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Abstract: In this paper we perform the parameter-dependent center manifold reduction near
the generalized Hopf (Bautin), fold-Hopf, Hopf-Hopf and transcritical-Hopf bifurcations in delay
differential equations (DDEs). This allows us to initialize the continuation of codimension one
equilibria and cycle bifurcations emanating from these codimension two bifurcation points. The
normal form coefficients are derived in the functional analytic perturbation framework for dual
semigroups (sun-star calculus) using a normalization technique based on the Fredholm alternative.
The obtained expressions give explicit formulas which have been implemented in the freely available
numerical software package DDE-BifTool. While our theoretical results are proven to apply more
generally, the software implementation and examples focus on DDEs with finitely many discrete
delays. Together with the continuation capabilities of DDE-BifTool, this provides a powerful tool
to study the dynamics near equilibria of such DDEs. The effectiveness is demonstrated on various
models.
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1 Introduction
Great interest has recently been shown in the analysis of degenerate Hopf bifurcations in delay differ-
ential equations (DDEs), see e.g. [1,17,18,25,35,36,39,40,48,50,51,54,57,61,64,65,66]. In the simplest
case, often encountered in applications, such DDEs have the form

ẋ(t) = f(x(t), x(t− τ1), . . . , x(t− τm), α), t ≥ 0, (1)

where x(t) ∈ Rn, α ∈ Rp, f : Rn×(m+1) × Rp → Rn is a smooth mapping and the delays 0 < τ1 <
· · · < τm are constant. They are known as discrete DDEs or DDEs of point type.
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Using the framework of perturbation theory for dual semigroups developed in [4,5,6,7] the existence
of a finite dimensional smooth center manifold for DDEs can be rigorously established [14]. As a
consequence the normalization method for local bifurcations of ODEs developed in [42] can be lifted [37]
rather easily to the infinite dimensional setting of DDEs. One of the advantages of this normalization
technique is that the center manifold reduction and the calculation of the normal form coefficients are
performed simultaneously by solving the so-called homological equation. The method gives explicit
expressions for the coefficients rather than a procedure as developed in [22, 23]. The critical normal
form coefficients for all five generic codimension two bifurcations of equilibria of DDEs have been
derived [37] and partially implemented [60] into the fully GNU Octave compatible MATLAB package
DDE-BifTool [21, 56].

In this paper we will perform the parameter-dependent center manifold reduction and normalization
for three codimension two Hopf cases: the generalized Hopf, fold-Hopf and Hopf-Hopf bifurcations.
This will allow us to initialize the continuation of codimension one bifurcation curves of nonhyperbolic
equilibria and cycles emanating from the codimension two points. These are the only codimension
two bifurcation points of equilibria in generic DDEs where codimension one bifurcation curves of
nonhyperbolic cycles could originate. We also treat the more special transcritical-Hopf bifurcation
which is frequently found in applications.

The center manifold theorem for parameter-dependent DDEs as presented in [14] assumes explicitly
that the steady state exists for all nearby parameter values. However, for a generic fold-Hopf bifurcation
this assumption is not satisfied. An attempt to deal with this complication has been made in [30], where
it is discussed how to reduce a parameter-dependent DDE to a DDE without parameters by appending
the trivial equation α̇ = 0. However, the reduction in [30] is based on the formal adjoint approach [32]
and applies specifically to DDEs, while at times it lacks consistency. Therefore we demonstrate in this
paper how the reduction to the parameter-independent case can be done in the sun-star framework,
enabling a rigorous approach to the existence of parameter-dependent center manifolds for a class of
evolution equations that includes DDEs. This allows us to treat bifurcations of equilibria with zero
eigenvalues in generic DDEs while at the same time achieving applicability of our results to other
classes of delay equations.

This paper is organized as follows. In Section 2 we offer a concise review of perturbation theory for
dual semigroups (also called sun-star calculus), both on an abstract level as well as in application to
the analysis of classical DDEs as dynamical systems. We also recall from [37] various results that are
needed for the normalization.

In Section 3 we show how the theory from the previous section also applies to parameter-dependent
classical DDEs by converting them into a parameter-independent system on a product state space. We
again present the material in two stages: Results are first established at a more abstract semigroup level
and next applied to classical DDEs depending on parameters. In particular, we define the parameter-
dependent local center manifold and give an explicit ODE for solutions that are confined to it.

In Section 4 we describe the general technique used to derive expressions for the normal form
coefficients on the parameter-dependent center manifold in the infinite dimensional setting of classical
DDEs.

Before we apply this technique to the previously mentioned codimension two bifurcations, we sum-
marize in Section 5 relevant smooth normal forms and we list asymptotics for the codimension one
cycle bifurcation curves emanating from the codimension two points as well as for the corresponding
nonhyperbolic equilibria.

In Section 6 the method is then applied to the generalized Hopf (Bautin), fold-Hopf, Hopf-Hopf
and transcritical-Hopf bifurcations in classical DDEs. We provide explicit expressions for all normal
form coefficients necessary for the predictors of codimension one bifurcation curves. While most of the
critical normal form coefficients for these bifurcations were obtained in [37], we briefly re-derive them
to ensure readability.

In Section 7 we provide explicit computational formulas for the evaluation of the linear and multi-
linear forms used in the normal form coefficients and predictors for the simplest subclass consisting of
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DDEs (1) with finite many discrete delays. These formulas are actually implemented in DDE-BifTool.
In Section 8 we employ our implementation in DDE-BifTool to illustrate the accuracy of the codi-

mension one bifurcation curve predictors through various example models displaying all aforementioned
degenerate Hopf cases. A complete step-by-step walk-through of the examples, including all code to
reproduce the obtained results, is provided in the Supplement.

2 Dual perturbation theory and classical DDEs
We begin by presenting those general elements of perturbation theory for dual semigroups that are
useful for the study of classical DDEs as dynamical systems. Throughout we assume sun-reflexivity
- a term that will be introduced in Section 2.1. From Section 2.4 onward, we then explain how the
general results apply to classical DDEs. The standard reference for this entire section is [14], while for
the underlying theory of semigroups of linear operators we recommend [19,20].

2.1 Duality structure and linear perturbation
The starting point is a C0-semigroup T0 on a real or complex Banach space X. Let A0 with domain
D(A0) be the infinitesimal generator (or: generator, for short) of T0. We denote by X? the topological
dual space of X and we use the prefix notation for the pairing between x? ∈ X? and x ∈ X,

〈x?, x〉 := x?(x).

If X is not reflexive then the adjoint semigroup T ?0 is in general only weak? continuous on X? and A?0
generates T ?0 only in the weak? sense. The maximal subspace of strong continuity

X� := {x? ∈ X? : t 7→ T ?0 (t)x? is norm-continuous on R+}

is invariant under T ?0 and we have the characterization

X� = D(A?0)

where the bar denotes the norm closure in X?. By construction the restriction of T ?0 to X� is a
C0-semigroup that we denote by T�0 . Its generator A�0 is the part of A?0 in X�,

D(A�0 ) =
{
x� ∈ D(A?0) : A?0x

� ∈ X�
}
, A�0 x

� = A?0x
�.

At this stage we again have a C0-semigroup T�0 with generator A�0 on a Banach space X� so we can
iterate the above construction. On the dual space X�? we obtain the adjoint semigroup T�?0 with
weak? generator A�?0 . By restriction to the maximal subspace of strong continuity X�� = D(A�?0 ) we
end up with the C0-semigroup T��0 . Its generator A��0 is the part of A�?0 in X��.

The canonical injection j : X → X�? defined by

〈jx, x�〉 := 〈x�, x〉 (2)

maps X into X��. If j maps X onto X�� then X is called �-reflexive (pronounce: sun-reflexive)
with respect to T0. One may define an equivalent norm on X with respect to which j becomes an
isometry, but this need not be assumed. However, sun-reflexivity of X with respect to T0 will be assumed
throughout.

With the abstract duality structure in place, we next turn our attention to perturbation. Let
L : X → X�? be a bounded linear operator. Then there exists a unique C0-semigroup T on X that
satisfies the linear integral equation

T (t)x = T0(t)x+ j−1

∫ t

0

T�?0 (t− τ)LT (τ)x dτ, t ≥ 0, x ∈ X, (3)
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where the weak? Riemann integral takes values in X�� and the running assumption of sun-reflexivity
justifies the application of j−1. By using (3) to express the difference T − T0 of the perturbed and the
unperturbed semigroups, one proves that the maximal subspaces of strong continuity X� and X��

are the same for T and T0, so there is no need to distinguish them with a subscript. In particular, X
is sun-reflexive also with respect to T . On X�? the perturbation L appears additively in the action of
A�?,

D(A�?) = D(A�?0 ), A�? = A�?0 + Lj−1. (4)

We recover the generator A of T by considering the part of A�? in X��. As a consequence L moves
into the domain and we find

D(A) =
{
x ∈ X : jx ∈ D(A�?0 ) and A�?0 jx+ Lx ∈ X��

}
, Ax = j−1(A�?0 jx+ Lx).

For proofs of the statements so far, see [14, Appendix II.3 and Chapter III].

2.2 Nonlinear perturbation and linearization
The C0-semigroup T arose as a linear perturbation of the original C0-semigroup T0, so the next step is to
introduce a nonlinear perturbation of T itself. In keeping with the tradition for nonlinear problems [14,
Sections VII.1 and VIII.1] we only regard the case that X is a real Banach space, also see Remark 1
below. Let R : X → X�? be a Ck-operator for some k ≥ 1 such that

R(0) = 0, DR(0) = 0,

and consider the nonlinear integral equation

u(t) = T (t)x+ j−1

∫ t

0

T�?(t− τ)R(u(τ)) dτ, t ≥ 0, x ∈ X. (5)

Due to the nonlinearity, for a given initial condition x ∈ X one can at most guarantee existence of a
maximal solution ux : Ix → X of (5) on a forward time interval Ix := [0, tx) for some 0 < tx ≤ ∞ [14,
Chapter VII]. The family of all such maximal solutions defines a nonlinear semiflow Σ : D(Σ)→ X,

D(Σ) := {(t, x) ∈ [0,∞)×X : t ∈ Ix}, Σ(t, x) := ux(t), (6)

that may in addition depend on parameters [14, Defs. VII.2.1 and VII.2.9]. (For reasons discussed
in Section 3, we will treat parameter dependence differently and separately. Until then, the reader
can consider all parameters to be held fixed and absent in the notation.) The domain of Σ is open in
[0,∞)×X and 0 ∈ X is a stationary point of Σ,

I0 = [0,∞), Σ(t, 0) = 0, ∀ t ≥ 0.

The semiflow Σ is (in fact, uniformly) differentiable with respect to the state at (t, 0) ∈ D(Σ), with the
partial derivative

D2Σ(t, 0) = T (t), ∀ t ≥ 0, (7)

where T is the C0-semigroup that satisfies (3).

Remark 1. For nonlinear problems it is customary to work on a real Banach space X. The reason is
that these problems often come from concrete equations with nonlinear right-hand sides for which it is
unclear if and how they can be extended to complex arguments. Consequently, if we want to analyze
the linearization of Σ at 0 ∈ X using spectral theory, then it becomes necessary to complexify X and
the linear operators acting on X [14, Section III.7 and last part of Section IV.2], [52, Section 1.3]. In
particular, by the spectrum of A we mean the spectrum of its complexification on the complexified
Banach space.
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2.3 Critical local center manifolds
As in Section 2.2 we continue to assume that T0 is a C0-semigroup on a real Banach space X that
is sun-reflexive with respect to T0. In addition we assume that T0 is eventually compact and L is a
compact operator. This implies that the perturbed semigroup T defined by (3) is eventually compact
as well [11, Theorem 2.8].

When considering solutions that exist for all (positive and negative) time - such as periodic orbits
- it is useful to write (5) in the translation invariant form

u(t) = T (t− s)u(s) + j−1

∫ t

s

T�?(t− τ)R(u(τ)) dτ, −∞ < s ≤ t <∞. (8)

A solution of (8) is a continuous function u : I → X on some nondegenerate – possibly unbounded –
interval I ⊆ R that satisfies (8) for all s, t ∈ I with s ≤ t. Naturally, u is a solution of (8) if and only if

t− s ∈ Iu(s), u(t) = Σ(t− s, u(s)), ∀ s, t ∈ I with s ≤ t,

where Σ : D(Σ)→ X is the nonlinear semiflow from (6). The interval I is often left implicit.
The general center manifold theorems from [14, Chapter IX] for equations of the type (8) apply

to the particular case where T is an eventually compact C0-semigroup on a real, sun-reflexive Banach
space. Let us therefore suppose that 0 ∈ X is a nonhyperbolic equilibrium of Σ, so the generator A of T
possesses 1 ≤ n0 < ∞ purely imaginary eigenvalues, counting algebraic multiplicities - see Remark 1.
Let X0 ⊆ X be the real center eigenspace corresponding to these eigenvalues. Then there exists a
Ck-smooth n0-dimensional local center manifoldWc

loc that is tangent to X0 at the origin. Any solution
u : I → X of (8) that lies on Wc

loc is differentiable on I and satisfies

ju̇(t) = A�?ju(t) +R(u(t)), ∀ t ∈ I, (9)

where A�? is the weak? generator of T�?. We note that (9) is an identity in X�?.

2.4 The special case of classical DDEs
It will now be explained how the general results from Sections 2.1 to 2.3 apply to classical DDEs. We
choose the nonreflexive Banach space X := C([−h, 0],Rn) as the state space, introduce a Ck-smooth
operator F : X → Rn, and consider an equation with a finite delay 0 < h <∞ of the form

ẋ(t) = F (xt), t ≥ 0, (DDE)

with an initial condition
x0 = ϕ ∈ X. (IC)

For each t ≥ 0, the function xt : [−h, 0]→ Rn defined by

xt(θ) := x(t+ θ), ∀ θ ∈ [−h, 0],

is called the history of the unknown function x at time t. Equations of the type (DDE) will be called
classical DDEs. Note that (1) is quite literally a case in point. By a solution of the initial value
problem (DDE)–(IC) we mean a continuous function x : [−h, t+) → Rn for some 0 < t+ ≤ ∞ that is
differentiable on [0, t+) and satisfies (DDE) and (IC). When t+ =∞ we call x a global solution.

We want to study (DDE) near an equilibrium at the origin, so assume that F (0) = 0 and split F
into its linear and nonlinear parts,

F (ϕ) =

∫ h

0

dζ(θ)ϕ(−θ) +G(ϕ), ϕ ∈ X.
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Here ζ : [0, h]→ Rn×n is a matrix-valued function of bounded variation, normalized by the requirement
that ζ(0) = 0 and ζ is right-continuous on the open interval (0, h). The integral is of the Riemann-
Stieltjes type, and G : X → Rn is a Ck-smooth nonlinear operator. It is common to denote the linear
part more succinctly as

〈ζ, ϕ〉 :=

∫ h

0

dζ(θ)ϕ(−θ), (10)

so that
F (ϕ) = 〈ζ, ϕ〉 +G(ϕ), ϕ ∈ X. (11)

We first consider the case G = 0, whence (DDE) reduces to the linear equation

ẋ(t) = 〈ζ, xt〉, t ≥ 0. (12)

In order to understand the relationship between (12) and (3) we begin by observing that the trivial
DDE

ẋ(t) = 0, t ≥ 0, (13)

with initial condition (IC) has the obvious solution

xϕ(t) =

{
ϕ(t), t ∈ [−h, 0],

ϕ(0), t > 0.

Using this solution, we define the strongly continuous shift semigroup T0 on X by

(T0(t)ϕ)(θ) := xϕ(t+ θ) =

{
ϕ(t+ θ), t+ θ ∈ [−h, 0],

ϕ(0), t+ θ > 0.
(14)

We note that T0(h) is a compact operator, so T0 is eventually compact. For this particular combination
of X and T0 the abstract duality structure from Section 2.1 can be constructed systematically and
explicitly [14, Section II.5]. We only summarize the few facts that will be used in the sequel.

Remark 2 (Notation). For K ∈ {R,C} let Kn be the linear space of column vectors and let Kn? be the
linear space of row vectors, both over K. Elements of Kn are denoted by q = (q1, q2, . . . , qn) - commas
between the entries - while elements in Kn? are denoted by p = (p1 p2 · · · pn) - no commas between
the entries. We sometimes use the pairing defined by the row-column matrix multiplication:

p · q := pq =

n∑
j=1

pjqj , p ∈ Kn?, q ∈ Kn.

Note that the standard Hermitian inner product between two vectors pT , q ∈ Cn should be written as
p̄ · q and not as p · q.

On X�: The maximal domain of strong continuity of T ?0 has the representation

X� = Rn? × L1([0, h],Rn?), (15)

and the duality pairing between ϕ� = (c, g) ∈ X� and ϕ ∈ X is

〈ϕ�, ϕ〉 = cϕ(0) +

∫ h

0

g(θ)ϕ(−θ) dθ. (16)
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On X�?: Switching to the dual space of (15) yields the representation

X�? = Rn × L∞([−h, 0],Rn),

and the duality pairing between ϕ�? = (a, ψ) ∈ X�? and ϕ� = (c, g) ∈ X� is

〈ϕ�?, ϕ�〉 = ca+

∫ h

0

g(θ)ψ(−θ) dθ. (17)

The canonical injection (2) sends ϕ ∈ X to jϕ = (ϕ(0), ϕ), mapping X onto X��. Therefore X is
sun-reflexive with respect to the shift semigroup T0.

Next, we specify the linear and nonlinear perturbations L and R in (3) and (5), respectively, and
to relate these two abstract integral equations in X to the linear and nonlinear initial value problems
for (DDE). For i = 1, . . . , n we denote r�?i := (ei, 0) where ei is the ith standard basis vector of Rn. It
is conventional and convenient to introduce the shorthand

wr�? :=

n∑
i=1

wir
�?
i , ∀w = (w1, . . . , wn) ∈ Rn,

and we note that wr�? = (w, 0) ∈ X�?. First we define the compact linear perturbation in (3) as

Lϕ := 〈ζ, ϕ〉r�?, (18)

where the pairing in the right-hand side is given by (10). Now (12) with (IC) is equivalent to (3)
with (18) in the following sense: If T is the unique C0-semigroup on X satisfying (3) with (18) then
xϕ : [−h,∞)→ Rn defined by

xϕ0 := ϕ, xϕ(t) := (T (t)ϕ)(0), ∀ t ≥ 0,

is the unique global solution of (12) with (IC) and

xϕt = T (t)ϕ, ∀ t ≥ 0.

It remains to specify the nonlinear perturbation R in (5) as

R(ϕ) := G(ϕ)r�?, (19)

where G is the nonlinear operator appearing in the splitting (11). Let Σ as in (6) be the nonlinear
semiflow generated by the family of maximal solutions of (5) with (19). The equivalence between
(DDE)–(IC) and (5) with (19) can be formulated as follows [14, Prop. VII.6.1]. The function xϕ :
[−h, tϕ)→ Rn defined by

xϕ0 := ϕ, xϕ(t) := Σ(t, ϕ)(0), ∀ t ∈ Iϕ,

is the maximal solution of (DDE)–(IC), in the sense that any other solution necessarily exists only on
a subinterval [−h, t+) for some 0 < t+ ≤ tϕ and coincides with xϕ there. Moreover,

xϕt = Σ(t, ϕ), ∀ t ∈ Iϕ.

It is the content of (7) that generation and linearization commute: Starting with (DDE), linearization
of the semiflow Σ at the stationary point 0 ∈ X yields precisely the eventually compact C0-semigroup
T corresponding to the linearized DDE (12).
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2.5 Spectral computations for classical DDEs
The eventual compactness of T implies that the spectrum of its generator A - see Remark 1 - consists
entirely of isolated eigenvalues of finite algebraic multiplicity. It is clear from (18) that L is not just
compact, but actually of finite rank. This implies that all spectral information about A is contained
in a holomorphic characteristic matrix function ∆ : C→ Cn×n defined by

∆(z) := zI − ζ̂(z) with ζ̂(z) :=

∫ h

0

e−zθ dζ(θ), (20)

where ζ is the real kernel from (10) [14, Sections IV.4 and IV.5]. In particular, the eigenvalues of A
are the roots of the characteristic equation

det ∆(z) = 0, (21)

and the algebraic multiplicity of an eigenvalue equals its order as a root of (21).
We will be concerned exclusively with simple eigenvalues, for which the geometric and algebraic

multiplicities are both equal to one. Let λ ∈ C be such a simple eigenvalue of A. There exist nonzero
right and left null vectors q ∈ Cn and p ∈ Cn? of ∆(λ),

∆(λ)q = 0, p∆(λ) = 0.

The second equation is of course equivalent to pT being a nonzero right null vector of ∆T (λ). The
one-dimensional eigenspaces of A and A? corresponding to λ are spanned by eigenfunctions ϕ and ϕ�,
respectively, with

ϕ(θ) = eλθq, θ ∈ [−h, 0], (22)

and

ϕ� =

(
p, θ 7→ p

∫ h

θ

eλ(θ−τ) dζ(τ)

)
, θ ∈ [0, h]. (23)

We note that we have implicitly used - and will use consistently - the complexifications of X and of
the representation (15) of X�. For a simple eigenvalue λ,

〈ϕ�, ϕ〉 6= 0,

where the duality pairing is understood to be the complexification of (16). This nonequality implies
that the eigenfunctions can be normalized to satisfy 〈ϕ�, ϕ〉 = 1. In fact, from (16) and (22) one
computes

〈ϕ�, ϕ〉 = p∆′(λ)q, (24)

so this normalization can be effectuated by scaling p and q such that p∆′(λ)q = 1. Finally, it is easily
seen that if µ 6= λ is another simple eigenvalue of A with eigenvector ψ and adjoint eigenvector ψ�,
then

〈ϕ�, ψ〉 = 0, 〈ψ�, ϕ〉 = 0. (25)

2.6 Solvability of linear operator equations
When computing the normal form coefficients in Section 6 using (HOM), we will encounter linear
operator equations of the form

(zI −A�?)(v0, v) = (w0, w), (26)

where z is a complex number, (w0, w) ∈ X�? is given and (v0, v) ∈ D(A�?) is the unknown. In general,
both z and the right-hand side will have a nontrivial imaginary part, so here and from here onward, it is
necessary to regard systems of the form (26) as the complexification of the original operator equations.
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We will however not attach additional subscripts to the operator symbols, hoping that this omission
will not cause confusion.

Since σ(A) consists exclusively of point spectrum, there are two situations to consider depending
on whether or not z is an eigenvalue. If z is not an eigenvalue of A then z belongs to the resolvent set
ρ(A) of A and (26) admits a unique solution,

(v0, v) =
(
zI −A�?

)−1
(w0, w).

In order to actually find this solution, one needs a representation of the resolvent operator of A�?. The
general result can be found in [14, Corollary IV.5.4], but here we only require a special case.

Lemma 3. Suppose that z is not an eigenvalue of A, so (26) has a unique solution (v0, v). If the
right-hand side is represented by

(w0, w) =
(
w0, θ 7→ ezθ∆−1(z)η

)
,

for some fixed vector η ∈ Cn, then this solution has the representation

v0 = v(0), v(θ) = ∆−1(z)
(
ezθw0 + (∆′(z)− I − θ∆(z))w(θ)

)
.

Proof. Write (w0, w) = (w0, 0) + (0, θ 7→ ezθ∆−1(z)η), use the linearity of (zI − A�?)−1 and apply
both cases of [37, Corollary 3.4].

On the other hand, suppose that z = λ is an eigenvalue. Then (26) need not be consistent. In fact,
a solution exists if and only if

〈(w0, w), ϕ�〉 = 0, ∀ϕ� ∈ N (λI −A?), (FSC)

see [37, Lemma 3.2]). This condition is often referred to as the Fredholm solvability condition. We note
that the duality pairing in (FSC) may be evaluated in concrete cases using (22) and the complexification
of (17). This will be done many times in Section 6 when we apply (FSC) to specific operator equations.

If z = λ is an eigenvalue and (26) is consistent, then clearly its solutions are not unique. The
bordered operator inverse

(λI −A�?)INV : R(λI −A�?)→ D(A�?),

is used to select a particular solution in a systematic and convenient way. For the case that λ is a
simple eigenvalue, it assigns the unique solution of the extended linear system

(λI −A�?)(v0, v) = (w0, w), 〈(v0, v), ϕ�〉 = 0, (27)

to every (w0, w) for which (26) is consistent. The following lemma gives an explicit representation for
a special case [37, Proposition 3.6 and Corollary 3.7].

Lemma 4. Let z = λ be a simple eigenvalue with eigenvector ϕ and adjoint eigenvector ϕ� as in (22),
normalized to 〈ϕ�, ϕ〉 = 1. Suppose (26) is consistent for a given right-hand side of the form

(w0, w) = (η, 0) + κ(q, ϕ),

where η ∈ Cn and κ ∈ C. Then the unique solution (v0, v) of (27) is given by

v0 = ξ + γq, v(θ) = eλθ(v0 − κθq),

with ξ = ∆INV(λ)(η + κ∆′(λ)q) and γ = −p∆′(λ)ξ + 1
2κp∆

′′(λ)q.
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In Section 6 we will use the shorthand notation

v = BINV
λ (η, κ),

for the solution in Lemma 4. We observe that the expression for ξ itself involves a bordered matrix
inverse,

∆INV(λ) : R(∆(λ))→ Cn,

which assigns the unique solution of the extended linear system

∆(λ)x = y, p · x = 0,

to every y ∈ Cn for which the system ∆(λ)x = y is consistent - also see Remark 2 for the notation. In
practice, x = ∆INV(λ)y can be obtained by solving the nonsingular bordered matrix system(

∆(λ) q
p 0

)(
x
s

)
=

(
y
0

)
,

for the unknown (x, s) ∈ Cn+1 that necessarily satisfies s = 0. The properties of (finite dimensional)
bordered linear systems and their role in numerical bifurcation analysis are discussed more extensively
in [41] and [28, Chapter 3].

3 Parameter dependence and classical DDEs
In Section 3.1 we motivate our approach by explaining why the standard literature result does not
apply to the problem at hand. This is most easily done at the concrete level of classical DDEs. The
structure of the remaining subsections parallels that of Section 2. Namely, we first solve the problem of
parameter dependence at the more abstract level of dual perturbation theory. In the final Section 3.6
we then return to classical DDEs to see how the general results apply in this special case.

3.1 Motivation
We are concerned with the situation where the right-hand side of (DDE) depends explicitly on param-
eters. Specifically, we consider

ẋ(t) = F (xt, α), t ≥ 0, (28)

where F : X × Rp → Rn is Ck-smooth for some k ≥ 1 with F (0, 0) = 0. We assume that at the
critical parameter value α = 0 the linearization of (28) has 1 ≤ n0 <∞ purely imaginary eigenvalues,
counting multiplicities. The goal of Section 3 is to obtain a parameter-dependent family of local center
manifolds for a class of evolution equations that includes (28).

In [14, Section IX.9.1] this problem is approached as follows. One augments (28) with a trivial
equation for the constant parameter dynamics. This gives the system{

ẋ(t) = F (xt, µ(t)),

µ̇(t) = 0,
t ≥ 0, (29)

on the state space X := X×Rp, with X = C([−h, 0],Rn) as before in Section 2.4. Then the right-hand
side of the first equation of (29) is split as

F (ϕ, α) = D1F (0, 0)ϕ+ G̃(ϕ, α), (30)

which defines G̃ : X → Rn, cf. [14, (9.7) in Section IX.9.1]. The first term on the right of (30) acts
only on the X-component of the state in X, so the semigroup T̃ on X obtained by perturbing the
shift-semigroup T 0 is diagonal.
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However, there is an obstruction. In order to satisfy the hypotheses of the parameter-independent
center manifold theorem, G̃ must be a pure nonlinearity on X, i.e.

G̃(0, 0) = 0, D1G̃(0, 0) = 0, D2G̃(0, 0) = 0.

The first two of these conditions are clearly fulfilled, but in general there is no reason for the third
condition to be met. It does hold when G̃(0, α) = 0 for all α ∈ Rp in a neighborhood of zero, i.e.
when the zero equilibrium of (28) persists under small parameter variations. For a generic fold-Hopf
bifurcation - as well as for a generic Bogdanov-Takens bifurcation that we do not discuss here - there
is no such persistence.

In this article, the above difficulty is resolved by considering instead of (30) the splitting

F (ϕ, α) = D1F (0, 0)ϕ+D2F (0, 0)α+G(ϕ, α). (31)

Using this splitting, (29) is written as{
ẋ(t) = D1F (0, 0)xt +D2F (0, 0)µ(t) +G(xt, µ(t)),

µ̇(t) = 0,
t ≥ 0. (32)

Now both D1F (0, 0) as well as D2F (0, 0) appear in the perturbation of T 0. As a consequence the
perturbed semigroup T is no longer diagonal, but still simple enough for a complete analysis. Moreover,

G(0, 0) = 0, D1G(0, 0) = 0, D2G(0, 0) = 0, (33)

so the parameter-independent center manifold theorem can be applied without having to assume equi-
librium persistence. Of course G = G̃ and T = T̃ whenever D2F (0, 0) = 0.
Remark 5. In a first attempt we regarded the augmented system (29) as a DDE on the state space
C([−h, 0],Rn+p), also see [30], but we found this approach to be a bit unsatisfactory: The proofs in
Sections 3.2 to 3.5 do not depend on the details of the class of equations under consideration, while
those same details sometimes lead to notation that is more complicated than necessary.

3.2 Duality structure and linear perturbation
We work in the setting of Section 2.1. Namely, let T0 be a C0-semigroup on a real or complex Banach
space X that is sun-reflexive with respect to T0. We write K ∈ {R,C} for the underlying scalar field -
as in Remark 2. Define T 0 on X by

T 0(t) := diag (T0(t), Ip). (34)

The procedure of taking adjoints and restrictions (twice) then yields semigroups T ?
0, T

�
0 , T

�?
0 and

T��0 on X? ' X? ×Kp, X� ' X� ×Kp, X�? ' X�? ×Kp and X�� ' X�� ×Kp. (The symbol '
indicates an identification via a natural isometric isomorphism.) It is straightforward to check that on
X�? we have

T�?0 (t) = diag (T�?0 (t), Ip), (35)

and that the canonical injection j : X →X�? has the form

j = diag (j, Ip), (36)

where j : X → X�? is the canonical injection from (2). In particular, X is sun-reflexive with respect
to T 0.

As in Section 2.1 we now introduce a bounded linear perturbation L : X → X�? of T 0. We let it
be of the form

L =

(
L Lp
0 0

)
, (37)

with L : X → X�? and Lp : Kp → X�? bounded linear operators. Perturbing T0 by L and T 0 by L
yields C0-semigroups T on X and T on X, respectively. Let A and A be their generators.
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Remark 6. There are at least two equivalent ways to compute T and A on X and their weak? coun-
terparts T�? and A�? on X�?. One approach - suggested to us by Odo Diekmann - uses integrated
semigroup theory to calculate first T and next T�?. Then A�? and A are calculated, in that order.

Here we go the other way around: We start by calculating A�? and use it to obtain T�?. If desired
A and T can then be found by application of (36) and its inverse. This approach is more elementary
- we use only theory that was already introduced in Section 2.1 - and it yields the same outcome, as it
should.

Proposition 7. The weak? generator A�? of T�? has the representation

D(A�?) = D(A�?)×Kp, A�? =

(
A�? Lp

0 0

)
,

where A�? is the weak? generator of T�?.

Proof. According to the general theory of Section 2.1 and (4) in particular, we have

D(A�?) = D(A�?0 ), A�? = A�?0 + Lj−1,

From (35) we see that

D(A�?0 ) = D(A�?0 )×Kp, A�?0 = diag (A�?0 , 0).

Using (36) and (37) we calculate

A�?0 + Lj−1 =

(
A�?0 0

0 0

)
+

(
L Lp
0 0

)(
j−1 0
0 Ip

)
,

and the result follows.

Lemma 8. Let L�p : X� → Kp be the restriction of L?p to X�. Then L�?p = Lp.

Proof. We begin by noting that - strictly speaking - this statement involves two canonical identifi-
cations. Namely, let i : X� → X�?? and ip : Kp → Kp?? be the canonical injection and bijection,
respectively. Then L�p := L?pi and we need to prove that L�?p ip = Lp. For this it is not difficult to
show that

〈L�?p ipα,ϕ
�〉 = 〈Lpα,ϕ�〉,

for all α ∈ Kp and for all ϕ� ∈ X�.

For the purpose of notation, we define the integrated semigroup W�? for T�? as

W�?(t)ϕ�? :=

∫ t

0

T�?(τ)ϕ�? dτ, t ≥ 0. (38)

with on the right a weak? Riemann integral of the same type as the integral in (3).

Proposition 9. The semigroup T�? that is weakly? generated by A�? has the representation

T�?(t) =

(
T�?(t) W�?(t)Lp

0 Ip

)
, t ≥ 0. (39)

Proof. We define a one-parameter family S of bounded linear operators on X� by

S(t) =

(
T�(t) 0

L�pW
�(t) Ip

)
, t ≥ 0,
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where

W�(t)ϕ� :=

∫ t

0

T�(τ)ϕ� dτ, t ≥ 0.

It is easy to check that S is a C0-semigroup on X�. By Lemma 8 the adjoint semigroup S?(t) equals
the right-hand side of (39) for all t ≥ 0. We will show that the weak? generator A�? of T�? is also
the weak? generator of S?. This will then imply that T�? = S?.

We use Proposition 7. Let C be the generator of S, so C? is the weak? generator of S?. For any
(ϕ�?, α) in X�? and any t > 0 we have

1

t

(
S?(t)(ϕ�?, α)− (ϕ�?, α)

)
=

1

t

(
T�?(t)ϕ�? − ϕ�?

0

)
+

1

t

(
W�?(t)Lpα

0

)
.

We note that t−1W�?(t)Lpα → Lpα weakly? as t ↓ 0. It follows that the right-hand side converges
weakly? if and only if ϕ�? ∈ D(A�?) and in that case the weak?-limit equals (A�?ϕ�? + Lpα, 0) =
A�?(ϕ�?, α). We conclude that C? = A�?.

3.3 Spectral theory and the center eigenspace
Let T0 be a C0-semigroup on a complex Banach space X that is sun-reflexive with respect to T0. For
the purpose of spectral theory, we explicitly take C as the underlying scalar field. In examples, X will
often be a complexification of a real Banach space, see Remark 1.

We are interested in a description of the spectrum and the corresponding (generalized) eigenspaces of
the generator A of T . In particular, Propositions 11 and 14 below guarantee, respectively, the existence
and smooth parametrization of the parameter-dependent local center manifold in Section 3.5.

Proposition 10. The spectrum σ(A�?) = σ(A�?) ∪ {0} with resolvent operator

Rz(A
�?) =

(
Rz(A

�?) z−1Rz(A
�?)Lp

0 z−1Ip

)
, (40)

for every z in the resolvent set ρ(A�?).

Proof. From Proposition 7 we have

zI −A�? =

(
zI −A�? −Lp

0 zIp

)
.

This upper triangular operator matrix has a bounded inverse if and only if both entries on its diagonal
have bounded inverses, which happens if and only if z ∈ ρ(A�?) and z 6= 0. In that case, the inverse
is given precisely by the stated expression for Rz(A�?) := (zI −A�?)−1.

In addition we assume that T0 is eventually compact and the perturbation L in (37) is compact.
As a consequence, the spectral analysis of A�? reduces to an analysis of the poles of its resolvent
operator [19, Corollary V.3.2], [58, Section V.10].

Proposition 11. T is an eventually compact C0-semigroup.

Proof. The eventual compactness of T0, the finite rank of Ip and (34) together imply that T 0 is
eventually compact. Since Lp has finite rank and L is compact by assumption, it follows from (37)
that L is compact, so T is eventually compact by [11, Theorem 2.8].

Theorem 12. The generalized eigenspace corresponding to λ ∈ σ(A�?) is given by

Mλ(A�?) =

{
Mλ(A�?)× {0}, if λ 6= 0,

M0(A�?)× {0} ⊕ {(Γ0Lpα, α) : α ∈ Cp} , if λ = 0,

where Γ0 is a bounded linear operator on X�? mapping into X��.
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Proof. Let λ ∈ σ(A�?) be arbitrary. Taking residues at z = λ in (40), we obtain

P�?λ =

(
P�?λ ΓλLp

0 Ipδλ

)
, Γλ := Res

z=λ
z−1Rz(A

�?), (41)

where δλ := δλ,0 is the Kronecker delta and P�?λ and P�?λ are the spectral projectors corresponding to
λ for A�? and A�?. (If λ is in the resolvent set of the respective operator, then the residue - hence the
spectral projector - is identically zero.) Γλ is pointwise equal to a contour integral with an integrand
in the closed subspace X�� of X�?, so Γλ maps into X��.

We will now calculate the range of P�?λ from (41). In general,

Mλ(A�?) =

{(
P�?λ ϕ�?

0

)
+

(
ΓλLpα
αδλ

)
: (ϕ�?, α) ∈X�?

}
. (42)

First we assume that λ 6= 0, so δλ = 0. We are going to show that{
P�?λ ϕ�? + ΓλLpα : (ϕ�?, α) ∈X�?

}
=Mλ(A�?). (43)

Together with (42) this will then prove the theorem for Mλ(A�?). To verify (43) let p ∈ N be the
order of λ as a pole of Rz(A�?). For n = 1, . . . , p let Bn be the coefficient of (z − λ)−n in the Laurent
series for Rz(A�?). A small computation shows that

Γλ =

p∑
k=1

(−1)k+1λ−kBk. (44)

From [58, Section V.10] we recall the relation Bn+1 = (A�? − λI)nB1 for all n ∈ N. Since B1 = P�?λ
and its rangeMλ(A�?) is an invariant subspace of A�?, this relation implies that Bk takes values in
Mλ(A�?) for all k = 1, . . . , p, so the same is true for Γλ by (44). From this it follows that (43) holds.

For the remaining case λ = 0 we have δλ = 1, so from (42) we get the direct sum

M0(A�?) =

{(
P�?0 ϕ�?

0

)
: ϕ�? ∈ X�?

}
⊕
{(

Γ0Lpα
α

)
: α ∈ Cp

}
.

The first summand equalsM0(A�?)× {0} and this gives the result.

Corollary 13. The center eigenspace X0 corresponding to the purely imaginary eigenvalues of A is
given by

X0 = X0 × {0} ⊕
{(
j−1Γ0Lpα, α

)
: α ∈ Cp

}
,

with dimX0 = dimX0 + p.

Proof. By Proposition 10 we have the disjoint union σ(A�?) = (σ(A�?) \ {0}) ∪ {0}. Using this and
Theorem 12 we first compute the center eigenspace for A�? as

X�?0 = X�?0 × {0} ⊕ {(Γ0Lpα, α) : α ∈ Cp},
and then we apply j−1 from (36) to both sides of this equality.

In Sections 3.4 to 3.6 we will consider nonlinear problems on a real Banach space. In this case
spectral analysis must be preceded by complexification, see Remark 1 and in particular [14, last part
of Section IV.2].

Proposition 14. Suppose that X = YC is a complexification of a real Banach space Y and let Y0 ⊆ Y
be the real center eigenspace associated with X0. Then the real center eigenspace Y 0 associated with
X0 is

Y 0 = Y0 × {0} ⊕ {(Qα,α) : α ∈ Rp} ⊆ Y × Rp, (45)

where Q : Rp → Y is a bounded linear operator. Furthermore, ι : Y 0 → Y0 × Rp defined by ι(ψ, α) :=
(ψ −Qα,α) is a linear isomorphism.
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Proof. X is naturally identified with Y C where Y = Y × Rp. Let PΛ with range X0 be the spectral
projector on X for the spectral set Λ = Λ of all purely imaginary eigenvalues of AC. A direct
generalization of [14, Corollary IV.2.19] implies that PΛ is the complexification of a projector P Y

Λ on
Y and the range Y 0 of P Y

Λ - identified with a subspace of Y - is the real center eigenspace for A.
Also, Γ0 on X�? is self-conjugate by (41). Together with Corollary 13 this implies (45). It is easily
verified that the linear operator ι is an isomorphism.

Remark 15. We will not make a notational distinction between the real and complex center eigenspaces,
indicating both X0 and Y0 with X0 and both X0 and Y 0 with X0, respectively. We hope that the
underlying scalar field will be clear from the immediate context.

3.4 Nonlinear perturbation
Let T0 be a C0-semigroup on a real Banach space X that is sun-reflexive with respect to T0. Introduce
a nonlinear perturbation R : X →X�? of the form

R(ϕ, α) = (R(ϕ, α), 0), (46)

where R : X → X�? is Ck-smooth, satisfying

R(0, 0) = 0, D1R(0, 0) = 0, D2R(0, 0) = 0. (47)

We associate with T and R the integral equation

u(t) = T (t− s)u(s) + j−1

∫ t

s

T�?(t− τ)R(u(τ)) dτ, −∞ < s ≤ t <∞. (48)

We expect all nontrivial dynamics to be contained in the first component, and this is indeed the case:

Proposition 16. The function u = (u, up) : I →X is a solution of (48) if and only if up is constant
on I and u : I → X is a solution of

u(t) = T (t− s)u(s) + j−1

∫ t

s

T�?(t− τ)(Lpα+R(u(τ), α)) dτ, −∞ < s ≤ t <∞, (49)

where α ∈ Rp denotes the constant value of up.

Proof. We use Proposition 9 and (36). For any continuous function u = (u, up) : I →X we compute

T (t− s)u(s) = j−1T�?(t− s)ju(s) =

(
T (t− s)u(s) + j−1W�?(t− s)Lpup(s)

up(s)

)
,

while another computation shows that

j−1

∫ t

s

T�?(t− τ)R(u(τ)) dτ =

(
j−1

∫ t
s
T�?(t− τ)R(u(τ)) dτ

0

)
.

From the above together with the definition (38) ofW�?(t) we see that (48) is equivalent to the system u(t) = T (t− s)u(s) + j−1

∫ t

s

T�?(t− τ)(Lpup(s) +R(u(τ), up(τ))) dτ,

up(t) = up(s),

for −∞ < s ≤ t <∞. The statement now follows.
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3.5 Parameter-dependent local center manifolds
We consider again a C0-semigroup T0 on a real Banach space X that is sun-reflexive with respect to
T0. We also assume that T0 is eventually compact and L in (37) is compact, so Proposition 11 implies
that T is eventually compact. If furthermore the nonlinearity R satisfies (47), then all conditions are
fulfilled for the application of the center manifold theory from [14, Chapter IX] to (48).

Therefore, if the generator A of T has 1 ≤ n0 <∞ purely imaginary eigenvalues, counting algebraic
multiplicities, then by Proposition 14 the real center eigenspaceX0 has dimension n0+p. There exists a
Ck-smooth local center manifold Wc

loc in X that is tangent at the origin to X0. In fact, Proposition 14
implies that Wc

loc is the image of a Ck-smooth map

C : U × Up ⊆ X0 × Rp →X,

where U ⊆ X0 and Up ⊆ Rp are neighborhoods of the origin. Since (46) has a zero in the second
component, it follows from [14, (5.1) in Section IX.5] that C has the form

C(ϕ, α) = (C(ϕ, α), α), ∀ (ϕ, α) ∈ U × Up, (50)

where C : U × Up → X is the first component function.

Definition 17. The image Wc
loc(α) := C(U,α) is a local center manifold for (49) at α ∈ Up.

It is a direct consequence of the above definition that for every α ∈ Up we can parametrize Wc
loc(α)

by coordinates on the real center eigenspace X0 that depend Ck-smoothly on α. This will be important
for the discussion of the normalization method following (55) in Section 4.

Proposition 18. If α ∈ Up is sufficiently small then Wc
loc(α) is locally positively invariant for the

semiflow generated by (49).

Proof. Let Σ and Σ be the semiflows generated by (48) and (49), respectively. By Proposition 16,

Σ(s, (ψ, α)) = (Σ(s, ψ), α), ∀ψ ∈ X,α ∈ Rp, (51)

and for all s in a common interval of existence Iψ,α. By [14, Theorem IX.5.3(i)] there exists δ > 0 such
that if (ψ, α) ∈Wc

loc and if

‖Σ(s, (ψ, α))‖ = ‖Σ(s, ψ)‖+ |α| ≤ δ, ∀ s ∈ [0, t],

then Σ(t, (ψ, α)) ∈Wc
loc which by (51) implies that Σ(t, ψ) ∈ Wc

loc(α).
We note that if ψ ∈ Wc

loc(α) then by (50) it follows that (ψ, α) ∈Wc
loc. Therefore, if |α| ≤ δ

2 and
ψ ∈ Wc

loc(α) then

‖Σ(s, ψ)‖ ≤ δ

2
, ∀ s ∈ [0, t]

implies that Σ(t, ψ) ∈ Wc
loc(α). This is precisely local positive invariance of Wc

loc(α) for Σ.

Next we consider a solution u : I → X of (49) that lies in Wc
loc(α). By Proposition 16 the function

u = (u, α) : I → X is a solution of (48). Also, since u lies in Wc
loc(α) we see from (50) that u lies in

Wc
loc and therefore satisfies the differential equation

ju̇(t) = A�?ju(t) + R(u(t)), ∀ t ∈ I,

cf. (9). By (36) and (46) and Proposition 7 the first component of this equation gives the differential
equation

ju̇(t) = A�?ju(t) + Lpα+R(u(t), α), ∀ t ∈ I, (52)

that is satisfied by u.
In summary,
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Theorem 19 (Parameter-dependent local center manifold). Let T0 be an eventually compact C0-
semigroup on a sun-reflexive real Banach space X and let T be the C0-semigroup on X defined by
(3) where L is a compact perturbation. Suppose that the generator A of T has 1 ≤ n0 < ∞ purely
imaginary eigenvalues with corresponding n0-dimensional real center eigenspace X0. Furthermore,
assume that R in (49) is Ck-smooth and (47) holds.

Then there exists a Ck-smooth map C : U × Up → X defined in a neighborhood of the origin in
X0 × Rp and such that for every sufficiently small α ∈ Rp the manifold Wc

loc(α) := C(U,α) is locally
positively invariant for the semiflow generated by (49) at parameter value α. Furthermore, any solution
u : I → X of (49) that lies on Wc

loc(α) satisfies (52).

3.6 The special case of parameter-dependent classical DDEs
In this section we will formulate a corollary of Theorem 19 that applies specifically to the classical
parameter-dependent DDE (28). As in Section 2.4 our starting point is (32) with F = 0,{

ẋ(t) = 0,

µ̇(t) = 0,
t ≥ 0, (53)

in the unknown (x, µ) with initial condition (ϕ, α) in the state space X := X × Rp where X :=
C([−h, 0],Rn). So, we interpret the first component of (53) as a DDE but the second component as an
ODE. By comparison with (13) it is clear that the solution of the initial value problem for (53) defines
a C0-semigroup T 0 on X,

T 0(t) := diag (T0(t), Ip),

with T0 the eventually compact shift semigroup on X from (14) and Ip the identity on Rp. We specify
the perturbations L and Lp in (37) as

Lϕ = (D1F (0, 0)ϕ)r�?, Lpα = (D2F (0, 0)α)r�?,

where D1F (0, 0) and D2F (0, 0) are as in (31). Then L is of finite rank, so certainly it is compact.
Also, we choose the nonlinear perturbation R in (46) as

R(ϕ, α) = G(ϕ, α)r�?, (54)

where G is defined by the splitting in (31). Then (33) implies that the conditions in (47) hold.

Corollary 20 (Parameter-dependent local center manifold for DDEs). Consider the particular case
of the classical DDE in (28),

ẋ(t) = F (xt, α), t ≥ 0,

where F : X×Rp → Rn is Ck-smooth for some k ≥ 1 with F (0, 0) = 0. Let T be the C0-semigroup on X
corresponding to the linearization of (28) at 0 ∈ X for the critical parameter value α = 0. Suppose that
the generator A of T has 1 ≤ n0 <∞ purely imaginary eigenvalues with corresponding n0-dimensional
real center eigenspace X0.

Then there exists a Ck-smooth map C : U × Up → X defined in a neighborhood of the origin in
X0 × Rp and such that for every sufficiently small α ∈ Rp the manifold Wc

loc(α) := C(U,α) is locally
positively invariant for the semiflow generated by (28) at parameter value α.

Furthermore, if the history xt associated with a solution of (28) exists on some nondegenerate
interval I and xt ∈ Wc

loc(α) for all t ∈ I, then u : I → X defined by u(t) := xt is differentiable and
satisfies

ju̇(t) = A�?ju(t) + (D2F (0, 0)α)r�? +G(u(t), α)r�?, ∀ t ∈ I,
where A�? is the weak? generator of T�? and the operator G : X × Rp → Rn defined by (31),

G(ϕ, α) := F (ϕ, α)−D1F (0, 0)ϕ−D2F (0, 0)α,

is the nonlinear part of F .
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Remark 21. For discrete classical DDEs (1) one may want to use one or more of the discrete delays
τ1, . . . , τm as parameters. However, in this case the operator R is typically no longer differentiable,
see [14, Remark IX.9.2]. Of course, if only a single discrete delay is present, this problem can be avoided
by a linear rescaling of time.

4 Normal forms on the parameter-dependent center manifold
The normalization technique described in this section goes back to [8]. In [42] it was applied to obtain
expressions for the critical normal form coefficients of all generic codimension one and two bifurcations
of equilibria in ODEs, also see [43, §8.7]. In this context, these expressions are independent of the
(finite) dimension of the phase space and they involve only critical eigenvectors of the Jacobian matrix
and its transpose as well as higher order derivatives of the right-hand side at the critical equilibrium.
These properties make them suitable for both symbolic and numerical evaluation.

In [46] the same technique was applied to parameter-dependent normal forms to start the continu-
ation of nonhyperbolic cycles emanating from generalized Hopf, fold-Hopf and Hopf-Hopf bifurcation
points of ODEs. The resulting predictors were implemented in the freely available software package
MatCont, a MATLAB toolbox for continuation and bifurcation analysis of finite dimensional dynamical
systems. This makes it possible to verify transversality conditions and to initialize the continuation of
the nonhyperbolic cycles mentioned above. A similar switching problem for iterated maps was solved
earlier in [27].

In [37] the normalization technique was lifted to an infinite dimensional setting, providing explicit
expressions for the critical normal form coefficients of generic codimension one and two equilibrium
bifurcations in DDEs. These expressions were partially implemented [60] in the software DDE-BifTool.
This package can be considered as the DDE equivalent of MatCont in command line mode.

In this section we extend the normalization method from [37] to include parameters. Suppose
0 ∈ X is a stationary state of (28) at the critical parameter value 0 ∈ Rp and assume there are n0 ≥ 1
eigenvalues on the imaginary axis, counting algebraic multiplicities. Let P0 be the corresponding real
spectral projector onX, so the rangeX0 of P0 is the real n0-dimensional center eigenspace. Corollary 20
applies to give a parameter-dependent local center manifold Wc

loc(α) for (28).
We allow for the introduction of a new parameter β defined in a neighborhood of 0 ∈ Rp such that

α = K(β) for some locally defined Ck-diffeomorphism K : Rp → Rp that is to be determined below, up
to a certain order. If u : I → X with u(t) := xt ∈ Wc

loc(α) is as in Corollary 20, then u is differentiable
on I and satisfies

ju̇(t) = A�?ju(t) + (D2F (0, 0)K(β))r�? +R(u(t),K(β)), ∀ t ∈ I, (55)

where R encodes the nonlinear part of F as in (54). Choose a basis Φ of X0 and let H : Rn0 ×Rp → X
be a locally defined Ck-smooth parametrization of Wc

loc(α) with respect to Φ and in terms of the new
parameter β, see the remark following Definition 17. For every t ∈ I we define v(t) ∈ Rn0 as the
coordinate vector of P0u(t) with respect to Φ. Then v : I → Rn0 satisfies a parameter-dependent
ordinary differential equation of the form

v̇ =
∑

|ν|+|µ|≥1

1

ν!µ!
gνµv

νβµ, (56)

where the Ck-smooth vector field on the right has been expanded up to some sufficiently large - but
finite - order. The multi-indices ν and µ have lengths n0 and p, respectively. We assume that (56) is
in parameter-dependent normal form, up to a certain order. Since H parametrizes Wc

loc(α),

u(t) = H(v(t), β), t ∈ I,



SWITCHING TO NONHYPERBOLIC CYCLES IN DDES 19

with both u and v depending on the parameter, although this is left implicit in the notation. Substi-
tuting the above relation into (55) produces the homological equation

A�?jH(v, β) + (D2F (0, 0)K(β))r�? +R(H(v, β),K(β)) = jD1H(v, β)v̇, (HOM)

with v̇ given by the parameter-dependent normal form (56). The unknowns in (HOM) are H, K and
the coefficients gνµ from (56). They are determined, up to a certain order, by the assumption that (56)
is in normal form. For r, s ≥ 0 with r+ s ≥ 1 we denote by Dr

1D
s
2F (0, 0) : Xr × [Rp]s → Rn the mixed

Fréchet derivative of order r + s, evaluated at (0, 0) ∈ X × Rp, with the understanding that at most
one of the factor spaces Xr or [Rp]s is absent if either r = 0 or s = 0. We expand the nonlinearity R
as

R(ϕ, α) =
∑
r+s>1

1

r!s!
Dr

1D
s
2F (0, 0)(ϕ(r), α(s))r�?, (57)

where ϕ(r) := (ϕ, . . . , ϕ) ∈ Xr and α(s) := (α, . . . , α) ∈ [Rp]s. The mappings H and K can be expanded
as

H(v, β) =
∑

|ν|+|µ|≥1

1

ν!µ!
Hνµv

νβµ, K(β) =
∑
|µ|≥1

1

µ!
Kµβ

µ. (58)

Substituting (56)–(58) into (HOM), collecting coefficients of terms vνβµ from lower to higher order and
solving the resulting linear systems, one can solve recursively for the unknown coefficients gνµ, Hνµ

and Kµ by applying the Fredholm alternative and taking ordinary or bordered inverses, as explained
in Section 2.6.

5 Predictors for normal forms on center manifolds
Starting from this point, we will focus exclusively on two-parameter DDEs, i.e. we will have p = 2.
This enables the initialization of codimension one equilibrium and cycle bifurcations emanating from
the generalized Hopf, fold-Hopf, Hopf-Hopf and transcritical-Hopf codimension two bifurcation points.
The corresponding steady state and cycle bifurcation curves can then be continued in two parameters
using the continuation capabilities of DDE-BifTool, providing an unfolding of the singularity.

In this section we list known asymptotics for codimension one nonhyperbolic cycles emanating from
generalized Hopf, fold-Hopf and Hopf-Hopf bifurcations obtained in [46]. The asymptotics are derived
from the Poincaré normal forms which are obtained by considering near-identity changes of coordinates
generated by homogeneous polynomial functions without using time reparametrization. These normal
forms are therefore ready to be used in conjunction with the homological equation (HOM) where all the
time derivatives are assumed to be with the same unit of time. Following the same method as in [46], we
also derive asymptotics for codimension one nonhyperbolic cycles emanating from the transcritical-Hopf
bifurcation. We also provide asymptotics for the codimension one equilibrium bifurcations emanating
from the degenerate Hopf points.

5.1 Generalized-Hopf bifurcation
Suppose that system (28) has an equilibrium ϕ = 0 at the critical parameter value α0 = (0, 0) ∈ R2

with purely imaginary eigenvalues

λ1,2 = ±iω0, ω0 > 0. (59)

Furthermore, suppose that the first Lyapunov coefficient `1(0) = 0 while the second Lyapunov coeffi-
cient `2(0) 6= 0. Then the restriction of (28) to the two-dimensional center manifold Wc

loc(α) can be
transformed into the smooth local normal form

ż = λ(α)z + c1(α)z|z|2 + c2(α)z|z|4 +O(|z|6), (60)
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where λ(α), c1(α), c2(α) are complex-valued functions with `1(0) =
1

ω0
Re c1(0) = 0, λ(0) = iω0 and

`2(0) =
1

ω0
Re c2(0) 6= 0. Let {

λ(α) = µ(α) + iω(α),

c1(α) = Re c1(α) + i Im c1(α),

where µ(α) and ω(α) are real-valued functions. Suppose that the map α 7→ (µ(α),Re c1(α)) is regular
at α = 0. Then we can introduce new parameters (β1(α), β2(α)) to obtain the normal form

ż = (β1 + iω(β))z + (β2 + i Im c1(β))z|z|2 + c2(β)z|z|4 +O(|z|6), (61)

where ω(0) = ω0. For convenience, we abuse notations and write ω(β) and cj(β) instead of ω(α(β))
and cj(α(β)), respectively. Similar conventions are adopted in other cases ahead.

It is well known that a curve of fold bifurcation of limit cycles (LPC) emanates from this codimension
two point. To approximate this curve we substitute z = ρeiψ into (61) and expand ω(β) = ω(β) =
ω0 + ω10β1 + ω01β2 + O(‖(β1, β2)‖2). Truncating higher order terms and separating the real and
imaginary parts yields the system{

ρ̇ = ρ
(
β1 + β2ρ

2 + Re(c2(0))ρ4
)
,

ψ̇ = ω0 + ω10β1 + ω01β2 + Im(c1(0))ρ2 + Im(c2(0))ρ4.
(62)

The curve LPC corresponds to a double zero in the amplitude equation in (62). Therefore, this curve
in (61) can be approximated by

ρ = ε, β1 = Re(c2(0))ε4, β2 = −2 Re(c2(0))ε2, ε > 0. (63)

From the second equation in the amplitude system (62) we obtain using equation (63) the following
approximation for the period:

T = 2π
/(
ω0 + (Im(c1(0))− 2 Re c2(0)ω01) ε2

)
. (64)

Since Re(c1(β)) = β2, it is easy to see that the Hopf curve in the original system is related to the
truncated normal form by

(β1, β2, z) = (0, ε, 0) (65)

for ε 6= 0 small.

5.2 Fold-Hopf bifurcation
Suppose that system (28) has an equilibrium x = 0 at the critical parameter value α0 = (0, 0) ∈ R2

with eigenvalues
λ1 = 0, λ2,3 = ±iω0, (66)

where ω0 > 0. The restriction of (28) to the three-dimensional center manifoldWc
loc(α) can generically

be transformed to the smooth local normal form
ż0 = γ(α) + g200(α)z2

0 + g011(α)|z1|2 + g300(α)z3
0 + g111(α)z0|z1|2

+O
(
‖ (z0, z1, z1) ‖4

)
,

ż1 = λ(α)z1 + g110(α)z0z1 + g210(α)z2
0z1 + g021(α)z1|z1|2 +O

(
‖ (z0, z1, z1) ‖4

)
,

(67)

where z0 ∈ R, z1 ∈ C, γ(0) = 0, λ(0) = iω0 and the functions gjkl(α) are real in the first equation and
complex in the second. Let λ(α) = µ(α)+ iω(α) and suppose that the map α 7→ (γ(α), µ(α)) is regular
at α = 0. Introducing new parameters (β1(α), β2(α)), we obtain the truncated normal form{

ż0 = β1 + g200(β)z2
0 + g011(β)|z1|2 + g111(β)z0|z1|2 + g300(β)z3

0 ,

ż1 = (β2 + iω0 + ib1(β))z1 + g110(β)z0z1 + g210(β)z2
0z1 + g021(β)z1|z1|2,

(68)
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with b1(0) = 0. Letting z1 = ρeiψ and separating the real and imaginary parts yields the system
ż0 = β1 + g200(β)z2

0 + g011(β)ρ2 + g111(β)z0ρ
2 + g300(β)z3

0 ,

ρ̇ = ρ
(
β2 + Re(g110(β))z0 + Re(g210(β))z2

0 + Re(g021(β))ρ2
)
,

ψ̇ = ω0 + b1(β) + Im(g110(β))z0 + Im(g210(β))z2
0 + Im(g021(β))ρ2.

(69)

5.2.1 Neimark-Sacker curve

A Hopf bifurcation in the amplitude system (69), i.e. when the trace of the Jacobian matrix of the
amplitude system vanishes but the determinant of this matrix is positive, corresponds to a Neimark-
Sacker bifurcation in the original system. Let ρ = ε and suppose that g011(0) Re(g110(0)) < 0. Then
by the implicit function theorem, we obtain the second-order predictor

β1 = −g011(0)ε2,

β2 =
Re(g110(0)) (2 Re(g021(0)) + g111(0))− 2 Re(g021(0))g200(0)

2g200(0)
ε2,

z0 = −2 Re (g021(0)) + g111(0)

2g200(0)
ε2,

(70)

for the Neimark-Sacker curve. It follows from (69) that the period of the cycle is approximated to the
same order by

T = 2π
/(
ω0 + ω1β1 + ω2β2 + Im(g110(0))z0 + Im(g021(0))ε2

)
.

Here (z0, β1, β2) are as in (70) and ωi =
∂b1
∂βi

(0), for i = 1, 2.

Remark 22. Notice that the cubic terms g210(0) and g300(0) do not appear in the predictor. However,
these coefficients are needed to determine the stability of the two-dimensional torus, see [43, Section
8.5] and (106).

5.2.2 Fold and Hopf curves

For the approximation to the fold and Hopf curves it is sufficient to consider the second order terms
in (z0, ρ) in the amplitude system in (69). We obtain three equilibrium solutions given by

±
(√
− β1

g200(0)
, 0

)
and

(
− β2

Re(g110(0))
,

√
−Re(g110(0))2β1 − g200(0)β2

2√
g011(0) Re(g110(0))

)
.

It follows that the fold curve is approximated by

(β1, β2) = (0, ε)

and the Hopf curve by

(β1, β2) =

(
− g200(0)

Re(g110(0))2
ε2, ε

)
,

for |ε| small.

5.3 Hopf-Hopf bifurcation
Suppose that system (28) at the critical parameter value α0 = (0, 0) ∈ R2 undergoes two Hopf bifur-
cations simultaneously. Then the generator A has two pairs of purely imaginary eigenvalues

λ1,4 = ±iω1(0), λ2,3 = ±iω2(0), (71)
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where ωi : R2 → C for i = 1, 2 such that ω1(0) > ω2(0) > 0. When no other eigenvalues on the
imaginary axis exist, this phenomenon is called the Hopf-Hopf or double-Hopf bifurcation. Assume,
furthermore that the nonresonance conditions kω1 6= lω2, with 0 < k + l≤5 are satisfied. Then the
restriction of (28) to the four-dimensional center manifold Wc

loc(α) can be transformed to the smooth
local normal form

ż1 = λ1(α)z1 + g2100(α)z1|z1|2 + g1011(α)z1|z2|2 + g3200(α)z1|z1|4
+ g2111(α)z1|z1|2|z2|2 + g1022(α)z1|z2|4 +O

(
‖z1, z1, z2, z2‖6

)
,

ż2 = λ2(α)z2 + g1110(α)z2|z1|2 + g0021(α)z2|z2|2 + g2210(α)z2|z1|4
+ g1121(α)z2|z1|2|z2|2 + g0032(α)z2|z2|4 +O

(
‖z1, z1, z2, z2‖6

)
,

where z1,, z2 ∈ C2 and gjklm ∈ C. Let{
λ1(α) = µ1(α) + iω1(α),

λ2(α) = µ2(α) + iω2(α),

and suppose that the map α 7→ (µ1(α), µ2(α)) is regular at α = 0. Then we can introduce new
parameters (β1(α), β2(α)) = (µ1(α), µ2(α)) to obtain the normal form

ż1 = (β1 + iω1(β)z1 + g2100(β)z1|z1|2 + g1011(β)z1|z2|2 + g3200(β)z1|z1|4
+ g2111(β)z1|z1|2|z2|2 + g1022(β)z1|z2|4 +O

(
‖z1, z1, z2, z2‖6

)
,

ż2 = (β2 + iω2(β)z2 + g1110(β)z2|z1|2 + g0021(β)z2|z2|2 + g2210(β)z2|z1|4
+ g1121(β)z2|z1|2|z2|2 + g0032(β)z2|z2|4 +O

(
‖z1, z1, z2, z2‖6

)
.

We truncate the normal form to third order{
ż1 = (β1 + iω1 + ib1(β)) z1 + g2100(0)z1|z1|2 + g1011(0)z1|z2|2,
ż2 = (β2 + iω2 + ib2(β)) z2 + g1110(0)z2|z1|2 + g0021(0)z2|z2|2.

(72)

Letting (z1, z2) =
(
ρ1e

iψ1 , ρ2e
iψ2
)
and separating the real and imaginary parts yields

ρ̇1 = ρ1

(
β1 + Re(g2100(0))ρ2

1 + Re(g1011(0))ρ2
2

)
,

ρ̇2 = ρ2

(
β2 + Re(g1110(0))ρ2

1 + Re(g0021(0))ρ2
2

)
,

ψ̇1 = ω1 + b1(β) + Im(g2100(0))ρ2
1 + Im(g1011(0))ρ2

2,

ψ̇2 = ω2 + b2(β) + Im(g1110(0))ρ2
1 + Im(g0021(0))ρ2

2.

(73)

5.3.1 Hopf curves

There are two semi-trivial equilibria

(ρ1, ρ2) =

(√
− β1

Re(g2100(0))
, 0

)
, (ρ1, ρ2) =

(
0,

√
− β2

Re(g0021(0))

)

of the amplitude system of (73). Translating to the original system provides the Hopf bifurcation
curves

H1 = {(β1, β2) : β1 = 0} , and H2 = {(β1, β2) : β2 = 0} .
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5.3.2 Neimark-Sacker curves

A nontrivial equilibrium to the amplitude system

(ρ1, ρ2) =

(√
β2 Re g1011(0)− β1 Re g0021(0)

Re g0021(0) Re g2100(0)− Re g1011(0) Re g1110(0)
,√

β2 Re g2100(0)− β1 Re g1110(0)

Re g1011(0) Re g1110(0)− Re g0021(0) Re g2100(0)

)

corresponds to a torus of the original system. When

Re(g1110(0))β1 = Re(g2100(0))β2

the nontrivial equilibrium coincides with the first semi-trivial equilibrium, thus giving a predictor for
a Neimark-Sacker bifurcation curve. Similarly, when

Re(g0021(0))β1 = Re(g1011(0))β2

the nontrivial equilibrium coincides with the second semi-trivial equilibrium, and gives a predictor for
the second Neimark-Sacker bifurcation curve. Therefore, we obtain two Neimark-Sacker bifurcation
curves in (72), with approximations given by

(ρ1, ρ2, β1, β2) =
(
ε, 0,−Re(g2100(0))ε2,−Re(g1110(0))ε2

)
, (74a)

(ρ1, ρ2, β1, β2) =
(
0, ε,−Re(g1011(0))ε2,−Re(g0021(0))ε2

)
, (74b)

where ε > 0, which are the predictors given in [46] and [49]. An approximation for the period of the
cycle for each Neimark-Sacker predictor can be obtained from the third and fourth equation in system
(73), yielding {

T1 = 2π
/(
ω1 + b11β1 + b12β2 + Im(g2100(0))ε2

)
,

T2 = 2π
/(
ω2 + b21β1 + b22β2 + Im(g0021(0))ε2

)
,

where
bjk =

∂bj
∂βk

(0), j, k = 1, 2.

Here we should use (β1, β2) as in (74a) and (74b).

5.4 Transcritical-Hopf bifurcation
A majority of papers in which fold-Hopf bifurcations in DDEs are studied, deals with models where
the steady state remains fixed under variation of parameters. In this case the unfolding is not given
by (67) anymore and we have to consider the smooth local normal form

ż0 = γ(α)z0 + g200(α)z2
0 + g011(α)|z1|2 + g300(α)z3

0 + g111(α)z0|z1|2
+O

(
‖ (z0, z1, z1) ‖4

)
,

ż1 = λ(α)z1 + g110(α)z0z1 + g210(α)w2z1 + g021(α)z1|z1|2 +O
(
‖ (z0, z1, z1) ‖4

)
.

The bifurcation analysis can be carried out similar to the fold-Hopf case, see [29] and [40]. An alternative
approach is presented in [62]. In contrast with the fold-Hopf bifurcation, there are in general two
Neimark-Sacker bifurcation curves. Furthermore, the fold bifurcation curve becomes a transcritical
bifurcation curve, and meets the Hopf bifurcation curve transversally.
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Under the assumption of the same transversality condition as in the fold-Hopf bifurcation we in-
troduce new parameters (β1(α), β2(α)) to obtain the truncated normal form{

ż0 = β1z0 + g200(β)z2
0 + g011(β)|z1|2 + g111(β)z0|z1|2 + g300(β)z3

0 ,

ż1 = (β2 + iω0 + ib1(β))z1 + g110(β)z0z1 + g210(β)z2
0z + g021(β)z1|z1|2,

(75)

with b1(0) = 0. Letting z1 = ρeiψ and separating the real and imaginary parts yields the three
dimensional system

ż0 = β1z0 + g200(β)z2
0 + g011(β)ρ2 + g111(β)z0ρ

2 + g300(β)z3
0 ,

ρ̇ = ρ
(
β2 + Re(g110(β))z0 + Re(g210(β))z2

0 + Re(g021(β))ρ2
)
,

ψ̇ = ω0 + b1(β) + Im(g110(β))z0 + Im(g210(β))z2
0 + Im(g021(β))ρ2.

(76)

5.4.1 Neimark-Sacker bifurcation curves

Following the same procedure as in Section 5.2, we obtain that for g011(0) Re(g110(0)) < 0 there are
two Neimark-Sacker bifurcation curves approximated by

β1 = ∓2
√
g011(0)g200(0)ε,

β2 = ∓Re (g110(0))

√
g011(0)

g200(0)
ε,

z0 = ±
√
g011(0)

g200(0)
ε,

(77)

while the period of the corresponding cycle is approximated by

T = 2π /(ω0 + ω1β1 + ω2β2 + Im(g110(0))z0) .

Here (z0, β1, β2) are as in (77) and ωi =
∂b1
∂βi

(0), for i = 1, 2.

5.4.2 Hopf and transcritical bifurcations curves

The transcritical bifurcation curve in the normal form is obtained by substituting ρ = 0 in the amplitude
system of (76). Then β2 is unrestricted and z0 = −β1/g200(0). The transcritical bifurcation curve is
therefore given by

(β1, β2) = (0, β2) .

To obtain a predictor for the Hopf bifurcation curve we truncate (76) to the second order. We obtain
a trivial equilibrium (z0, ρ) = (0, 0), a semi-trivial equilibrium (z0, ρ) = (− β1

g200(0) , 0) and a nontrivial
equilibrium

(z0, ρ) =

(
− β2

Re (g110(0))
,

√
β2 (Re (g110(0))β1 − g200(0)β2)

Re (g110(0))
√
g011(0)

)
.

It follows that the Hopf bifurcation curves are approximated by

β2 =
Re (g110(0))

g200(0)
β1, β2 = 0.
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6 Coefficients of parameter-dependent normal forms
Using the method outlined in Section 4, we derive here the coefficients needed for the predictors of
the nonhyperbolic equilibria and cycles emanating from generalized Hopf, fold-Hopf, Hopf-Hopf and
transcritical-Hopf bifurcations, see Section 5. While doing so, we also obtain the critical normal form
coefficients, which were first derived in [37]. Recall, that we conside only two-parameter DDEs, so that
p = 2.

For the derivation of the coefficients in this section it is sufficient to expand and truncate the
nonlinearity R and the parameter-mapping K in (57) and (58), respectively, as follows

R(u, α) =

(
1

2
B(u, u) +A1(u, α) +

1

2
J2(α, α) +

1

6
C(u, u, u) +

1

2
B1(u, u, α)

+
1

24
D(u, u, u, u) +

1

6
C1(u, u, u, α) +

1

120
E(u, u, u, u, u)

)
r�?,

(78)

α = K(β) = K10β1 +K01β2. (79)

Here u ∈ X, while α, β ∈ R2, and B, A1, J2, C, B1, D, C1 and E are the standard multilinear forms
arising from the expansion of F (u, α) (or G(u, α)). For example,

B(u, u) = D2
1F (0, 0)(u, u), A1(α, α) = D2

2F (0, 0)(α, α), B1(u, u, α) = D1
2D

2
1F (0, 0)(u, u, α),

etc. These forms are Rn-valued on real arguments, while they are linearly extended (‘complexified’) to
Cn-valued ones on complex-valued arguments. Finally, we introduce

J1 = D2F (0, 0). (80)

We assume in all situations that ϕ0 = 0 is a steady state of (28) at the critical parameter value
α0 = 0 ∈ R2. Explicit formulas to compute the multilinear forms for the simplest DDE (1) are given
in Section 7.

6.1 Generalized Hopf bifurcation
Since the eigenvalues (59) are simple, there exist eigenfunctions ϕ and ϕ� such that

Aϕ = iω0ϕ, A?ϕ� = iω0ϕ
�, 〈ϕ�, ϕ〉 = 1.

The eigenfunctions ϕ and ϕ� are explicitly given by (22) and (23) with q ∈ Cn and p ∈ Cn? satisfying

∆(iω0)q = 0, p∆(iω0) = 0, p∆′(iω0)q = 1.

Any point y ∈ X0 in the real critical eigenspace can be represented as

y = zϕ+ z̄ϕ̄, z ∈ C,

where z = 〈ϕ�, y〉. Therefore, the homological equation (HOM) can be written as

A�?jH(z, z̄, β) + J1K(β)r�? +R(H(z, z̄, β),K(β)) = j(DzH(z, z̄, β)ż +Dz̄H(z, z̄, β) ˙̄z),

where β = (β1, β2), ż is given by the normal form (61) and H admits the expansion

H(z, z̄, β) = zϕ+ z̄ϕ̄+H0010β1 +H0001β2 +
∑

j+k+|µ|≥2

1

j!k!µ!
Hjkµz

j z̄kβµ. (81)

For the predictors derived in Section 5.1 we need the truncated parameter-dependent normal form

ż = (iω0 + β1 + iω10β1 + iω01β2) z + (β2 + c1(0)) z|z|2 + c2(0)z|z|4,
where Re(c1(0)) = 0.
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6.1.1 Critical normal form coefficients

We start by calculating the critical normal form coefficients following [37]. Collecting the coefficients
of the quadratic terms z2 and zz̄ in the homological equation yields two nonsingular linear systems:(

2iω0 −A�?
)
jH2000 = B(ϕ,ϕ)r�?,

−A�?jH1100 = B(ϕ, ϕ̄)r�?.

They are solved using Lemma 3 to give

H2000(θ) = e2iω0θ∆−1(2iω0)B(ϕ,ϕ),

H1100(θ) = ∆−1(0)B(ϕ, ϕ̄).

For the cubic terms, the system corresponding to z3 is also nonsingular,(
3iω0 −A�?

)
jH3000 = [3B(ϕ,H2000) + C(ϕ,ϕ, ϕ)] r�?,

with solution
H3000(θ) = e3iω0θ∆−1(3iω0) (3B (ϕ,H2000) + C (ϕ,ϕ, ϕ)) .

On the other hand, the system corresponding to z2z̄ is singular,(
iω0 −A�?

)
jH2100 = [B (ϕ̄,H2000) + 2B (ϕ,H1100) + C (ϕ,ϕ, ϕ̄)] r�? − 2c1(0)jϕ.

The Fredholm solvability condition (FSC) requires that

c1(0) =
1

2
p · (B (ϕ̄,H2000) + 2B (ϕ,H1100) + C (ϕ,ϕ, ϕ̄)) ,

and from Lemma 4 we then obtain the unique solution satisfying 〈ϕ�, H2100〉 = 0 as

H2100(θ) = BINV
iω0

(B (ϕ̄,H2000) + 2B (ϕ,H1100) + C (ϕ,ϕ, ϕ̄) ,−2c1(0)) (θ).

We continue by collecting the coefficients corresponding to the fourth-order terms z3z̄ and z2z̄2 in the
homological equation. The corresponding nonsingular systems may be solved using Lemma 3 and the
fact that Re(c1(0)) = 0. For H2200 this easily gives

H2200(θ) = ∆−1(0)[2B(ϕ̄,H2100) + 2B(ϕ, H̄2100) +B(H̄2000, H2000)

+ 2B(H1100, H1100) + C(ϕ,ϕ, H̄2000) + 4C(ϕ, ϕ̄,H1100)

+ C(ϕ̄, ϕ̄,H2000) +D(ϕ,ϕ, ϕ̄, ϕ̄)],

but for H3100 the solution is a bit more subtle. The linear system is(
2iω0 −A�?

)
jH3100 = [B (ϕ̄,H3000) + 3B (ϕ,H2100) + 3B (H1100, H2000) + 3C (ϕ, ϕ̄,H2000)

+3C (ϕ,ϕ,H1100) +D (ϕ,ϕ, ϕ, ϕ̄)] r�? − 6c1(0)jH2000,

so Lemma 3 applies with w0 = [· · · ]− 6c1(0)H2000(0) and w = −6c1(0)H2000 and we find

H3100(θ) = e2iω0θ∆−1(2iω0)[B(ϕ̄,H3000) + 3B(ϕ,H2100) + 3B(H1100, H2000)

+ 3C(ϕ, ϕ̄,H2000) + 3C(ϕ,ϕ,H1100) +D(ϕ,ϕ, ϕ, ϕ̄)]

− 6c1(0)∆−1(2iω0)[∆′(2iω0)− θ∆(2iω0)]H2000(θ).
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The critical normal form coefficient c2(0) is calculated by applying (FSC) to the singular linear system
corresponding to the fifth-order term z3z̄2 in the homological equation. This gives

c2(0) =
1

12
p ·
[
2B (ϕ̄,H3100) + 3B (ϕ,H2200) +B

(
H2000, H3000

)
+ 6B (H1100, H2100) + 3B

(
H2100, H2000

)
+ 6C (ϕ̄,H1100, H2000) + 6C (ϕ, ϕ̄,H2100) + C (ϕ̄, ϕ̄,H3000)

+ 3C
(
ϕ,ϕ,H2100

)
+ 3C

(
ϕ,H2000, H2000

)
+ 6C (ϕ,H1100, H1100)

+D
(
ϕ,ϕ, ϕ,H2000

)
+ 6D (ϕ,ϕ, ϕ̄,H1100) + 3D (ϕ, ϕ̄, ϕ̄,H2000)

+E (ϕ,ϕ, ϕ, ϕ̄, ϕ̄)] .

The second Lyapunov coefficient is now given by `2(0) = 1
ω0

Re(c2(0)).

6.1.2 Parameter-related coefficients

Next we derive the parameter-related coefficients that provide a linear approximation to the parameter
transformation. Following [46] and [2] we first expand the eigenvalue λ(α) and c1(α) in the normal
form (60) in the original parameters α and truncate to fourth order,

ż = (iω0 + γ110α1 + γ101α2) z + (c1(0) + γ210α1 + γ201α2) z|z|2 + c2(0)z|z|4.

The parameters α and β are related via

α =

(
Re

(
γ110 γ101

γ210 γ201

))−1

β (82)

so that
∂b1
∂β2

(0) = Im

((
γ110 γ101

)(
Re

(
γ110 γ101

γ210 γ201

))−1(
0
1

))
. (83)

The homological equation (HOM) becomes

A�?jH(z, z̄, α) + J1αr
�? +R(H(z, z̄, α), α) = j (DzH(z, z̄, α)ż +Dz̄H(z, z̄, α) ˙̄z) ,

where H admits the expansion

u = H(z, z̄, α1, α2) = zϕ+ z̄ϕ̄+H0010α1 +H0001α2 +
∑

j+k+|µ|≥2

1

j!k!µ!
Hjkµz

j z̄kαµ (84)

and R is given by (78). Notice that the coefficients Hjkµ with µ = (00) in (84) coincide with those
in the expansion (81). Collecting the coefficients of the terms α and zα in the homological equation
yields the systems

−A�?jH00µ = J1vµ r
�?,(

iω0 −A�?
)
jH10µ = [A1 (ϕ, vµ) +B (ϕ,H00µ)] r�? − γ1µjϕ,

where µ = (10), (01) and v10 = (1, 0)T , v01 = (0, 1)T . We solve these systems using Section 2.6. By the
first part of Lemma 3 the first system has the (constant) solutions

H00µ(θ) = ∆−1(0)J1vµ

and (FSC) gives
γ1µ = p (A1 (ϕ, vµ) +B (ϕ,H00µ)) .
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Using Lemma 4 we obtain the solutions

H10µ(θ) = BINV
iω0

(A1 (ϕ, vµ) +B (ϕ,H00µ) ,−γ1µ)(θ)

for the second equation. To determine γ2µ we first collect the coefficients corresponding to the z2α and
zz̄α terms in the homological equation. We obtain the equations(

2iω0 −A�?
)
jH20µ = [A1 (H2000, vµ) + 2B (ϕ,H10µ) +B (H2000, H00µ) +B1 (ϕ,ϕ, vµ)

+C (ϕ,ϕ,H00µ)] r�? − 2γ1µjH2000,

−A�?jH11µ = [A1 (H1100, vµ) + 2 Re (B (ϕ̄,H10µ)) +B (H1100, H00µ) +B1 (ϕ, ϕ̄, vµ)

+C (ϕ, ϕ̄,H0µ)] r�? − 2 Re(γ1µ)jH1100.

Lemma 3 implies that solutions of the first two equations are given by

H20µ(θ) = e2iω0θ∆−1(2iω0) [A1 (H2000, vµ) + 2B (ϕ,H10µ) +B (H2000, H00µ) +B1 (ϕ,ϕ, vµ)

+C (ϕ,ϕ,H00µ)]− 2γ1µ∆(2iω0)−1 (∆′(2iω)− θ∆(2iω0))H2000(θ),

H11µ(θ) = ∆−1(0) [A1 (H1100, vµ) + 2 Re (B (ϕ̄,H10µ)) +B (H1100, H00µ) +B1 (ϕ, ϕ̄, vµ)

+C (ϕ, ϕ̄,H0µ)]− 2 Re(γ1µ)∆(0)−1 (∆′(0)− θ∆(0)) H1100(θ).

Applying (FSC) to z2z̄α terms in the homological equation results in

γ2µ =
1

2
p · [A1 (H2100, vµ) +B (ϕ̄,H20µ) + 2B (ϕ,H11µ)

+B (H2100, H00µ) +B
(
H2000, H̄10µ

)
+ 2B (H1100, H10µ)

+B1 (H2000, ϕ̄, vµ) + 2B1 (ϕ,H1100, vµ) + 2C (ϕ, ϕ̄,H10µ)

+ C (H2000, ϕ̄,H00µ) + C (ϕ,ϕ,H01µ) + 2C (ϕ,H1100, H00µ)

+ C1 (ϕ,ϕ, ϕ̄, vµ) +D (ϕ,ϕ, ϕ̄,H00µ)] .

6.1.3 Hopf and LPC predictors

Now we are ready to specify the predictors for the original parameter-dependent DDE (28). To ap-
proximate the Hopf parameter values α and the corresponding equilibrium, we merely substitute β
from (65) into (82), and then put the result together with z = 0 into the expansion (84).

To approximate the LPC parameter values, we substitute β from (63) into (82). The cycle period
is approximated by (64) with (83). To obtain a predictor for the periodic orbit in the phase space, we
set z = εeiψ into (84) using the obtained α values. Truncating to the second order in ε then yields

u = 2 Re(eiψϕ)ε+
(
H1100 − 2 Re(c2(0))H0001 + Re(e2iψH2000)

)
ε2, ψ ∈ [0, 2π].

6.2 Fold-Hopf bifurcation
Since the eigenvalues (66) are simple, there exist eigenfunctions ϕ0,1 and ϕ�0,1 satisfying

Aϕ0 = 0, Aϕ1 = iω0ϕ1, A?ϕ�0 = 0, A?ϕ�1 = iω0ϕ
�
1 ,

as well as the mutual normalization condition

〈ϕ�i , ϕj〉 = δij , 0 ≤ i, j ≤ 1.

The eigenfunctions ϕ0,1 and ϕ�0,1 can be explicitly computed using (22) and (23) with q0 ∈ Rn, q1 ∈ Cn,
p0 ∈ Rn? and p1 ∈ Cn? satisfying

∆(0)q0 = 0, ∆(iω0)q1 = 0, p0∆(0) = 0, p1∆(iω0) = 0,
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as well as
p0∆′(0)q0 = 1, p1∆′(iω0)q1 = 1.

Any point y ∈ X0 in the real critical eigenspace can be represented as

y = z0ϕ0 + z1ϕ1 + z̄1ϕ̄1, (z0, z1) ∈ R× C,

where z0 = 〈ϕ�0 , y〉 and z1 = 〈ϕ�1 , y〉. Therefore, the homological equation (HOM) can be written as

A�?jH(z, β) + J1(β)r�? +R(H(z, β),K(β))
= j (Dz0H(z, β)ż0 +Dz1H(z, β)ż1 +Dz̄1H(z, β) ˙̄z1) ,

(85)

where z = (z0, z1, z̄1), β = (β1, β2) and ż is given by the normal form (68). Here, the mapping H
admits the expansion

H(z0, z1, z̄1, β) = z0ϕ0 + z1ϕ1 + z̄1ϕ̄1 +H00010β1 +H00001β2

+
∑

j+k+l+|µ|≥2

1

j!k!l!µ!
Hjklµz

j
0z
k
1 z̄
l
1β

µ, (86)

and the functions K and R are as in (78) and (79), respectively.

6.2.1 Critical normal form coefficients

We start by computing the critical normal form coefficients following [37]. Collecting the quadratic
terms z2

0 , z2
1 , z0z1 and z1z̄1 we obtain one nonsingular and three singular linear systems. By (FSC)

the singular systems are consistent if and only if

g200(0) =
1

2
p0B(ϕ0, ϕ0), g110(0) = p1B(ϕ0, ϕ1), g011(0) = p0B(ϕ1, ϕ̄1).

This yields the three quadratic normal form coefficients. The corresponding solutions may then be
obtained using Lemmas 3 and 4. Namely,

H20000(θ) = BINV
0 (B(ϕ0, ϕ0),−2g200(0))(θ),

H02000(θ) = e2iω0θ∆−1(2iω0)B(ϕ1, ϕ1),

H11000(θ) = BINV
iω0

(B(ϕ0, ϕ1),−g110(0))(θ),

H01100(θ) = BINV
0 (B(ϕ1, ϕ̄1),−g011(0))(θ).

For the four remaining cubic normal form coefficients, we collect the coefficients of the resonant terms
zj0z

k
1 z̄
l
1 in (85) with j + k + l = 3. This yields four singular linear systems. As before, by (FSC) these

systems are consistent if and only if

g300(0) =
1

6
p0 (3B(ϕ0, H20000) + C(ϕ0, ϕ0, ϕ0)) ,

g111(0) = p0

(
B(ϕ0, H01100) +B(ϕ1, H̄11000) +B(ϕ̄1, H11000) + C(ϕ0, ϕ1, ϕ̄1)

)
,

g210(0) =
1

2
p1 (2B(ϕ0, H11000) +B(ϕ1, H20000) + C(ϕ0, ϕ0, ϕ1)) ,

g021(0) =
1

2
p1 (2B(ϕ1, H01100) +B(ϕ̄1, H02000) + C(ϕ1, ϕ1, ϕ̄1)) .
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6.2.2 Parameter-related coefficients

The parameter-related linear terms in (85) give

−A�?jH00010 = J1K10r
�? − jϕ0,

−A�?jH00001 = J1K01r
�?.

Let γ = (γ1, γ2) = pT0 J1. Then by (FSC) we obtain the orthogonal frame

K10 = s1 + δ1s2, K01 = δ2s2, (87)

where
sT1 = γ/‖γ‖2, sT2 = (−γ2, γ1)

and δ1,2 ∈ R are constants. Using Lemma 4 from Section 2.6 we get

H00010(θ) = ∆INV(0) (J1K10 −∆′(0)q0) + δ3q0 + θq0

= r1 + δ1r2 + δ3q0 − r3(θ),

H00001(θ) = δ2r2 + δ4q0,

(88)

where

r1 = ∆INV(0) (J1s1) , r2 = ∆INV(0) (J1s2) , r3(θ) = ∆INV(0) (∆′(0)q0)− θq0,

and the real constants δ3 and δ4 are not chosen such that 〈ϕ�0 , H00010〉 = 0 and 〈ϕ�0 , H00001〉 = 0, but
will be determined below. Collecting the z0β and z1β terms in the homological equation yields the
systems

−A�?jH10010 = [B(ϕ0, H00010) +A1(ϕ0,K10)] r�? − jH20000,

−A�?jH10001 = [B(ϕ0, H00001) +A1(ϕ0,K01)] r�?,(
iω0 −A�?

)
jH01010 = [B(ϕ1, H00010) +A1(ϕ1,K10)] r�? − j (iω1ϕ1 +H11000) ,(

iω0 −A�?
)
jH01001 = [B(ϕ1, H00001) +A1(ϕ1,K01)] r�? − (1 + iω2) jϕ1.

(89)

Notice that the coefficients ω1,2 were introduced in Section 5.2.1. To determine δi(i = 1, 2, 3, 4) we
substitute (87) and (88) into (89). Then by (FSC) we obtain the system(

p0B(ϕ0, r2) + p0A1(ϕ0, s2) 2g200(0)
Re(p1B(ϕ1, r2) + p1A1(ϕ1, s2)) Re(g110(0))

)(
δ1 δ2
δ3 δ4

)
=(

−p0 (A1(ϕ0, s1) +B(ϕ0, r1 − r3)) 0
−Re(p1 (A1(ϕ1, s1) +B(ϕ1, r1 − r3))) 1

)
.

Subsequently, the coefficients ω1 and ω2 are given by

ω1 = Im (p1B(ϕ1, H00010) + p1A1(ϕ1,K10)) ,

ω2 = Im (p1B(ϕ1, H00001) + p1A1(ϕ1,K01)) .

6.2.3 Hopf, fold, and Neimark-Sacker predictors

To approximate the fold and Hopf curves and their corresponding equilibria, one should substitute the
expressions for β and the equilibrium coordinates given in Section 5.2.2 into the expansions (86) and
(79).
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To approximate the periodic orbit at the Neimark-Sacker bifurcation, we substitute z1 = εeiψ and
(70) into (86). After a truncation this gives

u = 2 Re
(
eiψϕ1

)
ε+

(
Re(g110(0)) (2 Re(g021(0)) + g111(0))− 2 Re(g021(0))g200(0)

2g200(0)
H00001

−g011(0)H00010 +H01100 −
(

2 Re(g021(0)) + g111(0)

2g200(0)

)
ϕ0 + Re

(
e2iψH̄02000

))
ε2,

where ψ ∈ [0, 2π].

6.3 Hopf-Hopf bifurcation
Since the eigenvalues (71) are simple, there exist eigenfunctions ϕ1,2 and ϕ�1,2,

Aϕ1 = iω1ϕ1, Aϕ2 = iω2ϕ2, A?ϕ�1 = iω1ϕ
�
1 , A?ϕ�2 = iω2ϕ

�
2 , (90)

satisfying the mutual normalization conditions

〈ϕ�i , ϕj〉 = δij , 1 ≤ i, j ≤ 2.

The eigenfunctions ϕ1,2 and ϕ�1,2 can be explicitly computed using (22) and (23) with q1,2 ∈ Cn and
p1,2 ∈ Cn? such that both

∆(iω1)q1 = 0, ∆(iω2)q2 = 0, p1∆(iω1) = 0, p2∆(iω2) = 0,

as well as
p1∆′(iω1)q1 = 1, p2∆′(iω2)q2 = 1.

Any point y ∈ X0 in the real critical eigenspace can be represented as

y = z1ϕ1 + z̄1ϕ̄1 + z2ϕ2 + z̄2ϕ̄2, z1,2 ∈ C,

where z1 = 〈ϕ�1 , y〉 and z2 = 〈ϕ�2 , y〉. Therefore, the homological equation (HOM) can be written as

A�?H(z, β) + J1(β)r�? +R(H(z, β),K(β))
= j (Dz1H(z, β)ż1 +Dz̄1H(z, β) ˙̄z1 +Dz2H(z, β)ż2 +Dz̄2H(z, β) ˙̄z2) ,

(91)

where z = (z1, z̄1, z2, z̄2), β = (β1, β2) and ż is given by the normal form (72). The mapping H admits
the expansion

H(z1, z̄1, z2, z̄2, β1, β2) = z1ϕ1 + z̄1ϕ̄1 + z2ϕ2 + z̄2ϕ̄2 +H000010β1 +H000001β2

+
∑

j+k+l+m+|µ|≥2

1

j!k!l!m!µ!
Hjklmµz

j
1z̄
k
1z
l
2z̄
m
2 β

µ (92)

and the functions K and R are as in (78) and (79), respectively.

6.3.1 Critical normal form coefficients

For initialization of the Neimark-Sacker curves (74) we need the cubic critical normal form coefficients
g2100(0), g1011(0), g1110(0) and g0021(0). We compute these coefficients following [37].
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Collecting the coefficients of the quadratic terms |z1|2, z2
1 , z1z2, |z2|2, z1z̄2 and z2z̄1 in the homolog-

ical equation, we obtain six nonsingular linear systems. By Lemma 3 their solutions are

H110000(θ) = ∆−1(0)B(ϕ1, ϕ̄1),

H200000(θ) = e2iω1θ∆−1(2iω1)B(ϕ1, ϕ1),

H101000(θ) = ei(ω1+ω2)θ∆−1(i (ω1 + ω2))B(ϕ1, ϕ2),

H001100(θ) = ∆−1(0)B(ϕ2, ϕ̄2),

H100100(θ) = ei(ω1−ω2)θ∆−1(i (ω1 − ω2))B(ϕ1, ϕ̄2),

H002000(θ) = e2iω2θ∆−1(2iω2)B(ϕ2, ϕ2).

The desired cubic critical normal form coefficients are obtained by collecting the coefficients of the
resonant cubic terms z1|z1|2, z1|z2|2, |z1|2z2 and |z2|2z2 in the homological equation. This leads to four
singular linear systems. By (FSC) these systems are solvable if and only if

g2100(0) =
1

2
p1 (2B(ϕ1, H110000) +B(ϕ̄1, H200000) + C(ϕ1, ϕ1, ϕ̄1)) ,

g1011(0) = p1 (B(ϕ̄2, H101000) +B(ϕ1, H001100) +B(ϕ2, H100100) + C(ϕ1, ϕ2, ϕ̄2)) ,

g1110(0) = p2

(
B(ϕ̄1, H101000) +B(ϕ1, H̄100100) +B(ϕ2, H110000) + C(ϕ1, ϕ̄1, ϕ2)

)
,

g0021(0) =
1

2
p2 (2B(ϕ2, H001100) +B(ϕ̄2, H002000) + C(ϕ2, ϕ2, ϕ̄2)) .

6.3.2 Parameter-related coefficients

The linear terms in (91) give back the eigenfunctions (90) and the parameter-related equations

−A�?jH0000µ = J1Kµr
�?,

where µ = (10), (01). Let
Kµ = γ1µe1 + γ2µe2, (93)

where e1 = (1, 0), e2 = (0, 1) and γiµ(i = 1, 2) ∈ R are constants to be determined. Then Lemma 3
from Section 2.6 implies

H0000µ(θ) = γ1µ∆−1(0)J1e1 + γ2µ∆−1(0)J1e2. (94)

Collecting the ziβj-terms with 1 ≤ i, j ≤ 2 yields the systems(
iω1 −A�?

)
jH100010 = [A1(ϕ1,K10) +B(ϕ1, H000010)] r�? − (1 + ib11)jϕ1,(

iω1 −A�?
)
jH100001 = [A1(ϕ1,K01) +B(ϕ1, H000001)] r�? − ib12jϕ1,(

iω2 −A�?
)
jH001010 = [A1(ϕ2,K10) +B(ϕ2, H000010)] r�? − ib21jϕ2,(

iω2 −A�?
)
jH001001 = [A1(ϕ2,K01) +B(ϕ2, H000001)] r�? − (1 + ib22)jϕ2,

(95)

where bjk are defined in Section 5.3.2. To determine γiµ(i = 1, 2) we substitute (93) and (94) into (95).
Then by (FSC) we obtain the system

Re

[(
Γ11 Γ12

Γ31 Γ32

)](
γ110 γ210

γ101 γ201

)
=

(
1 0
0 1

)
,

where
Γij := A1(ϕi, ej) +B(ϕi,∆

−1(0)J1ej), 1 ≤ i, j ≤ 2.

Note that ∆−1(0)J1ei is a constant function of θ.
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It now follows from (95) that the coefficients b11, b12, b21 and b22, needed for the second order
approximation of the periods, are given by

b11 = Im (p1 (A1(ϕ1,K10) +B(ϕ1, H000010))) ,

b12 = Im (p1 (A1(ϕ1,K01) +B(ϕ1, H000001))) ,

b21 = Im (p2 (A1(ϕ2,K10) +B(ϕ2, H000010))) ,

b22 = Im (p2 (A1(ϕ2,K01) +B(ϕ2, H000001))) .

6.3.3 Hopf and Neimark-Sacker predictors

To approximate the Hopf curves and their corresponding equilibria, one should substitute the expres-
sions for β and the equilibrium coordinates given in Section 5.3.1 into the expansions (92) and (79).

To approximate the Neimark-Sacker periodic orbits, we substitute (z1, z2) = (εeiψ1 , 0) and (74a),
and (z1, z2) = (0, εeiψ2) and (74b) into (92). After a truncation, we obtain

u1 = 2 Re
(
eiψ1ϕ1

)
ε+

(
−Re(g1110(0))H000001 − Re(g2100(0))H000010

+H110000 + Re
(
e2iψ1H200000

))
ε2, ψ1 ∈ [0, 2π]

and

u2 = 2 Re
(
eiψ2ϕ2

)
ε+

(
−Re(g0021(0))H000001 − Re(g1011(0))H000010

+H001100 + Re
(
e2iψ2H002000

))
ε2, ψ2 ∈ [0, 2π].

6.4 Transcritical-Hopf bifurcation
Compared with the fold-Hopf bifurcation in Section 6.2, the eigenvalues, eigenfunctions, the homological
equation, and the functions H, K and R remain unchanged. It is only the ODE on the center manifold
ż that changes to the normal form (75). Furthermore, also the critical normal form coefficients for the
transcritical-Hopf bifurcation remain the same as for the fold-Hopf bifurcation. Therefore, we proceed
only with the parameter-related equations.

Collecting the coefficients of the z0β and z1β terms in the homological equation we obtain the
systems

−A�?jH10010 = A1(ϕ0,K10)r�? − jϕ0,

−A�?jH10001 = A1(ϕ0,K01)r�?,(
iω0 −A�?

)
jH01010 = A1(ϕ1,K10)− iω1jϕ1r

�?,(
iω0 −A�?

)
jH01001 = A1(ϕ1,K01)− (1 + iω2)jϕ1r

�?.

(96)

Let
Kµ = γ1µe1 + γ2µe2, µ = (10), (01), (97)

where e1 = (1, 0), e2 = (0, 1) and γiµ(i = 1, 2) ∈ R. To determine γiµ(i = 1, 2) we substitute (97) into
(96). Then by (FSC) we obtain the system(

p0A1(ϕ0, e1) p0A1(ϕ0, e2)
Re (p1A1(ϕ1, e1)) Re (p1A1(ϕ1, e2))

)(
γ110 γ210

γ101 γ201

)
=

(
1 0
0 1

)
.

In order to make the last two systems in (96) consistent we must have that

ω1 = Im (p1A1(ϕ1,K10)) ,

ω2 = Im (p1A1(ϕ1,K01)) .
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6.4.1 Neimark-Sacker predictors

The predictors for the Hopf and transcritical bifurcation curves, as well as those for the Neimark-Sacker
bifurcation curves (including the cycle periods), can be easily obtained using the asymptotics from
Sections 5.4.1 and 5.4.2. In particular, to approximate the periodic orbits along the Neimark-Sacker
curves, we substitute z1 = εeiψ and (77) into (86). This gives the following linear approximations:

u =

(
∓
√
g011(0)

g200(0)
ϕ0 + 2 Re

(
eiψϕ1

))
ε ψ ∈ [0, 2π].

7 Computation of derivatives for discrete DDEs
All predictors described in the previous sections are implemented in version 3.2a of DDE-BifTool for
models of the type (1). The discrete DDE (1) is a particular instance of (28) with h = τm and

F (ϕ, α) = f(Ξϕ, α),

where the linear evaluation operator Ξ : X → Rn×(m+1) is defined by

Ξϕ := (ϕ(−τ0), ϕ(−τ1), . . . , ϕ(−τm)) . (98)

with the convention τ0 := 0. In particular, by the chain rule,

D1F (0, 0)ϕ = D1f(0, 0)Ξϕ =

m∑
j=0

D1,jf(0, 0)ϕ(−τj), ϕ ∈ X,

with Mj := D1,jf(0, 0) ∈ Rn×n the partial derivative of f at the origin with respect to its jth state
argument. So, if (1) has a equilibrium at the origin for α = 0, then the linear part of the splitting (11)
at α = 0 is precisely the right-hand side of the above equation. Therefore ζ : [0, h] → Rn×n must be
such that

〈ζ, ϕ〉 =

m∑
j=0

Mjϕ(−τj), ∀ϕ ∈ X.

Hence ζ has jump discontinuities Mj at the points τj for j = 0, . . . ,m and is constant otherwise. So,
in this case the characteristic matrix (20) is given by

∆(z) = zI −
m∑
j=0

Mje
−zτj , z ∈ C.

The multilinear forms appearing in (78) can be expressed in terms of the derivatives of the function
f : Rn×(m+1) × Rp → Rn from (1). For r, s ≥ 0 with r + s ≥ 1 the mixed derivative of order r + s
of f at (0, 0) is an (r + s)-linear form on [Rn×(m+1)]r × [Rp]s, with the understanding that at most
one factor may be absent in case r = 0 or s = 0. Let Q,Q1, . . . , Qr be matrices in Rn×(m+1) and let
α, α1, . . . , αs be vectors in Rp. Then this derivative acts as

Dr
1D

s
2f(0, 0)(Q1, . . . , Qr, α1, . . . , αs) =∑

j,k,`

∂r+sf(Q,α)

∂qj1k1 . . . ∂qjrkr∂α`1 . . . ∂α`s

∣∣∣∣
(Q,α)=(0,0)

q1
j1k1 · · · qrjrkrα1

`1 · · ·αs`s , (99)

where the multidimensional sum runs over

1 ≤ j1, . . . , jr ≤ n, 0 ≤ k1, . . . , kr ≤ m, 1 ≤ `1, . . . , `s ≤ p.
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The multilinear forms appearing in (78), as well as (80), are computed from (99) by composition with
Ξ from (98) as

Dr
1D

s
2F (0, 0)(ϕ1, . . . , ϕr, α1, . . . , αs) = Dr

1D
s
2f(0, 0)(Ξϕ1, . . . ,Ξϕr, α1, . . . , αs),

for ϕ1, . . . , ϕr ∈ X and α1, . . . , αs ∈ Rp. For given r and s the multidimensional array of partial deriva-
tives inside the sum in (99) is of course symmetric under permutation of the state indices j1k1, . . . , jrkr
and the parameter indices `1, . . . , `s. This can be exploited for efficient storage and access.

8 Examples
In this section we will demonstrate the correctness of the normal form coefficients and the accuracy
of the predictors in four different models. We do this twofold. Firstly, by comparing the predictors in
parameter-space with the computed in DDE-BifTool bifurcation curves, and, secondly, by performing
simulations near the bifurcation point under consideration. The simulation is done either with the
build-in routine dde23 of MATLAB or with the Python package pydelay [24]. The latter gives significant
speed performance when considering simulation over longer time intervals. This usually is the case when
one wants to demonstrate the existence of stable invariant manifolds. Since in this section only the main
results are given, we provide details (including simulation results) in the Supplement. Furthermore,
the source code of the examples has been included into the DDE-BifTool software package. This will
hopefully provide a good starting point when considering other models.

8.1 Generalized Hopf bifurcation in a coupled FHN neural system with
delay

In [65] the following system is considered u̇1(t) = −u
3
1(t)

3
+ (c+ α)u2

1(t) + du1(t)− u2(t) + 2βf(u1(t− τ)),

u̇2(t) = ε(u1(t)− bu2(t)).
(100)

Here (u1, u2) is the completely synchronous solution of the three coupled FitzHugh–Nagumo (FHN)
neuron system

u̇1(t) = −u
3
1(t)

3
+ (c+ α)u2

1(t) + du1(t)− u2(t) + β [f(u3(t− τ)) + f(u5(t− τ))] ,

u̇2(t) = ε(u1(t)− bu2(t)),

u̇3(t) = −u
3
3(t)

3
+ (c+ α)u2

3(t) + du3(t)− u4(t) + β [f(u3(t− τ)) + f(u5(t− τ))] ,

u̇4(t) = ε(u3(t)− bu4(t)),

u̇5(t) = −u
3
5(t)

3
+ (c+ α)u2

5(t) + du5(t)− u6(t) + β [f(u1(t− τ)) + f(u3(t− τ))] ,

u̇6(t) = ε(u5(t)− bu6(t)),

(101)

where α, β measure the synaptic strength in self-connection and neighborhood-interaction, respectively.
The parameters b and ε are assumed to be positive such that 0 < b < 1 and 0 < ε� 1. The function
f is a sufficiently smooth sigmoid amplification function and τ > 0 represents the time delay in signal
transmission. For the derivation of (100) from the system (101), as well as for stability conditions
of the completely synchronous solution, we refer to [65]. In that article a generalized Hopf point
was analyzed using the traditional formal adjoint method and the two-step center manifold reduction,



36 M.M. Bosschaert, S.G. Janssens, and Yu.A. Kuznetsov

see [31]. Numerical simulations where made to confirm their results. For this (β, α) are taken as the
unfolding parameters and the parameters

b = 0.9, ε = 0.08, c = 2.0528, d = −3.2135, τ = 1.7722

are fixed. The sigmoid amplification function f(u) = tanh(u) is used.
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LPC predictor
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Figure 1: Bifurcation diagram near the generalized Hopf point in the system (100) with unfolding
parameters (β, α). The bifurcation curves are nearly identical to those in the bifurcation diagram of
the topological normal form as presented in [43, page 314].

According to [65], a generalized Hopf point is present at the origin with the parameter values
(β, α) = (1.9,−0.9710). We took this point and calculated its stability and the corresponding normal
form coefficients. Although we do confirm that the point under consideration is a Hopf point, the
first Lyapunov coefficient does not vanish and we conclude that the point cannot be a generalized
Hopf point. However, the simulation in [65] do suggest a generalized Hopf point for nearby parameter
values. Therefore we continued the Hopf point in (β, α). Then a generalized Hopf point is located
at (β, α) = (1.9,−1.0429) with negative second Lyapunov coefficient `2(0) = −15.6733, indicating
the existence of a stable steady state inside a unstable cycle, which in turn is located inside a stable
cycle. We remark that the second Lyapunov coefficient found in [65] is positive. This contradicts the
simulation of the dynamics made in the same article. Indeed when the second Lyapunov coefficient is
positive a time-reversal must be taking into account when considering the bifurcation diagram in the
case the second Lyapunov coefficient is negative, see [43]. Then the situation of a stable steady state
inside a stable cycle (separated by an unstable cycle) does not occur.

Using the predictors from Section 5.1 the fold and LPC bifurcation curves emanating from the
generalized Hopf point. In Figure 1 the resulting bifurcation diagram is shown.
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8.2 Fold-Hopf bifurcation of the Rose–Hindmarsh model with time delay
In [48] a Rose-Hindmarsh model [33, 34] with time delay in the self-feedback process, which takes the
form 

ẋ(t) = y(t)− ax3(t) + bx2(t− τ)− cz(t) + Iapp,

ẏ(t) = c− dx2(t)− y(t),

ż(t) = r(S(x(t)− χ)− z(t)),
(102)

is considered. Here x represents membrane potential, y represents a recovery variable, z denotes the
adaption current, and a, b, c, d > 0, S and χ are real constants. The external current Iapp and r are
control parameters, and τ denotes the synaptic transmission delay. The constants a, b, c, d, χ and r are
fixed. Let (x?, y?, z?) be a steady state of (102), then

y? = c− dx2
?, z? = S(x? − χ). (103)

The conditions for a fold-Hopf bifurcation have been derived in [48] analytically. Indeed, let S be
arbitrary and set

x? =
1

3a

(
b− d±

√
(b− d)

2 − 3acS

)
,

Iapp = x2
?(ax? − b+ d) + c(S(x? − χ)− 1), (104)

A = x2
?

(
(3ax? + 2d)2 − 4b2

)
− 2rx?(2dx? − 1)(3ax? − 2b+ 2d)

+ r2(4dx?(−2bx? + dx? − 1) + 1),

B = 9a2x4
? + 2rx?(3ax? − 2b+ 2d)− 4b2x2

? − 4dx? + r2 + 1,

ω1,2 =

√
−B ±

√
B2 − 4A.

Then a fold-Hopf bifurcation occurs when

τ =

{
1

ω1,2
(arcsinY + 2kπ) , Z ≥ 0,

1
ω1,2

(π − arcsinY + 2kπ) , Z ≤ 0,

where k = 0, 1, 2, . . . and

Y =
ω1,2

2b

(
r(2b− 2d− 3ax?)

r2 + ω2
1,2

+
2d

ω2
1,2 + 1

− 1

x?

)
,

Z =
ω1,2

2b

(
r2(2b− 2d− 3ax?)

r2 + ω2
1,2

+
2d

ω2
1,2 + 1

+ 3ax?

)
.

In [48] the parameters values

a = 1.0, b = 3.0, c = 1.0, d = 5.0, χ = −1.6, r = 0.001 (105)

are fixed. It follows that a fold-Hopf bifurcation is located at

x? = 0.1308, S = −0.57452592, τ = 5.768830916,

and Iapp, (y?, z?) given by (104) and (103), respectively. To unfold the singularity the ‘parameters’
(x?, S) are used, see [48]. Here we will take the more natural unfolding parameter (Iapp, S). Calculating
the stability with DDE-BifTool gives the eigenvalues

0.001± 1.0081i, −0.000 + 0.000i.
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All other eigenvalues lie in the open left half of the complex plane. Calculating the normal form
coefficients reveals that

s = sgn(g200(0)g011(0)) = sgn(1.8487e−05), θ(0) =
Re(g110(0))

g200(0)
= −139.0315

and

e(0) = Re
[
g210(0) + g110(0)

(
Re g021(0)
g011(0) − 3

2
g300(0)
g200(0) + g111(0)

2g011(0)

)
− g021(0)g200(0)

g011

]
= 15.6941. (106)

Since s = 1 and θ(0) < 0 , a global bifurcation curve or invariant tori are present for parameters
sufficiently close to the bifurcation, see [43, page 342]. However, since the sign of e(0) is positive the
tori are unstable. Thus according to our analysis the simulated torus in [48] cannot be attributed to
the fold-Hopf bifurcation.
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subcritical Hopf branch
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subcritical Hopf predictor
supercritical Hopf predictor
Neimark-Sacker branch
Neimark-Sacker predictor
fold-Hopf point

Figure 2: Bifurcation diagram near the fold-Hopf point in (102) with (r, S) = (1.4,−8). The fold
branch is not included here since it is indistinguishable from the Hopf curve at this scale.

For demonstration purposes, we take the parameters r = 1.4 and S = −8, while keeping the other
parameters as in (105). Then a fold-Hopf bifurcation is located at x? = 1.0972, τ = 0.9402, Iapp as in
(104), and (y?, z?) given by (103). The leading eigenvalues become

0.000± 5.6042i, 0.000 + 0.000i,

while the normal form coefficients are given by

s = sgn(1.7700), θ(0) = −0.1569 and e(0) = −0.0378.

Thus the sign of s and θ(0) remain unchanged. However, since the sign of e(0) is negative, there is
a time reversal to take into account. Therefore, we expect a stable torus to be present for nearby
parameter values. Using the predictors from Section 5.2, we successfully continued the fold, Hopf, and
Neimark-Sacker bifurcation curves emanating from the point, see Figure 2.
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8.3 Hopf-Hopf and generalized Hopf bifurcations in Active control system
Active control system is used to control the response of structures to internal or external excitation.
The mathematical model with time delay can be described as follows [50]

mẍ(t) + cẋ(t) + kx(t) + ux(t− τ) + vẋ(t− τ) = f̃(t). (107)

Here x(t) is the displacement of the controlled system, m > 0 is the mass, c and k are the damping
and the stiffness, respectively, τ is the time delay represented in the relative displacement feedback
loop and in the relative velocity feedback loop, u and v are feedback strengths, respectively, and f̃
represents the external excitation. Let t∗ =

√
k/mt, ζ = c/2m

√
m/k, gu = u/k, gv = v/m

√
m/k and

f(t) = f̃(t)/k . Then equation (107) becomes

ẍ(t) + 2ζẋ(t) + x(t) + gux(t− τ) + gvẋ(t− τ) = f(t),

where the asterisks are omitted for simplicity. Following [16] and [50] we consider the case when f is
replaced by a nonlinear position time delay feedback given by βx3(t − τ), see also [63]. As in [16] we
fix the parameters

gu = 0.1, gv = 0.52, β = 0.1

and take ζ and τ as control parameters. Let ẋ(t) = y(t), then we obtain{
ẋ(t) = τy(t),

ẏ(t) = τ
(
−x(t)− gux(t− 1)− 2ζy(t)− gvy(t− 1) + βx3(t− 1)

)
.

(108)

Here the delay is scaled by using the transformation of time t→ t/τ . In this way the delay can treated
as an ordinary parameter.

The trivial equilibrium undergoes a Hopf-Hopf bifurcation at the parameter values

(ζc, τc) = (−0.016225, 5.89802), (109)

see [16] for the derivation. Using DDE-BifTool we manually construct the Hopf-Hopf point and compute
its stability and normal form coefficients. We obtain the eigenvalues 0.0000 ± 4.5275i and −0.0000 ±
7.6449i. The quadratic critical normal form coefficients are

g2100(0) = −0.0915 + 0.1214i, g1110(0) = 0.2151 + 0.3876i,

g1011(0) = −0.3084 + 0.4096i, g0021(0) = 0.1813 + 0.3268i.

From
(Re g2100(0))(Re g0021(0)) = −0.0166 < 0,

we conclude that this Hopf-Hopf bifurcation is of ‘difficult’ type, see [43]. Furthermore, since the
quantities

θ = θ(0) =
Re g1011(0)

Re g0021(0)
= −1.7009, δ = δ(0) =

Re g1101(0)

Re g2100(0)
= −2.3517

are such that θ < 0, δ < 0, θδ > 1 it follows that we are in case VI. We continue the Neimark-
Sacker and Hopf bifurcation curses emanating from the Hopf-Hopf point using the predictors from
Section 5.3. In Figure 3 a close-up is given near the Hopf-Hopf point comparing the computed curves
with the predictors in parameter space.

Using the detection capabilities of DDE-BifTool one additional Hopf-Hopf point and three gener-
alized Hopf points are located on the continued Hopf branches. The normal form coefficients of the
second Hopf-Hopf point are such that

(Re g2100(0))(Re g0021(0)) = 1.7331e−04 > 0
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Figure 3: Bifurcation diagram near the Hopf-Hopf point at parameter values (109) in an active con-
trol system with time delay given by (108). There are two supercritical Hopf curves (blue) and two
Neimark-Sacker curves (yellow). We see that the predictors (dotted) give good approximations near
the codimension two point.



SWITCHING TO NONHYPERBOLIC CYCLES IN DDES 41

and
θ ≥ δ > 0, θδ > 1.

We conclude that we are in case I of the ‘simple’ type, see [43, page 360]. Therefore, no stable
invariant two-dimensional torus is predicted for nearby parameter values, only two stable period orbits
expected. Using the predictors from Sections 5.1 and 5.3 we can easily continue the codimension one
cycle bifurcations from the located degenerate Hopf points, showing complicated bifurcation diagram
in Figure 4.
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Figure 4: Bifurcation diagram obtained by continuing Hopf-Hopf, Neimark-Sacker and LPC bifurcation
curves in the active control system (108) using the predictors from Sections 5.1 and 5.3 combined with
the continuation capabilities from DDE-BifTool. Two Hopf-Hopf points are connected by a Neimark-
Sacker bifurcation curve. Also two of the three generalized Hopf points are connected by a single LPC
curve.

8.4 Transcritical-Hopf bifurcation in Van der Pol’s oscillator with delayed
position and velocity feedback

In [3] a generalization of Van der Pol’s oscillator with delayed feedback

ẍ(t) + ε(x2(t)− 1)ẋ(t) + x(t) = g(ẋ(t− τ), x(t− τ)), 0 < τ <∞, (110)

is considered. Here g ∈ C3 satisfies the conditions g(0, 0) = 0, gẋ(0, 0) = a and gx(0, 0) = b. The
linearization of equation (110) around the trivial solution x = 0 gives

ẍ(t)− εẋ(t) + x(t) = aẋ(t− τ) + bx(t− τ).

From which we obtain the characteristic equation

∆(λ, τ) = λ2 − ελ+ 1− (aλ+ b)e−λτ = 0.
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Let
b = 1, τ = τ0 6= ε+ a, ε2 − a2 < 2, (111)

then the characteristic equation has a simple zero and a pair of purely imaginary roots λ = ±iω0. Here
ω0 and τ0 are defined by

ω0 =
√

2− ε2 + a2, τ0 =
1

ω0
arccos

(
1− (1 + εa)ω2

0

a2ω2
0 + 1

)
,

see [3, Proposition 2.1]. We set the function g to

g(ẋ(t− τ), x(t− τ)) =(1 + µ1)x(t− τ)− 0.2ẋ(t− τ)− 0.2x(t− τ)2

− 0.2x(t− τ)ẋ(t− τ)− 0.2x(t− τ)2 + 0.5x(t− τ)3

and ε = 0.3. Then the conditions (111) are satisfied and

ω0 ≈ 1.396424004376894, τ0 ≈ 1.757290761249588. (112)
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Figure 5: Bifurcation diagram near the transcritical-Hopf bifurcation in the delayed Van der Pol’s oscil-
lator given by (113). There are two supercritical Hopf curves (blue), two subcritical Hopf curves (red),
two Neimark-Sacker curves (yellow) and one transcritical curve (green). We see that the predictors
(dotted) give good approximation for nearby values.

To analyze the system with DDE-BifTool we set y(t) = ẋ(t) and transform the time with t → t/τ
to obtain the two-component system

ẋ(t) = (τ0 + µ2) y(t),

ẏ(t) = (τ0 + µ2)
[
−x(t)− ε(x2(t)− 1)y(t) + (1 + µ1)x(t− 1)− 0.2y(t− 1)

−0.2x2(t− 1)− 0.2x(t− 1)y(t− 1)− 0.2y2(t− 1) + 0.5x3(t− 1)
]
.

(113)
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Here we introduced the unfolding parameters (µ1, µ2) := (b − 1, τ − τ0) to translate the singularity
to the origin. One immediately sees that the trivial equilibrium (ẋ, x) = (0, 0) is an equilibrium for
all parameter values (µ1, µ2). Therefore, the parameter-dependent normal form for the generic fold-
Hopf cannot be used here. Instead the normal form for the transcritical-Hopf bifurcation must be used.
Using DDE-BifTool we compute the stability and the normal form coefficients. The leading eigenvalues
are 0.000 + 0.000i and −0.000 + 2.4539i, where 2.4539 ≈ ω0τ0, see (112). Furthermore, the normal
form coefficients are such that

g011(0)× Re (g110(0)) = 0.4241× Re (−0.1337 + 0.2672i) < 0.

Therefore, there are two Neimark-Sacker bifurcation curves predicted, see Section 5.4. Using the
predictors from Section 5.4 we continue the transcritical, Hopf and Neimark-Sacker bifurcation curves
emanating from the transcritical-Hopf bifurcation point. In Figure 5 the bifurcation diagram is shown.

9 Concluding remarks
We have provided explicit formulas for the normal form coefficients needed to initialize codimension
one equilibrium and nonhyperbolic cycle bifurcations emanating from generalized Hopf, fold-Hopf,
Hopf-Hopf and transcritical-Hopf points in DDEs. Applications to four different models were given,
confirming the correctness of the derivation of the normal form coefficients and the asymptotics. A
paper providing a second-order predictor for the homoclinic orbits emanating from the generic and
transcritical codimension two Bogdanov-Takens bifurcations in DDEs, along the lines of [45], is in
preparation.

Our proof of the existence of a smooth parameter-dependent center manifold is given in the general
context of perturbation theory for dual semigroups (sun-star calculus). Consequently the applicability
of this result extends beyond classical DDEs, although here we did restrict to the case of an eventually
compact C0-semigroup on a sun-reflexive state space. It follows that the results from Sections 3.2 to 3.5
are valid as well for other classes of delay equations such as renewal equations (also known as Volterra
functional equations) and systems of mixed type [11].

Furthermore, in [15, 59] the technique was used to calculate the critical normal form coefficients
for Hopf and Hopf-Hopf bifurcations occurring in neural field models with propagation delays. For
these models sun-reflexivity is lost, which is typical for delay equations in abstract spaces or with
infinite delay. However, it is often possible to overcome this functional analytic complication, so dual
perturbation theory can still be employed successfully [12, 13, 38, 59]. It has also been used in the
context of semilinear hyperbolic systems [47].

It is demonstrated - at a formal level - in [55] that the normalization technique described in Section 4
still works for DDEs with state-dependent delays. However, as already mentioned in Remark 21, for
DDEs the nonlinearity generally does not depend differentiably on the delay parameters. Therefore, in
the case of state-dependent DDEs it is generally not possible to justify differentiation of the nonlinearity
with respect to the state, let alone to rely on higher order smoothness. So, as far as we know there is
still no proof of the validity of the normalization technique for state-dependent DDEs.

Returning to the setting of classical DDEs, the most obvious next challenge is to derive normal
forms for bifurcations of periodic orbits by generalizing [9,10,44] to DDEs. The resulting formulas can
then be implemented in DDE-BifTool to facilitate numerical bifurcation analysis of periodic orbits in
classical DDEs.
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In this supplement we provide walkthroughs of the examples given in Section 8 with DDE-BifTool1

[21]. These walkthroughs enable other researchers to reproduce the results obtained in the main text.
Additionally, we will show the code used for simulation near the bifurcations points under consider-

ation. Either using the build-in routine dde23 from MATLAB [53] or the Python package pydelay2 [24].
Other DDE models, undergoing one of the degenerate Hopf bifurcations treated in this paper, can
easily be studied by making minor modifications to the given code.

The focus will be on the initialization and continuation of the various codimension one equilibrium
and cycles bifurcation curves emanating from the degenerate Hopf points and on simulation near the
bifurcation points. For a complete overview of the capabilities and functionality for DDE-BifTool, we
refer to the online tutorials files and also the manual and the references therein.

All code has been included into the DDE-BifTool package version 3.2a on the SourceForge repository
and can be executed without the need to copy and paste. Note that the code is tested on MATLAB 2018b
and GNU Octave 4.2.2. Different results may occur with other versions of MATLAB and GNU Octave.

S1 Generalized Hopf bifurcation in a coupled FHN neural sys-
tem with delay

A completely synchronous solution of the three coupled FitzHugh-Nagumo (FHN) neuron system is
given by the system u̇1(t) = −u

3
1(t)

3
+ (c+ α)u2

1(t) + du1(t)− u2(t) + 2βf(u1(t− τ)),

u̇2(t) = ε(u1(t)− bu2(t)).
(S1)

see Section 8.1 and [48]. As before, we fix the parameters

b = 0.9, ε = 0.08, c = 2.0528, d = −3.2135, τ = 1.7722,

and take for f : R→ R the sigmoid amplification function f(u) = tanh(u). The parameters (β, α) are
used to unfold the singularity.
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Remark 23. This demonstration can be found in the directory demos/tutorial/VII/FHN relative to the
main directory of the DDE-BifTool package.

S1.1 Generate system files
Before we start to analyze the system with DDE-BifTool, we first create a system file. This file contains
the definition of the system (S1), the standard derivatives needed for calculation of the eigenvalues and
eigenvectors, the continuation of bifurcation points and cycles, and also the multilinear forms, see
Section 7, used for the calculation of the coefficients of the critical and parameter-dependent normal
forms. Alternatively, one can only supply the system itself, see Listing S2. Then finite difference is
used to approximate the derivatives. However, this is less efficient and accurate, and therefore not
recommended. A separate script gen_sym_FHN.m is used to create a system file. The most important
parts of this script are listed and discussed below.

%% Add paths and load sym package if GNU Octave is used
clear
ddebiftoolpath='../../../../ ';
addpath(strcat(ddebiftoolpath ,'ddebiftool ') ,...

strcat(ddebiftoolpath ,'ddebiftool_extra_symbolic '));
if dde_isoctave ()

pkg load symbolic
end
%% Create parameter names as strings and define fixed parameters
% The demo has the parameters |beta|, |alpha| and |tau|
parnames ={'beta','alpha','tau'};
b=sym(0.9,'r');
epsilon=sym(0.08 ,'r');
c=sym (2.0528 ,'r');
d=sym(-3.2135,'r');
%% Create symbols for parameters , states and delays states
% |par| is the array of symbols in the same order as parnames.
% Due to the following two lines we may , for example ,
% use either beta or par (1) to refer to the delay.
syms(parnames {:}); % create symbols for beta , alpha and tua
par=cell2sym(parnames); % now beta is par(1) etc
%% Define system using symbolic algebra
% create symbols for u1(t) u1(t-tau), u2(t), u2(t-tau)
syms u1 u1t u2 u2t
du1_dt=-u1 ^3/3+(c+alpha)*u1^2+d*u1 -u2+2* beta*tanh(u1t);
du2_dt=epsilon *(u1 -b*u2);
%% Differentiate and generate code (multi -linear forms)
[fstr ,derivs ]= dde_sym2funcs (...
[du1_dt;du2_dt ],... % n x 1 array of derivative symbolic expressions
[u1 ,u1t;u2 ,u2t],... % n x (ntau +1) array of symbols for states (current & ...

delayed)
par ,... % 1 x np (or np x 1) array of symbols used for parameters
'filename ','sym_FHN_mf ' ,... % optional argument specifying output file
'directional_derivative ',false);
%% Differentiate and generate code (directional derivatives)
[fstr ,derivs ]= dde_sym2funcs (...
[du1_dt;du2_dt ],... % n x 1 array of derivative symbolic expressions
[u1 ,u1t;u2 ,u2t],... % n x (ntau +1) array of symbols for states (current & ...

delayed)
par ,... % 1 x np (or np x 1) array of symbols used for parameters



SWITCHING TO NONHYPERBOLIC CYCLES IN DDES S3

'filename ','sym_FHN ' ,... % optional argument specifying output file
'directional_derivative ',true);

The variable ddebiftoolpath is directed to the DDE-BifTool main folder, which should have been
extracted somewhere on the computer. Here a path relative to the current working directory is used.
Note that although we only use the parameters (β, α) as unfolding parameters, in the current version
of DDE-BifTool, we also need to include the delay(s) in the list of parameters. After running the
script, the function dde_sym2funcs creates two system files sym_FHN_mf.m and sym_FHN.m. The first file
sym_FHN_mf.m implements the higher order derivatives as multilinear forms, as explained in Section 7,
and therefore the file we will solely be using. The second file sym_FHN.m uses directional derivatives to
implement the higher order derivatives. The directional derivatives approach formally allows the use
of state-dependent delays, see [55]. Although both approaches yields (up to rounding errors) identical
normal form coefficients, multilinear forms are much faster.

S1.2 Loading the DDE-BifTool package
Now that a system file is created we continue with DDE-BifTool to analyze (S1). The code in the
following sections highlights the import parts of the file FHN.m. DDE-BifTool consists of a set of
MATLAB routines. Thus, to start using DDE-BifTool, we only need to add DDE-BifTool directories to
the search path.

Listing S1: Add DDE-BifTool scripts to the search path
%% Clean workspace and add DDE -BifTool scripts to
% the MATLAB search path
clear; % clear variables
close all; % close figures
ddebiftoolpath='../../../../ ';
addpath(strcat(ddebiftoolpath ,'ddebiftool ') ,...

strcat(ddebiftoolpath ,'ddebiftool_extra_psol ') ,...
strcat(ddebiftoolpath ,'ddebiftool_extra_nmfm ') ,...
strcat(ddebiftoolpath ,'ddebiftool_utilities '));

There are four subdirectories added to the search path:

ddebiftool Containing the core files of DDE-BifTool.

ddebiftool_extra_psol An extension for enabling continuation of periodic orbit bifurcations for
delay-differential equations with constant or state-dependent delay.

ddebiftool_extra_nmfm An extension for normal form computation.

ddebiftool_utilities Containing various utilities.

S1.3 Set parameter names
The following code allows us to use ind.beta instead of remembering the index of the parameter β in
the parameter array, and similarly for the other parameters.

%% Set parameter names
parnames ={'beta','alpha','tau'};
cind=[ parnames;num2cell (1: length(parnames))];
ind=struct(cind {:});

In this way, fewer mistakes are likely to be made and the code is easier to read.
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S1.4 Initialization
Next, we set up the funcs structure, containing information about where the system and its derivatives
are stored, a function pointing to which parameters are delays, and various other settings.

%% Set the funcs structure
% We load the precalculated multilinear forms. These have been
% generated with the file gen_sym_FHN.m.
funcs=set_symfuncs(@sym_FHN_mf ,'sys_tau ',@()ind.tau);

Alternatively, when no system files have been generated, one could initialize the system (S1) as follows.

Listing S2: Define system without a system file
%% Define the system
b=0.9; epsilon =0.08; c=2.0528; d= -3.2135; % fixed parameters
FHN_sys = @(xx ,par) [...
-xx(1,1,:) .^3/3+(c+par(1,ind.alpha ,:)).*xx(1,1,:) .^2+d*xx(1,1,:)...
-xx(2,1,:)+2*par(1,ind.beta ,:).*tanh(xx(1,2,:));
epsilon *(xx(1,1,:)-b*xx(2,1,:))];
%% Set funcs structure
funcs=set_funcs('sys_rhs ',FHN_sys ,'sys_tau ',@()ind.tau ,...

'x_vectorized ',true ,'p_vectorized ',true);

Inspecting the output of the funcs handle gives.

>> funcs

funcs =

struct with fields:

sys_rhs: @(x,p)wrap_rhs(x,p,funcs.sys_rhs ,funcs.
x_vectorized ,funcs.p_vectorized)

sys_ntau: @()0
sys_tau: @()ind.tau

sys_cond: @dummy_cond
sys_deri: @(x,p,nx,np,v)dde_gen_deriv(funcs.sys_dirderi ,x,

p,nx,np,v,1)
sys_dtau: []

sys_mfderi: {}
sys_dirderi: {[ function_handle] [function_handle ]}
sys_dirdtau: []

x_vectorized: 1
p_vectorized: 1

hjac: @(ord)eps ^(1/(2+ ord))
sys_unfolding_parameters: []

tp_del: 0
sys_deri_provided: 0

sys_dirderi_provided: 0

The output shows that no derivative file is supplied. In this case, the derivatives are calculated using
finite-difference approximations with the function dde_dirderiv. Again, we do not recommend using
the latter approach. However, it can be useful for debugging purposes.

S1.5 Stability and normal form coefficients of the generalized-Hopf point
Wemanually specify a steady-state at the generalized-Hopf point found in [48] and calculate its stability.
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% construct steady -state point
beta0 =1.9; alpha0 = -0.9710; tau0 =1.7722;
stst=dde_stst_create('x' ,[0;0]);
stst.parameter(ind.beta) = beta0;
stst.parameter(ind.alpha) = alpha0;
stst.parameter(ind.tau) = tau0;
% Calculate stability
method=df_mthod(funcs ,'stst');
stst.stability=p_stabil(funcs ,stst ,method.stability);

Inspecting the stst.stability structure yields

>> stst.stability.l1(1:6)

ans =

0.0000 + 0.0720i
0.0000 - 0.0720i

-0.0818 + 3.1068i
-0.0818 - 3.1068i
-0.3478 + 6.4411i
-0.3478 - 6.4411i

>>

The eigenvalues confirm that the point under consideration is indeed a Hopf point. Next, we convert
the steady-state point to a Hopf point and calculate the normal form coefficients with the function
nmfm_genh, which implements the coefficients derived in Section 6.1.

%% Calculate critical normal form coefficients
hopf=p_tohopf(funcs ,stst);
method=df_mthod(funcs ,'hopf');
hopf.stability=p_stabil(funcs ,hopf ,method.stability);
genh=p_togenh(hopf);
genh=nmfm_genh(funcs ,genh);

The normal form coefficients are stored in the genh.nmfm structure.

>> genh.nmfm
ans =

struct with fields:

L2: -18.1302
L1: 0.3980

>>

Clearly, the first Lyapunov coefficient (L1) is nonzero. It follows that the Hopf point is not degenerate.

S1.6 Continue Hopf point
Since the simulations in [48] do indicate a generalized-Hopf point nearby, we continue the Hopf point.

%% Initialize Hopf branch
unfolding_pars =[ind.beta , ind.alpha];
hbr=df_brnch(funcs ,unfolding_pars ,'hopf');
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Figure S1: (a) Hopf curve continued from the manually constructed point. (b) LPC curve continued
from the detected generalized Hopf point using our predictors.

hbr.point=hopf;
hbr.point (2)=hopf;
hbr.point (2).parameter(ind.alpha)=...
hbr.point (2).parameter(ind.alpha)+0.001;
method=df_mthod(funcs ,'hopf');
method.point.print_residual_info =1;
hbr.point (2)=p_correc(funcs ,hbr.point (2),ind.beta ,[], method.point);
%% Continue Hopf branch
figure (1); clf;
hbr=br_contn(funcs ,hbr ,30);
hbr=br_rvers(hbr);
hbr=br_contn(funcs ,hbr ,30);
title('Continued Hopf branch ');
xlabel('$\beta$','Interpreter ','LaTex')
ylabel('$\alpha$ ','Interpreter ','LaTex')
box on

The continued branch hbr is shown in Figure S1a.

S1.7 Detect bifurcation points
To detect bifurcation points on the Hopf branch, we use the function LocateSpecialPoints.

[hbr_wbifs ,hopftests ,hc2_indices ,hc2_types ]=...
LocateSpecialPoints(funcs ,hbr);

The MATLAB console shows the following output.

HopfCodimension2: calculate stability if not yet present
HopfCodimension2: calculate L1 coefficients
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Figure S2: Plot of the test function for a generalized Hopf point.

HopfCodimension2: (provisional) 1 gen. Hopf detected.
br_insert: detected 1 of 1: genh. Normalform:

L2: -15.6733
L1: -1.6801e-12

Thus a generalized Hopf point is indeed present on the Hopf branch hbr. The returned branch hbr_wbifs
contains this point. The array hc2_indices is used to subtract the generalized Hopf point below. If
there would be more bifurcation points detected, hc2_types can be used to inspect their types. Lastly,
hopftests stores the test functions to detect a bifurcation point. A change in sign in one of these
functions indicates a bifurcation. The code below plots the test function for the generalized Hopf
point, i.e. the first Lyapunov coefficient (L1), see Figure S2.

al=arrayfun(@(x)x.parameter(ind.alpha),hbr_wbifs.point);
figure (2); clf;
plot(al,hopftests.genh (1,:),'.-',al,zeros(size(al)));
xlabel('$\beta$','Interpreter ','LaTex');
ylabel('First Lyapunov coefficient (L1)')
title('Criticality along Hopf bifurcation curve')

S1.8 Continue limit point of cycle curve
First, we subtract the detected generalized-Hopf point from the branch.

%% Calculate parameter -dependent normal form coefficients
% Select the located generalized Hopf point on the hopf_br_wbifs.
% Then convert the Hopf point to a generalized Hopf point.
% As before , we use the function nmfm_genh to calculate the normal
% form coefficients. By adding the option free_pars and providing
% the unfolding parameters the parameter -dependent normal
% form coefficients are calculated.
hopf=hbr_wbifs.point(hc2_indices); % select generelized Hopf point
genh=p_togenh(hopf);
genh=nmfm_genh(funcs ,genh ,'free_pars ',unfolding_pars);
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genh.nmfm.L1

By inspecting the genh structure, we obtain the correct parameter values of the generalized Hopf
bifurcation.

>> genh.parameter

ans =

1.9000 -1.0429 1.7722

>>

To continue the limit point of cycles curve emanating from the generalized Hopf point, we use the
function C1branch_from_C2point.

%% Continue LPC curve emanating from generalized -Hopf point
figure (1); [lpcfuncs ,lpcbr ,~]= C1branch_from_C2point(funcs ,genh ,...

unfolding_pars ,'codim2 ',genh.kind ,'codim1 ','POfold ');
nop =50; [lpcbr ,suc]= br_contn(lpcfuncs ,lpcbr ,nop); assert(suc >0)

This function uses the file nmfm_POfold_from_genh_init.m in which the predictor, see Sections 5.1
and 6.1.3, is implemented. Using this function, a branch with three initial corrected cycles is cre-
ated which is continued in the standard way, see Figure S1b.

S1.9 Calculate predicted periodic orbits
To compare the computed parameter values and periodic orbits on the branch lpcbr with the predictor,
we again use the function C1branch_from_C2point, but with the additional argument predictor set to
1 and step to an interval of ε-values. Now the cycles are left uncorrected.

%% Predictor LPC curve emanating from generalized -Hopf point
[~,lpcbr_pred ,~]= C1branch_from_C2point(funcs ,genh ,...

unfolding_pars ,'codim2 ',genh.kind ,'codim1 ','POfold ' ,...
'step',linspace (0,1,45),'predictor ' ,1);

S1.10 Bifurcation diagram
The following code produces the bifurcation diagram presented in the main text, see Figure 1, and
has been reproduced here in Figure S3. The figure was exported with the MATLAB and GNU Octave
compatible package matlab2tikz, see [26].

Listing S3: MATLAB code for bifurcation diagram
%% Bifurcation diagram
figure (3); clf; hold on;
% Inline function to subtract parameters
getpars=@(points ,ind) arrayfun(@(p)p.parameter(ind),points);
cm=colormap('lines');
L1s=hopftests.genh (1,:); % L1 along the hopf branch
% Plot sub - and supercritical Hopf branches
plot(getpars(hbr_wbifs.point(L1s >0),ind.beta) ,...

getpars(hbr_wbifs.point(L1s >0),ind.alpha),'Color',cm(1,:) ,...
'DisplayName ','subcritical Hopf branch ');

plot(getpars(hbr_wbifs.point(L1s <0),ind.beta) ,...
getpars(hbr_wbifs.point(L1s <0),ind.alpha),'Color',cm(2,:) ,...
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'DisplayName ','supercritical Hopf branch ');
plot(getpars(lpcbr.point ,ind.beta) ,...

getpars(lpcbr.point ,ind.alpha),'Color',cm(3,:) ,...
'DisplayName ','LPC branch ');

plot(getpars(lpcbr_pred.point ,ind.beta) ,...
getpars(lpcbr_pred.point ,ind.alpha),'.','Color',cm(3,:) ,...
'DisplayName ','LPC predictor ');

plot(getpars(genh ,ind.beta),getpars(genh ,ind.alpha),'k.' ,...
'MarkerSize ',8,'DisplayName ','generalized Hopf point');

title('Bifurcation diagram near generalized Hopf point ')
xlabel('$\beta$','Interpreter ','LaTex');
ylabel('$\alpha$ ','Interpreter ','LaTex');
text (1.8779 , -1.1001 ,'I');
text (1.9130 , -0.9008 ,'II');
text (1.8890 , -0.5854 ,'III');
axis ([1.86 1.945 -1.5000 -0.4000])
legend('Location ','NorthEast '); box on
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subcritical Hopf branch
supercritical Hopf branch
LPC branch
LPC predictor
generalized Hopf point

Figure S3: Bifurcation diagram near the generalized Hopf point in the system (S1) with unfolding
parameters (β, α). The bifurcation curves are nearly identical to those in the bifurcation diagram of
the topological normal form as presented in [43, page 314].

S1.11 Plot comparing computed and predicted periodic orbits
Lastly, we create a plot to compare the computed and predicted periodic orbits.

%% Plot comparing computed and predicted periodic orbits
figure (4); clf; hold on;
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Figure S4: Comparison between computed periodic orbits (blue) and predicted periodic orbits (red)
emanating from the generalized Hopf bifurcation.

for i=1:15
plot(lpcbr.point(i).profile (1,:) ,...

lpcbr.point(i).profile (2,:),'Color',cm(1,:));
end
% Plot predicted periodic orbits
for i=1:7

plot(lpcbr_pred.point(i).profile (1,:) ,...
lpcbr_pred.point(i).profile (2,:),'Color',cm(2,:));

end
xlabel('$u_1$','Interpreter ','LaTex');
ylabel('$u_2$','Interpreter ','LaTex');
title('Compare computed and predicted periodic orbits ')
box on

The resulting plot is shown in Figure S4. Note that the cycles shown have different underlying param-
eter values. Nonetheless, we see that the cycles are in good agreement.

S1.12 Simulation with MATLAB

Next, we simulate the dynamics near the generalized Hopf point. For this, we take a point in each of
the three regions as shown in Figure S3. The following code, from the file FHN_simulation.m, uses the
MATLAB function dde23.

%% Clean workspace and add DDE -BifTool scripts
% to the MATLAB search path.
clear; % clear variables
close all; % close figures
ddebiftoolpath='../../../../ ';
addpath(strcat(ddebiftoolpath ,'ddebiftool ') ,...

strcat(ddebiftoolpath ,'ddebiftool_extra_psol ') ,...
strcat(ddebiftoolpath ,'ddebiftool_extra_nmfm ') ,...
strcat(ddebiftoolpath ,'ddebiftool_utilities '));
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load('FHN_results.mat')
%% Point in region I
beta0 =1.8779;
alpha0 = -1.1001;
% Point near the steady -state
x1=0;
x2 =0.01;
% Integrate
tfinal =1000;
sol = dde23(@(t,y,Z) funcs.sys_rhs ([y,Z],...

[beta0 alpha0 tau0]),tau0 ,[x1 x2],[0 tfinal ]);
t=linspace(0,tfinal ,1000);
y=deval(sol ,t);
% Plot
title('Point in region I')
figure (1);clf;
xlabel('$u_1$','Interpreter ','LaTex')
ylabel('$u_2$','Interpreter ','LaTex')
plot(y(1,:),y(2,:))
%% Point in region II
beta0 =1.9130;
alpha0 = -0.9008;
% Point near the steady -state
x2=0.1;
% Integrate
sol = dde23(@(t,y,Z) funcs.sys_rhs ([y,Z],[beta0 alpha0 tau0]) ,...
tau0 ,[x1 x2],[0 tfinal ]);
t=linspace(0,tfinal ,1000);
y=deval(sol ,t);
% Plot
figure (2);clf;
title('Point in region II')
xlabel('$u_1$','Interpreter ','LaTex')
ylabel('$u_2$','Interpreter ','LaTex')
plot(y(1,:),y(2,:))
%% Point in region III
beta0 =1.8890;
alpha0 = -0.6081;
% Orbit converging to periodic orbit
x2=0.1;
% Integrate
tfinal =3000; % use lager time interval
sol = dde23(@(t,y,Z) funcs.sys_rhs ([y,Z],[beta0 alpha0 tau0]) ,...
tau0 ,[x1 x2],[0 tfinal ]);
t=linspace(0,tfinal ,4000);
y1=deval(sol ,t);
% Plot
figure (3);clf;
title('Point in region III')
xlabel('$u_1$','Interpreter ','LaTex')
ylabel('$u_2$','Interpreter ','LaTex')
plot(y1(1,:),y1(2,:))
% Orbit converging to the stable steady -state
% Integrate
x2 =0.093;
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sol = dde23(@(t,y,Z) funcs.sys_rhs ([y,Z],[beta0 alpha0 tau0]) ,...
tau0 ,[x1 x2],[0 tfinal ]);
y2=deval(sol ,t);
% Add to plot
hold on; plot(y2(1,:),y2(2,:),'Color',cm(2,:));
%% Time series of the previous solutions in region III
figure (4);clf;
plot(t,y1(1,:),t,y2(1,:))
title('Time series of solutions in region III')
xlabel('$t$','Interpreter ','LaTex')
ylabel('$u_1$','Interpreter ','LaTex')

In Figures S5a to S5d the resulting plots are shown, confirming the dynamics near the generalized Hopf
point as predicted in [43].

S2 Fold-Hopf bifurcation in the Rose–Hindmarsh model with
time delay

In [48] a Rose-Hindmarsh model [33,34] with time delay in the self-feedback process,
ẋ(t) = y(t)− ax3(t) + bx2(t− τ)− cz(t) + Iapp,

ẏ(t) = c− dx2(t)− y(t),

ż(t) = r(S(x(t)− χ)− z(t)),
(S2)

is considered, see Section 8.2. The parameters values

a = 1.0, b = 3.0, c = 1.0, d = 5.0, χ = −1.6, r = 0.001 (S3)

are fixed and (Iapp, S) are the unfolding parameters.

Remark 24. This demonstration can be found in the directory demos/tutorial/VII/RH relative to the
main directory of the DDE-BifTool package. Here, we omit the code to generate a system file. The
system file sym_RH_mf.m has been generated with the script gen_sym_RS.m. Also, we assume that the
DDE-BifTool package has been loaded as in Listing S1. The code in Sections S2.1 to S2.10 highlights
the important parts of the file RH.m.

S2.1 Set parameter names and funcs structure
As in the previous example, we set the parameter names and define the funcs structure.

%% Set parameter names
parnames ={'Iapp','S','r','tau'};
cind=[ parnames;num2cell (1: length(parnames))];
ind=struct(cind {:});
%% Set funcs structure
% We load the precalculated multilinear forms. These have been
% generated with the file gen_sym_RH.m.
funcs=set_symfuncs(@sym_RH_mf ,'sys_tau ',@()ind.tau);

S2.2 Stability and normal form coefficients of the fold-Hopf point
We construct a steady-state at the fold-Hopf point and calculate its stability.
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Figure S5: Simulation near the generalized Hopf point in the system (S1). In (a) we see a stable steady-
state corresponding to a point in region I. When we enter region II, the stability of the steady-state
is lost and a stable cycle appears, as seen in (b). In region III, there is a stable steady-state inside a
stable cycle. This is confirmed in (c) and (d). In (c), the initial point of the orbit in blue is just outside
the unstable cycle and converges to the stable cycles. The initial point of the orbit in red is just inside
the unstable cycle and converges to the stable steady-state. In (d), the time series of these orbits are
shown in the (t, u1(t)) plane.

%% Construct fold -Hopf point
a=1.0; b=3.0; c=1.0; d=5.0; chi= -1.6;
r=1.0e-03;
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S= -0.57452592;
[xstar ,Iapp ,tau]= bifurcationvalues(a,b,c,d,chi ,r,S);
% Construct steady -state point
stst=dde_stst_create('x',[xstar; c-d*xstar ^2; S*(xstar -chi)]);
stst.parameter ([ind.Iapp ind.S ind.r ind.tau])=[Iapp S r tau];
% Calculate stability
method=df_mthod(funcs ,'stst');
stst.stability=p_stabil(funcs ,stst ,method.stability);
stst.stability.l1 (1:5)

The function bifurcationvalues calculates (x?, Iapp, τ) according to the formulas as given in Section 8.2.
The MATLAB console shows the following output.

ans =

0.0000 + 0.0000i
-0.0000 + 1.0079i
-0.0000 - 1.0079i
-0.0994 + 1.9324i
-0.0994 - 1.9324i

We have a zero eigenvalue and a pair of purely imaginary eigenvalues. Furthermore, the remaining
eigenvalues have negative real parts. Next, we calculate the normal form coefficients and the trans-
formation to the center manifold with the function nmfm_zeho, which implements the coefficients as
derived in Section 6.2. For this we need to set the argument free_pars to the unfolding parameter
(Iapp, S). These coefficients will be used to start the continuation of the various branches emanating
from the fold-Hopf point.

% Calculate normal coefficients
hopf=p_tohopf(funcs ,stst);
zeho=p_tozeho(hopf);
unfolding_pars =[ind.Iapp , ind.S];
zeho=nmfm_zeho(funcs ,zeho ,'free_pars ',unfolding_pars);
zeho.nmfm

The MATLAB console shows the following output.

ans =

struct with fields:

g200: -0.0024
g110: 0.3296 + 0.7006i
g011: -0.0078
g300: 0.0106
g111: -0.0146
g210: -2.7764 - 3.1806i
g021: -0.3745 - 2.4754i

b: -0.0024
c: -0.0078
d: 0.3296 + 5.2274i
e: 15.6941
s: 1.8487e-05

theta: -139.0315
transcritical: 0

h200: [1x1 struct]
h011: [1x1 struct]
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h020: [1x1 struct]
h110: [1x1 struct]

K: [2x2 double]
h000mu: [1x2 struct]
omega1: 7.4540
omega2: 2.1259

Since s > 0 and θ(0) < 0 global bifurcations or invariant tori are present. However, since the sign
of e is positive the stability of the invariant tori will be unstable for nearby parameter values. It
follows that the torus observed in [48] by simulations does not originate from the fold-Hopf point under
consideration.

S2.3 Set bifurcation parameter range and step size bounds
Before continuing the various branches emanating from the fold-Hopf point, we create the variable
brpars containing parameter bounds and maximal stepsizes.

%% Set bifurcation parameter range and step size bounds
brpars ={'min_bound ',[ind.Iapp -20; ind.S -12],...

'max_bound ',[ind.Iapp 10; ind.S 5],...
'max_step ', [ind.Iapp 4e-02; ind.S 4e -02]};

S2.4 Continue NS, Hopf and fold branch
As in the previous example, we use the function C1branch_from_C2point to start to continue the branches
emanating from the fold-Hopf point. Figure S6 is created using similar code as in Listing S3. We remark
that even when there would be stable tori present for nearby parameter values, the window in which
these tori would exist is quite small. Indeed, the parameter values would have to be below the Hopf
curve and above the Neimark-Sacker curve to the left of the fold-Hopf point.

%% Continue Neimark -Sacker curve emanating from fold -Hopf point
[trfuncs ,nsbr ,~]= C1branch_from_C2point(funcs ,zeho ,unfolding_pars ,...

'codim2 ',zeho.kind ,'codim1 ','TorusBifurcation ' ,...
brpars {:},'step',1e-03,'plot' ,0);

ntrsteps =1000; [nsbr ,suc]= br_contn(trfuncs ,nsbr ,ntrsteps);
%% Continue Hopf curve emanating from fold -Hopf point
[~,hbr ,suc]= C1branch_from_C2point(funcs ,zeho ,unfolding_pars ,...

'codim2 ',zeho.kind ,'codim1 ','hopf' ,...
brpars {:},'step',1e-03,'plot' ,0);

nop =1000; [hbr ,suc]= br_contn(funcs ,hbr ,nop); assert(suc >0)
hbr=br_rvers(hbr);
[hbr ,suc]= br_contn(funcs ,hbr ,nop);
%% Continue fold curve emanating from fold -Hopf point
[~,fbr ,suc]= C1branch_from_C2point(funcs ,zeho ,unfolding_pars ,...

'codim2 ',zeho.kind ,'codim1 ','fold','step',1e-03,'plot' ,0);
nop =1000; [fbr ,suc]= br_contn(funcs ,fbr ,nop);
fbr=br_rvers(fbr);
[fbr ,suc]= br_contn(funcs ,fbr ,nop);

S2.5 Stable invariant tori
We change the parameters r = 1.4 and S = −8, while keeping the other fixed parameters as in (S3).
Using the formulas given in Section 8.2, we calculate x?, Iapp and τ .



S16 M.M. Bosschaert, S.G. Janssens, and Yu.A. Kuznetsov

−20 −15 −10 −5 0 5 10
−12

−10

−8

−6

−4

−2

0

2

4

Iapp

S
Hopf branch
Neimark-Sacker branch
Fold branch
fold-Hopf point

Figure S6: Bifurcation diagram near the fold-Hopf point in (S2) with (r, S) = (0.001,−0.57452592).

%% Different parameters with stable torus
r=1.4; S=-8;
[xstar ,Iapp ,tau]= bifurcationvalues(a,b,c,d,chi ,r,S);
% Construct steady -state point
stst=dde_stst_create('x',[xstar; c-d*xstar ^2; S*(xstar -chi)]);
stst.parameter ([ind.Iapp ind.S ind.r ind.tau])=[Iapp S r tau];
% Calculate stability
method=df_mthod(funcs ,'stst');
stst.stability=p_stabil(funcs ,stst ,method.stability);
stst.stability.l1 (1:5)

The MATLAB console outputs

ans =

0.00000 + 0.00000i
0.00000 + 5.60424i
0.00000 - 5.60424i

-0.27870 + 0.00000i
-0.66607 + 11.94839i
-0.66607 - 11.94839i

which are indeed the eigenvalues that should be present at a fold-Hopf bifurcation. Next, we calculate
the normal form coefficients.

% Calculate normal coefficients
hopf=p_tohopf(funcs ,stst);
zeho=p_tozeho(hopf);
unfolding_pars =[ind.Iapp , ind.S];
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zeho=nmfm_zeho(funcs ,zeho ,'free_pars ',unfolding_pars);

Inspecting the normal form coefficients yields

>> fprintf('s=%f, theta =%f, e=%f\n',...
zeho.nmfm.s,zeho.nmfm.theta ,zeho.nmfm.e)

s=1.770013 , theta = -0.156886 , e= -0.037794
>>

The coefficients s and θ(0) reveal that we are in case III of the fold-Hopf bifurcation, see [43, page 342].
Since the sign of e(0) is negative, there is a time reversal to take into account. Therefore, we expect
stable tori to be present for nearby parameter values.

S2.6 Adjusting bifurcation parameter range
We adjust the variable brpars to reflect the current situation.

%% Set bifurcation parameter range and step size bounds
brpars ={'min_bound ',[ind.Iapp -20; ind.S -9],...

'max_bound ',[ind.Iapp -18; ind.S -7],...
'max_step ', [ind.Iapp 0.04; ind.S 0.04]};

S2.7 Detect special points on the Hopf branch
Since the code to continue the Neimark-Sacker, Hopf and fold curves is identical to the code in Sec-
tion S2.4, we continue with detecting bifurcations on the Hopf branch. The Hopf points on the branch
hbr_wbifs will contain the normal form coefficients L1 and L2. These will be used to visualize the
criticality of the Hopf points (sub or super) in the bifurcation diagram.

[hbr_wbifs ,hopftests ,hc2_indices ,hc2_types ]=...
LocateSpecialPoints(funcs ,hbr);

S2.8 Predictors
As in the previous example, we obtain predictors for the various branches simply by setting the
argument predictor to 1 and the argument step to a range of ε-values when calling the function
C1branch_from_C2point.

%% Predictors for Neimark -Sacker and Hopf curves
[~,nsbr_pred ]= C1branch_from_C2point(funcs ,zeho ,unfolding_pars ,...

'codim2 ','zeho','codim1 ','TorusBifurcation ' ,...
'step',linspace (1e-03 ,2.2e-01 ,40),'predictor ' ,1);

[~, hbrsub_pred ]= C1branch_from_C2point(funcs ,zeho ,unfolding_pars ,...
'codim2 ','zeho','codim1 ','hopf' ,...
'step',linspace (0,1e-03 ,20),'predictor ' ,1);

[~, hbrsup_pred ]= C1branch_from_C2point(funcs ,zeho ,unfolding_pars ,...
'codim2 ','zeho','codim1 ','hopf' ,...
'step',linspace(-1e-03 ,0,20),'predictor ' ,1);
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S2.9 Bifurcation diagram
We plot the obtained curves and the predictor for the Neimark-Sacker and Hopf curve with the following
code.

%% Plot comparing computed and predicted Neimark -Sacker curve
figure (8); clf; hold on;
nsbr2_pm_pred = [getpars(nsbr_pred ,ind.Iapp); ...

getpars(nsbr_pred ,ind.S)];
hbrsub_pm_pred = [getpars(hbrsub_pred ,ind.Iapp); ....

getpars(hbrsub_pred ,ind.S)];
hbrsup_pm_pred = [getpars(hbrsuper_pred ,ind.Iapp); ...

getpars(hbrsuper_pred ,ind.S)];
plot(hbrsub_pm (1,:),hbrsub_pm (2,:),'Color',cm(1,:) ,...

'DisplayName ','subcritical Hopf branch ');
plot(hbrsuper_pm (1,:),hbrsuper_pm (2,:),'Color',cm(2,:) ,...

'DisplayName ','supercritical Hopf branch ');
plot(hbrsub_pm_pred (1,:),hbrsub_pm_pred (2,:),'.','Color',cm(1,:) ,...

'DisplayName ','subcritical Hopf predictor ');
plot(hbrsup_pm_pred (1,:),hbrsup_pm_pred (2,:),'.','Color',cm(2,:) ,...

'DisplayName ','supercritical Hopf predictor ');
plot(nsbr1_pm (1,:),nsbr1_pm (2,:),'Color',cm(3,:) ,...

'DisplayName ','Neimark -Sacker branch ');
plot(nsbr2_pm_pred (1,:),nsbr2_pm_pred (2,:),'.','Color',cm(3,:) ,...

'DisplayName ','Neimark -Sacker predictor ');
plot(zeho.parameter(ind.Iapp),zeho.parameter(ind.S),'k.' ,...

'MarkerSize ',12,'DisplayName ','fold -Hopf point')
title('Neimark -Sacker curve emanating from the fold -Hopf point')
axis ([ -19.0193 -18.7128 -8.0477 -7.9587])
xlabel('$I_{app}$','Interpreter ','LaTex');
ylabel('$S$','Interpreter ','LaTex');
text ( -18.784 , -7.981 , 'I','FontSize ' ,14); % stable period orbit
text ( -18.905 , -8.032 , 'II','FontSize ' ,14); % stable 2d torus
legend('Location ','NorthWest '); box on

Figure S7 shows the resulting bifurcation diagram.

S2.10 Plots comparing computed and predicted periodic orbits
We create a plot to compare the computed and predicted periodic orbits.

%% Plot comparing computed and predicted periodic orbits
figure (9); clf; hold on;
for i=1:14

plot3(nsbr.point(i).profile (1,:),nsbr.point(i).profile (2,:) ,...
nsbr.point(i).profile (3,:),'Color',cm(1,:));

end
for i=1:9

plot3(nsbr_pred.point(i).profile (1,:) ,...
nsbr_pred.point(i).profile (2,:) ,...
nsbr_pred.point(i).profile (3,:),'Color',cm(2,:));

end
title('Comparison between computed and predicted periodic orbits ')
xlabel('x'); ylabel('y'); zlabel('z')
view (3); grid on
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Figure S7: Bifurcation diagram near the fold-Hopf point in (S2) with (r, S) = (1.4,−8). The fold
branch is not included here since it is indistinguishable from the Hopf curve at this scale.

The resulting plot is shown in Figure S8a. To compare the computed and predicted periods, we use
the following code.

%% Compare computed and predicted periods
figure (10); clf; hold on;
% Plot computed periods on nsbr (1) and nsbr (2)
omegas1=arrayfun(@(p)p.period ,nsbr.point);
omegas1_pred=arrayfun(@(p)p.period ,nsbr_pred.point);
plot(getpars(nsbr ,ind.Iapp),omegas1 ,'Color',cm(1,:));
plot(getpars(nsbr_pred ,ind.Iapp),omegas1_pred ,'.','Color',cm(1,:));
title('Compare computed and predicted periods ')
xlabel('$I_{app}$','Interpreter ','LaTex')
ylabel('$\omega$ ','Interpreter ','LaTex')
axis ([ -19.1016 -18.6500 1.1144 1.1220])
legend('Computed period ','Predicted period ','Location ','SouthEast ')

The resulting plot is shown in Figure S8b.

S2.11 Simulation with pydelay

In this section we simulate the dynamics near the fold-Hopf point. The following code, from the file
RH_simulation_torus.py, uses the Python package pydelay [24].

import numpy as np
from pydelay import dde23
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
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Figure S8: In (a) the computed periodic orbits (blue) and predicted periodic orbits (red) are compared.
In (b) the computed predicted periods of the cycles are compared. We see that both are in good
agreement.

import matplotlib.pyplot as plt
from matplotlib import colors

# Number of time units
tfinal_cycle = 10000
tfinal_torus = 20000

# Define DDE
eqns = {

'x' : 'y-a*pow(x,3)+b*pow(x(t-tau),2)-c*z+Iapp',
'y' : 'c-d*pow(x,2)-y',
'z' : 'r*(S*(x-chi)-z)'

}

# Set parameters for torus
params_torus = {

'a':1,'b':3,'c':1,'d':5.0,'chi':-1.6,'r':1.4,
'tau':0.940246941050084 ,
'Iapp': -18.902420391705071 ,
'S': -8.045234985422740

}

# Set parameters for torus
params_cycle = params_torus.copy()
params_cycle['Iapp']= -18.886177304147466
params_cycle['S']= -8.044197084548104

# Set number of timesteps from the end to plot
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timesteps_torus =300
timesteps_cycle =10

# Select periodic orbit or torus
tfinal ,params ,timesteps=tfinal_cycle ,params_cycle ,timesteps_cycle
#tfinal ,params ,timesteps=tfinal_torus ,params_torus ,timesteps_torus

# Solve DDE
dde = dde23(eqns=eqns , params=params)
dde.set_sim_params(tfinal=tfinal)
dde.set_sim_params(tfinal=tfinal , dtmax =0.001)
histfunc = {

'x': lambda t: 1.097167540709727 ,
'y': lambda t: -5.018883061935152 ,
'z': lambda t: -21.577340325677817

}
dde.hist_from_funcs(histfunc , 51)
dde.run()

# Subtract solution components
sol0 = dde.sample(tfinal -timesteps ,tfinal , 0.001)
t = sol0['t']
x = sol0['x']
y = sol0['y']
z = sol0['z']

# Plot time series
fig = plt.figure ()
plt.figure (1)
plt.subplot (311)
plt.xlabel('$t$')
plt.ylabel('$x(t)$')
plt.plot(t, x, c='royalblue ')

plt.subplot (312)
plt.xlabel('$t$')
plt.ylabel('$y(t)$')
plt.plot(t, y, c='royalblue ')

plt.subplot (313)
plt.xlabel('$t$')
plt.ylabel('$z(t)$')
plt.plot(t, z, c='royalblue ')
fig.set_size_inches (18.5, 10.5)
plt.show()

# Plot the solution in phase -space
fig = plt.figure ()
ax = fig.gca(projection='3d')
ax.w_xaxis.set_pane_color ((1.0 , 1.0, 1.0, 1.0))
ax.w_yaxis.set_pane_color ((1.0 , 1.0, 1.0, 1.0))
ax.w_zaxis.set_pane_color ((1.0 , 1.0, 1.0, 1.0))
ax.plot(x, y, z, c='royalblue ')

ax.set_xlabel('$x(t)$')
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ax.set_ylabel('$y(t)$')
ax.set_zlabel('$z(t)$')

# Fix to get z_label inside the figure
from matplotlib import rcParams
rcParams.update ({'figure.autolayout ': True})

ax.view_init (9,-44)
plt.show()

# Subtract solution components for Poincaré section
sol0 = dde.sample(tfinal -1000 , tfinal , 0.001)
t = sol0['t']
x = sol0['x']
y = sol0['y']
z = sol0['z']

# Poincaré section
def poincaresection(x1 , x2, x3,x1_label , x2_label , val):

zero_cross = np.where(np.diff(np.sign(x3 -val)))
plt.figure (1)
plt.xlabel(x1_label)
plt.ylabel(x2_label)
plt.plot(x1[zero_cross], x2[zero_cross],'.', c='royalblue ')
plt.show()
return

x1_label='$x(t)$'
x2_label='$y(t)$'
poincaresection(x,y,z,x1_label ,x2_label , -21.75)

We will simulate the dynamics in region I and II, see Figure S7, where a stable periodic orbit and
stable two-dimensional torus, respectively, should be present. For a point in region I, we will take the
unfolding parameter values

(Iapp, S) = (−18.886177304147466,−8.044197084548104).

As an initial condition, we use the constant history function with values of the location of the fold-Hopf
point. We integrate the DDE on the time interval t ∈ [0, 10.000] with pydelay. In Figure S9 the time
series of the components x,y and z and the orbit in (x, y, z)-space of the last 10 time steps are shown,
clearly indicating a stable orbit.

Next, we simulate the dynamics in region II. Therefore, we adjust the unfolding parameter values
to

(Iapp, S) = (−18.902420391705071,−8.045234985422740).

Furthermore, we increase the integration interval to t ∈ [0, 20.000]. Keeping the history function the
same, we plot the last 1000 time steps, see Figure S9. We conclude that the dynamics near the fold-Hopf
point are as predicted in [43].
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Figure S9: Simulation near fold-Hopf point in (102). In (a) and (b), a stable periodic solution is shown.
In (c) and (d), a stable torus is shown. In (c), the time series is plotted while in (d), the cross-section
defined by z(t) = −21.75 in the phase-space (x, y, z) is taken.

S3 Hopf-Hopf and generalized Hopf bifurcations in Active con-
trol system

In Section 8.3 we considered the following active control system{
ẋ(t) = τy(t),

ẏ(t) = τ (−x(t)− gux(t− 1)− 2ζy(t)− gvy(t− 1) + f(t)) ,
(S4)

which is used to control the response of structures to internal or external excitation, see [50]. The
function f is substituted by βx3(t− 1) and the parameters

gu = 0.1, gv = 0.52, β = 0.1,
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are fixed. The control parameters are ζ and τ .

Remark 25. This demonstration can be found in the directory demos/tutorial/VII/acs relative to the
main directory of the DDE-BifTool package. Here, we omit the code to generate a system file. The
system file sym_acs_mf.m has been generated with the script gen_acs.m. Also, we assume that the
DDE-BifTool package has been loaded as in Listing S1. The code in Sections S3.1 to S3.10 highlights
the important parts of the file acs.m.

S3.1 Set parameter names and funcs structure
We set the parameter names and define the funcs structure.

%% Set parameter names
parnames ={'zeta','tau','tau_scaled '};
cind=[ parnames;num2cell (1: length(parnames))];
ind=struct(cind {:});
%% Set funcs structure
% We load the precalculated multilinear forms. These have been
% generated with the file gen_sym_acs.m.
funcs=set_symfuncs(@sym_acs_mf ,'sys_tau ',@()ind.tau_scaled);

S3.2 Stability and normal form coefficients of the Hopf-Hopf point
We construct a steady-state at the Hopf-Hopf point and calculate its stability.

%% Hopf -Hopf point
% Construct steady -state point
stst.kind='stst';
stst.x=[0;0];
stst.parameter(ind.zeta)= -0.016225;
stst.parameter(ind.tau)=5.89802;
stst.parameter(ind.tau_scaled)=1;
% Calculate stability
method=df_mthod(funcs ,'stst');
stst.stability=p_stabil(funcs ,stst ,method.stability);
stst.stability.l1

The MATLAB console shows the following output.

ans =

0.0000 + 4.5275i
0.0000 - 4.5275i

-0.0000 + 7.6449i
-0.0000 - 7.6449i

The eigenvalues confirm that the point under consideration is indeed a Hopf-Hopf point. Furthermore,
the remaining eigenvalues have negative real parts. Next, we calculate the normal form coefficients
and the transformation to the center manifold with the function nmfm_hoho, which implements the
coefficients as derived in Section 6.3. For this we need to set the argument free_pars to the unfolding
parameter (ζ, τ). These coefficients will be used to start the continuation of the various branches
emanating from the Hopf-Hopf point.

%% Calculate coefficients of the parameter dependent normal form
hopf=p_tohopf(funcs ,stst);
method=df_mthod(funcs ,'hopf');
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hopf.stability=p_stabil(funcs ,hopf ,method.stability);
hoho=p_tohoho(hopf);
unfolding_parameters =[ind.zeta , ind.tau];
hoho=nmfm_hoho(funcs ,hoho ,'free_pars ',unfolding_parameters);
hoho.nmfm

The MATLAB console shows the following output.

ans =

struct with fields:

g2100: -0.0915 + 0.1214i
g1011: -0.3084 + 0.4096i
g1110: 0.2151 + 0.3876i
g0021: 0.1813 + 0.3268i
theta: -1.7009
delta: -2.3517

b: [2x2 double]
h0011: [1x1 struct]
h0020: [1x1 struct]
h2000: [1x1 struct]

K: [2x2 double]
h0000: [1x2 struct]

We conclude that this Hopf-Hopf bifurcation is of ‘difficult’ type, since

(Re g2100)(Re g0021) = −0.0166 < 0,

see [43]. Furthermore, the quantities

θ =
Re g1011

Re g0021
= −1.7009, δ =

Re g1101

Re g2100
= −2.3517

are such that θ < 0, δ < 0, θδ > 0. It follows that we are in case VI.

S3.3 Set bifurcation parameter range and step size bounds
Before continuing the various branches emanating from the transcritical-Hopf point, we create the
variable brpars containing parameter bounds and maximal stepsizes.

%% Set bifurcation parameter range and step size bounds
brpars ={'max_bound ',[ind.tau 16] ,...

'min_bound ',[ind.tau 5],...
'max_step ', [ind.zeta 0.04; ind.tau 0.04]};

S3.4 Continuing Hopf and Neimark-Sacker bifurcation curves
We use the function C1branch_from_C2point to start to continue the branches emanating from the
Hopf-Hopf point.

%% Continue Neimark -Sacker curves emanating from Hopf -Hopf point
[trfuncs ,nsbr ,suc]= C1branch_from_C2point(funcs ,hoho ,...

unfolding_parameters ,'codim2 ','hoho','codim1 ' ,....
'TorusBifurcation ',brpars {:},'step',1e-01,'plot' ,0);

assert(all(suc(:) >0))
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Figure S10: In (a), the continued branches ns1_br and ns2_br are plotted. In (b), the continued Hopf
branch hopf_br1 is plotted.

ntrsteps =186; [nsbr (1),suc]= br_contn(trfuncs ,nsbr (1),ntrsteps);
assert(suc >0)
ntrsteps =61; [nsbr (2),suc]= br_contn(trfuncs ,nsbr (2),ntrsteps);
assert(suc >0)

%% Continue Hopf curve emanating from Hopf -Hopf point
[~,hbr ,suc]= C1branch_from_C2point(funcs ,hoho ,...

unfolding_parameters ,'codim2 ','hoho','codim1 ','hopf'....
,brpars {:},'step',1e-03,'plot' ,0);

assert(all(suc(:) >0))
nop =1000; [hbr(1),suc]= br_contn(funcs ,hbr (1),nop);assert(suc >0)
hbr (1)=br_rvers(hbr(1));
[hbr(1),suc]= br_contn(funcs ,hbr (1),nop); assert(suc >0)
nop =10; [hbr(2),suc]= br_contn(funcs ,hbr(2),nop); assert(suc >0)
hbr (2)=br_rvers(hbr(2));
[hbr(2),suc]= br_contn(funcs ,hbr (2),nop); assert(suc >0)

In Figure S10, the computed branches are shown. We see in Figure S10b that it is redundant to
continue the second Hopf branch emanating from the Hopf-Hopf point. Indeed, the first Hopf branch
connects the Hopf-Hopf point to itself. Here, we verified that the underlying points coincide.
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S3.5 Predictors
For comparison in the bifurcation diagram, we obtain predictors for the various branches by setting the
argument predictor to 1 and step to a range of ε-values when calling the function C1branch_from_C2point.

%% Predictors for Neimark -Sacker and Hopf curves
[trfuncs ,nsbr_pred ,suc]= C1branch_from_C2point(funcs ,hoho ,...

unfolding_parameters ,'codim2 ','hoho','codim1 ' ,...
'TorusBifurcation ','step',linspace (1e-03,2,40),'predictor ' ,1);

[~,hbr_pred ,suc]= C1branch_from_C2point(funcs ,hoho ,...
unfolding_parameters ,'codim2 ','hoho','codim1 ','hopf' ,...
'step',linspace(-2e-01,2e-01 ,30),'predictor ' ,1);

S3.6 Bifurcation diagram
We plot the computed curves and the predictors for the Neimark-Sacker and Hopf curves with the
following code.

%% Close -up near Hopf Hopf point in parameter space with predictors
figure (2); clf; hold on;
hbr1_pred_pm = [getpars(hbr_pred (1), ind.zeta)

getpars(hbr_pred (1), ind.tau)];
hbr2_pred_pm = [getpars(hbr_pred (2), ind.zeta)

getpars(hbr_pred (2), ind.tau)];
nsbr1_pred_pm = [getpars(nsbr_pred (1),ind.zeta)

getpars(nsbr_pred (1),ind.tau)];
nsbr2_pred_pm = [getpars(nsbr_pred (2),ind.zeta)

getpars(nsbr_pred (2),ind.tau)];
plot(hbr_pm (1,:),hbr_pm (2,:),'Color',cm(1,:) ,...

'DisplayName ','Hopf branches ')
plot(nsbr1_pm (1,:),nsbr1_pm (2,:),'Color',cm(2,:) ,...

'DisplayName ','Neimark -Sacker branches ')
plot(nsbr2_pm (1,:),nsbr2_pm (2,:),'Color',cm(2,:) ,...

'HandleVisibility ','off')
plot(hbr1_pred_pm (1,:), hbr1_pred_pm (2,:) ,'.' ,...

'Color',cm(1,:),'DisplayName ','Hopf predictors ')
plot(hbr2_pred_pm (1,:), hbr2_pred_pm (2,:) ,'.' ,...

'Color',cm(1,:),'HandleVisibility ','off')
plot(nsbr1_pred_pm (1,:),nsbr1_pred_pm (2,:),'.' ,...

'Color',cm(2,:),'DisplayName ','Neimark -Sacker predictors ')
plot(nsbr2_pred_pm (1,:),nsbr2_pred_pm (2,:),'.' ,...

'Color',cm(2,:),'HandleVisibility ','off')
plot(hoho.parameter(ind.zeta),hoho.parameter(ind.tau),'k.' ,...

'MarkerSize ',12,'DisplayName ','Hopf Hopf point')
title(['Close -up near Hopf Hopf point '...

'in parameter space with predictors '])
xlabel('$\zeta$','Interpreter ','LaTex');
ylabel('$\tau$','Interpreter ','LaTex');
legend('Location ','NorthWest ')
axis ([ -0.0562 0.0109 5.7098 6.1757])
box on

In Figure S11a the predictors in parameter space are compared.
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Figure S11: In (a), the computed curves are compared with the predicted curves for the Hopf-Hopf
point hoho. In (b), the computed and predicted periods of the cycles are compared.

S3.7 Plot comparing computed and predicted periods
To compare the computed and predicted periods, we use the following code.

%% Compare computed and predicted periods
figure (3); clf; hold on;
% Plot computed periods on nsbr (1) and nsbr (2)
omegas1=arrayfun(@(p)p.period ,nsbr (1).point);
omegas2=arrayfun(@(p)p.period ,nsbr (2).point);
omegas1_pred=arrayfun(@(p)p.period ,nsbr_pred (1).point);
omegas2_pred=arrayfun(@(p)p.period ,nsbr_pred (2).point);
plot(getpars(nsbr (1),ind.zeta),omegas1 ,'Color',cm(1,:));
plot(getpars(nsbr (2),ind.zeta),omegas2 ,'Color',cm(2,:));
plot(getpars(nsbr_pred (1),ind.zeta) ,...

omegas1_pred ,'.','Color',cm(1,:));
plot(getpars(nsbr_pred (2),ind.zeta) ,...

omegas2_pred ,'.','Color',cm(2,:));
title('Compare computed and predicted periods ')
xlabel('$\zeta$','Interpreter ','LaTex');
ylabel('$\omega$ ','Interpreter ','LaTex');

In Figure S11b, the computed and predicted periods of the cycles are compared using the formulas as
given in Section 5.3.2.

S3.8 Detect special points on the Hopf branch
Using the detection capabilities from DDE-BifTool via the function LocateSpecialPoints, we detect
one additional Hopf-Hopf point and three generalized Hopf points.
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%% Detect codimension two points on hopf_br1
[hopf_br_wbifs ,hopftests ,hc2_indices ,hc2_types ]=...

LocateSpecialPoints(funcs ,hbr (1));

The MATLAB console shows the following output.

HopfCodimension2: calculate stability if not yet present
HopfCodimension2: calculate L1 coefficients
HopfCodimension2: (provisional) 3 gen. Hopf 4 Hopf -Hopf detected.
br_insert: detected 1 of 7: hoho. Normalform:

g2100: 0.1813 + 0.3268i
g1011: 0.2151 + 0.3876i
g1110: -0.3084 + 0.4096i
g0021: -0.0915 + 0.1214i
theta: -2.3517
delta: -1.7009

br_insert: detected 2 of 7: genh. Normalform:
L2: -0.0458
L1: -1.6706e-11

br_insert: detected 3 of 7: hoho. Normalform:
g2100: 0.1813 + 0.3268i
g1011: 0.2151 + 0.3876i
g1110: -0.3084 + 0.4096i
g0021: -0.0915 + 0.1214i
theta: -2.3517
delta: -1.7009

br_insert: detected 4 of 7: hoho. Normalform:
g2100: -0.0034 + 0.3217i
g1011: -0.0046 + 0.4380i
g1110: -0.1494 + 0.4498i
g0021: -0.0509 + 0.1531i
theta: 0.0912
delta: 43.8639

br_insert: detected 5 of 7: genh. Normalform:
L2: 0.0070
L1: -5.9006e-14

br_insert: detected 6 of 7: genh. Normalform:
L2: 0.0075
L1: 2.2535e-14

br_insert: detected 7 of 7: hoho. Normalform:
g2100: -0.0034 + 0.3217i
g1011: -0.0046 + 0.4380i
g1110: -0.1494 + 0.4498i
g0021: -0.0509 + 0.1531i
theta: 0.0912
delta: 43.8639

There are seven bifurcations detected on the Hopf branch hbr(1): four Hopf-Hopf bifurcations and three
generalized Hopf bifurcations. However, by inspecting the parameters of the detected Hopf Hopf points
suggest that there are only two distinct Hopf-Hopf points, which are connected with the same Hopf



S30 M.M. Bosschaert, S.G. Janssens, and Yu.A. Kuznetsov

branch. By comparing the location of the underlying points confirms the premise. We are therefore
not interested in continuing the Hopf curves emanating from these points. What we are interested in is
continuing the Neimark-Sacker and limit point of cycle curves emanating from the second Hopf-Hopf
point and the three generalized Hopf points, respectively.

The normal form coefficients of the second Hopf-Hopf point are such that

(Re g2100)(Re g0021) = 1.7331e− 04 > 0

and
θ ≥ δ > 0, δθ = 4 > 1.

We conclude that we are in case I of the ‘simple’ type, see [46, page 360]. Therefore, no stable invariant
two-dimensional torus is predicted for nearby parameter values. We only expect to find two stable
periodic orbits.

S3.9 Continuing third Neimark-Sacker bifurcation and limit point of cycle
bifurcation curves

It turns out that we only need to continue one of the Neimark-Sacker bifurcation curves emanating
from the second Hopf-Hopf point. Indeed, the other Neimark-Sacker bifurcation curve is given by
ns_br(1).

%% Subtract generalized Hopf points
genh_indices=hc2_indices(strcmp(hc2_types ,'genh'));
genhpts=hopf_br_wbifs.point(genh_indices);
%% Continue limit point of cycles emanating from the generalized Hopf points
[~,lpc_br1 ,suc]= C1branch_from_C2point(funcs ,genhpts (1) ,...
unfolding_parameters ,'codim2 ','genh','codim1 ','POfold ' ,...
brpars {:},'step',1e-01,'plot' ,0);
assert(all(suc >0))
[poffuncs ,lpc_br2 ,suc]= C1branch_from_C2point(funcs ,genhpts (3) ,...
unfolding_parameters ,'codim2 ','genh','codim1 ','POfold ' ,...
brpars {:},'step',5e-03,'plot' ,0);
assert(all(suc >0))
ntrsteps =193; [lpc_br1 ,suc]= br_contn(poffuncs ,lpc_br1 ,ntrsteps);
assert(suc >0)
ntrsteps =220; [lpc_br2 ,suc]= br_contn(poffuncs ,lpc_br2 ,ntrsteps);
assert(suc >0)
%% Subtract second Hopf -Hopf point on the Hopf branch
hoho_indices=hc2_indices(strcmp(hc2_types ,'hoho'));
hoho2=hopf_br_wbifs.point(hoho_indices (3));
%% Continue Neimark -Sacker curves emanating from Hopf -Hopf point
[trfuncs ,nsbr34 ,suc]= C1branch_from_C2point(funcs ,hoho2 ,...

unfolding_parameters ,'codim2 ','hoho','codim1 ' ,...
'TorusBifurcation ',brpars {:},'step',5e-03,'plot' ,0);

assert(all(suc(:) >0))
ntrsteps =200; [nsbr34 (2),suc ,fail ,rjct ]=...

br_contn(trfuncs ,nsbr34 (2),ntrsteps);

S3.10 Bifurcation diagram
We plot the computed degenerate Hopf points, the limit point of limit cycle curves, and the Neimark-
Sacker curves with the following code.
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%% Bifurcation diagram in $(\zeta ,\tau)$
figure (4); clf; hold on;
% Subtract paramater values from the branches
lpc_br1_pm= [getpars(lpc_br1 , ind.zeta)

getpars(lpc_br1 , ind.tau)];
lpc_br2_pm= [getpars(lpc_br2 , ind.zeta)

getpars(lpc_br2 , ind.tau)];
nsbr3_pm = [getpars(nsbr34 (2), ind.zeta)

getpars(nsbr34 (2) ,ind.tau)];
% Plot curves
plot(hbr_pm (1,:), hbr_pm (2,:), 'Color',cm(1,:) ,...

'DisplayName ','Hopf branches ');
plot(nsbr1_pm (1,:), nsbr1_pm (2,:), 'Color',cm(2,:) ,...

'DisplayName ','Neimark -Sacker branches ');
plot(nsbr2_pm (1,:), nsbr2_pm (2,:), 'Color',cm(2,:) ,...

'HandleVisibility ','off');
plot(nsbr3_pm (1,:), nsbr3_pm (2,:), 'Color',cm(2,:) ,...

'HandleVisibility ','off');
plot(lpc_br1_pm (1,:),lpc_br1_pm (2,:),'Color',cm(3,:) ,...

'DisplayName ','Generalized Hopf');
plot(lpc_br2_pm (1,:),lpc_br2_pm (2,:),'Color',cm(3,:) ,...

'HandleVisibility ','off');
% Add bifurcation points
plot(hoho.parameter(ind.zeta), hoho.parameter(ind.tau) ,...

'k.','MarkerSize ',8,'DisplayName ','Hopf Hopf point')
plot(hoho2.parameter(ind.zeta),hoho2.parameter(ind.tau) ,...

'k.','MarkerSize ',8,'HandleVisibility ','off')
plot(genhpts (1).parameter(ind.zeta) ,...

genhpts (1).parameter(ind.tau),'b.','MarkerSize ' ,8,...
'DisplayName ','Generelized Hopf point ')

plot(genhpts (2).parameter(ind.zeta) ,...
genhpts (2).parameter(ind.tau),'b.','MarkerSize ' ,8,...
'HandleVisibility ','off')

plot(genhpts (3).parameter(ind.zeta),
genhpts (3).parameter(ind.tau),'b.','MarkerSize ' ,8,...
'HandleVisibility ','off')

title('Bifurcation diagram in (\zeta ,\tau)')
xlabel('$\zeta$','Interpreter ','LaTex')
ylabel('$\tau$','Interpreter ','LaTex')
axis ([ -0.3 0.4 5 16])
legend ()

Figure S12 shows the resulting bifurcation diagram. There, we see that two generalized Hopf points
are connected by the same limit point of cycles bifurcation curve.

S3.11 Simulation near Hopf-Hopf point with pydelay

In this last Section, we simulate the dynamics near the manually constructed Hopf-Hopf point at pa-
rameter values (109). As remarked before, the unfolding of the Hopf-Hopf point hoho is of ‘difficult’
type case VI. The normal form coefficients predict a stable invariant two-dimensional torus. Further-
more, this torus undergoes a bifurcation in which a three-dimensional torus is born. Since the DDE
under investigation (108) does not contain any terms of order higher than three, the results for the
normal form remain valid for the system. To confirm the unfolding in Figure 3, we fix the delay
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Figure S12: Unfolding from multiple codimension two points detected in the DDE (S4).

τ = 5.901783308978358 and take for ζ consecutive the values

ζ1 = −0.015485728828307,

ζ2 = ζ1 − 0.0002,

ζ3 = ζ1 − 0.0004,

ζ4 = ζ1 − 0.000445,

ζ5 = ζ1 − 0.0004496,

see Figure S13a. The cross-sections in Figures S13b and S14d are generated with the following Python
code using pydelay, see also the file acs_simulation.py

import numpy as np
import pylab as pl
from pydelay import dde23
from matplotlib import colors

# Number of time units
tfinal = 90000

# Define DDE
eqns = {

'x':'tau*y',
'y':'tau*(-x-0.1*x(t-1)-2* zeta*y' \

' -0.52*y(t -1)+0.1* pow(x(t-1) ,3))'
}

# Set parameters
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Figure S13: In (a), the points (ζi, τ) for i = 1, . . . , 5 of the parameter values where the simulation is
performed are plotted. Note that ζ4 and ζ5 are almost indistinguishable. In (b), the Poincaré section of
the simulation using pydelay at the parameters (ζ2, τ) = (−0.015685728828307, 5.901783308978358)
shows a stable periodic orbit.

tau =5.901783308978358
zeta1 = -0.015485728828307 # periodic orbit
zeta2=zeta1 -0.0002 # torus
zeta3=zeta1 -0.0004 # torus near bifurcation to 3d torus
zeta4=zeta1 -0.000445 # 3d torus
zeta5=zeta1 -0.0004496 # 3d torus near destruction

# Solve DDE
dde = dde23(eqns=eqns , params ={'zeta':zeta2 , 'tau':tau})
dde.set_sim_params(tfinal=tfinal , dtmax =0.1, AbsTol =1e-08,

RelTol =1e-06)
histfunc = {'x': lambda t: 0.01, 'y': lambda t: 0 }
dde.hist_from_funcs(histfunc , 51)
dde.run()

# Subtract solution components
a1=1;
dt=1e-04
sol = dde.sample(tfinal -tfinal /10, tfinal , dt)
soldelayed = dde.sample(tfinal -tfinal /10-a1 , tfinal -a1, dt)
t = sol['t']
x = sol['x']
y = sol['y']
xdelayed = soldelayed['x']
zero_crossings = np.where(np.diff(np.sign(xdelayed )))[0]

# Scatter plot
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x_cros=x[zero_crossings]
y_cros=y[zero_crossings]
params = {

'figure.figsize ': (15, 15),
'axes.labelsize ': 'x-large ',
'xtick.labelsize ':'x-large ',
'ytick.labelsize ':'x-large '

}
pl.rcParams.update(params)
fig = pl.figure ()
pl.figure (1)
pl.scatter(x_cros ,y_cros ,s=0.8, color='royalblue ')
pl.xlabel('$x$')
pl.ylabel('$y$')
pl.show()

In Figure S13b there are two dots, corresponding to a stable period orbit. Crossing the curve
ns1_br, a stable two-dimensional torus branches off, see Figure S14a. The torus still exists at ζ = ζ3,
as seen in Figure S14b. Then, at ζ = ζ4, only slightly smaller than ζ3, a three-dimensional torus is
observed, see Figure S14c. Lastly, Figure S14d shows the three-dimensional torus near the curve where
the torus blows up.

S4 Transcritical-Hopf bifurcation in Van der Pol’s oscillator with
delayed position and velocity feedback

Consider the generalized van der Pol’s oscillator with delayed feedback
ẋ(t) = (τ0 + µ2) y(t),

ẏ(t) = (τ0 + µ2)
[
− x(t)− ε(x2(t)− 1)y(t) + (1 + µ1)x(t− τ)− 0.2y(t− 1)

− 0.2x2(t− 1)− 0.2x(t− τ)y(t− 1)− 0.2y2(t− 1) + 0.5x3(t− 1)
]
,

(S5)

see Section 8.4 and [3]. The parameter ε = 0.3 is fixed. For τ0 ≈ 1.757290761249588 a transcritical-Hopf
bifurcation is located at (µ1, µ2) = (0, 0).
Remark 26. This demonstration can be found in the directory demos/tutorial/VII/vdpo relative to the
main directory of the DDE-BifTool package. Here, we omit the code to generate a system file. The
system file sym_vdpo_mf.m has been generated with the script gen_sym_vdpo.m. Also, we assume that the
DDE-BifTool package has been loaded as in Listing S1. The code in Sections S4.1 to S4.8 highlights
the important parts of the file vdpo.m.

S4.1 Set parameter names and funcs structure
We set the parameter names and define the funcs structure.

%% Set parameter names
parnames ={'mu1','mu2','tau'};
cind=[ parnames;num2cell (1: length(parnames))];
ind=struct(cind {:});
%% Set funcs structure
% We load the precalculated multilinear forms. These have been
% generated with the file gen_sym_vdpo.m.
funcs=set_symfuncs(@sym_vdpo_mf ,'sys_tau ',@()ind.tau);
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S4.2 Stability and normal form coefficients of the transcritical-Hopf point
We construct a steady-state at the transcritical-Hopf point and calculate its stability.

%% Construct transcritical -Hopf bifucation point
stst=dde_stst_create('x' ,[0;0],'parameter ' ,[0 0 1]);
% Calculate stability
method=df_mthod(funcs ,'stst');
stst.stability=p_stabil(funcs ,stst ,method.stability);
stst.stability.l1

The MATLAB console shows the following output.

ans =

0.0000 + 0.0000i
-0.0000 + 2.4539i
-0.0000 - 2.4539i

We have a zero eigenvalue and a pair of purely imaginary eigenvalues. Furthermore, the remaining
eigenvalues have negative real parts. Next, we calculate the normal form coefficients and the transfor-
mation to the center manifold with the function nmfm_zeho, which implements the coefficients as derived
in Sections 6.2 and 6.4. For this we need to set the argument free_pars to the unfolding parameter
(µ1, µ2). These coefficients will be used to start the continuation of the various branches emanating
from the transcritical-Hopf point.

%% Coefficients of the parameter dependent normal form
ht=p_tohopf(funcs ,stst);
ht=p_tozeho(ht);
unfolding_pars =[ind.mu1 , ind.mu2];
ht=nmfm_zeho(funcs ,ht,'transcritical ',1,'free_pars ',unfolding_pars);
ht.nmfm

The MATLAB console shows the following output.

ans =

struct with fields:

g200: 0.2121
g110: -0.1337 + 0.2672i
g011: 0.4241
g300: 0.4935
g111: 1.0243
g210: -0.8178 - 0.4283i
g021: -0.3302 - 0.1646i

b: 0.2121
c: 0.4241
d: -0.1337 - 5.4430i
e: -0.2435
s: 0.0899

theta: -0.6303
transcritical: 1

h200: [1x1 struct]
h011: [1x1 struct]
h020: [1x1 struct]
h110: [1x1 struct]

K: [2x2 double]
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omega1: 0.4644
omega2: 1.2768

The normal form coefficients are such that

g011 Re(g110) = 0.4241 Re(−0.1337 + 0.2672i) < 0.

Therefore, there are two Neimark-Sacker bifurcation curves predicted, see Section 5.4.

S4.3 Set bifurcation parameter range and step size bounds
Before continuing the various branches emanating from the transcritical-Hopf point, we create the
variable brpars containing parameter bounds and maximal stepsizes.

%% Set bifurcation parameter range and step size bounds
brpars ={'max_bound ',[ind.mu1 0.0139; ind.mu2 0.0094] ,...

'min_bound ',[ind.mu1 -0.0190; ind.mu2 -0.0069 ],...
'max_step ' ,[ind.mu1 1.0e-02; ind.mu2 1.0e -02]};

S4.4 Continuing Hopf, transcritical and Neimark-Sacker bifurcation curves
We use the function C1branch_from_C2point to continue the various branches emanating from the sin-
gularity.

%% Continue Neimark -Sacker curves emanating from
% the transcritical -Hopf point
[trfuncs ,nsbr ,suc]= C1branch_from_C2point(funcs ,ht ,unfolding_pars ,...

'codim2 ','zeho','codim1 ','TorusBifurcation ' ,...
'step',1e-04,'plot',0,brpars {:});

assert(all(suc(:) >0))
ntrsteps =27; [nsbr (1),suc]= br_contn(trfuncs ,nsbr (1),ntrsteps);
assert(suc >0)
ntrsteps =30; [nsbr (2),suc]= br_contn(trfuncs ,nsbr (2),ntrsteps);
assert(suc >0)
%% Continue Hopf curves emanating from fold -Hopf point
[~,hbr ,suc]= C1branch_from_C2point(funcs ,ht,unfolding_pars ,...

'codim2 ','zeho','codim1 ','hopf',brpars {:},'step',1e-05,'plot' ,0);
assert(all(suc(:) >0))
for i=2: -1:1
nop =1000; hbr(i)=br_contn(funcs ,hbr(i),nop);
hbr(i)=br_rvers(hbr(i));
hbr(i)=br_contn(funcs ,hbr(i),nop);
end
%% Continue transcritical curve emanating from fold -Hopf point
[~,tcbr]= C1branch_from_C2point(funcs ,ht ,unfolding_pars ,...

'codim2 ','zeho','codim1 ','fold',brpars {1:4} ,....
'step',linspace (-8.0e-03 ,8.0e-03 ,10),'plot' ,0);

S4.5 Detect special points on the Hopf branches
We continue with detecting bifurcations on the Hopf branches. The Hopf points on the branch
hbr_wbifs(i)(i = 1, 2) will contain the normal form coefficients L1 and L2. These will be used to
visualize the criticality of the Hopf points (sub or super) in the bifurcation diagram.
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%% Detect special points on the Hopf branches
for i=2: -1:1

[hbr_wbifs(i),hopftests(i),hc2_indices ,hc2_types ]=...
LocateSpecialPoints(funcs ,hbr(i));
al{i}= arrayfun(@(x)x.parameter(ind.mu1),hbr_wbifs(i).point);
figure(i); clf;
plot(al{i},hopftests(i).zeho (1,:),'.-',al{i},zeros(size(al{i})));
xlabel('$\mu_1$','Interpreter ','LaTex');
ylabel('First Lyapunov coefficient (L1)')
title('Criticality along Hopf bifurcation curve')

end

S4.6 Predictors
For comparison in the bifurcation diagram we obtain predictors for the various branches by setting the
argument predictor to 1 and step to a range of ε-values when calling the function C1branch_from_C2point.

%% Predictors for Neimark -Sacker , Hopf and transcritical curves
[trfuncs ,nsbr_pred ]= C1branch_from_C2point(funcs ,ht ,...

unfolding_pars ,'codim2 ','zeho','codim1 ','TorusBifurcation ' ,...
'step',linspace (1e-05,4e-02 ,20),'predictor ',true);

[~,tcbr_pred ]= C1branch_from_C2point(funcs ,ht,unfolding_pars ,...
'codim2 ','zeho','codim1 ','fold' ,...
'step',linspace (-8.0e-03 ,8.0e-03 ,10),'predictor ',true);

[~, hbrsub_pred ]= C1branch_from_C2point(funcs ,ht,unfolding_pars ,...
'codim2 ','zeho','codim1 ','hopf',brpars {:} ,...
'step',linspace(-1e-01 ,0,40),'predictor ' ,1);

[~, hbrsup_pred ]= C1branch_from_C2point(funcs ,ht,unfolding_pars ,...
'codim2 ','zeho','codim1 ','hopf',brpars {:} ,...
'step',linspace (0,1e-01 ,40),'predictor ' ,1);

% Correct super - and subcritical hopf branches for the first curve
tempbr=hbrsub_pred (1);
hbrsub_pred (1)=hbrsuper_pred (1);
hbrsuper_pred (1)=tempbr;

S4.7 Bifurcation diagram
We plot the obtained curves and the predictors for the Neimark-Sacker, Hopf, and transcritical curves
with the following code.

%% Plot comparing computed and predicted curves
figure (4); clf; hold on;
plot(ht.parameter(ind.mu1),ht.parameter(ind.mu2),'k.'...

,'MarkerSize ' ,12)
tcbr_pm_pred = [getpars(tcbr_pred ,ind.mu1); ...

getpars(tcbr_pred ,ind.mu2)];
plot(tcbr_pm_pred (1,:),tcbr_pm_pred (2,:),'.','Color',cm(5,:));
plot(tcbr_pm (1,:),tcbr_pm (2,:),'Color',cm(5,:));
for i=2: -1:1

nsbr_pm_pred{i} = [getpars(nsbr_pred(i),ind.mu1); ...
getpars(nsbr_pred(i),ind.mu2)];

hbrsub_pm_pred{i} = [getpars(hbrsub_pred(i),ind.mu1); ...
getpars(hbrsub_pred(i),ind.mu2)];
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hbrsup_pm_pred{i} = [getpars(hbrsup_pred(i),ind.mu1); ...
getpars(hbrsup_pred(i),ind.mu2)];

plot(nsbr_pm_pred{i}(1 ,:),nsbr_pm_pred{i}(2 ,:) ,...
'.','Color',cm(3,:));

plot(hbrsub_pm_pred{i}(1 ,:),hbrsub_pm_pred{i}(2 ,:) ,....
'.','Color',cm(2,:));

plot(hbrsup_pm_pred{i}(1 ,:),hbrsup_pm_pred{i}(2 ,:) ,...
'.','Color',cm(1,:));

plot(nsbr_pm{i}(1,:),nsbr_pm{i}(2,:),'Color',cm(3,:));
plot(hbrsup_pm{i}(1 ,:),hbrsup_pm{i}(2,:),'Color',cm(2,:));
plot(hbrsub_pm{i}(1 ,:),hbrsub_pm{i}(2,:),'Color',cm(1,:));

end
legend ({'transcritical Hopf','transcritical predictor ' ,...
'transcritical curve ','Neimark -Sacker predictor ' ,...
'subcritical Hopf predictor ','supercritical Hopf predictor ' ,...
'Neimark -Sacker branch ','subcritical Hopf branch ' ,...
'superscritical Hopf branch '})
title('Neimark -Sacker curve emanating from the transcrical -Hopf point ')
axis ([ -0.0190 0.0139 -0.0069 0.0094])
xlabel('$\mu_1$','Interpreter ','LaTex')
ylabel('$\mu_2$','Interpreter ','LaTex')
text ( -0.0129 ,0.0038 ,'I'); text ( -0.0093 ,0.007 ,'II');
text (0.008 , -0.0052 ,'III'); text (0.0115 , -0.003 ,'IV');
legend('Location ','NorthWest '); box on
% Reverse the stacking order of the graphics
chi=get(gca ,'Children '); set(gca ,'Children ',flipud(chi));

Figure S15 shows the resulting bifurcation diagram.

S4.8 Plot comparing computed and predicted periodic orbits
Lastly, we create a plot to compare the computed and predicted periodic orbits.

%% Plot comparing computed and predicted periodic orbits
figure (5); clf; hold on;
genpars=@(br,i)ones(2,length (...

br.point (1).profile (1,:))).*br.point(i).parameter(ind.mu1);
for i=1:23

plot3(genpars(nsbr (1),i),nsbr (1).point(i).profile (1,:) ,...
nsbr (1).point(i).profile (2,:),'Color',cm(1,:));

end
for i=1:12

plot3(genpars(nsbr_pred (1),i) ,...
nsbr_pred (1).point(i).profile (1,:) ,...
nsbr_pred (1).point(i).profile (2,:),'Color',cm(2,:));

end
for i=1:20

plot3(genpars(nsbr (2),i),nsbr (2).point(i).profile (1,:) ,...
nsbr (2).point(i).profile (2,:),'Color',cm(1,:));

end
for i=1:12

plot3(genpars(nsbr_pred (2),i) ,...
nsbr_pred (2).point(i).profile (1,:) ,...
nsbr_pred (2).point(i).profile (2,:),'Color',cm(2,:));

end
title('Comparison between computed and predicted periodic orbits ')
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xlabel('\mu_1'); ylabel('x'); zlabel('y');
view (3)

The resulting plot is show in Figure S16.

S4.9 Simulation near transcritical-Hopf point with pydelay

We simulate the dynamics in regions III and IV of Figure S15. Since the critical normal form coefficients
are such that

s = 1, θ < 0, e < 0,

a stable cycle and stable torus should be present. The simulation in regions I and II have also been
carried out, but have been omitted here. The following code can be found in the file vdpo_simulation.py.

import numpy as np
import pylab as pl
from pydelay import dde23
from matplotlib import colors

# Number of time units
tfinal = 30000

# Define DDE
eqns = {

'x' : '(tau0+mu2)*y',
'y' : '(tau0+mu2 )*((1+ mu1)*x(t-tau)-0.2*y(t-tau)'

' -0.2*pow(x(t-tau),2)'
' -0.2*x(t-tau)*y(t-tau )-0.2*pow(y(t-tau),2)'
'-epsilon *(pow(x,2) -1)*y-x+0.5* pow(x,3))'

}

# Set parameters
# Period cycle
tau0 =1.757290761249588
params1 = {

'mu1':0.0049 ,
'mu2':-0.0031,
'tau0':tau0 ,
'epsilon ':0.3,
'tau':1

}aH
/tru
# Torus
params2 = {

'mu1': -0.006871405962603 ,
'mu2':0.003871232826592+0.00001 ,
'tau0':1.757290761249588 ,
'epsilon ':0.3,
'tau':1

}

# Solve DDE
dde = dde23(eqns=eqns , params=params1)
dde.set_sim_params(tfinal=tfinal , dtmax =0.1, AbsTol =1e-8, RelTol =1e-6)
histfunc = {'x': lambda t: 0, 'y': lambda t: -0.2 }
dde.hist_from_funcs(histfunc , 51)
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dde.run()

# Subtract solution components
M=600
sol1 = dde.sample(tfinal -M, tfinal , 0.1)
t = sol1['t']
x = sol1['x']
y = sol1['y']

# Plot the solution in phase -space
pl.plot(x, y)
pl.show()

# Plot the solution in phase -space
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
# Substract delayed solution component
soltau = dde.sample(tfinal -M-tau0 ,tfinal -tau0 , 0.1)
xtau = soltau['y']

# Poincaré section
def poincaresection(x, xtau , y, x_label , y_label , val):

zero_cross = np.where(np.diff(np.sign(xtau -val )))
plt.figure (1)
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.plot(x[zero_cross], y[zero_cross],'.', c='royalblue ')
plt.show()
return

x_label='$x(t)$'
y_label='$x(t-\tau)$'
poincaresection(x,xtau ,y,x_label ,y_label , -0.009)
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Figure S14: Simulation with pydelay illustrating the branching of a three-dimensional torus from a
two-dimensional torus. We refer to the text for further description.
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Figure S15: Bifurcation diagram near the transcritical-Hopf bifurcation in the delayed Van der Pol’s
oscillator given by (113). There are two supercritical Hopf curves (blue), two subcritical Hopf curves
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Figure S17: In (a) and (b), the periodic solution is shown to be present for parameter values in region
III of Figure S15. In (c), the torus present in IV of Figure S15 is shown. In (d), a cross-section of the
torus with y(t) = −0.009 in the phase-space (x, x(t− τ0), y) is taken.
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