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THE GSVD: WHERE ARE THE ELLIPSES?,
MATRIX TRIGONOMETRY, AND MORE

ALAN EDELMAN* AND YUYANG WANGH

Abstract.

This paper provides an advanced mathematical theory of the Generalized Singular Value De-
composition (GSVD) and its applications. We explore the geometry of the GSVD providing a long
sought for picture which includes a horizontal and a vertical multiaxis. We further propose that
the GSVD provides natural coordinates for the Grassmann manifold. This paper proves a theorem
showing how the finite generalized singular values do or do not relate to the singular values of ABT.

We then turn to applications, arguing that this geometrical theory is natural for understanding
existing applications and recognizing opportunities for new applications. In particular the generalized
singular vectors play a direct and as natural a mathematical role for certain applications as the
singular vectors do for the SVD. In the same way that experts on the SVD often prefer not to cast
SVD problems as eigenproblems, we propose that the GSVD, often cast as a generalized eigenproblem,
is perhaps best cast in its natural setting.

We illustrate this theoretical approach and the natural multiaxes (with labels from technical
domains) in the context of applications where the GSVD arises: Tikhonov regularization (unregular-
ized vs regularized), Genome Reconstruction (humans vs yeast), Signal Processing (signal vs noise),
and statistical analysis such as Analysis of variance (ANOVA) and discriminant analysis (between
clusters vs within clusters.) With the aid of our ellipse figure, we encourage the labelling of the
natural multiaxes in any GSVD problem.
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1. Introduction.

1.1. Prelude. If a € R™! and b € R™2 are two vectors, then the block vector

equation in R™1Tmz;
a a 0
i)+

may be thought of geometrically as a hypotenuse vector decomposed as the sum of
two legs of a right triangle. If h = /||a||? + ||b]|? # 0 is the length of this hypotenuse
and u = a/||a||,v = b/||b|| are the unit direction vectors for a,b then we can write

a uc

R
where ¢ and s are the cosine and sine of the corresponding angles, namely ¢ = ||a||/h
and s = ||b]|/h. This is ordinary planar trigonometry of a right triangle.

For notational convenience, we will sometimes use a semicolon (*;”) to denote the
stacking (or vertical concatenation) of vectors and matrices, so that

[a; b] = [a; 0] + [0;B].

We note that [uc; vs] is a unit vector in the direction [a; b]. The cotangent o = ¢/s is a

slope which provides a measure of whether the vector is primarily in the “a” (or top)

direction, or the “b,” or a mix depending on whether ¢ is large, small, or in between.
The GSVD extends the above ideas to matrices.
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1.2. The GSVD. This paper provides a new approach and understanding of
the generalized SVD (GSVD) [30, 38, 9] of two matrices A € R™" B € R™>". Gen-
eralizing the introductory paragraphs, the GSVD may be understood in the context
of a generalized Pythagorean theorem with

51=[6l < 1s)

We take as our definition of a GSVD, a decomposition of [A; B] with the form

A uc
2 []n
where U, V are square orthogonal in R™1:™m1. R™2:m2: (' S are 1-diagonal (see Figure
1) such that C'C'+5’S = I, and H has full row rank r where r denotes rank([4; B]).
The remaining dimensions are implied, namely C, S are in R™*" R™2" and H is in
R™™,

The SVD is so widely used that applications need not be listed. Historically this
was not always the case. Fields such as biology, economics, and computer science
could be observed learning about the SVD one-by-one with great impact. Perhaps
a kind of folklore notion is that the SVD applies any time an array A needs to be
quickly compressed to the main information out, or whenever AA’ was lurking. We
would love to foster a world where the GSVD finds applications one-by-one in many
fields. Perhaps the new folklore is that the GSVD applies when two arrays with a
common dimension need to be quickly compressed or whenever two matrices AA’ and
BB’ are lurking. Of course both the SVD and GSVD underly more.

Some selected applications of the GSVD include oriented energy analysis [6, 7,
8, 10, 11, 39], (here the GSVD is sometimes called by the more descriptive name
QSVD for “quotient” SVD), Tikhonov regularization [21, 14], Linear Discriminant
Analysis [31, 24], and more recently in microarray analysis [3]. A review from 1992
and discussion of algorithms may be found in [5].

As a point of mathematical taste, many textbooks today still treat SVDs as a
byproduct of exposition on eigenvalues. This is unfortunate, as most of the time con-
siderations of AA’ or A’A create unnecessary mathematical baggage best abandoned.
The SVD is mature enough to live its own life separate from the symmetric eigenvalue
problem. Taking this notion one step further, the GSVD deserves to live separately
from generalized eigenvalue problems or the SVD. When a GSVD lurks, it is recom-
mended to abandon old fashioned language and see the true GSVD construction in
full mature light. We take this approach in a number of examples in this paper.

1.3. A “GH” decomposition. To clarify and streamline our view of the roles
of the pieces of the GSVD, we propose that the GSVD be considered a GH decompo-

sition: A
5| -om
where G = [UC;VS] (for Grassmann or geometric) denotes the information in the

r-dimensional hyperplane representing the column space of [A; B]. Specifically the
columns of G are a natural orthonormal basis for that hyperplane in R™:*™2  and
the columns of H are the coordinates of the columns of [A4; B] in that basis. Of course
the QR decomposition of [A4; B] has exactly the same properties, with one important
difference: the @ is not uniquely defined by the hyperplane, while in the GSVD, the
choice is more or less canonical.
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We further feel that the factorization into the two matrices G and H emphasizes
the outer product rank r form:

(1.2) { g ] = Z {ith column of [gg” {ith row of H|,

=1

which can be readily missed in the long form.

In analogy with the SVD or Non-negative Matrix Factorization (NMF) [27], one
might consider a simultaneous rank reducing method where only the k rows of H with
largest norm are kept.

In particular if we multiply [A4; B] on the right by HTIT.7,€IT’,7,€H, where I}, is the
first & columns of the r x r identity, we obtain a rank reduced [A; B]:

[ 5 } ~ ([%}] fr,k> (I},.H)

k
_ th UCT] [.th
= Zl [z column of [VS” [z row of H} .

We remark that H ‘LIT’kI;’kH is an oblique projector when H is square non-
singular, and an orthogonal projector when H is orthogonal.

1.4. More details about U, V,C, S, H. The matrices U, V, C, S, H deserve more
detailed discussion, as may be found in Appendix A.

To help guide the reader, we offer a table of bases for the fundamental subspaces
that appear in the GSVD. It is helpful to keep in mind that the columns of C' and S
are leftward looking towards the orthogonal U and V matrices in the GSVD factor-
ization, while the rows of C and S are rightward looking towards the full row rank H
in the GSVD factorization.

Fundamental Spaces Basis (with Link to C,.S)

Column Spaces of A, B:  Columns of U, V' corresponding to non-zero cols of C, S
Left-Null Spaces of A, B:  Columns of U, V' corresponding to zero cols of C, S
Row Space of [4; B|: Rows of H
Row Spaces of A, B: Rows of H corresponding to non-zero rows of C,.S
Null Spaces of A, B: Columns of H' corresponding to zero columns of C, S
+ common null space (if < n)
Gen Eigenvector Spaces: ~ Columns of H' (for the problem det(A’A—AB’B) = 0)
Common Null Space: Null space of H (Also see A.5 for an RQ drilldown)

It is useful to point out that the common nullspace of A and B is killed by H,
ie., if Ax =0 and Bx = 0 then Hx = 0. A vector that is in only one of the nullspaces
is not killed by H, but Hz is killed by 0 columns in C or S respectively.

Let r, = rank(A),r, = rank(B),r = rank[A; B]. Table 1 shows the structure of
C and S. A very common case has » = n in which case the sizes of C, S match that
of A, B.



PROPERTY OF C AND S | C | S

total # columns r

# zero columns in S (left columns): =T = #{c; =1} = #{s; =0}

# non-zero columns (middle columns): | r, + 7, — 7 = #{0< ¢, 8 < 1}

# zero columns in C' (right columns): | r—r, = # {¢; =0} = #{s; =1}

total # rows ‘ mi= # rows A ‘ mo= # rows B

# non-zero rows re <My Ty < Mo

# 7€ero rows my —Tq M2 — T
TABLE 1

The C and S matrices are naturally simultaneously partitioned into three block columns such
that the number of columns r = (r —ry) + (ra + 7 — 7) + (r — 74), in left to right order. The row
sizes conform to A and B which means that we add rows of zeros to C,S or possibly delete some
of the zero cosines/sines to achieve a row count of mi,ma. The number of non-degenerate angles
(not 0 nor w/2) is the middle number (rq + 1, — 7).

r=(r—re)tra s — )t —ra)

c1

C2

= C =

mi Xn my Xr

1>c12c>2...>0
0<$1<82<...<1

Sa
mo Xn mo X T

Fic. 1. Visualization of the structure of the C' and S matrices (whose sizes are that of A and
B). Red squares denote square blocks. We prefer the matriz diagonal orderings consistent with the
cosine and sine functions on [0,7/2], where cosine (sine) decreases (increases) from 1 to 0 (0 to 1,
respectively).

1.5. Summary. This paper contains a number of insights and results about the
GSVD:
e We present an ellipse picture of the GSVD, which requires four dimensions
to get a good feel for the general case (Section 2).
e The GSVD generalizes planar trigonometry to matrix trigonometry (Sec-
tion 3).
e We consider [UC;V S| as natural coordinates for r dimensional hyperplanes
(the Grassmann manifold) in R™ given that m = mj+ms. We use the Grass-
mann manifold coordinates to clarify the link between the CS decomposition



and the GSVD (other authors have observed vaguely that they are closely
related). We view the H matrix as the change of coordinates from canonical
coordinates [UC; V' S] to the specifics of [A; B] (Section 4).

e We discuss the link between the GSVD and the principal angles between
subspaces (Section 5), and related “energy portraits” (Section 6).

e We prove a theorem relating GSVD(A, B) and SVD(ABT). They are not
generally identical (Section 7).

e We revisit applications in the geometric context, and interpret the GSVD as
a multi-dimensional slope and connect applications (Section 8).

Notation. For i = 1,...,r, let u; denote the normalized i-th column of UC if
c¢; # 0, or else define u; = 0. Similarly, let v; denote the normalized i-th column
of VS if s; # 0, or else define v; = 0. This notation conveniently avoids issues of
different sizes and conventions. For example, U or V may have fewer than r columns.
Details of the placement of the ¢; and s; appear in Figure 1. Suffice it to say for now
that wu; is the i-th column of the U matrix when ¢; > 0, and v; may be found in the
k-th column of the V' matrix when Si; = s; > 0. The indirection in V is admittedly
unfortunate, but in all cases, the non-zero v; by convention are left to right contiguous
columns of V' that may either start from the left, or end at the right, but in many
situations v; is not in the i-th column. We use A" to denote the pseudo-inverse of
A. The “slash” and “backslash” are defined as A\B := A'B, and A/B := AB'. We
also overload the notation GSVD(A, B) to denote the generalized singular values of
(A, B), while SVD(A) means the singular values of A.

2. Where are The Ellipses?. The SVD ellipse picture for a matrix A (Fig-
ure 2) is a very familiar visual for the action of A on the unit ball. We are not aware
of any ellipse pictures in the literature nor even a notion that a natural ellipse picture
exists for the GSVD or even the CSD (CS Decomposition) [19]. We believe that the
lack of a geometric view of the GSVD is part of the reason that the GSVD is not as
widely understood or as widely used as it should be.

A=UxV’

092 - U2

AL — A

Fic. 2. Familiar SVD visual showing singular vectors and singular values of a matriz A through
the action of A on the unit ball.

Regarding an ellipse picture, one might blame some sort of human inability to
perceive higher dimensions as a complication, but we show that this is not really the
case in Figure 3.

The gap in understanding is underscored by the curiosity expressed online, but
without answer, on such sites as MATLAB Central [13] (reproduced here') and a
similar request on the question-and-answer site Quora [34] (not reproduced here).

IThe authors contacted Mr. Dyas on December 26, 2019 to inform him of the solution of his
twenty year query.
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Fic. 3. Ellipse picture for the GSVD (illustrated generically in four dimensions with
mi =mg =1 =rq =1, = 2): containing a red plane (span of [A; B]), and the X (blue) and Y
(green) multiazes. Centered at the origin is a unit sphere (light red) and two ellipses (blue and
green) shown in exploded view format. The ellipses, which may be named the cosine and sine
ellipses are “horizontal” and “vertical” shadows of the unit sphere.

Color Coding (consistent for all figures in this paper):
shade of RED=Span([A; B]), shade of BLUE=X Multiaxis, shade of GREEN=Y Multiaxis.

Subject: Generalized SVD geometry?

From: Bob Dyas

Date: 29 Feb, 2000 15:31:31

Message: 1 of 1 <— indicates no answer in 20 years!

Is there a geometric interpretation of the generalized singular
value decomposition? I’m looking for something comparable to
the geometry associated with the standard SVD. I understand how
U, V and the singular values of the SVD relate to the geometry
of the input matrix but I don’t have an intuitive feel for how
U, V, X and the generalized singular values relate to the
geometry of the two input matrices of the GSVD.

Any help would be appreciated.

Bob Dyas

2.1. Understanding the Ellipse Picture for the GSVD. Figure 2, por-
trayed in four dimensional space, generically serves to illustrate the GSVD in any
dimensions.

Given A € R™" B € R™2" we consider the unit sphere (shown in exploded
form in Figure 2 as a red circle) in the span of [A4; B] (shown as a red plane). In blue
and green we have the ellipses that show the “downward” and “leftward” projections
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of these ellipses onto the multiaxes X and Y defined as those vectors whose first m;
or last my coordinates may not vanish. (For example if m; = my in R*, then the X
multiaxis consists of vectors of the form (z1,z2,0,0) and the Y multiaxis consists of
vectors of the form (0,0, z3, 24).

The wu;, v; are semi-axes of these ellipses, with lengths ¢;, s;. The vector [u;c;; v; ;]
is on the (red) unit sphere in the span of [4; BJ.

Since we have the equality [A; Blz = [UC;V S]Hz, we see that H is the change
of coordinates from the columns of [A; B] to the orthonormal columns of [UC; V5],
and HT goes the other way.

2.2. An in depth look at small dimensional special cases.

2.2.1. A red line in R?, X=the r-axis, Y =the y-axis. (m; = my = n =
r=1)

Below we show the possibilities for [C; 9] for a line in R? (drawn in red as the
span of [a,b] where a and b are € R') which may be horizontal a # 0,b = 0, general
position a # 0,b #£ 0, or vertical a = 0,b # 0. In any event the ¢ and s are the cosine
and sine of the angle with the horizontal.

Y R? Y[ R? Y‘ R?
X X X
1 < 0
0 s 1

2.2.2. A red line in R?, X=the zy-plane, Y=the z-axis. (m; = 2,my =
n =1 =1) Below we show the possibilities for [C; S] for a line in R? (drawn in red as
the span of [a,b], where a € R?, b € R!). The X multiaxis is traditionally labeled the
xy-plane, and the Y is the z-axis. A line can be in the zy-plane, in general position,
or along the z-axis. The corresponding [C'; S| matrix is illustrated. The c¢ is the angle

between the red line and the xy-plane, while the s is the angle of the red line and the
z-axis.

: X |CZX 40:)(
] ] ]

2.2.3. A red line in R?, X=gx-axis, Y=the yz-plane. (m; = 2,my = n =
r = 1) Below we show the possibilities for [C;S] for a line in R? (drawn in red as
the span of [a,b], where a € R, b € R?). A line can be along the r-axis, in general
position, or in the yz-plane. The corresponding [C; S| matrix is illustrated. The c is
the angle between the red line and the = axis, while the s is the angle of the red line
and the yz-plane. The shaded Y =yz-plane indicates the red line is in that plane.
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2.2.4. A red plane in R?, X=the xy-plane, Y =the z-axis. (m; = 2,my =
1,n =7 =2 ) Below we show the possibilities for [C;S] for a plane in R (drawn in
red as the span of [A, B], where A € R??, B € R}2). A plane can be the xy-plane.
A plane in general position in R? intersects the xy-plane in a line (shown as a dashed
red line) but does not include the z axis. A final possibility for a plane is that it
includes the z axis (broken red/green line.)
The corresponding [C; S] matrix is illustrated. We have ¢; = 1 corresponding to
the 0 degree angle from a line in the red plane and the z,y axis. We have co which
is the cosine of the angle formed from a line at right angles from the aforementioned

line and the xy-plane. Note that s; = 0 is not found in the S matrix, since there is
room for only one row which contains sa.

o =

s
0

o o

IR3

1 1 1
1 c 0
00 s 1

Figure 4 below is the ellipse picture in 3 dimensions (3d), which admittedly has
too few dimensions to understand the general picture. Nevertheless, one can clearly
see the unit circle in the sphere being projected down to an ellipse on the z,y axis.
We see the ¢; = 1 and ¢y = cosf as the lengths of the semi-axis of the ellipse. The
uy direction is where the plane representing span([4; B]) intersects the zy-plane. The
ug direction is orthogonal to u; and also in the span([A; B]) plane. The uy direction
is the maximum slope off the xy-plane, and sy = sin @ is the length of the projection
of the unit circle onto the z-axis. The orthogonal direction projects to 0 giving the
S1 = 0.

2.3. On infinite generalized singular values and horizontal directions.
As may become clear upon inspection of the small dimensional cases, it is very possible
that we have some ¢; = 1 and s; = 0 so that the generalized singular value ¢;/s; is
infinite. These infinite singular values are associated with horizontal directions [u;; 0]
in the “red” hyperplane, i.e. [u;;0] € span([A; B]). They arise when our hyperplane
intersects our X multiaxis in any non-zero direction.

The situation in Section 2.2.4 illustrates that this is typical when we consider a
plane in R? and X is the zy-plane. ( A is 2 x 2 and B is 1 x 2.) The unit circle
in the plane has a vector of length 1, [u;;0], that lives on the horizontal zy-plane.



Oblique 3d view xy plane

Fic. 4. GSVD in 3d is a bit cramped: Oblique 3d view (left) and zy-plane (right). Generically
a hyperplane will intersect the xy-plane in a line (blue dashed line) which will contain simultaneously
the major azis of the blue (cosine) ellipse and a diameter of the red circle. In 3d, we have c¢1 =
1,c2 = cosf to indicate the intersection and the angle 6 with the xy-plane, respectively. We also
have s1 = 0,s2 = sinf which indicates that with respect to the z axis, the red hyperplane has one
vacuous direction (the red arrow in the xy-plane) and the orthogonal direction (other red arrow in
the red hyperplane) makes an angle of w/2 — 6. In summary, the blue (cosine) ellipse has semi-azes
1 and cos b, the green (sine) ellipse is confined to 1d and has an unseen 0 and sin 6, while of course
the unit circle has radius 1.

The orthogonal direction, [cous, s3] has a projection [cousg; 0] on the xzy-plane that is
generically shorter than a unit vector, but still orthogonal to [uy;0].

3. Matrix Trigonometry. We claim that the GSVD is the natural generaliza-
tion of high school trigonometry to what we might call “matrix trigonometry.”

There is so much in Figure 5 that we are all familiar with in the planar case:
There is all of trigonometry, and in particular there is tan # which has a special role
because B/A is the slope of the line. If | B| is small relative to |A|, we have a shallow
slope, and vice versa. The only hint that there is some directionality is the possibility
of a + sign. To specify directions we sometimes would write a hypotenuse vector in
component form: Ai+ Bj . If we take the components of a unit vector in the direction
of the hypotenuse, then the components form a cosine-sine pair: cos #i + sin 6j.

The ideas of trigonometry, slope, component form and cosine-sine pairs extend to
higher dimensions through the GSVD. Instead of one triangle, there are n triangles.
Instead of one vector i, there are n vectors in the columns of U. Instead of one vector
j, there are n vectors in the columns of V. Instead of a unit length hypotenuse there
are n unit length hypotenuses, which can be written in the component form

Uf

cos 0y, [ 0

]—i—sin@k L?}, k=1,2,...,n.
k

The n hypotenuses, as we show in Figure 3, live on a unit sphere that projects
nicely “down”ward and “left”ward. The cos 0xu are semi-axes of the downward ellipse;
and the sin fxvy on the leftward ellipse.

Just as b/a tells you how small or big b is relative to a, the GSVD tells you how
small or big B is relative to A, but now it is in n natural directions. Thus B can be
larger than A in some directions, and smaller in others.



10

Components

Sl

Triangle Trigonometry

Fic. 5. The GSVD is the generalization of the trigonometry picture (left) or the components
picture (right) to higher dimensions. When A and B are 1,1 these pictures specialize to familiar
grade school trigonometry (the 2d case where small letters a and b could be used, but we want the
reader to think matric trigonometry as quickly as possible so we will use the capital letters here ).

As a portrayer of higher dimensions, line segments represent hyperplanes, and the desired
ellipses are hiding inside the subspaces as the thick unit vector along the hypotenuse (unit sphere
in higher dimensions), and the thick components in the cosine-sine pair (horizontal and vertical
ellipses in higher dimensions).

Notice that the generalized hypotenuse H is not the matriz square root but does satisfy H'H =
A’A + B'B (The reason a simple matriz sqrt does not work is that we must denote the direction of
every component in higher dimensions). The cosine form of the GSVD denotes the singular values
of A/H, and the sine form denotes the singular values of B/H.

There is some temptation to try to say that the GSVD is related to the principal
angles of the column space of A and the column space of B. This of course makes no
more sense than looking for anything other than right angles between the x-axis and
the y-axis in 2d. The interesting angles are between the span of the column space of
[A; B] and the canonical axes [I1;0]. More details can be found in Section 5.

One quick algebraic way to define the singular values of an m,n matrix A is
to find the diagonal matrix with non-negative entries in the set {UAV'} where U
is m by m orthogonal and V is n by n orthogonal. This is the equivalence class
representative definition. Similarly, one can define the generalized singular values of a
pair of matrices (A, B) with the same number of columns. The “cosine-sine” format, is
the pair of (1-)diagonal matrices (C, S) with non-negative entries in the set of matrix
pairs {(UAH~Y,VBH™!) : U,V orthogonal, H non-singular}. Often the GSVD is
given in “cotangent” format, which is the ratio of cosines to sines.

We summarize the GSVD properties with Table 2.

4. The relationship between the GSVD and the CS Decomposition. It is
often written [19, Section 8.7.5] that the GSVD and the CS Decomposition are closely
related. The geometric viewpoint highlights the GSVD and the CS decomposition as
rooted in representations of points in the Grassmann manifold (linear hyperplanes
through the origin) in an m = m; + my dimensional space using [UC; V' S] as natural
coordinates.

The simple notion is that the information may be thought of as

Al [uc y i
——
column space as a hyperplane Coordinates of [A4; B]
(a canonical basis!) in the [UC; V S] basis.

This connection is rooted ultimately in the Cartan decomposition of the Grass-
mann manifold, one of the finitely many classes of symmetric spaces [22]. The idea
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0: Principal angle between

o[ e ]

sinf: SVD(BHY)

¢S cosf: SVD(AHT)
tanf: SVD(BAY) if r = r, :=
rank(A)
cotf: SVD(ABT) if r = r =
rank(B)

U left singular vectors of AHT (or ABT if r = 1)

Vv left singular vectors of BHT ( or BA! if r = 1,)

TABLE 2
A primer of the properties of GSVD.

is that certain matrix spaces have a “KAK” or compact/abelian/compact decompo-
sition. The SVD is one example as it is orthogonal/diagonal/orthogonal. The CS
decomposition is another. This observation may be found in a numerical linear alge-
bra conference presentation [15] and in the quantum computing literature [37].

To be sure if [A; B] is already orthogonal then so is H. This constitutes the “left
half” of the complete CS decomposition. Thus a GSVD is a “left half” of a CS, when
[A; B] are orthogonal, and the “left half” of a CS is a GSVD. One can also have a basis
for the orthogonal complement of span([A; B]) to get the “right half.” This captures
the isomorphism between the Grassmann manifold G, ,, (i.e., n-dimensional subspace
in R™) and G m—n (i-e., (m — n)-dimensional subspace in R™). Thus if one takes
the combined SVD’s of orthogonal matrices whose spans are orthogonal complements,
one has the CS decomposition and vice versa.

Any which way, the mathematical idea underlying all is that there is a fairly
canonical representation for generic elements of the Grassmann manifold and a ma-
trix connecting back to an orthogonal or arbitrary basis which has a further symmetry
property when taking both the span of [A; B] and its orthogonal complement in con-
junction in that transposing a full orthogonal matrix reverses the roles canonical
coordinates and basis converter.

Parameter Count. There has been a longstanding tradition in numerical linear
algebra to overwrite matrix inputs with the parameters from the factored form. Thus
if A is n x n, the LU factorization has the n(n — 1)/2 parameters from L and the
n(n + 1)/2 parameters from U. Similarly if A = QR, the ) while appearing naively
as an n X n matrix, actually only has n(n — 1)/2 parameters, which is exactly what
is computed in software [4].

Given an m xn matrix [A4; B] of rank r, and a decomposition of m as m = my +msa,
we can count parameters on both the left and right sides of [4; B] = [UC; V.S|H. While
tricky, the only facts needed are:
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1. Rank Codimension: The codimension of the rank r matrices of size m x n is
(m—r)(n—r) [12, Lemma 3.3].

2. Stiefel Manifold Dimension: The dimension of the Stiefel manifold V,, ,, of n
ordered orthonormal directions in R™ is n(m —n) + n(n — 1)/2 [17, Section
2.2].

3. Grassmann Manifold Dimension: The dimension of the Grassmann manifold
Gm.n of n-dimensional subspaces in R™ is n(m — n) [17, Section 2.5|.

| | r<mi<my  mi<r<my my <my <7 |
rank r codim | (m—r)(n—7r) (m-—r)(n—r) (m—r)(n—r)
H (r xn) n n ™
0<b;,<m/2 |r my m-—r
. (my —r)r my(my —1)/2 (r—mg)(m —r)
U Stiefel (e —1)/2 F(m—r)(m—r—1)/2
. (mg —1)r (ma —mq)my (r—my)(m—r)
v Stiefel (i =1)/2 malmi—1)/2  +(m—r)(m—r —1)/2
V Grassmann | 0 (r—=my)(ma—7) O
‘ Total ‘ mn mn mn ‘

To understand the parameter count, we begin with the simple observation that
re = min(r,my) generically and 7, = min(r,ms), from which we can derive the
number of 6; that are strictly between 0 and 7/2 as r, + r, — r. The relevant Stiefel
manifolds are Vy,, 5, +r,—r and Vp,, » 4+, —r. These correspond exactly to choosing
the directions for the axes of the ellipses. Also one must consider G, —(r, 41y —r),r—r,
for i = 1,2 as this is the dimension divide between the 0 degree angles and the 7 /2
angles when this has content. This data is summarized below:

r<mp <mg mp<r<mo M1§m2§r‘

Ta r my m

i r r m2
Tq+1Tp—7T r my m-—r

U Stiefel Vinyor Vi, ma Ving m—r
V Stlefel sz,’r sz,ml Vm2,mf7“
V Grassmann | - Gmy—my,r—ma

We remark that further fine grain detailed parameter counts are possible including
lower rank A and B, but we content ourselves with the table above.

5. Principal angles between subspaces. Section 3 points out that the GSVD
of A and B does not contain angle information between the column spaces of A and
B. Rather, Figure 3 illustrates that the relevant angles are between the ‘“red space”
(col([A; B])) and the “blue space” (col([I1;0])).

This suggests that the GSVD can be used to compute principal angles (see Section
6.4.3. of [19]) between the column spaces of A and B when m; = my. More precisely, it
can be accomplished by letting Z = [Y'|Y ] be any orthogonal matrix where col(Y) =
col(B). Tt follows that GSVD(Y’A, (Y1)’ A) are the cotangents of the desired principal
angles.

This maybe seen geometrically as the GSVD computes the cotangents of angles
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between

([t ]) =iz, wa, wa([4]).

but we can multiply by the orthogonal matrix Z, which preserves angles, obtaining
the angles between col(A) and col(Z[I1;0]) = col(B).

We can conclude that we have a rotated Figure 3 (shown in Figure 10) where the
X and Y multiaxes are replaced with span(Y) and span(Y+).

6. The Lemniscate Plots from Leuven, Belgium. In a series of early papers
most of which date back to the 1980s [6, 7, 8, 10, 11, 39], energy portraits that relate to
the SVD and GSVD of a matrix or a pair of matrices are discussed with applications.

The definition of an energy portrait of a single matrix is

Energy(A) = {e|Ae|* : [le] =1} CR", (A€ R™")
and for a pair of matrices with the same number of columns

| Ael}?
| Bel[?

Buergs(4, B) = {el 20 < el = 1} c R, (4 e R, B erman)

o
- ——— SVD Energy(A) =
138 /20 - 189 T 45°
- / h\
\ \
\
| \
| \ 05
~ -0 / o° 180° \ 0.0 \\ o°
/ [ \

15 =
|
|

2258 \ / 318’ 225 \7 /mé’

276 27¢°

Fic. 6. Leminiscate plots: Energy(A) and Energy(A’) reproducing from [36, Figure 3] (left)
and using the matrices below for Energy(A, B) (right).

It is important to point out that the curves in Figure 6 are not ellipses but rather
lemniscate-like portraits. They do not even live in the same spaces as the ellipse
pictures. The standard SVD ellipse lives in R™ and the GSVD picture in this paper
lives in R™*™2_ By contrast, the energy portraits from Leuven live in R"™.

We provide the Julia codes that produce these curves as a reference. Readers are
encouraged to try other matrices.

A = [.577699 -.224144;1.190069 .836516] # Figure 6 (Left)
e(theta) = [cos(theta), sin(theta)]

r1(theta) = sum(abs2, Axe(theta))

r2(theta) = sum(abs2, A’e(theta))

theta = pi * (0:.01:2)

plot( theta, rl.(theta), proj=:polar, label="SVD Energy(A)")
plot!(theta, r2.(theta), proj=:polar, label="SVD Energy(A’)")



14

A=1[.27 .66 ; -1.4 1.3] # Figure 6 (Right)

B=1[10; -.51.1]

e(theta) = [cos(theta), sin(theta)]

ri1(theta) sum(abs2, Axe(theta))

r2(theta) = sum(abs2, B*e(theta))

theta = pi * (0:.01:2)

plot(theta,rl. (theta)./r2. (theta),
proj=:polar,label="GSVD Energy(A,B)")

For completeness, we thought we would take a closer look at these older plots.
To explain in what sense the curves are lemniscates, it is best to eliminate the “e” in
the definition and rewrite the energy plots as the zero set of an algebraic equation,

thereby connecting the portraits to the field of algebraic geometry.
THEOREM 6.1. If Vo € Energy(A), then x satisfies the algebraic polynomial

equation
Z 213 Z 2 277

where A = UXV'. Further if x € Energy(A, B), then = satisfies the algebraic polyno-
mial equation
|l|*|SHz|* = |CHz|*,

where [A; B] = [UC;VS|H.

Before proving the theorem we provide a historical analog. We might compare the
solution set of (3.7, 22)3 = (37, 0222), with that of (3.7, 22) = (37, 0222),
which is the lemniscate of Booth whose study traces back to the 5th century Greek
philosopher Proclus. The difference being that Booth specialized to n = 2 and only
took first powers of the quantities, but in spirit it is a similar algebraic polynomial

equation.

Proof. Taking e = Vy, we see that e||Ae||> = Vy||Sy||? = Va where z = y||Zy|%.
It is straightforward to check ||z]|% = || Sz||* = ||Zy]|'?, since ||y|| = 1 which is exactly
the result for a single matrix.
For the two matrix case, where A = UCH and B = VSH, if x = ¢| Ae||?/||Bel|?,
then
_ [cHe]|*

: [CHal _ |Ce]
= s

and = .
[SHz|  [[SHell

7. On the GSVD(A4, B) and the SVD(AB'). In this section we relate the
finite part (nonzero, noninfinite) of the generalized singular values of (A4, B) (denoted
as GSVD(A, B)) to the singular values of ABT (denoted as SVD(AB')) where BT is
the pseudoinverse of B. We may use the notation A/B for ABT. An issue arises that
may surprise some readers.

7.1. Why there is an issue?. One may expect that there may always be a
relation between the GSVD of A, B and the SVD of ABf. For example, in the
MATLAB documentation? it is stated that the generalized singular values are the ratios
of the diagonal elements of C' and S in a given example. One might infer from the
documentation that this is always the case.

2https://www.mathworks.com /help /matlab/ref/GSVD.html
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However it is not generally true when there are infinite singular values, i.e., when
ry < T

Consider a simple example where A is a non-singular n X n matrix, and B is a
nonzero 1 X n matrix. In this case r, = 1,7 = n. The GSVD of A, B is readily verified
to have n — 1 infinite singular values, and the one finite value oggyp = 1/||B/A||. The
SVD of AB' is just the length of ABT = AB'/||B||? or osyp = | BA’||/||B||?.

When n = 1, A = a, B = b, both of these expressions are equal to the absolute
ratio |a/b|, (r = r, = 1 after all) but for larger n the two matrix expressions are not
equal.

3 0

An extremely simple special case takes A = <0 4

> and B = (1 1). The two

values are ogsyp = 2.4 and ogyp = 2.5 exactly.
The issue arises exactly when there are infinite o. If there are no infinite o, S has
no 0 columns, and we can write

AB" = (UCH)(VSH)' =UCHH'S'V' =U(C/S)V’,

which is a singular value decomposition of A/B. (We use the property that H has
full row rank to conclude HH' = I, and that C/S is an m; X my matrix with ¢;/s;
on the main diagonal.)

The problem that arises when some ¢ = oo is that Bf = (VSH)T = (SH)'V’
does not equal HTSTV’ when S has any zero columns.

7.2. The significance of horizontal directions and their orthogonal com-
plement in X. In Section 2.3, we considered the intersection of span([4; B]) with the
X multiaxis. An orthogonal basis for this intersection is [u;0], ..., [ty—p,; 0] which
correspond exactly to the ¢; = 1.

Working entirely in X as an m; dimensional space, we are interested in the
my X my projection matrix P that Kkills the directions of intersection. Precisely we
define P on the orthogonal basis for R™:

Pu; = U; lfCZ<].
0 ife =1.

Suppose N is a matrix whose columns are a basis for the null space of B. If we
consider AN then the span of the columns of AN is the intersection we are discussing,
i.e., the intersection of X with span([A4; B]). To be sure either the column of N is in
the common null space of A and B, so that the corresponding column of AN is 0, or
else if one follows through the first 7 — 7, columns of HT in A = UCH?, one sees that
we will hit the “c; = 1”7 columns in C only, hence we will emerge a linear combination
of uy, ..., Up_p,-

We can thus describe P as the orthogonal projection onto the left nullspace of
AN which is the orthogonal complement of the column space of AN.

7.3. The correct modified theorem requires PA/B. We remind the reader
of the usual definition of the matrix pseudoinverse in terms of the singular value
decomposition:

(7.1) AT =VyiU,

where ¥ means taking the inverse of the finite entries in ¥. When A has full column
rank and B has full row rank, we have (AB)T = BTAT. Tt is easy to see that [0 B]T =
[0; BY].
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THEOREM 7.1. Let N be a matriz whose columns are a basis for the nullspace
of B, and P be the orthogonal projection onto the left nullspace of AN. The finite
non-zero generalized singular values of (A, B) are the same as the non-zero singular
values of PAB?Y.

Proof. Setting notation, we have

S« S.

0. 0 0
0
Sr—ry+1 Sr—ry+1

B=V .| H=V .. | He = VS.H,,

so that B = V.S, H,, where S, are the rightmost r, non-zero columns of S (indexed
by i =r—r,+1,...,r) and H, are the corresponding rows (the bottom r;) of H.
(To see this note that B = V[0 S,][7; H.] where the “?” denotes rows that hit the 0
columns in S so we do not care what they are.) We point out that H, has full row
rank as the rows of H, are a subset of the full row rank matrix H. We immediately
conclude that

Bf = HISIV'.

We further claim that
PA=UC.H,, O

where C, are the exact corresponding columns of C' (the rightmost r, indexed by
i =r—rp+1,...,7), which are the ¢; < 1. To see this, first observe that the definition of
P as described in Section 7.2. is PU = U[0 I,] where I, are the rightmost 7, columns
of the identity indexed by ¢ = r —r, + 1, ...,7. Thus PA = U[0 C.][?; H.] = UC,H.
the 0 indicating the columns of U killed by P.

Now that we have compressed out the immaterial columns, and knowing that
H*HI = I,, by the full row rank condition, we can compute

PAB' =UC,H. HISIV' =UC,/S,V'.

This is a singular value decomposition of PAB', with ¥ = C, /S, an mj x mo diagonal
matrix, with the ¢;/s; in decreasing order on the diagonal and no s; = 0.

COROLLARY 7.2. If B has full column rank (r, = n) or if the weaker condition
holds that r = rank([A; B]) = r, = rank(B), then P is not needed, i.e., the finite
non-zero generalized singular values of (A, B) are the same as the non-zero singular
values of ABT.

Proof. If r, = n, then B has nothing in the nullspace, N has no columns, and P
is obviously I. More generally, if r, = r, then B has nothing in its nullspace that is
not also in the nullspace of A, so if AN has any columns at all, it is the zero matrix,
so again projection onto the left nullspace is P = I.
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7.4. Blame the pseudoinverse not the GSVD. The difficulty with AB" may
seem like an unfortunate consequence of infinite singular values, but in point of fact,
it is related to the discontinuity in the definition of the pseudoinverse. If one takes
a bigger picture viewpoint, it is easy to see that infinite singular values are natural
limits of finite singular values.

The only truly natural discontinuity in the GSVD is the reduction of rank of
[A; B] which reduces the dimensionality of the hyperplane (and the rank of H.)

We mention some limit type results which help understand the nature of the
infinite generalized singular values:

THEOREM 7.3. If rank([A; B])=r, and my > r, then we can define a continuous
curve of matrices [Ac, Be] of the same shape as [A; B] without infinite generalized
singular values when € > 0 is small but whose limit as € — 0 continuously converges
to the generalized singular values of [A, B], finite or infinite.

Proof. Take
5] - [vsid) =

where

i i >0 i i >0
ci(e) = ¢ %= and s;(e) = s. sz .
cos(e) s, =0 sin(e) ;=0

COROLLARY 7.4. If rank([A; B])=r, and ma < r, then we can define a continuous
curve of matrices [Ac, B¢| without infinite generalized singular values when € > 0 is
small but whose limit as € — 0 continuously converges to the generalized singular
values of [A, B] by row augmenting B, to contain r rows.

Proof. Simply add r —mq rows of zeros to the bottom of B. This does not change
the generalized singular values of [A; B] or U,C or H. S is augmented with r — my
rows of zeros and V is augmented with r — my rows and columns with an identity
matrix. Apply the construction in Theorem 7.3 to complete the proof. 0

Ezxample 7.5. Consider that

GSVD (B ?J 1 1]) = 2.4 and oc.

One might seek nearby matrices with no infinite generalized singular values. This is
impossible if we insist that B remain 1 x 2 but is possible if we augment B with one
row, which in this case we can simply take

GSVD (B ﬂ : [(1) iD — 244 0(e?) and 5/ + O(e).

COROLLARY 7.6. Suppose [Ac, Be] has rank r for 0 < € < € is a continuous
curve, where B¢ has rank v for e > 0 but may drop rank at e = 0. We then have that
the generalized singular values are a continuous function of [Ac, Be] as € = 0.

Proof. The only true discontinuity in the GSVD is the potential for a drop in
rank of [A; B]. This is avoided in the statement by keeping [A., B.] rank r. Thus the
limit of the column space is the column space of the limit. 0

We do remark on the other hand that if [A., B.] drops rank, then we can only say
that the limit of the column space contains the column space of the limit, which can
lead to all kind of discontinuities in the generalized singular values.
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8. GSVD Applications and their Geometric Interpretations.
8.1. Geometry of Tikhonov Regularization.

8.1.1. The two cosine damping. We show how geometry can add insight to
our understanding of Tikhonov Regularization:

(8.1) min {{| Az — b + A - || L[|}

by providing a two cosines view of damping. Specifically, the way Tikhonov regular-
ization reduces the solution or “weights,” is usually understood algebraically in terms
of adding a regularizer term that moves the original problem away from some kind
of ill-conditioned setting. We will show that, in Figure 7, one cosine comes from the
projection from the horizontal (blue) plane to the span of [A; AL] red plane. The
other cosine comes from the non-canonical basis of the plane: the columns of [A4; AL]
which elongate with A, hence the coordinates shrink.

While the “calming influence” [19, Section 6.1.26], [5, Section 4.4], [21] of the
regularization parameter A has been well studied algebraically, we identify geomet-
rically in (8.2) the influence as a factor of cos® ) where tanf) = Atan6; so that
cos? 0y = 1/(1 + A% tan? 6;), where 6; is the angle that corresponds to A = 1. We will
compare the cos? formulation with previous formulations explaining why we find that
this formulation feels somewhat more insightful.

Before we start, let us recap Tikhonov regularization. Suppose we have a matrix
A, which we will assume has full column rank. The A = 0 problem (standard least
squares) is the computation of g = AT = (A’A)~!A’b, the standard solution to
the normal equations A’Az = A’b. To regularize we pick a suitable matrix L, and a
“regularization parameter” ), and then solve instead (A’A + A\2L'L)x = A’b, which is

equivalent to computing
T AT
T AL 0

From the geometrical point of view, we believe the reformulation in Theorem 8.1
below is more revealing of the “calming effect.” Figure 7 demonstrates the hyperplane
onto which [b; 0] gets projected for varying A.

For every A, we obtain the GSVD as a continuous function of A:

A UC\
[AL} = [VSJ H,
where it is easy to check that H) is square non-singular. It is convenient to use the
compact format described in Section A.3 here. Thus we take U to be m; xn, C and S
to be square diagonal n x n. The exact values in C' and S come from the trigonometry

with unit hypotenuse, fixed base, and sliding height of a ¢, s, 1 triangle at A\ = 1, as
shown in the left side of Figure 8. Namely

o G AS
V/CZ + \252 SN/ eIk

where the operations happen on the diagonal. It also follows that

Cy =

fIQZC')\I‘[,\7 and, A:UH():UO)\H)\, V/\ZO

The equation Hy = C Hy has a nice trigonometric interpretation. As the column
vectors of [A; AL] grow in length (these lengths are encoded in Hy). the cosines in
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A
UCy } green plane = span [L]

)\L}
blue plane = span B]

red plane = span [

|:U11:| ' u2.1
vy -0 vy - 0

Fic. 7. This n=2 Tikhonov regularization picture in the four dimensional hypersphere il-
lustrates the hyperplanes onto which [b;0] gets projected for varying A. The projection gives one
cosine, while the representation (not pictured) in ever elongating bases gives the second cosine.
Portrayed is the unique hypersphere containing the four mutually orthogonal vectors in four dimen-
stons: [u1,0], [uz,0],[0,v1], [0, v2], While tempting to see this as a 3d object, as A — oo the wedge
drawn does not shrink but remains a quarter circle wedge.

C relate back to the [4;0] columns which are shorter in length. This is depicted in
Figure 8.

THEOREM 8.1. The solution x) to the Tikhonov Regularization problem can be
written as

(8.2) xx = (Hy 'C Ho) xo,

where xg is the least squares solution to Ar = b and A = UHy, where [A; L] =
[UC)\; VS)\]H)\.

Proof. Since

a=[4] 4]

we can calculate

zy = Hy 'O\U'UHoyxo = Hy 'CyHoo
and use the relation H, 1 Hy 1Cy to complete the proof. O

Comparison and Discussion. The standard application of the GSVD to Tikhonov
relates z to b and thus gives formulas involving the non-physical, non-homogeneous
factor of ¢/(c? + A\?s?) rather than the homogeneous ¢3 = ¢?/(c? + A\%s?).

The formulation in Theorem 8.1 diagonalizes the operator that relates x) to xzg.
We understand that when x are the coordinates of a linear combination of the columns
of [A; B], we have that Hyx are the coordinates of that same vector in the natural
basis. Thus the interpretation of Hj 1C’§H0 simply is:

1. Write the vector in the natural coordinate system;
2. Multiply by a cosine squared in every natural direction;
3. Return to the original coordinate sytem.

8.2. Humans vs Yeast: Comparative Data Modeling. In a series of beau-
tiful applications of the GSVD, Alter, et.al. [3, 32, 33, 35, 2] propose an approach
towards data reconstruction and classification. In their case [3], the A and B are two
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1335 \

9,\ ® N
Hy=C\H)y 0L

Fic. 8. The “two cosine” Geometric interpretation of Tikhonov regularization: Single u-v plane
(left) vs. general (right). The green, red and blue lines represent the span of [A; L] (green) , [A; AL]
(red) and [A;0L] (blue) respectively. Our “two cosines” view of regularization is that one cosine
dampening comes from the projection of b from the blue plane to the red plane, and the second
cosine comes from the extended basis Hy = C;lHO which gets divided. Note that the value of A
may be greater than 1 (not shown).

DNA microarrays, one from humans and the other from yeast. The rows of A and B
live in R™ or gene space. The rows of H form a basis for this row (or gene) space, and
are denoted genelets. A natural question is whether the genelet is primarily human,
primarily yeast, or a mixture. In general, given two matrices with equal columns, one
wants to classify the basis vectors in the rows of H according to its source.

The GSVD provides a natural solution by creating a single coherent model from
the two datasets recording different aspects of interrelated phenomena by simultane-
ously identifying the similar and dissimilar between the two corresponding column-
matched but row-independent matrices. For each of the r rows, we have that 6;
denotes the angle towards A. In Figure 9, we portray this. We note that [3] displays
the angles from —m/4 to 7/4, but we will stick with the 0 to 7/2 convention. It is
convenient that the rows of H are already sorted from “mostly A,” to “mostly B.”

Our ellipse picture Figure 3 reveals the geometry readily. The [u;c;;v;s;] all
appear on the unit ball.

The comparative Data Reconstruction equation is

A o - UiCi | 4
=3 L)
where A} is the i-th row of H. (This is exactly Equation (1.2).) One can preprocess

H so that each row is of unit direction as it is only the ratio of ¢; to s; that matters.
Any ill-conditioning of H could be worrisome.

8.3. Signal vs. Noise: A one matrix and one subspace view of the
GSVD. The focus on two matrices with the same number of columns is not always
the best view of the GSVD. One can take rather a single m x n matrix M and any
my dimensional reference subspace S of R”. We can then think of the GSVD as an
additive decomposition:

M=P+Q,

where P = YJUCH and Q = Y52V SH, and the columns of Y7,Y5 are orthonormal
bases for S and S respectively. Conversely, [Y; Y2)'M = [Y{M;YyM] is an ordinary
GSVD.
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Fic. 9. Are genomes human, yeast, or a combination? (Application from Alter [3]) Left:
[ciug; siv;] makes an angle 0; with the X multiazis. Right: Depending on the angle we apportion the
ith row of H ( a basis element for the row spaces of A and B) as being attributable to A or B.
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Fic. 10. The ellipse picture in Figure 3 need not fundamentally line up with horizontal and
vertical multiazes. This rotated geometry underlies a signal processing application in [25, 26].

By doing this we have a decomposition of M = P + Q such that P'Q = Q'P =
Opxn- Geometrically, instead of decomposing into a “top half” and “bottom half,” into
a “horizontal” and “vertical” multiaxis subspace, we are rather allowing for general
multiaxes subspaces. One might think of this as a rotated view of Figure 3. More
specifically, most of this paper would take Y7 = [I;0] and Y> = [0; ], but all that is
required is that Y7 and Y5 are orthogonal complements.

This geometrical insight underlies an additive decomposition signal processing
application found in [25, 26] where P and @ play the role of signal + noise.
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8.4. Orthonormal Bases for {Az : Bz = 0} and Friends. The U matrix of
the GSVD provides, in its columns, orthonormal bases for three mutually orthogonal
subspaces that arise in many applications:

U, = Uy = Us =
U— orthonormal completion to | orthonormal
a basis for all of basis for

{Az : Bx =0} | col(A) = {Ax} col(A)+

The “completion” referred to in the above equation means that taken together, the
columns of U; and U form and orthonormal basis for col(A). From the perspective
of Figure 3, there are the horizontal directions in the red unit sphere, the generic
directions, and the directions that are not present.

8.4.1. Clustering Matrices. An important example where the GSVD lurks
implicitly or explicitly is clustering. We will consider an A matrix that indicates the
clustering, and a B matrix that indicates equality of data between the clusters.

We consider data in RP and assume a partitioning of p = p; + ... + pg, into
clusters. The indicator matrix corresponding to the partition of p is :

k
| Tﬁ
P1 :
1
| 1
D2 :
A = Indicator(py,p2,. . . ,pk) = | 1 ,
| 1
Pk
| i ]

which we can normalize by setting

11 L,
VP VP2 e

Y7 = Indicator(py,p2,- - - ,px) X Diagonal(

In the Julia computing language, the indicator matrix can be generated succinctly
with A = cat(ones. (Int,partition)...,dims=1:2), where partition denotes the
vector [pi, ..., pkl.

The other useful matrix in this context is the constraint matrix whose nullspace
is the all ones vector:
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k columns
‘ 1 00 ... 00 -1
01 0 ... 00 -1
Bp= k-1 R :
Y0 000 .01 0 —1
‘ 0O 00 ... 01 -1

In Julia, with the LinearAlgebra package, this may be written succinctly as
B = [I -ones(k-1)].

Given an m X p data matrix D there are a number of “scatter matrices” that arise
that allow us to compare between clusters and within clusters. Following roughly the
notation in [24], we can partition the data

D = [D;...Dy], where D; € R™P and Zpi =p
Let d; be the jth column of D and let IV; denote the column indices in column ¢, ¢;

is the mean of the columns in cluster i, and c is the mean of all the columns. The
within, between, and mixed scatter matrices are defined as

k N;
Sy = Z Z(dj —¢i)(dj —¢;)
1; j=
Sy = Zpi(cz —c)(ci — ¢

These scatter matrices are readily calculated through the U matrix for the GSVD,
one can then set U, = SVD(A,B), where the comma indicates that we are requesting
only the U matrix. We then have that,

1 col k — 1 columns p — k columns
—
U, =
‘ 1//p Uy = Us =
» 1/\/p completion to orth basis for
U= .
rows : “between” clusters | “within” clusters
| Uvp

“Completion” means that U; and Us form an orthonormal basis for A. The third
block is an orthonormal basis for A+. The “between” and “within” terms are statistics
jargon. Given a data vector, the first column extracts the normalized mean. The
next block gives a basis for clustered vectors that are mean-free which by removing
the fine details within cluster provides a way to compare between clusters. The last
block provides the within cluster details. The number of columns is the dimension
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of the space, and in statistics jargon is known as the “degrees of freedom.” (See [29,
Chap. 10].)
The scatter matrices can be calculated in terms of U using these formulas

Sw = D(UsUL)D’
S, = D(U,UL) D'
Spm = D(I — UUL)D'.

One recognizes that the matrices in parentheses in the three expressions above are
projection matrices and the orthogonality of U guarantees that S,, + S, = Sy,.

8.4.2. One Way ANOVA made simple. A commonly used statistics test is
to decide whether a proposed clustering of a vector v is justified. The test takes the
average (meaning divide by k — 1) square component in the Us direction and divides
it by the average (meaning divide by p — k) square component in the Us direction.
The following Julia code shows how compactly one can reproduce an example from
Wikipedia where one can quickly obtain the number computed in Step 5 of https:
/ /en.wikipedia.org/wiki/One-way analysis of variance#Example.

using LinearAlgebra
v = [6,8,4,5,3,4,8,12,9,11,6,8,13,9,11,8,7,12] # data vector

A = cat(ones.([6,6,6])...,dims=1:2) # Indicator(6,6,6)
B=1[10-1; 01 -1] # Constraint matrix
U,= SVD(A,B) # GSVD
(norm(U[:,2:3]°v)/norm(U[:,4:18]°v))"2 * 15/2 # The F value

9.264705882352956

While for this problem the classic approach is fine as an algorithm, for general
tests for being in the column space of A but orthogonal to {Axz : Bx = 0}, the GSVD
is worth considering algorithmically and how we are projecting into the non-horizontal
directions is worth understanding geometrically.

8.4.3. See a slope? Generalize to a GSVD. In the last line of the above

code snippet, the innocent looking
norm(U[:,2:3]°v)/norm(U[:,4:18]°v)

for an orthogonal matrix U carries a message of generalization if you know how to
read it. It is a ratio of components in two orthogonal directions. You can call it a
slope, or a cotangent, or a tangent. What we called horizontal and vertical multiaxes
in Figure 3 may now be labeled in this coordinate system: the between and within
axes, following the aforementioned statistics nomenclature.

The generalization of the vector v € RP example of Section 3 is a p X n matrix M
of data, each data item being one row of length n. It is therefore natural geometrically
to consider and interpret the GSVD as

UM _ [U,C]
uiM| = US|

The result is n canonical directions for considering between vs within as naturally as
comparing human vs yeast, or signal vs noise as we have seen in previous applications.
The multislope, i.e. the generalized singular values (or perhaps we can call this the
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ANOVA structure) is 0 in all but at most k& — 1 directions, owing to the number of
columns in Us.

8.4.4. Discriminant Analysis Dimension Reduction. Continuing with the
idea in Section 8.4.3. we observe that it is natural to reduce out all but the k£ — 1
nonzero ANOVA directions by multiplying M on the right by G = H'I, ;_; or (for
that matter any matrix whose columns span the same subspace of R™.).

The reduction to k — 1 columns

[U2M; U3 M) ~pequction [U2M; UsMIG,
can be rotated back to the standard coordinate system without any change to the
nonzero generalized singular values (the ANOVA structure) to yield

[Uz Us][U3M; UsM]G = (U2Uy M + UsUs M) G = (I — U U7 MG,

since UU’ = I. We can reduce the mean also by adding back U;U]G producing our
final reduction, MG.

Our simple summary is that for a data matrix M, ANOVA measures the nonzero
generalized singular values in [Uj; US| M, a rotated multiaxis system which gives the
ratios of the “between" to the “within", and these are the same as for the reduced
data matrix M G because we are suppressing the directions with 0 generalized singular
values.

This is a geometrical derivation of an idea and algorithm presented by Park
and others [24] with a minimization approach. In their algorithm G can be derived
efficiently as the first £ — 1 columns of the @ from the GSVD, and the authors point
out that the GSVD idea is robust even in the case of too little data.

8.5. The Jacobi Ensemble from Random Matrix Theory is a GSVD.
Classical random matrix theory centers are Hermite, Laguerre, and Jacobi ensem-
bles. Historically, they are presented in eigenvalue format, but we have argued that
the eigenvalue, SVD, GSVD formats, respectively, are mathematically more natural
providing simpler derivations and clearer insights. Suppose we have two Gaussian
random matrices A (my xn) and B (mg x n) with m; > n and mg > n. For example,
A=randn(mi,n) and B=randn(m2,n) using Julia notation. The so-called MANOVA
matriz (Multivariate Analysis of Variance) is defined to be

(8.3) (AA+B'B)'tA'A
or in the symmetric form (A’A+ B'B)~Y/2A’A(A’A+ B'B)~'/2. The ecigenvalues are
the squares of the cosines (c?) and are jointly distributed as [29]
(84) e [T =17 H APTI(L =)
1<J

where a; = gml,ag = gmg and p=1+ g(n— 1),

. I'(1+ 5T (a1 + az — 5(n — j))
1;[ + Z5)T(ar — 5(n — j))T(az — £(n— j))’

where 8 = 1 for real matrices, § = 2 for complex matrices, § = 4 for quaternion
matrices, and general § is worth considering, as in [16] . The eigenvalue distribution
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APR CALIFORNIR fa0087)

PROF SVD

Fic. 11. The SVD was once an obscure theoretical tool, and now it is everywhere, in part due
to the work of the late Gene Golub at Stanford University (Gene Golub’s famous vanity license plate
tllustrated). It is time for the GSVD to undergo the same transformation.

is known as the Jacobi ensemble, which was first referred by name in [28]. We refer
interested readers to [18], where the geometrical picture (a simplified version of the
ellipse in Figure 3) motivates a direct derivation of the joint density of the Jacobi
ensemble. Note that, the direct derivation in [18] fills in a gap stated in Remark 2.3
of [20], where an indirect proof using the Fourier Transform is presented, but a direct
proof without the Fourier Transform is desired. An earlier alternative direct proof is
due to [40].

9. Mathematical Software. Suppose one looks up the GSVD in the help pages
of your favorite technical computing language, shown in Table 3 and the Julia ver-
sion in Table 4. One gets lost in a sea of matrices whose meaning is very hard to
fully appreciate. Surprisingly, we find no standard function for the GSVD in Python
(NumPy and SciPy) though there is some discussion on StackOverflow [1] and Github
Numpy issue #3475% and scipy issue #743* and #1491°.
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A. An In-depth Discussion of U,V,C,S, H.

A.1. The square orthogonal matrices U and V. The U and V matrices
represent orthogonal bases for R™* and R™2 respectively.

One obtains an orthogonal basis for the column space of A (B) by taking the
columns of U (V) corresponding to the non-zero rows of C' (S). The remaining
columns are an orthogonal basis for the left nullspace. (Recall, in the ordinary SVD,
the “U” can be chosen to be square, and one can divide “U” into the column space/left
nullspace through “¥” in the analagous way.)

We see in Section 2 that the columns of U and the columns of V' may be thought
of as semi-axes of ellipses (with the possibility of degenerate axes.)

A.1.1. The diagonal cosine and one-diagonal sine matrices: C and S.
The cosines 1 > ¢; > ... > ¢, > 0 and sines 0 < 57 < ... < 5. < 1 satisfy
c? 4+ s? = 1. They represent the lengths of the semi-axes of our two ellipses. The
generalized singular values are the cotangents o; = ¢;/s; which may be 0 or infinite.
When 0 < 0; < 0o, we say that o; is finite.

As show in Figure 1, the cosine matrix C' € R™>" matrix puts the ¢; on the
diagonal starting with ¢; in the (1,1) position. If we run out of room, by not having
enough rows, we drop some of the 0 cosines.

The sine matrix S € R™2°" puts the s; on some diagonal, and again if we run out
of room, by not having enough rows, we drop some of the 0 sines. One convention
(used by LAPACK [4]) puts all the positive s; in the top rows by putting the positive
diagonal in the top right corner. Another [30, Eq. 2.3] puts them in the bottom rows
which as Paige and Saunders remark (and we agree) creates [30, p.401 top|: an “easy
[way] to remember [the] symmetry."

Either way C’C and S’S are square r x r diagonal with the ¢? and s? on the
main diagonal and C'C' + §’S = I,.. The only difference between the two conventions
is where the orthogonal basis for the column space of B ends up in the columns of
V, i.e., the left or right side. (It is always those columns of V' that correspond to the
rows where an s; > 0.) When the significant elements of S are on top, the column
space basis is on the left like it is with U. When it is on the bottom, one feels that
the B is being treated as something of a “mirror image" of A with the column space
basis on the right of V', and S being something of a 180 degree rotation (in structure)
from C.

A.2. The matrix H that has no orthogonality or diagonal properties.
On a first glance, no self-respecting decomposition in the SVD family should be neither
diagonal nor orthogonal. Nonetheless, all we can say about H is that H € R"™*" is a
full row rank matrix whose rowspace is that of [4; B]. A very common case is 7 =n
in which case H is square non-singular.

In the same way that a vector is specified by its direction and length, we think
of [A; B] as being specified by its column space and the rest of the information. The
matrix H specifies the rest of the information.

Rowspace information is available in H. The first r, rows of H form a basis for
the rowspace of A. The last r, rows of H form a basis for the rowspace of B. The
nullspaces are not as immediately available due to the non-orthogonality of H. The
nullspace of H is the common nullspace of A and B. Of course one can use a QR
decomposition.

A.3. Compact Formats. One can optionally delete all the zero rows of C' or S
and the corresponding columns of U and V. This kills the left nullspace basis vectors,
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but preserves the column space vectors.

A.4. Expanded Format. When r < n one can add n — 7 zero columns to both
C and S and expand H to a full square non-singular matrix by adding any n —r rows
to H that would make it invertible.

A.5. Further reduction to Orthogonal and Triangular. The Expanded H
matrix can be written [0 R]Q’, where R is triangular R™", and @ is square orthogonal
R™™. 1In this case the initial n — r columns of () are an orthogonal basis for the
common nullspace of A and B.
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GSVD DOCUMENTATION IN THE CORRESPONDING LAN-
LANGUAGE

GUAGE

https://www.mathworks.com/help /matlab /ref/gsvd.html

[U,v,X,C,S] = gsvd(A,B) returns unitary matrices U and
V, a (usually) square matrix X, and nonnegative
diagonal matrices C and S so that
A = UxCxX’

B = V*SxX’
C’*C + S’*%3 = 1
MATLAB A and B must have the same number of columns, but may
(R2018b) have different numbers of rows. If A is m-by-p
and B is n-by-p, then U is m-by-m, V is n-by-n, X
is p-by-q, C is m-by-q and S is n-by-q, where q
= min(m+n,p).

The nonzero elements of S are always on its main
diagonal. The nonzero elements of C are on the
diagonal diag(C,max(0,q-m)). If m >= q, this is
the main diagonal of C.

https:/ /reference.wolfram.com /language /ref/

SingularValueDecomposition.html

>Details and Options.

MATHEMATICA . o . . .
(11.3.0) SingularValueDecomposition[m,a] gives a list of matri-

ces {{u,ual},{w,wa},v} such that m can be written as
u.w.Conjugate [Transpose[v]] and a can be written as
ua.wa.Conjugate [Transpose[v]].

https://www.rdocumentation.org/packages/geigen/
versions/2.2/topics/ GSVD

The matrix A is a m-by-n matrix and the matrix B is a
p-by-n matrix. This function decomposes both matrices; if
either one is complex than the other matrix is coerced to be
complex. The Generalized Singular Value Decomposition of
numeric matrices A and B is given as

A=UD;[0 R/, and B =VD,0 R|Q,

R (geigen v2.2) where U an m x m orthogonal matrix

V an p x p orthogonal matrix

Q@ an n x n orthogonal matrix

R an r-by-r upper triangular non singular matrix and the
matrix [0 R] is an r-by-n matrix.

D1, D5 are quasi diagonal matrices and nonnegative and
satisfy D7Dy + D, Dy = I. Dy is an m-by-r matrix and Dy
is a p-by-r matrix.

For details on this decomposition and the structure of the
matrices D7 and Ds. see http://www.netlib.org/lapack/
lug /node36.html.

TABLE 3
The GSVD as portrayed in the documentation of most technical computing languages seems
unlikely to inspire the user unfamiliar with the GSVD.
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LANGUAGE ‘ GSVD DOCUMENTATION IN CORRESPONDING LANGUAGE

svd(A, B) -> GeneralizedSVD

Compute the generalized SVD of A and B, returning a

GeneralizedSVD factorization object F such that

[A;B] = [F.U * F.D1; F.V * F.D2] * F.RO * F.Q’

U is a M-by-M orthogonal matrix,

V is a P-by-P orthogonal matrix,

Q is a N-by-N orthogonal matrix,

D1 is a M-by-(K+L) diagonal matrix with 1s in
the first K entries,

D2 is a P-by-(K+L) matrix whose top right L-by-L
block is diagonal,

* RO is a (K+L)-by-N matrix whose rightmost (K+L)-

by-(K+L) block is nonsingular upper block

* X ¥ *

*

triangular,
K+L is the effective numerical rank of the matrix [A
; Bl.
. Iterating the decomposition produces the components
Julia 1.4 (and & P P P

U, VvV, Q, D1, D2, and RO.

The generalized SVD is used in applications such as
when one wants to compare how much belongs to A
vs. how much belongs to B, as in human vs yeast
genome, or signal vs noise, or between clusters
vs within clusters. (See Edelman and Wang for
discussion: https://arxiv.org/abs/1901.00485)

It decomposes [A; B] into [UC; VS]H, where [UC; VS]
is a natural orthogonal basis for the column
space of [A; B], and H = RQ’ is a natural non-
orthogonal basis for the rowspace of [A;B],
where the top rows are most closely attributed
to the A matrix, and the bottom to the B matrix.

The multi-cosine/sine matrices C and S provide
a multi-measure of how much A vs how much B, and
U and V provide directions in which these are

measured.

above)

TABLE 4

Documentation in Julia 1.4 (and above) with the original pull request hitps:// github.com/
JuliaLang/ julia/pull/ 30239.
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