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Controlled Singular Volterra Integral Equations
and Pontryagin Maximum Principle *

Ping Lin' and Jiongmin Yong *

Abstract. This paper is concerned with a class of controlled singular Volterra integral equations, which
could be used to describe problems involving memories. The well-known fractional order ordinary differential
equations of the Riemann-Liouville or Caputo types are strictly special cases of the equations studied in
this paper. Well-posedness and some regularity results in proper spaces are established for such kind of
questions. For the associated optimal control problem, by using a Liapounoff’s type theorem and the spike
variation technique, we establish a Pontryagin’s type maximum principle for optimal controls. Different
from the existing literature, our method enables us to deal with the problem without assuming regularity
conditions on the controls, the convexity condition on the control domain, and some additional unnecessary
conditions on the nonlinear terms of the integral equation and the cost functional.
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1 Introduction.

In this paper, we consider the following controlled Volterra integral equation:

(1.1) y(t) = n(t) +/O ft, s, y(s),u(s))ds, te[0,T].

We call the above the state equation, where n(-) and f(-,-,-,-) are given maps, called the free term and the
generator of the state equation, respectively, y(-) is called the state trajectory taking values in the Euclidean
space R™, and u(-) is called the control taking values in some separable metric space U. To measure the
performance of the control, we introduce the cost functional

(1.2 Tu) = [ oty u®)at + 31 0(0,),

with the two terms on the right hand representing the running cost and the specific instant costs (at 0 <
t <t < -+ <ty <T), respectively.

Equations like (1.1) can be used to describe some dynamics involving memories. In the classical situations
of optimal control for Volterra integral equations, people usually assume that the map f(-,-,-,-) is continu-
ous, together with some further smoothness/differentiability conditions. Relevant works can be traced back
to those by Vinokurov in the later 1960s [45], followed by the works of Angell [4], Kamien-Muller [27],
Medhin [33], Carlson [15], Burnap-Kazemi [12], and some recent works by de la Vega [19], Belbas [6, 7], and
Bonnans—de la Vega—Dupuis [9]. On the other hand, in the past several decades, fractional differential equa-
tions have attracted quite a few researchers’ attention due to some very interesting applications in physics,
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chemistry, engineering, population dynamics, finance and other sciences; See Oldham—Spanier [37] for some
early examples of diffusion processes, Torvik—Bagley [44], Caputo [13], and Caputo—Mainardi [14] for mod-
eling of the mechanical properties of materials, Benson [8] for the advection and the dispersion of solutes in
natural porous or fractured media, Chern [16], Diethelm—Freed [22] for the modeling behavior of viscoelastic
and viscoplastic materials under external influences, Scalas—Gorenflo-Mainardi [41] for the mathematical
models in finance, Das-Gupta [18], Demirci-Unal-Ozalp [20], Arafa-Rida-Khalil [5], Diethelm [21] for some
population and epidemic models, and Metzler et al. [34] for the relaxation in filled polymer networks. An
extensive survey on fractional differential equations can be found in the book by Kilbas—Srivastava—Trujillo
[31]. In the recent years, optimal control problems have been studied for fractional differential equations by
a number of authors. We mention the works of Agrawal [1, 2], Agrawal-Defterli-Baleanu [3], Bourdin [11],
Frederico-Torres [23], Hasan-Tangpong—Agrawal [25] and Kamocki [28, 29].

The most popular fractional differential equations are those in the sense of Riemann—Liouville or in the
sense of Caputo (See Section 3 for some details). It turns out that these equations (of the order no more
than 1, for scalar functions) are equivalent to Volterra integral equations with the generator being singular
along s = t, and the free term 7(-) being possibly discontinuous (blowing up) at ¢ = 0. More precisely, the
corresponding controlled state equation of form (1.1) could have the feature that

(13) nt) = g (ore),  flts,yu) = ({<+u> 0<s<t<T, Vyu)
for some map f( ,+,+) and constants a € (0,1), ¢ € R. Such kind of singularity makes the optimal control

problems for fractional differential equations different from the classical optimal control problems for Volterra
integral equations as in the above-mentioned literature.

The purpose of this paper is to study an optimal control problem with the state equation (1.1) allowing
(t,8) — f(t,s,y,u) to have some singularity along t = s and allowing the free term 7(-) to be (unboundedly)
discontinuous. We point out that our state equation (1.1) could cover a much wider class of dynamic systems
with various type memories than the ones described by fractional differential equations (with the conditions
like (1.3)). Let us make a little more comments on our state equation. Since the free term 7(-) is allowed
to have some singularities, a natural class for n(-) should be L? functions. Then we expect, under suitable
conditions, the state trajectory y(-) will also be a function in the same class. On the other hand, in the
cost functional, we need y(t;) to be defined. Therefore, we need to have certain continuity of the state
trajectory. Then it is necessary to narrow the LP space by adding certain continuity. This will lead to
some difficulties in establishing the well-posedness of the state equation in the correct class of functions
that the state trajectories will belong to. To overcome the difficulty, we introduce certain weighted function
spaces, and extend some classical results, such as Gronwall’s inequality, etc. to the form that will make our
procedure works.

The rest of the paper is organized as follows. In Section 2, necessary preliminaries will be presented. Some
results are interesting by themselves. Well-posedness of the state equation, together with the continuity of
the solutions, will be established in Section 3. Section 4 is devoted to a proof of Pontryagin’s type maximum
principle for our optimal control problem of singular integral equations. As a special case, the maximum
principles for fractional differential equations in the sense of Riemann—Liouville, and Caputo, will be briefly
described. Some concluding remarks will be collected in Section 5.

2 Preliminary

In this section, we will present some preliminary results which will be useful later. First of all, let T" > 0 be
a fixed time horizon. We introduce the following spaces:

T 1
LP(0,T;R") = {<P5 [0, 7] - R" ‘ Hcp(.)”Lp(O,T;Rn) = (/ |<p(t)|Pdt) P < oo}, 1<p<oo,
0
L0, T;R") = {ip: [0, 7] = R | lp()l| < 0.753) = esssup ()] < oo},
te[0,7)

C([0, T);R") = {(p [0,T] = R™ | () is continuous}.
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We denote
lellp = leCllze ey, — Vo() € LP(0,T;R"),  pe[l,00],

leGlle = e o)) = lle(lloe, Vo) € C([0, T R™).

Also, we define
LP*(0,T;R™) = U L0, T;R™), p € [1,00),
q>p
LP=(0,T;R™) = () LU0, T;R™),  pe (1,00).
q<p

Next, for any continuous function w : [0,7] — [0, 00), called a weight function, we define
12,0, 58" = {o: [0.7] > B [ w()e() € PO, TsRM ), pe[L,00),
Cuy ([0, TR = {9+ 10,T] - R* | w(-)eo(-) € C(0, TR }.

Clearly, if meas{t € [0,T] ‘ w(t) = 0} = 0, then L?
spaces, under the following norms, respectively:

(_)(O,T;R”) and C, ([0, T];R™) are normed linear

leOlice = lwGeOllp,  leGlow, = lw)el)le-

Note that for any ¢(-) € Cyy([0,T];R™), ¢(-) is continuous on the set {t € [0,T] | w(t) > 0}. If w(s) =
|s — so|” for some s € [0,7] and v > 0, then

) _ ¢ a, (0,71 R,

| - —s0[®

for any o < 7, a(-) € C([0,T];R™). From the above, we should have some feeling about the space

We denote
(2.1) A={(ts) e€0,TP|0<s<t<T}.

Note that the “diagonal line” {(¢,t) |t € [0,T]} is not contained in A. Thusif ¢ : A — R™ with (¢, s) — ¢(t, 5)
being continuous, then ¢(-) could be unbounded as |t — s| — 0.

Before going further, let us first recall the Young’s inequality for convolution (Theorem 3.9.4 in [10]).

Lemma 2.1. Let p,q,r > 1 satisfy

Then for any f(-) € LP(R™), g(-) € LY(R"),

(2.2) 1+ gllr < U fllpllgllq-

We now present several results. Some of them should be standard. However, we will provide the proofs
for readers’ convenience.

Lemma 2.2. Let 8 € (0,1) and ¢ : A — R"™. Define

t
o(t, 5)
2. = —_— T].
(23) v = [ Rdsas ot
(i) Suppose for some p € [1,00),
T
(2.4) / sup |p(t,s)[Pds < oc.
0 tels,T)



Then

5, [T o \7
(25) 60l < 5 ([ s tettpas)”

(il) Suppose, in addition, t — ¢(t, s) satisfies the following
(2.6) lo(t,s) — ot s)| < w(|t —t']), Vi, t' € [to — o, to + 0], s €[0,t AL,
for some modulus of continuity w : [0,00) — [0, 00), and for some q > %, o >0, with (to —o,to +0) C [0,T],
the following holds:
to+o
(2.7) / sup  [o(t, 8)|%ds < 0.
to—o t€[s,to+0o]

Then v (-) is contjnuous at to. Consequently, if t — ©(t, s) is continuous uniformly in s € [0,7T] and (2.4)
holds for some p > 7, then t + 1(t) is continuous on [0, T].

Proof. (i) Let

?(s) = sup |p(t, )], s €10,T].
te(s,T)

Then @(-) € L? (0 T;R). Hence, (2.5) follows from Young’s inequality for convolution.
(i) Let ¢ > 3 L which is equivalent to x = (1 — Bz <1 and let

(s)=sup |o(t,s),  s€[0,to+o0]
te(s,to+o]

)

For any tg — & <t <t' <to+ Z with m > 2 large enough, we look at the following:

I ( |_‘/ e ds _/t Ld ‘
t— s) o (t'—s)
t—Z ! t t’ /
™| _e(t, ) (', 5) ‘ / lo(t, )l / lo(t', 5)|
< - d —————d —————d
/o D ANCESE Y SRS EA SRS

i i 1 = Jplt,s) — it 5)
<f el - gmgm)e [ e
-0

t ~ t —~
?(s) P(s
d d
. )7 ”/t;; )
= %l —w ds
< o 1-8 (‘0(5) / /
(t'—1) o (t— ) Bt/ — )P ds +w([t —t']) . (t' —s)1—P

m

t g—1 t g—1
. dS q ~ dS q
+|\%0<'>|\Lq<tf%ﬂt;w>(/t T ”“"<'>”“<t*%*’f“w>(/t  T—oF)

(t 1)~ T s (), (=t )
< R0 I llt=#1) 5+ 180 zaeor oy | (557) "+ () T )
Hence, for any € > 0, we first take m > 1 sufficiently large so that
] (2)' 7\ o)y e
Ol smsoan [() ™ + (GL7) %) <.

Then let § € (0,0) be small enough so that

51 Tﬁ e
s 1P0)h +w(5)7 <3

(%)



Combining the above, we see that ¢(-) is continuous at to. The last conclusion follows easily from what we
just proved. O

The above lemma show that for any p € [1,00), under condition (2.4), one has ¥(-) € LP(0,T;R").
To guarantee the continuity of () at to € (0,T], we need to assume the continuity of ¢ — ¢(t,s) for
t € [to — o,to + o], uniformly in s € [0,¢), together with L? integrability of s —  sup |¢(t,s)| for ¢ > %

te(s,to+o]
The following example shows that continuity of ¢(-) might fail 3(-) does not have a good enough integrability.

Example 2.3. Let

_ 1 1
(ID(t,S):QD(S): 5 9 ﬁ:_a
|s — s1]% 2
with s1 € (0,7). Then @(-) € L0, T;R) with ¢ < £ < 2= 5. Note that

B t o(t, s) B ¢ ds
¢(t)—/0 (tfs)lfﬁds_/o |S—S1|%(t—s)%’ t=>0.

By Young’s inequality, we know that the above ¢(-) € LP(0,T;R) for some p > 1. Also, one sees that

51 ds
lim (¢ :/ .
thlw() 0 |S*Sl|%

Thus, ¥(-) is discontinuous at s;.

It is natural to ask if we relax the L?-integrability of ¢(-), what can we say about the continuity of ¢ (-)
defined by (2.3)?7 Let us make it more precise now. Let a;, 3 € (0,1),0 < i< land 0 < s9g <81 < -+ <
s¢ < T. Define

4
(2.8) w(s)=[[ls—sl'",  selo,T].
1=0

Let ¢ : A — R™ and define

t ~

- o(t, s)
2. = —_ 7.
(29) 00 = [ oot ds e
Comparing the above with (2.3), we see that ¢(-) would be the same as t(-) provided

o(t, s)

2.1 = A.
(210) ot =22 e

We have the following result.

Lemma 2.4. Let oy, 5 € (0,1),0 < i < ¢, and w(-) be defined by (2.8) with 0 < 5o < 81 < --- < 8 < T.
Let ¢ : A — R"™ satisfy

(211) |§5(t7 S) o @(tlv S)| < w(|t - tl|)a V(t, S)a (t/a 5) € A,

for some modulus of continuity w : [0, 00) — [0,00), and

T
(2.12) max_|@(t,s)]?ds < oo,
0 te(s,T]
with some
(2.13) >1\/1 0K </
. -V — ) .
q ﬂ Oéi, Xt x



Define ’LZ() by (2.9). Then

‘
(2.14) D) € L3 (0, TR () ( N C((si-r, si);R")),
i=1
where
¢ 1 +
(2.15) w(s) = [[ s — s a7
Consequently, for any € > 0,
(2.16) B) € Cae (0. THRY),
where
‘ ) .
(2.17) e (s) = H s — Si|(1+37m*ﬁ) +e
i=0
Further, if
1
(2.18) a;+8>1+—,
q
then v (-) is continuous at s;. Consequently, if
. 1
(2.19) IélilgéaiﬁLﬂ > 1+§,
then (-) € C([0,T}; R™).
Proof. Denote
?s) = max |2t 5)l, s €[0,T]
Define
wz(s):H|s—sJ|1_o‘f, s€[0,T], 0<i<{,
J#i
and
. Si+1 — Si _ Si + Si+1 .

: = s =2 T <i<l—1.
(2.20) 0o O<rln<1§11 5 > 0, S; 5 , 0<ig<i—-1
Then
(2.21) S; + 60 < 5; < Si41 — 0o, 1=0,1,---,¢0—1.

We establish some estimates for 1;() on some time intervals, more precisely, on [0, so), (s, S0], (0, Sol, [S0, s1),
(s1,51], [51, $2). Then induction will apply.

(i) For t € [0, s0), one has

Pt s) p(s)
|7’/ wo (s So_f; a:(t—s K/ 80—810‘0(75—5)1 7%
< K(/O P(s )qu)" (/O (50— 20" ao)qil(tis)(l B)H)

<K(/O ()qu)g( 7t)a0+5—2(/0 (1+ﬁ)(1_a0;§i( EEoE )T

so—t
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Here and throughout the paper, K is a positive constant, which may be different when appears at different

places. Now, we let 7 = stof_st. Then s =t — (sp — t)7, ds = (t — s9)d7, and

q—1

~ t 3 1 ﬁ dr g
07\ (e _ paotB-1-1 a
501 < K( [ o) 01 ([ )

1 g—1 S0 q—1
K 1 dr so—t dr =
= —t a0+5_1_5 |:< ) q ( ) q :|
< K(so—1) , o) YT\ Teeen

, [1-(2-a0—B) 747) 252
<t o ()

S0 —
1 1 o +B—1_% —1-1
< K(s0 — t)*tA=1=3% [1 n ( . ’ ] <K+ K(so— )™+ 717% [0, s0).
S0 —
Hence,
(2.22) (s0 — )10~ (1) < K, t € [0, 0).

(ii) For t € (so, 50], one has

[)(t)] < /O —w(s)(f(S)s)lﬁ ds + / —w(s)((tp(S)s)lﬁ ds=1, + L.

For I, we have

I <K</s0 ds )q%l
1 X q q
0 (s0—s)17TT(t —5) AT
g—1

50 ds
o ao+B—2 !
< K(t 50) (/O (50 s)(l ao) 7y (1 + 50 S)(l Bt ) '

t—so

Now, we let 7 = 2222, Then s = so — (¢ — 50)7, ds = (so — t)dr, and

s0 _1
i—s dT a=2
< K(t — a“Jrﬁ*l*%( ’ ) ¢
L < (t 50) 0 T(l—ao)—qfl (1 + T)(I_B)_qgl

q 1

a=1 P -
<K<t—80>““”13[(/01 ) +(/1 T<d77ﬂ>—) '

) [1- (2*040*13)%]%}

< K t _ a0+ﬁ*1*% |: (
( SO) t* S0

ao+f—1—+
<K (t = so) 7 [ ( ) 0 } K+ K(t—s0)™7174, ¢ € (s0,50].

Now, we look at I, noting sg + dp < 59 < s1 — o,

/w t—Slﬂd /two()(s—so)g) ot —s)! =5

t ds ot
)
K(/ Pl ds) (/ (5 — s0) " a@ﬁ(t_s)(l—mq%l)
ds -t
_ ap+B-2 q
< K(t = s0) (/50 (M)(lfao)q%l(l _s— So)(l ﬁ)q%l) '

t—so t—so

Note that by (2.13), we have

q q
1-— 1 1-)——<1
( ao)q_1<, ( ﬂ)q_1<,



which are equivalent to the following:

q apq — 1 q Bq—1
= 1—-(1-f8)—— =
—1 g—1 > 0, ( ﬂ)

1—(1-ao) -1 g1

> 0.

Let 7= $=22. Then s = s9 + (t — s0)7, ds = (t — so)dr, and

1 q—1 B B _1
I, < K(t — 50)0404-5_1—% (/ — dr - ) R K(t — 3 )040+B 1——B<a0q 17 Bq 1) '
0o 71~ a1 (1 — 7-)17 q—1 qg—1 q—1

Here, (a,b) — B(a,b) is the Beta function. Hence,
(2:23) (t =)0 <K, b€ (s0,50]

(iii) For t € [So, 1), we have

d‘ ‘ ds| = 1, + 1.
‘/ tfs +/ tfs w(s)(t — )18 3+ 4

For I3, we have

O N
13\/0 w _ﬂd5+/so w(s)(t—s)l_ﬂd
@@) w0 o(s)
= ds—l—/SU ( . ds

o (s—sp)tma0

< K(/o p(s)tds )

=
o\
&
o~~~
w
o)
—|
=l @
|
Q
(=]
2
a
\|>n
o
N———
1
<

50 3 5 ds ot
+K p(s)'ds / v T
( 50 ) ( 50 (S - SO)(l @0) 771 (50 — S)(l Bt )
<K+ K(SO So)ag+ﬁ 2(/5 ds )%
o ()T (- =0

Let 7 = Zf" Then s = sg + (80 — s0)7, ds = (30 — so)dr, and

1 a—
1 d 7

Is < K + K (50 — s0)* P13 (/ A )
0o 77 et (1—7)17 -

—1 Bg—1
— K + K(50 — 50)%0*P~ 1__B<%7 By ) <K
qg—1  qg—1

For I, we have




Let 7 = (s1 — )T, ds = —(s1 — t)dr, and
dr at
< _ 0¢1+ﬂ 1— %( ) a
Iy < K(s1 ; (14 7)ot P
1 g—1 53;5? dr g-1
k([ ) ([
( 0 7_(1 B) 1 T(Q—al—ﬂ)q,—l
_ [1 (2-a1—f) 747 ] 4L
< K(sp — 1) a1+ﬂ 1— %[1+(S1 So) }
81 -t
1 0¢1+ﬂ_1_% 1
< K(s) — )+~ 1—6[1+( ) | < K(s—nm 775 de fso,m).
S1 —
Then we have
(2.24) (s1 =)~ P @) < K, t€ [50,80).

(iv) For t € (s1, 51, we have

~ . @(s) ! @(s) _
O =t / w(ot - sypds =1+ 1o
Note that 5o < s1 — dg,
O 5(s) e 5(s) )
& */ (s ><t—s>1 —5 / ()]s — so[i-a0(t — 518" +/so wn(3) (o1 — syt 5B

o(s) .
K/ |sfs()|1 s s ® +K/ R (S I p— T

<x( [ wora) [(f |SSO|?5‘“O%)Q

51 ds o
o a1 +pB-2 !
+(t —s1) (/60 (5= s)(l ar) (1+ 51 S)(l B) it ) }

t—sq

Let 7= $52. Then s = 51 — (¢ — s1)7, ds = —(t — 51)d7, and

51 ds o
<o e f )]
e R S A
s1—30 d q—1
o1 T o
<K[1+ t— s “1““*%(/ g 7 }
( ) 0 FA-a) gty (1 + 7—)(1—5)(,,—1

81 —35

1 s1=So
_ a1+ﬁ*17%( dr e dr )
<SK[1+(t—s) /O o=t o=

51 — go)[17(27a1*ﬁ)ﬁ]T:|
t— S1

g=1
q

< K{l +(t— Sl)aﬁrﬁ*l*% +(t— Sl)aﬁrﬁ*l*% (
K+ K(t—s)M 170,

Now, we look at Ig, noting s1 + dp < 51 < s2 — o,

- ORI 5(s) )
I = / w(E)(t— )BT = / () sl —s)iB

t 1 t ds g-1
< — q q q
\K(/s1 90(5) dS) /51 S—S )(1_041)(1%@75)(1—@%)
< K(t—s)* P~ 2 ds )‘1;—1
= : 51 (1 ar) 7 T(1-— S S1)(1 B) i '



LetT*

(t —s1)71, ds = (t — s1)dr, and

1 g—1 a—
1 d e 11 -1 -1\
I < K (1 —50) 613 (/ S ﬁLH) —K(t—s) A1 qB(O‘lq P )
0 7-17 q—1 (1 — 7‘)17 q—1 q— 1 q— 1
Hence,
(2.25) (t—s) a7 15| < K, te (sq,5]

(v) For t € [51, $2),

Wl < /0 w‘(s)(f_(j)s)l—ﬁds * / e - st / (s ><¢(S) pds =t 1s + o

s)(t—s t—s)t-

We look at the three terms one-by-one. Since §; > s1 + g, one has

ol 20) . 2(s)
17:/0 A < K(/o |s—80|lio<t—s>1—ﬂd”/so )

1 g—1 s 1 S g—1
i = ! 3 ! ds =
gK(/ )7ds / ) +K(/ B(s)7ds) (/ —) <K
0o |s— 50| (1- Oco)—1 5o 50 (51— 8)(17041);

Sy

~—

5 1 s .
—on(t — g)1-B dng(/ @(s)qu) ! (/ 7 (1_a1)qq_‘fs(§1 - s)<1—ﬂ>q+1) ;
< K(51 - 81)a1+ﬂ_2(/51 ds ) ;1.

For Ig, since (t — s) > (s1 — s), one has
S1 S1 - 51)
s—s (1—041)(13 S1 (1- B)
o (2 )t (2ime)

51 s
o[ st
s, Wi(s)(s —s1
51—s81

Let 7= 2=°L. Then s = s1 + (51 — s1)7, ds = (51 — s1)d, and

1
d q
I8 < K(gl - Sl)a1+ﬁ717% (/ 1 ajg—1 d 1— Ba=1 ) < K.
0 777 T (1—7) " a1

Finally, for Iy, one has

Io :/SIMQ(S)(S2 - S‘?ES)&Z = dng([@(s)qu)E (/31(52 - S)(1_a2)qLdf(t _ s)(l—B)q%1 ) =

S1

<K ta2+ﬂ—2 ' ds %
< K(s2 —t) ( (1+t5)(1 Ozz)ql(t s)(l B ) '

So—t So—t

Let 7 = . Then s =t — (so — t)7, ds = —(s2 — t)dr, and
+ _ =5y g—1
2(5) it ([ ar o
19:/—ds<m_t>2 o )
5 w(s)(t —s)t=F ( 0 (1+ T)(l_az)ﬁf(l_ﬂ)ﬁ
1 S2-81 g—1
ds st ds e
< _ a2+ﬁ*17%( o as 7) q
S Kls2 =) e A L=
< K(sy — )81 [1 n (82 — 5;)[142*0‘2*@%11‘%} <K + K(sy— )2 0-174.
S9 —
Hence,
(2.26) (s2 =) <K, te [51s).
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By induction, we can obtain the following:

1 gyt~
(SO - t)(1+q v=F) |7»/)(t)| < Ka te (05 50)7
(2.27) (t—s) TG0 <K, te(sim]l 0<i<i—1,
(Si—i-l — ﬁ)(1+%7ai+liﬁ)+|’$(t)| <K, te [gi,SH_l), 0<ig<l—1,
(

t—s) TG0 <K te (T,
Hence, for w(-), we have
o) <K, Ve [0, T]\ {s0, 51,7, 50}

Then (2.16) follows easily. On the other hand, if so = 0 and s; = T, then for any to € [0, T]\{so, s1, 82, - , S¢},
one can find a o > 0 such that for some i =0,1,2,--- ,£—1, [to — 0,t0 + 0] C (8, 8i+1). Then

/t0+0 ()B(ta S) ‘q
sup
to—o t€[s,to+o] w(s)

Hence, by the similar argument of Lemma 2.2, ’LZ() is continuous at any such a tg. If 0 < sg or sy < T, we

to+o
ds < K/ @(s)dds < 0.
to—o

can use the similar argument to show the continuity of ¢(-) at to € [0,T]\ {so, 51,82, , s¢}.

Finally, if (2.18) holds, then for o > 0 small enough, and for r < ¢, with 1+ % —; < % < B,

[ e[ ([ ) <

i—0 S;—0

since

1 1
1+-—a; < - <= (lfai)l<1.
q T

Thus, by the similar argument of Lemma 2.2, we have the continuity of 1;() at s;. The last conclusion is
clear. O

From the above, we see that if a; + 3 > 1 for all 0 < i < £ and
(2.28) () € LZF1T(0,T;R),  0<i<t,

then ’LZ() € C([0,T];R™). On the other hand, if a; + 8 < 1, and @(-) is essentially non-zero near s;, then
¥(+) will be blow-up near s;, and roughly it will grow no more than |t — si|ai+’6—1_%.
The following result is a kind of Gronwall’s inequality with a singular kernel.

Lemma 2.5. Let 8 € (0,1) and ¢ > % Let L(-),a(-),y(-) be nonnegative functions with

L(:) € LY0,T;R), a(), y(-) € L71(0,T;R).

Suppose
" L(s)y(s)
(2.29) y(t) < a(t) +/O mds, a.e. t € [0,T7].
Then
S, [ Ls)als) t
(2.30) y(t) < alt) + ; CZ/O mds + ck/o L(s)a(s)ds, a.e. t € (0,77,

for some constants ¢; > 0 and §; € (0,1) defined by
Bi:ﬁ‘i"i(ﬁ_é), 0<i<h-1,
with k being the smallest integer satisfying
B+ k(ﬂ - é) > 1.

11



Proof. First of all, since L(-) € L4(0,T;R) and y(-) € LY (0,T;R), ¢’ = 755, we know that L(-)y(-) €
LY(0,T;R). Hence, the integral on the right hand side of (2.29) is well-defined, as a function in L'(0,T;R).
Now, we observe the following:

* Ly(s) L) L [ L) [ L)
y(t) < alt) Jr/o = S)lfﬁds < al(t) Jr/o = 5)17ﬁd +/0 (= )P /0 e 77_)17ﬁd d
tLals) [ L)
<a(t)+ /0 T—s)-7 ds + /0 L(7) {/T )5 —1)17 de|y(T)dT.

Letr:577
t

. Then s =7+ (t — 7)r and ds = (t — 7)dr. Thus,
-7

1
7

[ st < ([ 10ra)" ([ g ®)”
t

<120I( | m=ma=

1 L dr 7
= ”L(.)”q(t B 7)2(143)7% ( o (1— r)(lfﬁ)q/r(lfﬁ)q/)

Since ¢ > % which is equivalent to

~(A-Bg_gq-1—q+pBq _Pg—1

2.31 0<1—(1- =1
(2.31) <1-(1-P)q 1 1 P
we obtain
t - —1\ 7
/ AP |0 VTt Tt N
e e O T A R AR PN (R
with B(-,-) being the Beta function and
Be—1 Bg—1\w
e = Lo B(Z = T)
q q

1 1 1
51:1_(2(1—6)—3) =26+?—1=B+(6—5) > 6.
Consequently,
y(t) < alt) —l—/o (f(slc;is)ﬁ ds + 61/0 (thS;;Jlszgl ds
b L(s)a(s) b L(s)a(s) e L L(s) * L(r)y(7) ds
<a+ [ gt ta [ goptndste [ g | o

a(t)+zq/t %@Jrcl /OtL(T)[/: (t_8)1_1;1(2_7)1_[3(1#(7)(17,

with ¢o =1 and By = 8. Let r = T—T Then s =7+ (t — 7)r and ds = (t — 7)dr. Thus,
-7

/T (t— 5)1—1;?1(2 ESTE R (/T L(S)qu) ' (/T (t— S)(l—&)ﬁis — ) A=A ds) .

1 (t —7)dr 7
<120 |, i)
1 L dr 7
||L(.)”q(tr)2ﬁﬁ1qlf( 0 (1—T)(1_ﬂ1)q'r(1—ﬂ)q') '
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1

i 1S 1
Since ¢ > 5> g we have

(1-51)g q—1—q+pig

Biq—1

2.32 0<1—-(1- '=1- = = .
(2.32) <1—(1-p1)g 1 1 p—
Hence, we obtain
o f L(s) jox Ol pa=t pa-lyb_ o
s (t=s)l=Pi(s—7)18 (t— )2 PP g—1" q¢g—1 (t—7)t=Pe
with
Bg—1 Big—1\v
e = el|lL0) ] B(F= =) "
q q
1 1
Br=1-(2-8- ﬂl——) Bt -1=p+2(5- ) > 5
Consequently,
1 t t
L(s)a(s) / L(s)y(s)
t i | —————d ————d
02 /0 U I AN L
By induction, we are able to show that
k—1 t t
L(s)a(s) / L(s)y(s)
t i | ————d ———ds,
e @ e [ et
with 1
B=p+i(B--), o0<i<h
q
and recursively defined ¢; > 0:
Bg—1 Biiig—1\w .
= ¢ . <i<k.
e =cnllLOB( = =0 ) 1si<h
We let k > 1 be the smallest integer that S, > 1. Then the above implies
k—1 t t
L
y(t) < a(t) + ;)c/ %ds + ckTﬁkl/O L(s)y(s)ds,  ae. te[0,T].
Now, let
t
2(t) = / L(s)y(s)ds, t € 10,77
0
Then
k—1
| L(s)a(s) -
2(t) = L(t)y(t) < L(t)a(t) + ¢ L(t) (= s)F —————ds + c;T"* 7" L(t)z(t).
i=0 o \bms)
Hence,
e TPk~ lft L(r)dr e, TPk~ 1ft L(T)dt L(T)G(T)
/0 k L(s ds—i-z / k L(s )/O oA drds
t
cTBk 1fJ‘L(‘r)dT L(S)
/0 Kk L(s derZczK/ /r 7(8_7_)1_& ds
a1 pt

/ cx TPk~ 1f’L(T)dTL

0

<ck/0 L(s)a(s)ds,

ds+ZCZ ( / qu) ( /T tﬁ
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for a properly redefined constant ¢; > 0. Hence,

+Zcz/ ti;” -ds +ck/0 L(s)a(s)ds,  ae.t€0,T],

proving our conclusion. O

Comparing with the Gronwall type inequality appearing in literature on fractional differential equations
(see [26], for example), our inequality only involves a finite sum, instead of an infinite series.

3 State Equation

In this section, we discuss our state equation (1.1), together with the cost functional (1.2). In what follows,
U will be a separable metric space with the metric p, which could be a non-empty bounded or unbounded
set in R" with the metric induced by the usual Euclidean norm. Let ug € U be fixed. For any p > 1, we
define

%P[0,T) = {u:[0,T] = U | u(-) is measurable, p(u(-),ug) € LP(0,T;R)}.

3.1 Well-posedness in L” space
We introduce the following assumptions for the generator f(-,-,-,-) of our state equation.

(H1) Let the map f : A xR™ x U — R™ be measurable. There are nonnegative functions L(-), Lo(-) with
(3.1) L() € LFYFDTO.T5R),  Lo() € LT V40,15 R),

for some p > 1 (with the convention that § = co) and 3 € (0, 1) such that

L _

|f(t, s,y1,u) — f(t, sy, u)] < M, V(t,s,u) € AxU, y1, y2 € R",

(3.2) (t—s)'=F
L(s)p(u,up) + Lo(s)
[f(t,s,0,u)| < (t—s)1 P , V(t,s,u) € A x U.
Note that the larger the 8 € (0,1), the weaker the singularity of the generator f(-,-,-,:). Also, (3.2)
imply
L + plu,ug)] + L

(3.3) £ (ts,y,u)| < () Iyl + (s uo)] + Lo(s) V(t, 5,y,u) € A xR x U.

(t—s) P ’

We now present the well-posedness of the state equation (1.1) in L? spaces.

Theorem 3.1. Let (H1) hold with some p > 1 and 8 € (0,1). Then for any n(-) € LP(0,T;R") and
u(-) € 2P[0,T), (1.1) admits a unique solution y(-) = y(-;n(-),u(:)) € LP(0,T;R™), and the following
estimates hold

(3-4) lyOllp < lInC)llp + K<1 +llo(ul), uO)Hp)-

IF(m (), ur(r)), (n2(v),ua(:)) € LP(0,T;R™)x%P[0,T] and y1(-), y2(-) are the solutions of (1.1) corresponding
to (m(+),u1(:)) and (n2(-), ua(-)), respectively, then

() = 52l < {Hm) ()l
(3.5) T

o (/0 [f(t,s,91(s),u1(s)) —f(t,S,yl(S),UQ(S)”ds)pdt}

=

3
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Proof. Fix any n(-) € LP(0,T;R"™) and u(-) € UP[0,T]. For any z(-) € LP(0,T;R™), define

Tz(4)] / ft, s, 2(s),u(s))ds, t € 0,77

Denote 0(t) = 7711y o) (t), where I ) is the characteristic function of (0,00). Then

170 < )l + /\/ftsz (s))as|at)

(3.6) <Ol + {/O (/0 L(s)[|2(s |J(;p(t;()s)ﬁoﬂ +LO(S)ds)pth

<Ol +10C) # {LO) [p(u(), o) + [2()] Hip + 10C) * Lo()llp = nC)llp + L1 + Lo

Now, we split the proof into three cases.

Case 1. p > ﬁ In this case,

1 P p
- > —, > 1.
gp-1 1+ Bp
For any ¢ € (0, %), which is equivalent to (1 — §8)(1 4 €) < 1, define ¢ through the following:
1 1 1 1 1 1
—=—+4+l-—<-+1- 3 =-4+p<1
a p l+e " p 1+ »p
The last inequality in the above follows from p > ﬁ Thus, 1 < ¢ < p and
B
> 1, ase S ——.
4 1+/3 1- 54

Since Lo(+) € LT T (0, T;R), we may assume that Lo(-) € L9(0, T;R) (for an ¢ being close enough to %)
Hence, by Young’s inequality,

To = 110C¢) * Lo()llp < 10C)14ellLo()llg-
Also,

1
-=1- < .
p 1+¢ P

| =

Thus,

pP—q
— /B, ase /) —g,
Pq 1=p
which is equivalent to
1 p

— \( =, ase S ——.

p—q "B 1-p
Hence, by L(-) € L%+(O,T;R), we could find e which is close enough to % so that L(-) € L7-7(0,T;R).
Then

L =100) = {ZC) [Il20)] + p(ul-), uo)] Hlp
<Ol I ZC) [z O]+ o), uo)] g < MO+ I ZO 22 2] + p(ul-), wo)lp-

Then we see that & : LP(0,T;R™) — LP(0,T;R™). Next, let z1(-),22(-) € LP(0,T;R™), we look at the
following:

é 1
17601 = ZlaOllosen = ([ 176010 - TP’

/ ‘/ f(t,s,21(s),u(s)) _f(ta5522(5),U(5)))d8’pdt:|

<[ [ (e ; 24 ] < 06y OO — 5Olarcoss

§8—(1-8)e e
<Oz, LG22 () =220) Hl Lao,5m) < (m) ILON 24 o 5 1210) =20 2o 0,5:8m)-

B =
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Clearly, for ¢ > 0 small, the map 7 : LP(0,§; R"™) — LP(0,0;R"™) is a contraction. Hence, it admits a unique
fixed point on LP(0,; R™), which is the unique solution of the state equation (1.1) on [0, d].

Next, we look (1.1) on [d,T], which can be written as

5 t
+/O f(t,s,y(s),u(s))ds+/6 ft,s,y(s),u(s))ds, te[o,T].

Since (similar to (3.6))

o+ [ st st wtas \WW ] [ /f“y s
<([ 1w |pdt% f[f ([ 155w uonas) a]
< WONsmaran + [ [ ( /OL '*t”_“;()ﬁ)_’;“)”“() Nk
N /‘ ;11 tltﬁ@?ﬁﬂmﬂ % téT / ;ﬁzﬂ”)dﬂé

< ) zosrmn + K (Jly >||Lpom+||p<<>,uo>|\m<o,5;m+1)-

<) e s, mimmy

Then using the same argument as above, we obtain the existence and uniqueness of the solution to the state
equation on [0, 26]. By induction, we could get the solvability of the state equation on [0, T].

Now, let (m(-),u1(")), (n2(-),u2(-)) € LP(0,T;R™) x %P[0,T] and yi(-), y2(-) be the corresponding
solutions. Then

t

3(6) = (0] < 1 (0) = 000+ 65000 (), a(5D) =16 55w+ | ZALL N
L)1 (s) — 2(s)|
a(t) +/O ds.

(t —s)t=F

Hence, by Lemma 2.5,
= L(s)a(s) !

(3.7) ly1(t) — y2(t)] < a(t) + Z ci/o =97 ————ds+ ck/o L(s)a(s)ds, a.e. t € [0,T7,
i=1

for some constants ¢; > 0 and 3; € [B,1). Consequently, similar to (3.6),

1

o () = 52y < K ( / Cafepar)’

K{ () =)l + / / £t 319,01 (8)) = £t 5,31 (5) ua(e)lds) ],

proving the stability estimate. We can use the similar argument to prove this estimate to get (3.4).

Case 2. 1 <p< . In this case,

p p
< —

; <1
p—1 1+ Bp

S wle

Also, since 1 — 8 < % < 1, for any ¢ € (0,p — 1), the following holds:

1
1+¢

1
1-8<=<
p
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This implies (1 — 8)(1 + ¢) < 1. Define ¢ through the following:

1 1 1 1
St =241 - — 1, ase /'p—1.
P q p 1+¢
Then 11 1 1
B — 1—- as € —1.
g p e -
Thus,
PP e a1
p—q ~p—1

Consequently, by choosing € > 0 close enough to p—1, we have ¢ > 1 close enough to 1 and % close enough
to . Hence,

16C) * LoC)llp < N16C)1+ell LoC) o
and
10C) * {LC) [z + o), wo) [ Hlp < 1O el lLO 22 T2 + p(ul), wo)lp-
The rest of the proof is similar to that of Case 1.
Case 3. p=1. In this case, the condition reads L(-) € L>°(0,T;R) and Lo(-) € L**(0,T;R). Then

16¢) * Lo()lly < 16C) [ Lol

and
[10C:) % {L)[Iz()] + p(ul-), uo)] i < NOCL L) ool [2()] + p(ul-), uo)l1-
The rest of the proof is similar to that of Case 1. O

Let us make some comments and observations on the above theorem. First of all, the above theorem
gives some sufficient conditions under which for (n(-),u(:)) € LP(0,T;R™) x [0, T], equation (1.1) admits
a unique solution y(-) € LP(0,T;R™). The conditions we imposed in (H1) are compatibility conditions of
the integrability for the free term 7(-), the control u(-), and the coefficients L(-) and Lo(-). From the above,
we see that if (n(-),u(:)) € LP(0, T;R) x UP[0,T] with p > ﬁ, then by assuming L(-) € L%JF(O,T;R) and
Lo(r) € L%7(0,T;R) (note that %%p < %), the equation has a unique solution y(-) € LP(0,7;R™). This
is the case, in particular, if n(-) € L*(0,7;R"™) and U is bounded (under the metric p). We will come
back to this later. On the other hand, if 1 < p < ﬁ, that is, say, the free term and/or the control have

weaker integrability, then we need to strengthen the integrability condition for L(-) from L5t to Lyttt (in
the current case, pfl > %) to get LP solution y(-). But, the integrability of Lo(-) is only required to be

L'*(0,T;R). Finally, since we have used the contraction mapping theorem to establish the well-posedness of
the state equation, one can see that the solution to the state equation can be obtained by a Picard iteration.

Let us present an example from which we could get some feeling about the above result.

Example 3.2. Consider the following Volterra integral equation

__ 1 PV =12 4 y(s)”
(3.8) y(t) = It — 11— + o |s— 117t —s)1-8

ds, a.e. t €[0,7],

for some «, 8 € (0,1), 7,60 € (0,1], and with 7" > 1. In this case, we have/can take

1 1 1
)= —— L = — L = "\
77( ) |t_1|1_vv (S) |S—1|1_a, O(S) |S_1|2_a_5
In order n(-) € LP(0,T;R), we need

p(l—7) <1 = p<—— (5
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In order L(-) € L(%V%H(O, T;R), one needs

1 —«

B

<l <= a+p>1,

and

1 1
(1—a)L<1 = l-a<l-- <<= p>—.
p—1 P «

Finally, in order Ly(-) € L(rpﬂp\/l”(O,T;R), one needs

p 1 1
2—a—6 1 <= 2-a-fB-6<- <+
( o ) < a—pf < p<(2 5)

and
2—a—-0<1 — a+d>1.

Hence, equation (3.8) has a unique solution y(-) € LP(0,T;R") for any p € [, (177)\/(271a7ﬁ76)+)’ provided
(3.9) at+B>1, a+d>1.

We point out that in general, the solution y(-) of the equation (3.8) is not necessarily continuous, even if
the free term n(-) is continuous. In fact, let ¥ = 1. Then 7n(t) = 1 which is continuous. It is seen that the
solution y(+) is positive (which can be seen from a Picard iteration). Consequently,

li > 141 _ [ ds _
tg;r%y tgr% |S*1|2 a— 6(15*8) -8 0 (175)3*067[375 = 00,

provided
(3.10) 3—a—-0F-0>1 = a+B+0<2.
This will be the case if we take
BN
T3 2

In this case, the solution y(-) € LP(0,T;R) exists with p € (2,3) and it is discontinuous at ¢ = 1.

Note that in the above example, the solution y(-) is discontinuous at ¢ = 1 only, which is the singularity
of L(-) and Lo(-). It is natural to ask what will be the result for the general situation? Such a question has
its own interest. And also since the values y(t;) of y(-) are needed in the cost functional (1.2), we would like
to locate the discontinuity points of the solution y(-) a priori based on the information of L(-) and Lg().
This leads to the following subsection.

3.2 Continuity of the solution

In this subsection, we would like to explore the continuity of the solution y(-) to the state equation (1.1). Let
us begin with some observations. Suppose y(-) € LP(0,T;R") is the unique solution to the state equation
(1.1) which is rewritten here:

(3.11) y(t) =n(t) —|—/O ft,s,y(s),u(s))ds, t€0,T].

Then the continuity of y(-) is determined by that of n(-) and

) = /O (. s,y(s),u(s))ds.

The continuity of 7(-) should be given a priori. Thus, we need to look at the continuity of the above-defined
function ¢ (-). Hence, the preliminary results presented in Section 2 will play an interesting role here. To
make it precise, we introduce the following hypothesis.
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(H2) Let w(-) be given by (2.8) with a; € (0,1), 0 < i < fand 0 < s9g < 51 < -+ < s¢ <T. Let
f:AXR" xU — R™ be given by the following:

(3.12) f(t,s,y,u) = % (t,s,y,u) € A xR" x U,

with € (0,1) and fo: A x R” x U — R™ being measurable such that
(3.13) Ifo(t, s, y,u) — fo(t',s,y,u)| <w(|t —1t]), V(t,s), (t',s) € A, (y,u) e R" x U,

for some modulus of continuity w : [0, 00) — [0, 00), and

(3.14) [folt, s, y,u)| < @(s), V(t,s,y,u) € A X R" x U,
and
(315) |f0(t,s,y1,u)ffo(t,s,yg,u)| gi(s)(|y1*y2|), (t,s,u) GAXU7 Y1, Y2 GRn,

for some measurable functions @, L : [0,7] — [0, c0).

Note that under (H2), we will have (H1) if one takes the following:

Los) = 29 pg=E8)  com

Thus, according to Theorem 3.1, state equation (1.1) admits a unique solution in LP(0,T;R™), under (H2),
for any n(-) € LP(0,T;R™) with some p € [1, 00), if

(3.16) % e L{wmVH(0, T R), % e LGVF)T(0, T;R).

Let us make a simple observation on the above condition. Recall the definition of §p and 5; from (2.20). It
is not hard to see that (3.16) holds if (1 —a;)(% V -77) < 1,0 < i < £ and for some € € (0, dp), the following

B 1
holds:
¢

p() € Lm0, TI\ (i = ) v 0, (s +€) AT); R),

Y4
L(-) € LG50, 7]\ [ J((si =€) V0, (55 +€) AT);R),
1=0
(), L(:) € L™((si — ) VO, (s; +e) AT;R),  0<i</

Namely, due to the special structure of w(-), it suffices to have boundedness of ¢(-) and L(-) near s; (0 < i < £)
and proper integrability of these functions away from the points s;. Therefore, the condition (3.16) is very
mild.

We have the following result which is a direct consequence of Lemma 2.4.

1 1
Proposition 3.3. Let (H2) hold with (3.16) for some p € [1,00), and @(-) € L4(0,T;R), ¢ > 3 Vv —,
Q;

for alli =0,1,---,¢. Then for any n(-) € LP(0,T;R") and any u(-) € Z?[0,T), state equation (1.1) admits
a unique solution y(-) € LP(0,T;R™) such that

(3.17) y() = () € Ly ((0,T);R™) () Ce (5 (0, TI; R™),

where w(-) and w®(-) are given in (2.15) and (2.17).

19



3.3 Special cases
In this subsection, we look at some special cases.

1. Linear Volterra integral equations. Consider the following equation:

(3.18) y(t)n(t)Jr/O %d& te0,T),

where 8 € (0,1), w(-) is a weight function defined by (2.8) and A : A — R™ satisfies
(3.19) |A(t, s)] < L(s), V(t,s) € A,

for some measurable function L(-) satisfying

(3.20) % e LGV#)T(0, T;R),

with some p € [1,00). Then, by Theorem 3.1, for any () € LP(0, T;R"), equation (3.18) admits a unique
solution y(-) € L?(0,T;R™). Moreover, if we define operator A by

Aol = [ e s el

then, thanks to (3.20), by the proof of Theorem 3.1, we see that A : LP(0,T;R™) — LP(0,T;R") is a linear
bounded operator. Our linear integral equation (3.18) reads

y(-) =n() + Aly(-)].

Therefore, the unique solution y(-) admits the following (abstract) representation:
y() == A7) = An().
k=0

Now, let (t,7) — ®(¢,7) be the unique solution to the following equation:

B A(t,T) ¢ A(t, s)P(s,T)
(3.21) (I)(t’T)_W+/7. st, 0<T<tLT.

Then one has

(3.22) y(t) =n(t) —l—/o D(t,s)n(s)ds, a.e.te0,T].

This is called the variation of constant formula.

2. Fractional differential equations. Let us first recall some basic notions of fractional integrals and
derivatives. For a € (0,1), let

(3.23) IFONO = s [ mads 120

and as long as the right hand side is well-defined, where I'(+) is the Gamma function. We call I* the a-th
order integral operator. Let

(3.24) DN = H OO = | e
and
(3.25) DSV = [D(60) = yO)e) = (DO ~ 1 s
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In particular, when y(-) € AC([0,T];R), the set of all absolutely continuous functions defined on [0, T], one
has

(3.26) DN = 1P 010 = gy [ g

We call D% and D¢ the a-th order Riemann-Liouville and Caputo differential operators, respectively. We
have the following standard result (see [31], Lemmas 2.5 and 2.22).

Proposition 3.4. Let a € (0,1). Then for any y(-) € L*(0,T;R) with [I'=y(-)](-) € AC([0,T]; R).

(3:27) O e = o) - SO e e 0.1

and for y(-) € AC(]0, T|; R),
(3.28) DLy ()]} () = y(t) — y(0).

Now, let us consider the following fractional differential equation of Riemann-Liouville type:
(3.29) Dy())(t) = f(t,y(0),u(t)),  te[0,T].

Applying the operator I to the above, we obtain

(3.30) ol = T IO b [V ey

We refer the readers to Theorem 3.1 in [31] for the equivalence of (3.29) and (3.30).

Likewise, if we consider the following fractional differential equation of Caputo type:

(3.31) DEyOI®) = f(Ey(0),u®),  t€[0,T],

applying the operator I to the above, we obtain

(3.32) y(t) = /f t_s’lu )y teo1).

We refer the readers to Theorem 3.24 in [31] for the equivalence of (3.31) and (3.32).

From the above, we see that fractional differential equations of Riemann-Liouville and Caputo types are
special cases of (1.1).

3.4 A backward linear Volterra integral equation

In this subsection, we consider the following linear backward Volterra integral equation:

T T
Als, 1) 9(s)
3.33 t) =&(t ————d tel|0,T
(3.3) v =€+ [ Tt e
where A : A —> R™*™ satisfies (3.19)—(3.20). Such an equation will play an important role in the next section.
Let 1 < p < 173. We claim that for any £(-) € LT (0, T;R™), the above equation admits a unique solution
P(-) € Lpfl (O,T,R"). In fact, by condition (3.20), we can find an r > B V —E7 such that 8 € L"(0,T;R).
By r > B’ we can find an € > 0 such that
L i loi8 o aeou-p <t
l+e T c '
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Then, for any ¢(-) € L71(0,T;R™), we have (denoting p’ = —2-)

[

(s — )1 dt}g {/0 (ig/t <s'1_/’(3)1'—ﬁd5) )

i ﬁ/f</f )l

— o(-
< Hw(,) 00+ () Hw 38Ol Ol
Here, the Young’s inequality for convolution is used with
1 1 —p 1 1 1 1
t-=LT 1241 = =1
1+e p p'r pr 14¢ T

By a similar argument used in the proof of Theorem 3.1, we get the well-posedness of equation (3.33).

4 Pontryagin’s Maximum Principle

In this section, we discuss the optimal control problem for equation (1.1) with cost functional (1.2). To begin
with, let us introduce the following assumptions. The conditions assumed are more than sufficient. But for
the simplicity of presentation, we prefer to use these stronger conditions.

(H3) Let h/ : R® = R, j = 1,2,--- ,m be continuously differentiable, and g : [0,7] x R" x U — R
be measurable with y — ¢(¢,y,u) being continuously differentiable. There exist a constant L > 0 and a
modulus of continuity w : [0, +00) — [0, +00) such that

lg(t, y1,u1) — g(t, y2,u2)| < Llyr — ya| + w(p(u1, u2)), Y (t,y1,u1), (L y2,u2) € [0,7] x R" x U,

lg(t,0,u)| < L, V(t,u) € [0,T] x U,

19y (t, Y1, u1) = gy (t y2,u2)| S w(lyr — ya| + p(ur, u)), Yt y1,u1), (8 y2,u2) € [0, T] x R" x U.
Suppose 0 < 89 < 51 < +-- < 8¢ < T are given as in (H2), and 0 < #; <tz < -+ < t,, < T such that
(4.1) tj & {so,s1, " 8¢}, Vj=1,2,---,m.

Clearly, under (H2)—(H3), our cost functional (1.2) is well-defined. Hence, we can formulate the following
optimal control problem.

Problem (P) Find a u*(-) € P[0, T] such that

(4.2) J(u™() = e o J(u())-

Any u*(-) satisfying (4.2) is called an optimal control of Problem (P), the corresponding state y*(-) is called
an optimal state and (y*(-),u*(-)) is called an optimal pair.

In this section, we shall first give a set of necessary conditions for optimal pairs of Problem (P). Usually,
such a result is referred to as a Pontryagin’s mazimum principle. Then, we shall show some examples.

4.1 Pontryagin’s maximum principle for Problem (P)

In establishing the Pontryagin’s maximum principle for the case that U is not assumed to be convex, we
need the following Liapunoff type theorem (see, Corollary 3.8 of Chapter 4 in [32]).

Lemma 4.1. Let X be a Banach space. For any § > 0, let
& ={E€0,T]]|E|=6T},
where |E| stands for the Lebesgue measure of E. Then for any h(-) € C([0,T]; L*(0,T; X)),

T
/O (%1’5(8) ) dSHC(OT ):O
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The following is our main result of this section, which is called Pontryagin’s maximum principle for
Problem (P).

1
Theorem 4.2. Let (H2)—(H3) hold for somep > 1, ¢(-) € L1(0,T;R), ¢ > B V— ,foralli=0,1,--- ¢

and (3.16) holds. Let f°: A x R" x U — R be measurable with y — fO(t, s, y,u) bemg differentiable. Let
n(-) € LP(0,T;R™) and n(-) be continuous at t;, j =1,2,--- ,m. Suppose (y* ( ) u*(+)) is an optimal pair of
Problem (P). Then there exists a solution 1(-) € L7 (0,T;R™) of the following adjoint equation

Y(t) = —gy(t, y™( = 0y (O fy (g, 6y (0w (0) T (7 (1))
(4.4) =1

—l—/t Fu(sit,y™ (1), u* (1)) Tep(s)ds, te€0,7],

such that the following maximum condition holds:

B (5" (t)) 0,0, (s) f(t5, 5,5% (s), u*(s))

I

Il
-

/ BT £t 5,57 (), u™ (5))dt — g(s, 57 (5), u” (5)) —

J

h

IV

Il
-

(4.5)
— min / (1) y*(s),u)dt — g(s,y*(s),u) —

uelU

3y (45)) Lo, (8).f (5, 8,97 (5), ) |,

a.e. s € [0,T7.

J

Proof. We split the proof into several steps.

Step 1. A wariational inequality. Let (y*(-),u*(-)) be an optimal pair of Problem (P). Fix any u(-) €
?[0,T]. Denote

u(t), t e Es,

(4.6) ué(t) _ {U*(t)a t€[0,T]\ Es,

with Es C [0, T] being measurable and undetermined (see Step 2). It is obvious that the control u’(-) is in
w?[0,T). Let y°(-) = y(-;n(-),u’(-)) be the corresponding solution, and let

YO(t) = v =y te[0,7).

Then, Y?(-) satisfies

Yo = { / [t5. (51,00 9)) = Fit 7). 5]
v [f(t 7 (5).00(9) = (65,7 (5). " ()] ds
/ / Jyltos,y" () + 78Y(s), u? (5))dr] YO (s)ds
- / L, (s >[f(t,s,y*<s>,u<s>>—f(t,s,y*<s>,u*<s>>]ds

— ! é Y(5 1 ! n
:/0 fy(t,s) (s)ds—i—g/o 1g,(8)f(t,s)ds

with

fg(t, s) :/ fy(t, s, y*(s) +70Y°(s),u’ (s))dr,
0
Ft,s) = f(t, 5,57 (s),u(s)) = f(t, 5,7 (s),u"(s)).
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By the optimality of (y*(-),u*(:)), one has the following variational inequality:

w® () = J(u*(- T
0.« HEDZIEED Ll oty 0007 @) - e 00" ()] s
3 [P ) - W )] |
(4.8) X =1 )
= [ st @+ w500 @par] vy 3 [ Tote.sr @) - gtty 0,0 @l

i[/ WY (1) + 78V (1))dr | YO 1),

Step 2. Convergence of Y°(-) and so on. We introduce the following integral equation:
t o~
(4.9) Y (¢) :/ [fy(t,s,y*(s),u*(s))Y(s) + f(t, 5)}6[3, t €10,T],
0

where f( ,+) is given by (4.7). Under our conditions, the above admits a unique solution Y'(-) such that

Y(-) € LP(0, T;R™) ﬂ(ﬂc ((si-1, 5 R") ),

and
Y () € Ly (0, T:R™) () Cipe ([0, T R™).

We now show that for a suitable choice of Ej, the following holds:
. Sy ) _ . S(p\ — ) < i<
lm [V20) = ¥Y(), =0, ImY() = Y1), 1<j<m.

Note that

with
POt s) = £O(t, 5,57 (), u(s)) = fO(t, 5,57 (), u"(s)),  (t,) €A,
y (3.14), we have
POt 5) <20(s).  (t,s) €A,
1 1
with @(-) € L1(0,T;R), where ¢ satisfies ¢ > 3 vV —, foralli=0,1,---,£. Let
€7
1ot s)

W, (t,S) € [0,T]2

h(t,s) = 1jg.4(s)
Then for any p > 1 sufficiently large,
T , T 5 11 T, et 9 5 11
{/ (/ e, s)lds ) )" < [/ (/ %ds)pdt}
0 0 0 o w(s)(t—s)

(
W@*f3m<ﬂﬂNH5§%H

< 00,
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where € > 0 is chosen so that

vl atoa-p <t

Then

1 1 1 - 1 1-(1+¢)(1-05)
p qul—l—Eilii(ﬂiq)Jr 1+e¢ '

Note that on the right hand side of the above, the first term is valued in (—/,0) since ¢ > %; and the second
term is positive with the range

Thus, by suitably choosing € > 0, we may make p > 0 as large as we wish. Consequently, for our given
p > 1, by choosing € > 0 properly, we may have p > p. Hence,

([ o) ] < .

Clearly, there exists a sequence of continuous functions hg(-,-) such that

[/OT (/OT|h(t, §) — halt, s)|ds)pdt]% < % k> 1.

Now, for each hy(-,-), applying Lemma 4.1, we have that for any fixed § > 0, there exists some E¥ C &;
such that

1
sup ’/ ]_Ek —l)hk(t,s)ds <E.

t€[0,T]

1] G -1) kS e
/ ‘/ glo(s _1)hk(t,8)ds‘pdt}%
/ ‘ / 1pe(s) = 1) [A(t,s) = helt, )] ds

Hence, for any fixed § > 0,

T t 70 s
at {1 Gree 1)

Next, for any t;, let us observe

T 0 t 70 t) -
[f2 (5, 9)] T )l ’ 2¢(s)
/O 1[0,tj](8)w( -5 ds = /0 ﬁds < /0 mds < Q.

Then

"l =[] G - ncas] )

(%+2).

?vl»—*

i
dt}"

=

dt} —0.

s)(tj — s) s)(t; — s)! (tj —s)
Hence,
, b1 7oty s) ,

Likewise, we also have

inf
Ecés

/OT (51605) — 1) 95,57 (), u(s)) — g,y (s), u*(5))]ds| = 0
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Now, we consider the following map

tm *S)l ﬁl[otm)( )
9(s,y7(s), u(s)) — g(s,y"(s),u"(s))

Then applying Lemma 4.1 to the above function in a proper product space, we obtain that for any § > 0,
there exists an Fs € &5 such that

/’/ “1p,(s )w(s)f(( ds’ dt}% o(1),

L))
(4.10) ’/ L5,(5) 1) w(s)(tj_s)l Sds| =

[ (3 = 1) oo 60, 066) — (5,576 06Dt

= o(1).

By choosing such a family of Es, & > 0, we see that the following convergence hold:

lim Y2 () = Y ()], = 0,
—0

yn%yé(tj) =Y(t;), 1<j<m,
— - 1
i [ (§s(9) = 1) [o(,7(),u(s) = (5,7 (), " (5))]ds = 0.

Hence, we end up with the following variational inequality
T mo
0< [ (st @0 @)Y (1) + 90,7 (), 0(6) — gltsy” ()"0t + YW (0 (1) Y (1)
0 i—1

= [ (oo™ @ )Y 0) a9 () ) = oo ()" 5) ) s
+/O Z h% (y* (tj))l[o,tj](s) (fy(tja 5, y*(s)a U*(S))Y(S) + f(tja S, y*(s)a U(S)) - f(tj’ S, y*(s)a U*(S)))ds

T
- / (a5 +th L0, (8) (55,57 (), (5)) ) ¥ (s)ds

with Y'(+) being the solution to the variational equation (4.9).
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Step 3. Duality. Let 1(-) be the solution to the adjoint equation (4.4). Then we have

0 [ (9599075 + 3B 07 () Lo (15,57 (5) 0 (5) ¥ ()

j=1

n /OT (95,57 (), u(s)) = 95,7 (5),u"(5))

[ [ (6)us) = o670, ()

<.
Il
—_

/()T¢(t)T(Y(t)+/0t fy(t,s,y*(s),u*(s))Y(s)ds)dt

= /OT [— w(t)—r /Ot (f(t,s,y*(s),u(s)) — f(t,s,y*(s),u*(s)))ds} dt
[ ot (hule) ~ oo (6). ()
3 () Lo () (F(E5, .57 (8),uls)) = £ty 5.97(), 0" (5))) | ds

Hence, using the Lebesgue point theorem for integrable functions, we reach the following:

4.2

In recent years, optimal control problems for fractional differential equations have attracted the attention of
However, most of the works on maximum principles for fractional differential equations
were established by convex perturbation technique. See, for instance, Agrawal [1], Agrawal-Defterli-Baleanu

some researchers.

T m
/ D) f(t sy (s),u(s))dt — g(s,y Zhi, Lo, (s)f (85, 8,97 (s), u"(s))
>[0T Aty ()t = g5 (5)0) = D B0 (4) Lo 615 155,07 (9. 0)] e s € 0.7,

This gives the maximum condition (4.5).
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[3], Frederico—Torres [23] and Kamocki [29] in the sense of Riemann-Liouville case, and Agrawal [2], Bourdin
[11] and Hasan-Tangpong—Agrawal [25] in the sense of Caputo case.

Let us take a look a recent work [29], in which Kamocki considered the fractional differential equation of
Riemann-Liouville type (3.29) with a € (0,1) and some convex assumptions. The control u(-) takes value in
a compact set U in R™ and f satisfies

|f(tay1au) - f(tay25u)| < N|y1 - y2|a vylayQ S Rna te [OaT]a u < Ua
|f(t,0,u)] < r(t) + yl|ul, V(t,u) € [0,T] x U,

where N > 0 and 7 > 0 are two constants and r(-) € LP(0,T;R). The corresponding solution belongs
to LP(0,T;R™) for some p > 1. When p > 1 and I'=?[y(:)](0) = 0, a Pontryagin’s maximum principle
for Problem (P) was proved. For the case I'=“[y(-)](0) # 0, maximum principle was obtained only for
1<p< .

It is easy to check that all the above-mentioned results for fractional differential equations are the special
cases of what we presented in the previous subsection.

5 Concluding Remarks

This paper presented some analysis of singular Volterra integral equations, and established a Pontryagin
type maximum principle for an optimal control of such kind of equations. Here are some remarks in order.

e As we have indicated, the fractional differential equations of Riemann-Liouville or Caputo types of
order no more than one are fully covered by our results. For fractional differential equations of higher order,
similar results can be obtained by properly modifying our approach.

o [t is easy to see that all the results that we presented will remain true for non-singular Volterra integral
equations.

e We have allowed to have very general singularity in the free term and the generator. Therefore, our
results can apply to a much wider class of problems than those covered by fractional differential equations
and non-singular Volterra integral equations.
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