = `(u) = aρp(u, u).
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Consequently, the difference Lδ := cδ(ρδ)− c(ρ) = `(uδ − u) can be written as

Lδ = aδ,κδ(uδ, uδ)− 2aδ,κδ(uδ, u) + aρp(u, u)

= [aδ,κδ(uδ, uδ)− 2aδ,κδ(uδ, u) + aδ,κδ(u, u)]︸ ︷︷ ︸
=:L

(1)
δ

+ [aρp(u, u)− aδ,κδ(u, u)]︸ ︷︷ ︸
=:L

(2)
δ

.

Now we have L(1)
δ = aδ,κδ(uδ − u, uδ − u) ≥ 0 because aδ,κδ(·, ·) is an inner product on Uδ0 , and therefore

Lδ ≥ L(2)
δ ,

and hence in order to prove the result it is enough to show that

lim inf
δ→0

L
(2)
δ ≥ 0.

But, applying Young’s inequality to the nonlocal conductivity

ρ
p/2
δ (x)ρ

p/2
δ (x′) ≤ 1

2
(ρpδ(x) + ρpδ(x

′))

we have that

−aδ,κδ(u, u) ≥ −
∫

Ωδ0

∫
Ωδ0

ρpδ(x) + ρpδ(x
′)

2
Aδ(|x− x′|)

(u(x)− u(x′))2

|x− x′|2
dx dx′

= −
∫

Ωδ0

ρpδ(x
′)

∫
Ωδ0

Aδ(|x− x′|)
(u(x)− u(x′))2

|x− x′|2
dxdx′,

and the last term converges to −aρp(u, u) owing to [BBM01, Corollary 1] and the weak convergence of ρpδ .
Consequently

lim inf
δ→0

[aρp(u, u)− aδ,κδ(u, u)] ≥ 0

and the proof is finished.

4.2 Pointwise convergence: limδ→0 cδ(ρ) = c(ρ)

The following result establishes the pointwise convergence of cδ to c in L∞(Ωδ0). It should be understood as a
lim sup-inequality in Γ-convergence, where the recovering sequence is the constant sequence.

In order to prove it we need the following lemma, which establishes that the estimate (15) can be made
uniform with respect to small δ > 0.

Lemma 9. There exists a constant δ̂ ∈]0, δ0[, and a constant Cδ̂ > 0, independent from δ and u, such that we
have the inequality Cδ̂‖u‖L2(Ω) ≤ ‖u‖Uδ0 for any δ ∈]0, δ̂[ and u ∈ Uδ0 .

Proof. For the sake of contradiction, we assume that for each j = 1, 2, . . . there is δj ∈]0, δ0[, and uj ∈ U
δj
0 such

that
lim
j→∞

δj = 0, lim
j→∞

‖uj‖Uδj0
= 0, but ‖uj‖L2(Ω) = 1.

Note that since uj is extended by zero outside of Ωδj , uj ≡ 0 in Ωδ0 \ Ω. When combined with the smallness of
support of Aδj (| · |), see (10), this implies the equality∫

Ωδ0

∫
Ωδ0

Aδj (|x− x′|)
(uj(x)− uj(x′))2

|x− x′|2
dx′ dx = aδj ,1(uj , uj) = ‖uj‖2Uδj0

.

We can therefore apply [Pon04a, Theorem 1.2], which asserts that the sequence uj is relatively compact in L2(Ωδ0)
with all its accumulation points being in W 1,2(Ωδ0). Let u0 ∈W 1,2(Ωδ0) be such an L2(Ωδ0)-accumulation point
of uj ; in particular ‖u0‖L2(Ω) = 1. Since the accumulation point does not depend on any finite number of terms
in the sequence uj , we can utilize the estimate in [Pon04a, Theorem 1.2] as follows:∫

Ωδ0

|∇u0(x)|2 dx ≤ lim sup
j→∞

{aδj ,1(uj , uj)} = 0.

Therefore, u0 must be a constant on Ωδ0 . On the other hand we have the pointwise (in fact, finite) convergence
limj→∞ uj(x) = 0, x ∈ Ωδ0 \ closure Ω, and consequently u0 ≡ 0 on Ωδ0 \ closure Ω. Therefore u0 ≡ 0 on Ωδ0 ,
which contradicts the previously established fact ‖u0‖L2(Ω) = 1.
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Remark 10. Note that Lemma 9 implies the coercivity of the nonlocal equation (12) even in the absence of
assumption (11), as [Pon04a, Theorem 1.2] does not require such a condition. However, as we mentioned
previously, for our purposes the assumption (11) is a natural hypothesis, as it implies the continuous embedding
of Uδ0 into W s,2(Ωδ) and therefore also the compact embedding into L2(Ωδ).

Before staying the main result of this section we need to define the following class of designs:

Ãδ =

{
ρ ∈ Aδ : ρ(x) =

K∑
k=1

αkχBk(x), K ∈ N, αk > 0, Bk open, pairwise disjoint, and such that ∪Kk=1Bk ⊃ Ωδ

}
.

Note that Ãδ is not just the class of simple functions in Aδ, but the class on simple functions supported
on open sets. This subtle but important restriction is going to be needed to apply Γ-convergence results
of [Pon04b,BMCP15] in the Step 2 of the proof below.

Proposition 11. Consider an arbitrary ρ ∈ Ãδ. Let uδ = Sδ(κ) ∈ Uδ0 be the sequence of solutions to (12)
corresponding to a fixed f ∈ L2(Ω) and κ(x, x′) = ρp/2(x)ρp/2(x′), but varying δ → 0. Let further u = S loc(ρp) ∈
W 1,2

0 (Ω) be the weak solution to the local generalized Laplace problem (1).
Then

lim
δ→0
‖uδ − u‖L2(Ω) = 0, and lim

δ→0
aδ,κ(uδ, uδ) = aρp(u, u).

Consequently,
lim
δ→0

cδ(ρ) = c(ρ),

for any ρ ∈ A.

Proof. Let δ̂ ∈]0, δ0[ and Cδ̂ > 0 be those established in Lemma 9. Since uδ = Sδ(κ) solves (12), for all δ ∈]0, δ̂[
we get the estimate

Cδ̂κ‖uδ‖
2
L2(Ω) ≤ κaδ,1(uδ, uδ) ≤ aδ,κ(uδ, uδ) ≤ ‖f‖L2(Ω)‖uδ‖L2(Ω),

and consequently the uniform stability estimates

‖uδ‖L2(Ωδ̂)
= ‖uδ‖L2(Ω) ≤

1

Cδ̂κ
‖f‖L2(Ω), and ‖uδ‖Uδ0 ≤

1

C
1/2

δ̂
κ
‖f‖L2(Ω).

Utilizing [Pon04a, Theorem 1.2] as in Lemma 9, we establish the existence of an L2(Ωδ̂)-accumulation point
u0 ∈W 1,2

0 (Ω) of uδ. Let δj , j = 1, 2, . . . be a sequence realizing convergence towards this accumulation point,
that is limj→∞ δj = 0 and limj→∞ ‖uδj − u0‖L2(Ω) = 0. As mentioned previously, in the following discussion
both u0 and u, the solution of the limiting local problem, are extended by 0 outside of Ω.
Step 1. We claim that

lim sup
j→∞

Iδj ,κ(uδj ) ≤ Iρp(u). (19)

Indeed, owing to (9) and [BBM01, Theorem 1] we have the bound ‖u‖
U
δj
0

≤ C‖u‖W 1,2(Ω) and therefore also

the inclusion u ∈ Uδj0 . Consequently, owing to the variational characterization (16) we have the inequalities
Iδj ,κ(uδj ) ≤ Iδj ,κ(u), for each δj , j = 1, 2, . . .. Therefore, in order to establish (19) it is sufficient to show
the inequality lim supj→∞ aδj ,κ(u, u) ≤ aρp(u, u). But this inequality follows from the direct application of
Proposition 8 to the constant sequence ρ:

lim inf
j→∞

(
−2Iδj ,κ(uδj )

)
≥ (−2Iρp(u))

and therefore (19) holds.
Step 2. We claim that

Iρp(u0) ≤ lim inf
j→∞

Iδj ,κ(uδj ).

Note that owing to the strong L2 convergence limj→∞ ‖uδj − u0‖L2(Ω) = 0 it is sufficient to prove the inequality

aρp(u0, u0) ≤ lim inf
j→∞

aδj ,κ(uδj , uδj ).

Let us recall that ρ ∈ Ãδ0 is a simple function supported on open sets, that is

ρ(x) =

I∑
i=1

αiχBi(x),

9



where I ∈ N, αi > 0 and the Bi open and pairwise disjoint such that closure(∪Ii=1Bi) ⊃ Ωδ0 . Then

aδj ,κ(uδj , uδj ) =

∫
Ωδ0

∫
Ωδ0

ρp/2(x)ρp/2(x′)Aδj (|x− x′|)
(uδj (x)− uδj (x′))2

|x− x′|2
dx′ dx

=

I∑
i,j=1

α
p/2
i α

p/2
j

∫
Bi

∫
Bj

Aδj (|x− x′|)
(uδj (x)− uδj (x′))2

|x− x′|2
dx′ dx

≥
I∑
i=1

αpi

∫
Bi

∫
Bi

Aδj (|x− x′|)
(uδj (x)− uδj (x′))2

|x− x′|2
dx′ dx.

Applying the Γ-convergence results in [Pon04b,BMCP15] we conclude that

lim inf
j→∞

∫
Bi

∫
Bi

Aδj (|x− x′|)
(uδj (x)− uδj (x′))2

|x− x′|2
dx′ dx ≥

∫
Bi

|∇u0(x)|2 dx. (20)

Summing up these inequalities and recalling that u0 vanishes outside Ω we can conclude that

lim inf
j→∞

aδj ,κ(uδj , uδj ) ≥ aρp(u0, u0).

Since limj→∞ ‖uδj − u0‖L2(Ω) = 0 this is sufficient to conclude the proof of step 2 for simple functions ρ. Notice
that the requirement of Bi to be open is necessary in order to apply the results in [Pon04b,BMCP15].
Step 3: Conclusion. Combining the inequalities obtained in steps 1 and 2 we obtain the following string of
inequalities:

lim sup
j→∞

Iδj ,κ(uδj )︸ ︷︷ ︸
=−0.5cδj (ρ)

≤ Iρp(u) ≤ Iρp(u0)︸ ︷︷ ︸
=−0.5c(ρ)

≤ lim inf
j→∞

Iδj ,κ(uδj )︸ ︷︷ ︸
=−0.5cδj (ρ)

.

The variational characterization of the local problem (3) and the uniqueness of solutions to (1) implies that
u = u0. Therefore the family of solutions {uδ}0<δ<δ̂, which is relatively compact in L2(Ωδ̂), has only one
accumulation point, and the sequence δj , j = 1, 2, . . . selected in the beginning of the proof is in fact arbitrary.
This finishes the proof of the proposition.

The conclusions of Proposition 11 hold in fact for an even larger class of material distributions than Ãδ0 .

Corollary 12. Suppose that ρ ∈ Aδ0 be such that there exists a sequence {ρi}i ⊂ Ãδ0 such that ρi(x) ≤ ρ(x)
and limi→∞ ρi(x) = ρ(x) a.e. in x ∈ Ωδ0 . Then the conclusion of Proposition 11 holds for this ρ.

Proof. Note that Steps 1 and 3 of the proof above do not utilize the simple structure of ρ. Thus, it is only
necessary to amend Step 2 of the proof, which we do here.

Owing to our assumptions, there exists a sequence of non-negative simple functions ρi, which approximates ρ
almost everywhere in Ωδ0 from below. Let κi(x, x′) = ρ

p/2
i (x)ρ

p/2
i (x′). Then κi(x, x′) ≤ κ(x, x′) for almost all

(x, x′) ∈ Ω2
δ0
. Therefore, in view of Proposition 11, for each i = 1, 2, . . . we can write:

lim inf
j→∞

aδj ,κ(uδj , uδj ) ≥ lim inf
j→∞

aδj ,κi(uδj , uδj ) ≥ aρpi (u0, u0).

It remains to take the limit with respect to i→∞ and utilize the dominated Lebesgue convergence theorem to
reach the inequality claimed in Step 2 of the proof of Proposition 11.

Remark 13. Note that one can approximate an arbitrary bounded and measurable ρ pointwise with a non-
decreasing sequence of simple functions, see [Rud87, Theorem 1.17]. Unfortunately, in Corollary 12 we need that
these simple functions are additionally supported on open, and not just measurable, sets Bi. Therefore we have
not succeeded in showing the result for a general ρ ∈ Aδ0 . We actually believe, and conjecture, that Corollary 12
is true without this additional restriction.

4.3 Discussion of Γ-convergence
General Γ-convergence theory establishes that Γ-convergence together with equi-coercivity implies both conver-
gence of infima to the minimum of the limit problem, and that any cluster point of any sequence of minimizers
is a minimizer of the limit problem [Bra02]. As we have pointed out above, the unfortunate fact that conver-
gence of functional arguments for liminf result, Proposition 8, is not weak∗ convergence in L∞(Ωδ0) spoils the
possibility of a general Γ-convergence result for any p ∈]1, 2]. Furthermore, local compliance for p ∈]1, 2] is
not lower semicontinous and consequently cannot be a Γ-limit. In addition, the restricting hypothesis on the
admissible material distributions in the statement of Corollary 12 rules out the possibility of obtaining a general
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Figure 1: Three types of meshes used in the present work and their corresponding labels. In this figure, we
use δ = 0.2, and decomposition of Ωδ into Ω and Γnl is illustrated with color. Gmsh is utilized for generating
unstructured meshes [GR09].

Γ-convergence result even for p = 1. Still, we can point out at a few inequalities characterizing the relationship
between the non-local and the local optimal control problems in the convex case p = 1.

On the one hand, for each δ > 0 we can take a minimizer ρδ for the non-local compliance minimization.
Clearly the sequence ρδ is bounded in L∞(Ωδ0). Therefore, there exists a sequence δj , with δj → 0, and ρ ∈ A,
such that ρδj ⇀ ρ weak∗ in L∞(Ωδ0). Taking into account that p = 1, Proposition 8 implies

m ≤ c(ρ) ≤ lim inf
j→∞

cδj (ρδj ) = lim inf
j→∞

mδj ,

where
m = inf

ρ∈A
c(ρ), mδ = min

ρ∈Aδ
cδ(ρ).

As this argument can be made for any sequence δj converging to zero, we have that

m ≤ lim inf
δ→0

mδ. (21)

Furthermore, if infρ∈A c(ρ) is attained at ρ̂ ∈ A satisfying the assumptions of Corollary 12, then the
inequality (21) becomes equality:

m = c(ρ̂) = lim
j→∞

cδj (ρ̂) ≥ lim sup
j→∞

mδj ,

for any δj → 0.
Finally, if Corollary 12 were true for any ρ ∈ Aδ0 , then we would have that cδ Γ-converges to c as δ goes to

0. Indeed, weak∗ topology is metrizable on bounded sets of L∞(Ωδ0) (cf. [Bre10, Theorem 3.28]). Therefore
Aδ0 equipped with the weak∗ topology is a metric space, and therefore Γ-convergence requires only two facts to
hold, namely, limsup and liminf inequalities. These would then be direct consequences of Proposition 8 and
Corollary 12, respectively.

5 Numerical experiments
The objective of this section is to numerically illustrate the behaviour of the proposed optimization model, with
emphasis on the results established in the previous sections. All our numerical experiments are performed with
n = 2, Ω =]0, 1[n, Aδ(|x|) = cnrm|x|−(n+2s−2) max{0, δ2 − |x|2}β , with β = 3.0 and cnrm determined from (9).
Additionally, we use ρ = 10−3, ρ = 1.0, s ∈ {1/3, 2/3}, δ ∈ {0.05, 0.1, 0.2}, and p ∈ {1, 2}.

5.1 Galerkin FEM discretization of the state equations
The variational formulation (12) with a symmetric and coercive bilinear form aδ,κ(·, ·) naturally lends itself
for an application of Galerkin method. In our numerical experiments we only consider polyhedral sets Ω, and
therefore we proceed in the standard fashion by decomposing Ωδ into a union of shape-regular simplices Ωh

δ ,
where h > 0 will denote a characteristic size (diameter) of the elements in our mesh. We make sure that Ωh

δ

conforms with the subdivision of Ωδ into Ω and Γnl, see Fig. 1. Functions in U will be approximated with
continuous piecewise-linear polynomials uh ∈ Uh = { vh ∈ U ∩ C0(Ω̄δ) : vh|T is a linear polynomial,∀T ∈ Ωh

δ }.
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Figure 2: Left: reference elements T1 (red), and elements T2 (orange), participating in the pre-computation of
the integrals. Note that only half of the elements in the proximity of the reference cell need to be considered
owing to the symmetry of the bilinear form with respect to the change of the integration variables x↔ x′. Right:
contour plot of Aδ(| · −x|) for x located at the barycenter of one of the reference elements. δ = 0.2 and s = 1/3
is used.

Naturally we put Uh0 = Uh ∩ U0, which leads us to the following discrete variational principle (system of linear
algebraic equations): find uh ∈ Uh0 , such that

aδ,κ(uh, vh) = `(vh), ∀vh ∈ Uh0 . (22)

Assembly process for the right hand side of this system is completely standard, whereas in order to assemble
the left hand side of this system we need to loop over all pairs (T1, T2) ∈ Ωh

δ × Ωh
δ of elements in the mesh,

which are not further than the distance of 2δ from each other, and compute the local integral contribution to
aδ,κ(uh, vh), that is, the integral over T1 × T2. Note that when T̄1 ∩ T̄2 6= ∅, the integrand is unbounded; even
when T̄1 ∩ T̄2 = ∅ the integrand is not a polynomial function. In our implementation we utilize the quadratures
described in [CvPS15], which are taylored for a nearly identical situation.4 In order to avoid commiting a
variational crime by not integrating the bilinear form precisely, we first estimate how many quadrature points
we need for the accurate integration; the results are reported in Fig. 3. Despite the fact that the assumptions
imposed in [CvPS15] are not always satisfied we observe exponential convergence of the quadratures. However,
note the unusial scaling of the x-axis; in the most singular case k = 2 corresponding to T1 = T2 we need
approximately 155 = 759375 quadrature points (when using Gauss–Jacobi quadrature in the singular direction,
see [CvPS15] for details) to achieve nearly full IEEE double precision accuracy before the round off errors start
to play a role!

Because of such a high cost of elemental integration, and because the number of integrals in a quasi-uniform
grid grows as O(δnh−2n), we focus on regular grids (see Fig. 1). In this setting we only need to evaluate integrals
for a fixed “reference” T1 and varying T2, thereby bringing the number of integrals down to O(δnh−n) as shown
in Fig. 2. Even with this preprocessing, both the work and memory requirements for the global matrix assembly
scale as O(δnh−2n). Putting this into perspective, for Grid2 with h = 21/2/320 (i.e., each side of the unit
square Ω is discretized with 320 elements) we need approximately 4.7Mb to store the precomputed integrals and
approximately 3.87 · 103Mb to store the assembled matrix. Direct solver such as UMFPACK [Dav04] quickly
run out of memory for problems with δ = 0.1, and we switch to CG-accelerated Ruge–Stuben AMG solver
PyAMG [OS18] (even smoothed aggregation is too much memory and computationally demanding).

5.1.1 h-convergence test

In order to test the code, we use the method of manufactured solutions, see e.g. [Roa02]. We put δ = 0.1,
s ∈ {1/3, 2/3}, κ ≡ 1, and let the analytical solution to be uana(x, y) = [x(1− x)y(1− y)]2 sin(2π(x+ y2)), when
x, y ∈ Ω, and zero otherwise. The corresponding right hand side can be (numerically) computed as

f(x, y) = −2 lim
ε→0

∫ δ

ε

∫ 2π

0

Aδ(r)
uana(x+ r cos(θ), y + r sin(θ))− uana(x, y)

r
dθ dr, (23)

which is evaluated using the standard adaptive quadrature package in SciPy. The results of this test are
shown in Fig. 4. In both cases we do observe convergence, although it is difficult to say whether we reach

4It should be noted that our integrands do not always satisfy the assumptions imposed in [CvPS15] as the terms (u(x) −
u(x′))/|x− x′| and (v(x)− v(x′))/|x− x′| are only bounded and not continuous across the boundaries T̄1 ∩ T̄2.
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Figure 3: Verification of the exponential convergence rate of the quadratures [CvPS15], which we use for
computing elemental stiffness matrices; s = 1/3 in this simulation. k is the dimension of the intersection T̄1 ∩ T̄2;
k = −1 means T̄1 ∩ T̄2 = ∅ and therefore the integrand is regular; see [CvPS15] for details. (a): k = −1 and
diam(T̄1 ∪ T̄2) < δ; (b): k = −1 and diam(T̄1 ∪ T̄2) > δ; (c): k = 0; (d): k = 1; (e): k = 2.
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Figure 4: Verification of convergence of the discretization (and the numerical implementation) with respect to
h-refinement. Left: s = 1/3, right: s = 2/3. The relative error is measured with respect to L2(Ωδ) norm.
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Figure 5: Numerical verification of Γ-convergence. The error is measured as L2(Ω)-norm of the difference between
the numerical solution of the non-local problem and the analytical solution of the local problem.

the asymptotic convergence rate (we run the simulations until we run out of memory), or indeed whether the
adaptive quadratures evaluate (23) accurately enough.

5.1.2 “Γ-convergence” test

Another test we perform is that of “numerical Γ-convergence”, that is, we try to illustrate Proposition 11.
Namely we put s = 1/3, ρ(x, y) = ρ + (ρ − ρ) exp{−[(x −mx)2 + (y −my)

2]/σ} with (mx,my) = (1/2, 2/3)
and σ = 0.1, and κ computed from ρ using the SIMP model with p = 2, uana(x, y) = sin(2πx) sin(πy), for
x, y ∈ Ω, and zero otherwise. We compute f = −div[ρp∇uana], and solve a variety of non-local problems with
varying δ and h on Grid2. The results are summarized in Fig. 5. The main observation is that the quantity
e(δ) = ‖uana − limh→0 uδ,h‖L2(Ω), where uδ,h is the numerical solution to the discretized non-local problem (22),
appears to be decreasing with δ. Unsurprisingly, one needs finer resolution meshes to resolve non-local problems
with smaller values of δ.

5.2 Solving the optimization problem
In our implementation we solve a discretized version of the optimization problem (14) with a tiny discrepancy:
instead of the constraint

∫
Ω
ρ(x) dx ≤ γ|Ω| in (13) we have implemented the constraint

∫
Ωδ
ρ(x) dx ≤ γ|Ω|. We

focus exclusively on compliance minimization, that is, J(ρ, u) = `(u), and we employ the so-called optimality
criterion (OC) scheme for solving these problems. This choice is primarily owing to the popularity of OC
in the topology optimization community, and any other gradient-based non-linear constrained optimization
algorithm could be utilized in its place. Within the OC scheme, given a current material distribution ρk we
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δ h J∗ N
0.2 3.54 · 10−2 9.0727 · 10−2 26
0.2 1.77 · 10−2 9.1778 · 10−2 27
0.2 8.84 · 10−3 9.2408 · 10−2 27
0.2 4.42 · 10−3 9.2798 · 10−2 27
0.1 3.54 · 10−2 7.8627 · 10−2 28
0.1 1.77 · 10−2 7.9479 · 10−2 32
0.1 8.84 · 10−3 7.9930 · 10−2 32
0.1 4.42 · 10−3 8.0218 · 10−2 32

0.05 3.54 · 10−2 7.3251 · 10−2 29
0.05 1.77 · 10−2 7.3896 · 10−2 34
0.05 8.84 · 10−3 7.4276 · 10−2 36
0.05 4.42 · 10−3 7.4484 · 10−2 35

0 3.13 · 10−3 6.9460 · 10−2 38

Table 1: Summary of the results for the convex case p = 1. J∗: optimal value; N : number of OC iterations.
δ = 0 corresponds to the limiting local model (solved using a separate code) which admits optimal solutions in
the convex case p = 1, see [CM70,BS03,All12].

first compute the corresponding state uρk by solving the discretized system (22), and then the derivatives of
non-local compliance cδ as

c′δ(ρk; ξ) = −p
2

∫
Ωδ

∫
Ωδ

[ρ
p/2−1
k (x)ρ

p/2
k (x′)ξ(x) + ρ

p/2
k (x)ρ

p/2−1
k (x′)ξ(x′)]Aδ(|x− x′|)

(uρk(x)− uρk(x′))2

|x− x′|2
dx′ dx.

The new material distribution is defined by a simple pointwise update scheme

ρk+1 = πBk [ρk(−∇cδ(ρk)/λk+1)ξ],

where πBk [·] is a projection operator onto a closed, convex, and non-empty set Bk = { ρ ∈ L2(Ωδ) | max[ρ, (1−
η)ρk] ≤ ρ ≤ min[ρ, (1 + η)ρk] }, and η > 0 and ξ ∈ (0, 1) are trust-region like and damping parameters,
respectively, and ∇cδ(ρk) is L2(Ωδ) representation of the directional derivatives c′δ(ρk; ξ). Finally, λk+1 is
computed by finding the root of the equation

∫
Ωδ
ρk+1(x) dx = γ|Ω| using, for example, the bisection algorithm.

We put η = 0.2, ξ = 0.5, and stop the algorithm when ‖ρk+1 − ρk‖L2(Ωδ) < 10−4. For more details see [BS03].

5.2.1 Convex case: p = 1

In the the “easy” convex case corresponding to p = 1 we can expect that the optimization algorithm computes
approximations to (discretized approximations of) globally optimal solutions. The computed local conductivities
κloc = ρ and the corresponding states for several values of δ are shown in Figure 6. Note that in this case the
local compliance minimization problem (5) admits globally optimal solutions, which is also shown in Figure 6
with the corresponding state. The qualitative resemblance between the solutions to the non-local and local
problems is clear from these pictures. Additionally, we seem to have a quantitative connection between the two
problems, illustrated in Table 1.

Note that the number of optimization iterations needed to solve the problem is virtually independent from
the value of the non-local horizon δ or size of the mesh h. Still, each iteration of the optimization algorithm,
which requires solving the discretized state equations, becomes significantly more costly for larger δ > 0.

5.2.2 Nonconvex case: p = 2

A significantly more interesting case, in view of the very different behaviour of the non-local and local problems,
corresponds to the non-convex optimization problem (14) with p = 2. In this case, for the local problem the
intermediate values of the conductivity are effectively penalized by the underlying physics and one can expect
the computed optimized conductivity distribitions to be of “bang-bang” structure, assuming either the lowest
or the highest possible values of conductivity everywhere. Note also that in this case the local optimization
problem (5) does not admit optimal solutions, and therefore we have no local solution to compare with.

The computed local conductivities κloc = ρp and the corresponding states for several values of δ are shown in
Figure 7. They agree with our expectations. One can also note that for smaller δ the computed conductivity
distributions display smaller features and progressively more oscillatory character. Indeed, in the case of the
local problem, minimizing sequences consist of conductivities, which are locally highly oscillatory (periodic)
and can be mathematically understood as converging to composite materials, see [BS03,All12]. Quantitative
information about these solutions is shown in Table 2. Note that for smaller δ the optimization algorithm
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Figure 6: Pictures of the computed optimal designs for p = 1. Top line: optimal design (conductivity distribution
κloc = ρ), bottom line: corresponding optimal states. From left to right: δ = 0.2, δ = 0.05, δ = 0 (local problem).
Note the slightly different color range and the presence of Γnl for the nonlocal problems.

requires significantly more iterations to converge (which does not mean that it is more difficult to solve, as each
iteration is less computationally expensive in this case).

The non-existence of optimal solutions for the local compliance minimization problem manifests itself numer-
ically as “mesh-dependence” of optimal designs, where progressively more oscillatory conductivity distributions
are encountered as one refines the computational mesh. This is often used as an “engineering” test of existence
of optimal solutions for a given problem. The optimal conductivity distributions corresponding to δ = 0.2 and a
range of discretization levels is shown in Figure 8. Indeed, one can recognize the sequence of convergent shapes
as the discretization gets finer and finer. Again, this example works by pure coincidence: indeed as the problem
is non-convex the optimization algorithm may end up in different local minima at different discretization levels,
and indeed we have observed such behavior for other values of δ.

Finally, we perform a “cross-check” of the computed non-local designs by evaluating all computed designs for
all values of δ. We expect (but of course cannot guarantee this, as we can only hope to find locally optimal
solutions and not global ones) that the distribution optimized for a specific value of δ would outperform other
designs computed for different values of δ. The results of this test are shown in Table 3. Indeed, our expectations
are confirmed: within each row the diagonal element is the smallest one.
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