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Abstract

In this paper we study a bilinear optimal control problem associated to a 3D chemo-repulsion

model with linear production. We prove the existence of weak solutions and we establish a

regularity criterion to get global in time strong solutions. As a consequence, we deduce the

existence of a global optimal solution with bilinear control and, using a Lagrange multipliers

theorem, we derive first-order optimality conditions for local optimal solutions.
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1 Introduction

The chemotaxis phenomenon is understood as the directed movement of live organisms in response to

chemical gradients. Keller and Segel [18] proposed a mathematical model that describes chemotactic

aggregation of cellular slime molds which move preferentially towards relatively high concentrations

of a chemical substance secreted by the amoebae themselves, which is called chemo-attraction with

production. When the regions of high chemical concentration generate a repulsive effect on the

organisms, the phenomenon is called chemo-repulsion.
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In this work we study an optimal control problem subject to a chemo-repulsion with linear

production system in which a bilinear control acts injecting or extracting chemical substance on a

subdomain of control Ωc ⊂ Ω. Specifically, we consider Ω ⊂ R
3 be a simply connected bounded

domain with boundary ∂Ω of class C2 and (0, T ) a time interval, with 0 < T < +∞. Then we

study a control problem related to the following system in the time-space domain Q := (0, T )× Ω,





∂tu−∆u = ∇ · (u∇v),

∂tv −∆v + v = u+ f v χ
Ωc
,

(1)

with initial conditions

u(0, ·) = u0 ≥ 0, v(0, ·) = v0 ≥ 0 in Ω, (2)

and non-flux boundary conditions

∂u

∂n
= 0,

∂v

∂n
= 0 on (0, T ) × ∂Ω, (3)

where n denotes the outward unit normal vector to ∂Ω. In (1), the unknowns are the cell density

u(t, x) ≥ 0 and chemical concentration v(t, x) ≥ 0. The function f = f(t, x) denotes a bilinear

control acting in the chemical equation. We observe that in the subdomains of Ω where f ≥ 0 the

chemical substance is injected, and conversely where f ≤ 0 the chemical substance is extracted.

System (1)-(3) without control (i.e. f ≡ 0) has been studied in [10], [32]. In [10], the authors

proved the global existence and uniqueness of smooth classical solutions in 2D domains, and global

existence of weak solutions in dimension 3 and 4. In [32], on a bounded convex domain Ω ⊂ R
n

(n ≥ 3), it is proved that a modified system of (1)-(3), changing the chemotactic term ∇ · (u∇v) by

∇· (g(u)∇v) with an adequate density-dependent chemotactic function g(u), has a unique global in

time classical solution. This result is not applicable in our case, because g(u) = u does not satisfies

the hypothesis imposed in [32].

There is an extensive literature devoted to the study of control problems with PDEs, see for

instance [2, 6, 7, 17, 19, 21, 24, 25, 31, 35] and references therein. In all previous works, the control is

of distributed or boundary type. As far as know, the literature related to optimal control problems

with PDEs and bilinear control is scarce, see [4, 13, 16, 20, 34].

In the context of optimal control problems associated to chemotaxis models, the literature is
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also scarce. In [13, 29] a 1D problem is studied. In [13] the authors analyzed two problems for a

chemoattractant model. The bilinear control acts on the whole Ω in the cells equation. The existence

of optimal control is proved and an optimality system is derived. Also, a numerical scheme for the

optimality system is designed and some numerical simulations are presented. In [29] a boundary

control problem for a chemotaxis reaction-diffusion system is studied. The control acts on the

boundary for the chemical substance, and the existence of optimal solution is proved. A distributed

optimal control problem for a two-dimensional model of cancer invasion has been studied in [11],

proving the existence of optimal solution and deriving an optimality system. Rodríguez-Bellido

et al. [27] study a distributive optimal control problem related to a 3D stationary chemotaxis

model coupled with the Navier-Stokes equations (chemotaxis-fluid system). The authors prove

the existence of an optimal solution and derive an optimality system using a penalty method,

taking into account that the relation control-state is multivalued. Ryu and Yagi [28] study an

extreme problem for a chemoattractant 2D model, in which the control variable is distributed in

the chemical equation. They prove the existence of optimal solutions, and derive an optimality

system, using the fact that the state is differentiable with respect to the control. Other studies

related to controllability for the nonstationary Keller-Segel model and nonstationary chemotaxis-

fluid system can be consulted in [8] and [9], respectively.

In [16], an optimal bilinear control problem related to strong solutions of system (1)-(3) in

2D domains was studied, proving the existence and uniqueness of global strong solutions, and the

existence of global optimal control. Moreover, using a Lagrange multiplier theorem, first-order

optimality conditions are derived. Now, this paper can be seen as a 3D version of [16]. In fact,

similarly to [16], the main objective now is to prove the existence of global optimal solutions and to

derive optimality conditions, which will be more complicated because the PDE system is considered

in 3D domains. In this case, we distinguish two different types of solutions: weak and strong. The

existence of weak solutions can be obtained under minimal assumptions (see Theorem 1). However,

such result is not sufficient to carry out the study of the control problem, due to the lack of regularity

of weak solutions. In order to overcome this problem, we introduce a regularity criterion that allows

to obtain a (unique) strong solution of (1)-(3) (see Theorem 3). As far as we know, there are no

results of global in time regularity of weak solutions of system (1)-(3) in 3D domains. This is similar

to what happens with the Navier-Stokes equations (see [33]).
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In this work, we deal with strong solutions of (1)-(3) which allows us to analyze the control

problem. However, we are going to prove the existence of an optimal control associated to strong

solutions, assuming the existence of controls such that the associated strong solution exists. Fol-

lowing the ideas of [6, 7], we consider a regularity criterion in the objective functional such that any

weak solution of (1)-(3) with this regularity is also a strong solution.

The paper is organized as follow: In Section 2, we fix the notation, introduce the functional

spaces to be used and we state a regularity result for linear parabolic-Neumann problems that will

be used throughout this work. In Section 3 we give the definition of weak solutions of (1)-(3) and,

by introducing a family of regularized problems related to (1)-(3) (its existence is deduced in the

Appendix) and passing to the limit, prove the existence of weak solutions of system (1)-(3). In

Section 4 we give the definition of strong solutions of (1)-(3), and we establish a regularity criterion

under which weak solutions of (1)-(3) are also strong solutions. Section 5 is dedicated to the study of

a bilinear control problem related to strong solutions of system (1)-(3), proving the existence of an

optimal solution and deriving the first-order optimality conditions based on a Lagrange multipliers

argument in Banach spaces. Finally, we obtain a regularity result for these Lagrange multipliers.

2 Preliminaries

We will introduce some notations. We will use the Lebesgue space Lp(Ω), 1 ≤ p ≤ +∞, with

norm denoted by ‖ · ‖Lp . In particular, the L2-norm and its inner product will denoted by ‖ · ‖
and (·, ·), respectively. We consider the usual Sobolev spaces Wm,p(Ω) = {u ∈ Lp(Ω) : ‖∂αu‖Lp <

+∞, ∀|α| ≤ m}, with norm denoted by ‖ · ‖Wm,q . When p = 2, we write Hm(Ω) := Wm,2(Ω) and

we denote the respective norm by ‖·‖Hm . Also, we use the space Wm,p
n (Ω) = {u ∈ Wm,p(Ω) : ∂u

∂n =

0 on ∂Ω} (m ≥ 2) and its norm denoted by ‖ · ‖Wm,p
n

. If X is a Banach space, we denote by Lp(X)

the space of valued functions in X defined on the interval [0, T ] that are integrable in the Bochner

sense, and its norm will be denoted by ‖ · ‖Lp(X). For simplicity we denote Lp(Q) := Lp(0, T ;Lp)

and its norm by ‖ · ‖Lp(Q). We also denote by C([0, T ];X) the space of continuous functions from

[0, T ] into a Banach space X, whose norm is given by ‖ · ‖C(X). The topological dual space of a

Banach space X will be denoted by X ′, and the duality for a pair X and X ′ by 〈·, ·〉X′ or simply by

〈·, ·〉 unless this leads to ambiguity. Moreover, the letters C, K, C0, K0, C1, K1,..., denote positive

constants, independent of state (u, v) and control f , but its value may change from line to line.
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In order to study the existence of solution of system (1)-(3), we define the space

Ŵ 2−2/p,p(Ω) :=





W 2−2/p,p(Ω) if p < 3,

W
2−2/p,p
n (Ω) if p > 3,

and we will often use the following regularity result for the heat equation (see [12, p. 344]).

Lemma 1. Let 1 < p < +∞, u0 ∈ Ŵ 2−2/p,p(Ω) and g ∈ Lp(Q). Then the problem





∂tu−∆u = g in Q,

u(0, ·) = u0 in Ω,

∂u

∂n
= 0 on (0, T )× ∂Ω,

admits a unique solution u such that

u ∈ C([0, T ]; Ŵ 2−2/p,p) ∩ Lp(W 2,p), ∂tu ∈ Lp(Q).

Moreover, there exists a positive constant C := C(p,Ω, T ) such that

‖u‖
C(Ŵ 2−2/p,p)

+ ‖∂tu‖Lp(Q) + ‖u‖Lp(W 2,p) ≤ C(‖g‖Lp(Q) + ‖u0‖Ŵ 2−2/p,p).

For simplicity, in what follows we will use the following notation

Xp := {u ∈ C([0, T ]; Ŵ 2−2/p,p) ∩ Lp(W 2,p) : ∂tu ∈ Lp(Q)},

and its norm will be denoted by ‖ · ‖Xp . In fact, u ∈ Xp iff u ∈ W 2,1
p (Ω) := {u ∈ Lp(W 2,p) : ∂tu ∈

Lp(Q)} and u ∈ C([0, T ]; Ŵ 2−2/p,p).

Throughtout this paper, we will use the following equivalent norms in H1(Ω) and H2(Ω), re-

spectively (see [26] for details):

‖u‖2H1 ≃ ‖∇u‖2 +
(∫

Ω
u

)2

, ∀u ∈ H1(Ω), (4)

‖u‖2H2 ≃ ‖∆u‖2 +
(∫

Ω
u

)2

, ∀u ∈ H2
n
(Ω), (5)
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and the classical interpolation inequality in 3D domains

‖u‖L4 ≤ C‖u‖1/4‖u‖3/4
H1 , ∀u ∈ H1(Ω). (6)

Remark 1. The problem (1)-(3) is conservative in u, because the total mass
∫
Ω u(t) remains con-

stant in time. In fact, integrating (1)1 in Ω we have

d

dt

(∫

Ω
u

)
= 0, i.e.

∫

Ω
u(t) =

∫

Ω
u0 := m0, ∀t > 0.

Also, integrating (1)2 in Ω we deduce that
∫
Ω v satisfies

d

dt

(∫

Ω
v

)
+

∫

Ω
v = m0 +

∫

Ω
f v χ

Ωc
, ∀t > 0.

3 Existence of Weak Solutions of Problem (1)-(3)

Definition 1. (Weak solution) Let f ∈ L4(Qc) := L4(0, T ;L4(Ωc)), u0 ∈ L2(Ω), v0 ∈ H1(Ω) with

u0 ≥ 0 and v0 ≥ 0 in Ω, a pair (u, v) is called weak solution of problem (1)-(3) in (0, T ), if u ≥ 0,

v ≥ 0,

u ∈ L5/3(Q) ∩ L5/4(W 1,5/4), ∂tu ∈ [L10(W 1,10)]′, (7)

v ∈ L∞(H1) ∩ L2(H2), ∂tv ∈ L5/3(Q), (8)

the following variational formulation holds for the u-equation

−
∫ T

0
〈u, ∂tu〉+

∫ T

0
(∇u,∇u) +

∫ T

0
(u∇v,∇u) = (u0, u(0)), ∀u ∈ Xu, (9)

the v-equation (1)2 holds pointwisely a.e. (t, x) ∈ Q, and the initial and boundary conditions for v

(2)2-(3)2 are satisfied. The space Xu given in (9) is defined as follow

Xu = {u ∈ L10(W 1,10) : ∂tu ∈ L5/2(Q) and u(T ) = 0 in Ω}.
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Remark 2. This definition of weak solution implies, in particular, that

u ∈ L∞(L1) and

∫

Ω
u(t) =

∫

Ω
u0 = m0.

Also, each term of (9) has sense. In particular, from (7)-(8) one has that u∇v ∈ L10/9(Q).

Theorem 1. (Existence of weak solutions of (1)-(3)) There exists a weak solution (u, v) of system

(1)-(3) in the sense of Definition 1.

The proof of this theorem follows from the two next subsections.

3.1 Regularized Problem

In order to prove Theorem 1, we will study the following family of regularized problems related to

system (1)-(3), for any ε ∈ (0, 1). Given an adequate regularization (uε0, v
ε
0) of initial data (u0, v0),

we define (uε, zε) as the solution of





∂tu
ε −∆uε = ∇ · (uε∇v(zε)) in Q,

∂tz
ε −∆zε + zε = uε + f v(zε)+χΩc

in Q,

uε(0) = uε0, zε(0) = vε0 − ε∆vε0 in Ω

∂uε

∂n
= 0,

∂zε

∂n
= 0 on (0, T )× ∂Ω,

(10)

where vε := v(zε) is the unique solution of the problem





vε − ε∆vε = zε in Ω,

∂vε

∂n
= 0 on ∂Ω,

(11)

and v+ := max{v, 0} ≥ 0.

We choose the initial conditions uε0 and vε0, with uε0 ≥ 0 in Ω, such that (uε0, v
ε
0 − ε∆vε0) ∈

W 4/5,5/3(Ω)×W
7/5,10/3
n (Ω) and

(uε0, v
ε
0 − ε∆vε0) → (u0, v0) in L2(Ω)×H1(Ω), as ε → 0. (12)

In the remaining of this section, we will denote v(zε) only by vε.
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Definition 2. Let uε0 ∈ W 4/5,5/3(Ω), vε0 − ε∆vε0 ∈ W
7/5,10/3
n (Ω) with uε0 ≥ 0 in Ω, and f ∈ L4(Qc).

We say that a pair (uε, zε) is a (strong) solution of problem (10) in (0, T ), if uε ≥ 0 in Q,

(uε, zε) ∈ X5/3 ×X10/3,

the equations (10)1-(10)2 holds pointwisely a.e. (t, x) ∈ Q, and the initial and boundary conditions

(10)3-(10)4 are satisfied.

Remark 3. Integrating (10)1 in Ω we have

∫

Ω
uε(t) =

∫

Ω
uε0 := mε

0 ∀t > 0. (13)

In fact, ‖uε(t)‖L1 = ‖uε0‖L1 := mε
0. Moreover, integrating (10)2 in Ω we deduce

d

dt

(∫

Ω
zε
)
+

∫

Ω
zε = mε

0 +

∫

Ω
f vε+χΩc

,

which implies
d

dt

(∫

Ω
zε
)2

+

(∫

Ω
zε
)2

≤
(
mε

0 +

∫

Ω
f vε+χΩc

)2

.

Theorem 2. There exists a strong solution (uε, zε) ∈ X5/3 ×X10/3 of system (10) in (0, T ) in the

sense of Definition 2.

The proof of Theorem 2 is carried out in the Appendix.

3.2 Proof of Theorem 1. Taking limit as ε → 0.

From the energy inequality (116) (see the proof of Lemma 10 in the Appendix) and the conservativity

property (13) we deduce the following estimates (uniformly with respect to ε)





{∇
√
uε + 1}ε>0 is bounded in L2(Q),

{
√
uε + 1}ε>0 is bounded in L∞(L2) ∩ L2(L6) →֒ L10/3(Q) ∩ L8(L12/5),

{vε}ε>0 is bounded in L∞(H1) ∩ L2(H2),

{√ε∆vε}ε>0 is bounded in L∞(L2) ∩ L2(H1),

(14)
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which implies 



{uε}ε>0 is bounded in L5/3(Q) ∩ L4(L6/5),

{zε}ε>0 is bounded in L∞(L2) ∩ L2(H1),

{∂tuε}ε>0 is bounded in [L10(W 1,10)]′,

{∂tzε}ε>0 is bounded in [L2(H1)]′.

(15)

On the other hand, taking into account that ∇uε = 2
√
uε + 1∇

√
uε + 1, from (14)1 and (14)2 we

deduce that

{uε}ε>0 is bounded in L5/4(W 1,5/4). (16)

Also, from (14)3 we have that {∇vε}ε>0 is bounded in L∞(L2)∩L2(H1) →֒ L10/3(Q), which jointly

to (15)1 implies that

{uε∇vε}ε>0 is bounded in L10/9(Q). (17)

Notice that from (11) and (14)4 we obtain that

zε − vε = −ε∆vε → 0 as ε → 0, in the L∞(L2) ∩ L2(H1)-norm. (18)

Therefore, from (14), (15), (16) and (18), we deduce that there exists limit functions (u, v) such

that 



u ∈ L5/3(Q) ∩ L5/4(W 1,5/4),

v ∈ L∞(H1) ∩ L2(H2),

and for some subsequence of {(uε, vε, zε)}ε>0, still denoted by {(uε, vε, zε)}ε>0, the following con-

vergences holds, as ε → 0,





uε → u weakly in L5/3(Q) ∩ L5/4(W 1,5/4),

vε → v weakly in L2(H2) and weakly* in L∞(H1),

zε → v weakly in L2(H1) and weakly* in L∞(L2),

∂tu
ε → ∂tu weakly* in [L10(W 1,10)]′,

∂tz
ε → ∂tv weakly* in [L2(H1)]′.

(19)

9



We will verify that (u, v) is a weak solution of (1)-(3). From (15)3, (16) and the Aubin-Lions lemma

(see [22, Théorème 5.1, p. 58]) we deduce that

{uε}ε>0 is relatively compact in L5/4(L2) (and also in Lp(Q), ∀p < 5/3). (20)

Thus, from (19)2, (20) and taking into account (17) we have

uε∇vε → u∇v weakly in L10/9(Q). (21)

On the other hand, from (19)3, (19)5, [22, Théorème 5.1, p. 58] and [30, Corollary 4] we obtain

zε → v strongly in L2(Q) ∩ C([0, T ]; (H1)′). (22)

Thus, from (18), (19)2 and (22) we deduce that vε converges to v strongly in L2(Q), which implies

vε+ → v+ strongly in L2(Q).

Then, using that {vε}ε>0 is bounded in L∞(H1) ∩ L2(H2) →֒ L10(Q) and f ∈ L4(Qc), we deduce

f vε+χΩc
→ f v+χΩc

weakly in L20/7(Q). (23)

Also from (22), zε(0) converges to v(0) in H1(Ω)′, then from (12) and the uniqueness of the limit

we have v(0) = v0, which is the initial condition given in (2)2.

Therefore, taking to the limit in the regularized problem (10), as ε → 0, and taking into account

(12), (19), (21) and (23) we conclude that (u, v) satisfies the weak formulation

−
∫ T

0
〈u, ∂tu〉+

∫ T

0
(∇u,∇u) +

∫ T

0
(u∇v,∇u) = (u0, u(0)) ∀u ∈ Xu, (24)

∫ T

0
〈∂tv, z〉+

∫ T

0
(∇v,∇z) +

∫ T

0
(v, z̄) =

∫ T

0
(u, z) +

∫ T

0
(f v+χΩc

, z) ∀ z ∈ L2(H1). (25)

Integrating by parts in (25), and using that u ∈ L5/3(Q) and v ∈ L2(H2), we deduce that v is the

10



unique solution of the problem





∂tv −∆v + v = u+ f v+χΩc
in L5/3(Q),

v(0) = v0 in Ω,

∂v

∂n
= 0 on (0, T )× ∂Ω.

(26)

Finally, we will check the positivity of (u, v). Indeed, the positivity of u follow from (20) and the

fact that uε ≥ 0 a.e. (t, x) ∈ Q (see Lemma 10 in the Appendix). In order to check that v ≥ 0, we

test (26)1 by v− := min{v, 0} ≤ 0, taking into account that u ≥ 0, and using that v− = 0 if v ≥ 0,

∇v− = ∇v if v ≤ 0 and ∇v− = 0 if v > 0, we obtain

1

2

d

dt
‖v−‖2 + ‖∇v−‖2 + ‖v−‖2 = (u, v−) + (f v+χΩc

, v−) ≤ 0,

which implies that v− ≡ 0, then v ≥ 0 a.e. (t, x) ∈ Q. Thus, since v+ ≡ v then v ≥ 0 is also a

solution of the v-equation (1)2.

4 Regularity Criterion

In this section we will give a regularity criterion of system (1)-(3).

Definition 3. (Strong solution of problem (1)-(3)) Let f ∈ L4(Qc), u0 ∈ H1(Ω), v0 ∈ W
3/2,4
n (Ω)

with u0 ≥ 0 and v0 ≥ 0 in Ω. A pair (u, v) is called strong solution of problem (1)-(3) in (0,T), if

u ≥ 0, v ≥ 0 in Q,

(u, v) ∈ X2 ×X4, (27)

the system (1) holds pointwisely a.e. (t, x) ∈ Q, and the initial and boundary conditions (2) and (3)

are satisfied.

Remark 4. Using the interpolation inequality (6), Gronwall lemma and proceeding as for the

Navier-Stokes equations (see [33]), we can deduce the uniqueness of strong solutions of (1)-(3).

Theorem 3. (Regularity Criterion) Let (u, v) be a weak solution of (1)-(3). If, in addition, u0 ∈
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H1(Ω), v0 ∈ W
3/2,4
n (Ω) and the following regularity criterion holds

u ∈ L20/7(Q), (28)

then (u, v) is a strong solution of (1)-(3) in sense of Definition 3. Moreover, there exists a positive

constant K = K(‖u0‖H1 , ‖v0‖W 3/2,4
n

, ‖f‖L4(Q)) such that

‖u, v‖X2×X4
≤ K. (29)

The proof of this theorem follows from the two next subsections.

4.1 Interpolation and embedding results

In order to proof Theorem 3, starting from the regularity of u and v, we will get the regularity for

∇ · (u∇v) which improves the regularity for u. With this new regularity for u, the regularity for

∇ · (u∇v) is improved several times using a bootstraping argument. Along the proof of Theorem

3, different interpolation results will be used together with some embeddings results that will be

stated below.

As a consequence of the interpolation inequality

‖u‖Lp ≤ ‖u‖1−θ
Lp1 ‖u‖θLp2 , with

1

p
=

1− θ

p1
+

θ

p2
and θ ∈ [0, 1]

we have the following result

Lemma 2. Let p1, p2, q1, q2, p, q ≥ 1 such that

1

q
=

1− θ

q1
+

θ

q2
and

1

p
=

1− θ

p1
+

θ

p2
, with θ ∈ [0, 1].

Then,

Lp1(Lq1) ∩ Lp2(Lq2) →֒ Lp(Lq). (30)

Using the Sobolev embedding

W r,p(Ω) →֒ Lq(Ω), with
1

q
=

1

p
− r

N
,

12



where N is the space-dimension and the Gagliardo-Nirenberg inequality (see [14, Theorem 10.1])

W s,p1(Ω) ∩ Lp2(Ω) →֒ Lp(Ω), with
1

p
= θ

(
1

p1
− s

N

)
+

1− θ

p2
and θ ∈ [0, 1]

we deduce the following result

Lemma 3. Let p1, q1, p2, p, q ≥ 1 such that

1

q
=

1− θ

q1
+ θ

(
1

p1
− r

N

)
and

1

p
=

θ

p2
with θ ∈ [0, 1] and r > 0.

Then,

L∞(Lq1) ∩ Lp2(W r,p1) →֒ Lp(Lq).

Lemma 4. ([1, Theorem 7.58, p.218]) Let 1 < p < 2, and r, s > 0 such that

s = N

(
1

2
− 1

p

)
+ r.

Then,

W r,p(Ω) →֒ Hs(Ω).

Lemma 5. ([23, Théorème 9.6, p. 49]) Let p1, p2, p ≥ 1 and s1, s2, s > 0 such that

s = (1− θ)s1 + θs2 and
1

p
=

1− θ

p1
+

θ

p2
, with θ ∈ [0, 1].

Then,

Lp1(Hs1) ∩ Lp2(Hs2) →֒ Lp(Hs).

4.2 Proof of Theorem 3

Proof. The proof is carried out into four steps:

Step 1: v ∈ X20/7

From Theorem 1, we know that there exists a weak solution (u, v) of system (1)-(3) in the sense

of Definition 1. Thus, in particular v ∈ L10(Q) and then fvχ
Ωc

∈ L20/7(Q), which implies, using

hypothesis (28), that u+ fvχ
Ωc

∈ L20/7(Q). Then, applying Lemma 1 (for p = 20/7) to equation

13



(1)2, we have v ∈ X20/7. In particular, using Sobolev embeddings we have

v ∈ L∞(Q), (31)

∇v ∈ L∞(L4) ∩ L20/7(W 1,20/7) →֒ L∞(L4) ∩ L20/7(L60). (32)

Embedding (30) for p1 = ∞, q1 = 4, p2 = 20/7 and q2 = 60 (see Lemma 2) implies p = q = 20/3

hence

∇v ∈ L∞(L4) ∩ L20/7(L60) →֒ L20/3(Q). (33)

Step 2: u ∈ L∞(L2) ∩ L2(H1).

Starting from u ∈ L20/7(Q) ∩ L5/4(W 1,5/4) and v ∈ X20/7, we improve the regularity of u by a

bootstrapping argument in eigth sub-steps:

i) u ∈ X20/19:

Using that (u,∆v) ∈ L20/7(Q) × L20/7(Q) (hence u∆v ∈ L10/7(Q)), and (∇u,∇v) ∈ L5/4(Q) ×
L20/3(Q) (hence ∇u · ∇v ∈ L20/19(Q)) we have

∇ · (u∇v) = u∆v +∇u · ∇v ∈ L20/19(Q).

Thus, applying Lemma 1 (for p = 20/19) to equation (1)1 we obtain that u ∈ X20/19.

ii) u ∈ X10/9: Since u ∈ X20/19, then by Sobolev embeddings

∇u ∈ L20/19(W 1,20/19) →֒ L20/19(L60/37). (34)

Moreover, using (30) in (32) (for p1 = ∞, q1 = 4, p2 = 20/7, q2 = 60 and p = 20, hence q = 60/13),

we obtain

∇v ∈ L∞(L4) ∩ L20(L60/13). (35)

Thus, from (34) and (35) we have ∇u ·∇v ∈ L20/19(L15/13)∩L1(L6/5). Then, owing to (30) applied

to (p1, q1) = (20/19, 15/13) and (p2, q2) = (1, 6/5) implies that p = q = 10/9, hence

∇u · ∇v ∈ L10/9(Q).

14



Since u∆v ∈ L10/7(Q), we have ∇ · (u∇v) ∈ L10/9(Q). Then, applying Lemma 1 (for p = 10/9) to

(1)1 we deduce that u ∈ X10/9.

iii) u ∈ X20/17: Since u ∈ X10/9, then

∇u ∈ L10/9(W 1,10/9) →֒ L10/9(L30/17). (36)

Now, using (30) in (32) (for p1 = ∞, q1 = 4, p2 = 20/7, q2 = 60 and p = 10, hence q = 60/11), we

obtain

∇v ∈ L∞(L4) ∩ L10(L60/11),

which jointly to (36) implies ∇u · ∇v ∈ L10/9(L60/49) ∩ L1(L4/3). Then using (30) with (p1, q1) =

(10/9, 60/49), (p2, q2) = (1, 4/3) implies that p = q = 20/17, hence

∇u · ∇v ∈ L20/17(Q).

Since u∆v ∈ L10/7(Q), we have ∇ · (u∇v) ∈ L20/17(Q). Then, applying Lemma 1 (for p = 20/17)

to (1)1 we deduce that u ∈ X20/17.

iv) u ∈ X5/4: Since u ∈ X20/7 then

∇u ∈ L20/17(W 1,20/17) →֒ L20/17(L60/31),

and, from (33), ∇v ∈ L∞(L4) ∩ L20/3(Q), then ∇u · ∇v ∈ L20/17(L30/23) ∩ L1(L3/2), which thanks

to (30) applied to (p1, q1) = (20/17, 30/23), (p2, q2) = (1, 3/2) implies p = q = 5/4 hence

∇u · ∇v ∈ L5/4(Q).

Since u∆v ∈ L10/7(Q), we obtain that ∇ · (u∇v) ∈ L5/4(Q) and, applying Lemma 1 (for p = 5/4)

to equation (1)1 we deduce u ∈ X5/4.

v) u ∈ X4/3: Using that u ∈ X5/4, then

∇u ∈ L5/4(W 1,5/4) →֒ L5/4(L15/7). (37)

15



Using (30) in (32) (for p1 = ∞, q1 = 4, p2 = 20/7, q2 = 60 and p = 5, hence q = 60/7), we obtain

∇v ∈ L∞(L4) ∩ L5(L60/7);

then from the latter regularity and (37) we have ∇u · ∇v ∈ L5/4(L60/43) ∩ L1(L12/7), which thanks

to (30) applied to (p1, q1) = (5/4, 60/43), (p2, q2) = (1, 2) implies p = q = 4/3, hence

∇u · ∇v ∈ L4/3(Q).

Since u∆v ∈ L10/7(Q), we obtain ∇ · (u∇v) ∈ L4/3(Q). Then, applying Lemma 1 to equation (1)1

we have u ∈ X4/3.

vi) u ∈ X10/7: Since u ∈ X4/3, then

∇u ∈ L4/3(W 1,4/3) →֒ L4/3(L12/5),

again using (30) in (32) (for p1 = ∞, q1 = 4, p2 = 20/7, q2 = 60 and p = 4, hence q = 12), we

obtain

∇v ∈ L∞(L4) ∩ L4(L12)

and ∇u · ∇v ∈ L4/3(L3/2)∩L1(L2), which thanks to (30) applied to (p1, q1) = (4/3, 3/2), (p2, q2) =

(1, 2) implies p = q = 10/7, hence

∇u · ∇v ∈ L10/7(Q).

Since u∆v ∈ L10/7(Q), we obtain ∇ · (u∇v) ∈ L10/7(Q), and applying Lemma 1 (for p = 10/7) to

equation (1)1 we have u ∈ X10/7.

vii) u ∈ X20/13: Since u ∈ X10/7, then





u ∈ L∞(W 3/5,10/7) ∩ L10/7(W 2,10/7) →֒ L∞(L2) ∩ L10/7(L30) →֒ L10/3(Q),

∇u ∈ L10/7(W 1,10/7) →֒ L10/7(L30/11).
(38)

This time, we use (30) in (32) (for p1 = ∞, q1 = 4, p2 = 20/7, q2 = 60 and p = 10/3, hence q = 20),

16



we obtain

∇v ∈ L∞(L4) ∩ L10/3(L20),

the latter regularity, (38) and the fact that ∆v ∈ L20/7(Q) implies

u∆v ∈ L20/13(Q) and ∇u · ∇v ∈ L10/7(L60/37) ∩ L1(L12/5).

From (30) applied to (p1, q1) = (10/7, 60/37), (p2, q2) = (1, 12/5) one has p = q = 20/13 hence

∇u · ∇v ∈ L20/13(Q).

Then, applying Lemma 1 (for p = 20/13) to equation (1)1 we have u ∈ X20/13.

viii) u ∈ L∞(L2) ∩ L2(H1): From Lemma 4, we know that W 7/10,20/13(Ω) →֒ H1/4(Ω) and

W 2,20/13(Ω) →֒ H31/20(Ω). Therefore, from u ∈ X20/13 we can deduce

u ∈ L∞(H1/4) ∩ L20/13(H31/20).

Moreover, from Lemma 5 for (p1, s1) = (∞, 1/4), (p2, s2) = (20/13, 31/20) we have that u ∈
L2(H5/4) →֒ L2(H1). Therefore, from the latter regularity and (38)1 we deduce

u ∈ L∞(L2) ∩ L2(H1) →֒ L10/3(Q). (39)

Step 3: (u, v) ∈ X5/3 ×X10/3, u ∈ L5(Q) and ∇u ∈ L20/9(Q).

From (31), (39) and the fact that f ∈ L4(Q) we obtain u+ fv ∈ L10/3(Q). Then applying Lemma

1 (for p = 10/3) to equation (1)2 we have that v ∈ X10/3. In particular, from Lemma 3 (for

p1 = p2 = 10/3, q1 = 6, r = 1 and p = q = 10) we obtain ∇v ∈ L∞(L6)∩L10/3(W 1,10/3) →֒ L10(Q).

Then, using that (u,∆v) ∈ L10/3(Q) × L10/3(Q), ∇v ∈ L10(Q) and taking into account that

∇u ∈ L2(Q) we have

∇ · (u∇v) = u∆v +∇u · ∇v ∈ L5/3(Q).

Thus, applying Lemma 1 (for p = 5/3) to equation (1)1 we obtain that u ∈ X5/3. Moreover, from
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Sobolev embeddings and again Lemma 3 (for p1 = p2 = 5/3, q1 = 3, r = 2 and p = q = 5) we have

u ∈ L∞(L3) ∩ L5/3(W 2,5/3) →֒ L5(Q). (40)

From Lemma 4 we have the embeddings W 4/5,5/3(Ω) →֒ H1/2(Ω) and W 2,5/3(Ω) →֒ H17/10(Ω).

Thus, since u ∈ X5/3, one has

u ∈ L∞(H1/2) ∩ L5/3(H17/10).

Moreover, from Lemma 5 (for (p1, s1) = (∞, 1/2) and (p2, s2) = (5/3, 17/10)), we have u ∈
L20/9(H7/5), and in particular ∇u ∈ L20/9(H2/5) →֒ L20/9(Q).

Step 4: (u, v) ∈ X2 ×X4.

From (31), (40), and using that f ∈ L4(Qc), we have u+ fvχ
Ωc

∈ L4(Q). Then, applying Lemma 1

(for p = 4) to equation (1)2 we deduce that v ∈ X4 and satisfies the estimate

‖v‖X4
≤ C(‖u+ fv‖L4(Q) + ‖v0‖W 3/2,4

n

) ≤ C(‖u‖L4(Q) + ‖f‖L4(Q)‖v‖L∞(Q) + ‖v0‖W 3/2,4
n

)

≤ C0(‖u0‖W 4/5,5/3 , ‖v0‖W 3/2,4
n

, ‖f‖L4(Q)). (41)

In particular, by Sobolev embeddings and Lemma 3 (for p1 = p2 = 4, q1 = 12, r = 1 hence

p = q = 20) we have ∇v ∈ L∞(L12) ∩ L4(W 1,4) →֒ L20(Q).

Now, using that (u,∆v) ∈ L5(Q)× L4(Q) and (∇u,∇v) ∈ L20/9(Q)× L20(Q) we obtain

∇ · (u∇v) = u∆v +∇u · ∇v ∈ L2(Q).

Therefore, applying Lemma 1 (for p = 2) to equation (1)1 we deduce that u ∈ X2 and

‖u‖X2
≤ C(‖u‖L5(Q)‖∆v‖L4(Q) + ‖∇u‖L20/9(Q)‖∇v‖L20(Q) + ‖u0‖H1)

≤ C1(‖u0‖H1 , ‖v0‖W 3/2,4
n

, ‖f‖L4(Q)). (42)

Finally, we observe that estimate (29) follows from (41) and (42).
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5 The Optimal Control Problem

In this section we establish the statement of the bilinear control problem. Following [6, 7], we

formulate the control problem in such a way that any admissible state is a strong solution of (1)-

(3). Since there is no existence result of global in time strong solutions of (1)-(3), we have to choose

a suitable objective functional.

We suppose that

F ⊂ L4(Qc) := L4(0, T ;L4(Ωc)) is a nonempty and convex set, (43)

where Ωc ⊂ Ω is the control domain. We consider data u0 ∈ H1(Ω), v0 ∈ W
3/2,4
n (Ω) with u0 ≥ 0

and v0 ≥ 0 in Ω, and the function f ∈ F describing the bilinear control acting on the v-equation.

Now, we define the following constrained minimization problem related to system (1)-(3):





Find (u, v, f) ∈ X2 ×X4 ×F such that the functional

J(u, v, f) :=
7αu

20

∫ T

0
‖u(t)− ud(t)‖20/7L20/7(Ω)

dt+
αv

2

∫ T

0
‖v(t) − vd(t)‖2L2(Ω)dt

+
αf

4

∫ T

0
‖f(t)‖4L4(Ωc)

dt

is minimized, subject to (u, v, f) satisfies the PDE system (1)-(3).

(44)

Here (ud, vd) ∈ L26/7(Q)×L2(Q) represent the desires states (see the beginning of the proof of

Theorem 7 below to justify the regularity required for ud ∈ L26/7(Q)) and the real numbers αu, αv

and αf measure the cost of the states and control, respectively. These numbers satisfy

αu > 0 and αv, αf ≥ 0.

The admissible set for the optimal control problem (44) is defined by

Sad = {s = (u, v, f) ∈ X2 ×X4 ×F : s is a strong solution of (1)-(3) in (0, T )}.

The functional J defined in (44) describes the deviation of the cell density u and the chemical

concentration v from a desired cell density ud and chemical concentration vd respectively, plus the

cost of the control measured in the L4-norm. We also observe that if (u, v) is a weak solution of
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(1)-(3) in (0, T ) such that J(u, v, f) < +∞, then by Theorem 3, (u, v) is a strong solution of (1)-(3)

in (0, T ). In what follows, we will assume the hypothesis

Sad 6= ∅. (45)

Remark 5. The reason for choosing the first term of the objective functional in the L20/7-norm

is that any weak solution of (1)-(3) satisfying J(u, v, f) < +∞ satisfies that u ∈ L20/7(Q) and

therefore, in virtue of Theorem 3, let us to state that (u, v) is the unique solution of (1)-(3) in the

sense of Definition 3. Thus, we reduce the admissible states of problem (44) to the strong solutions

of (1)-(3). With this formulation we are going to prove the existence of a global optimal solution

and derive the optimality conditions associated to any local optimal solution.

5.1 Existence of Global Optimal Solution

Definition 4. An element (ũ, ṽ, f̃) ∈ Sad will be called a global optimal solution of problem (44) if

J(ũ, ṽ, f̃) = min
(u,v,f)∈Sad

J(u, v, f). (46)

Theorem 4. Let u0 ∈ H1(Ω) and v0 ∈ W
3/2,4
n (Ω) with u0 ≥ 0 and v0 ≥ 0 in Ω. We assume that

either αf > 0 or F is bounded in L4(Qc) and hypothesis (45), then the bilinear optimal control

problem (44) has at least one global optimal solution (ũ, ṽ, f̃) ∈ Sad.

Proof. From hypothesis (45) Sad 6= ∅. Let {sm}m∈N := {(um, vm, fm)}m∈N ⊂ Sad be a minimizing

sequence of J , that is, lim
m→+∞

J(sm) = inf
s∈Sad

J(s). Then, by definition of Sad, for each m ∈ N, sm

satisfies system (1) a.e. (t, x) ∈ Q.

From the definition of J and the assumption αf > 0 or F is bounded in L4(Qc), it follows that

{fm}m∈N is bounded in L4(Qc) (47)

and

{um}m∈N is bounded in L20/7(Q).
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From (29) there exists a positive constant C, independent of m, such that

‖um, vm‖X2×X4
≤ C. (48)

Therefore, from (47), (48), and taking into account that F is a closed convex subset of L4(Qc)

(hence is weakly closed in L4(Qc)), we deduce that there exists s̃ = (ũ, ṽ, f̃) ∈ X2 ×X4 × F such

that, for some subsequence of {sm}m∈N, still denoted by {sm}m∈N, the following convergences hold,

as m → +∞:

um → ũ weakly in L2(H2) and weakly* in L∞(H1), (49)

vm → ṽ weakly in L4(W 2,4) and weakly* in L∞(W
3/2,4
n ), (50)

∂tum → ∂tũ weakly in L2(Q), (51)

∂tvm → ∂tṽ weakly in L4(Q), (52)

fm → f̃ weakly in L4(Qc), and f̃ ∈ F . (53)

From (49)-(52), the Aubin-Lions lemma (see [22, Théorème 5.1, p. 58] and [30, Corollary 4]) and

using Sobolev embedding, we have

um → ũ strongly in C([0, T ];Lp) ∩ L2(W 1,p) ∀p < 6, (54)

vm → ṽ strongly in C([0, T ];Lq) ∩ L4(W 1,q) ∀q < +∞. (55)

In particular, we can control the limit of the nonlinear terms of (1) as follows

∇ · (um∇vm) → ∇ · (ũ∇ṽ) weakly in L20/7(Q), (56)

fmvmχ
Ωc

→ f̃ ṽ χ
Ωc

weakly in L4(Q). (57)

Moreover, from (54) and (55) we have that (um(0), vm(0)) converges to (ũ(0), ṽ(0)) in Lp(Ω)×Lq(Ω),

and since um(0) = u0, vm(0) = v0, we deduce that ũ(0) = u0 and ṽ(0) = v0. Thus s̃ satisfies the

initial conditions given in (2). Therefore, considering the convergences (49)-(57), we can pass to the

limit in (1) satisfied by (um, vm, fm), as m goes to +∞, and we conclude that s̃ = (ũ, ṽ, f̃) is also a
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solution of the system (1) pointwisely, that is, s̃ ∈ Sad. Therefore,

lim
m→+∞

J(sm) = inf
s∈Sad

J(s) ≤ J(s̃). (58)

On the other hand, since J is lower semicontinuous on Sad, we have J(s̃) ≤ lim inf
m→+∞

J(sm), which

jointly to (58), implies (46).

5.2 Optimality System Related to Local Optimal Solutions

We will derive the first-order necessary optimality conditions for a local optimal solution (ũ, ṽ, f̃)

of problem (44), applying a Lagrange multipliers theorem. We will base on a generic result given

by Zowe et al [36] on the existence of Lagrange multipliers in Banach spaces. In order to introduce

the concepts and results given in [36] we consider the following optimization problem

min
x∈M

J(x) subject to G(x) ∈ N , (59)

where J : X → R is a functional, G : X → Y is an operator, X and Y are Banach spaces, M is a

nonempty closed convex subset of X and N is a nonempty closed convex cone in Y with vertex at

the origin. The admissible set for problem (59) is defined by

S = {x ∈ M : G(x) ∈ N}.

For a subset A of X (or Y), A+ denotes its polar cone, that is

A+ = {ρ ∈ X
′ : 〈ρ, a〉X′ ≥ 0, ∀a ∈ A}.

Definition 5. (Lagrange multiplier) Let x̃ ∈ S be a local optimal solution for problem (59). Suppose

that J and G are Fréchet differentiable in x̃, with derivatives J ′(x̃) and G′(x̃), respectively. Then,

any ξ ∈ Y
′ is called a Lagrange multiplier for (59) at the point x̃ if





ξ ∈ N+,

〈ξ,G(x̃)〉Y′ = 0,

J ′(x̃)− ξ ◦G′(x̃) ∈ C(x̃)+,

(60)
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where C(x̃) = {θ(x− x̃) : x ∈ M, θ ≥ 0} is the conical hull of x̃ in M.

Definition 6. Let x̃ ∈ S be a local optimal solution for problem (59). We say that x̃ is a regular

point if

G′(x̃)[C(x̃)]−N (G(x̃)) = Y,

where N (G(x̃)) = {(θ(n−G(x̃)) : n ∈ N , θ ≥ 0} is the conical hull of G(x̃) in N .

Theorem 5. ([36, Theorem 3.1]) Let x̃ ∈ S be a local optimal solution for problem (59). If x̃ is a

regular point, then the set of Lagrange multipliers for (59) at x̃ is nonempty.

Now, we will reformulate the optimal control problem (44) in the abstract setting (59). We

consider the following Banach spaces

X := Wu ×Wv × L4(Qc), Y := L2(Q)× L4(Q)×H1(Ω)×W
3/2,4
n (Ω),

where

Wu :=

{
u ∈ X2 :

∂u

∂n
= 0 on (0, T ) × ∂Ω

}
, (61)

Wv :=

{
v ∈ X4 :

∂v

∂n
= 0 on (0, T ) × ∂Ω

}
, (62)

and the operator G = (G1, G2, G3, G4) : X → Y, where

G1 : X → L2(Q), G2 : X → L4(Q), G3 : X → H1(Ω), G4 : X → W
3/2,4
n (Ω)

are defined at each point s = (u, v, f) ∈ X by





G1(s) = ∂tu−∆u−∇ · (u∇v),

G2(s) = ∂tv −∆v + v − u− f v χ
Ωc
,

G3(s) = u(0)− u0,

G4(s) = v(0) − v0.
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Thus, the optimal control problem (44) is reformulated as follows

min
s∈M

J(s) subject to G(s) = 0, (63)

where

M := Wu ×Wv ×F .

and F is defined in (43).

We observe that M is a closed convex subset of X, N = {0} and the set of admissible solutions

is rewritten as

Sad = {s = (u, v, f) ∈ M : G(s) = 0}. (64)

Concerning to the differentiability of the constraint operator G and the functional J we have the

following results.

Lemma 6. The functional J : X → R is Fréchet differentiable and the derivative of J in s̃ =

(ũ, ṽ, f̃) ∈ X in the direction r = (U, V, F ) ∈ X is

J ′(s̃)[r] = αu

∫ T

0

∫

Ω
sgn(ũ− ud)|ũ− ud|13/7U + αv

∫ T

0

∫

Ω
(ṽ − vd)V + αf

∫ T

0

∫

Ωc

(f̃)3F. (65)

Lemma 7. The operator G : X → Y is Fréchet differentiable and the derivative of G in s̃ =

(ũ, ṽ, f̃) ∈ X in the direction r = (U, V, F ) ∈ X is the linear operator

G′(s̃)[r] = (G′
1(s̃)[r], G

′
2(s̃)[r], G

′
3(s̃)[r], G

′
4(s̃)[r]) defined by





G′
1(s̃)[r] = ∂tU −∆U −∇ · (U∇ṽ)−∇ · (ũ∇V ),

G′
2(s̃)[r] = ∂tV −∆V + V − U − f̃ V χ

Ωc
− F ṽ,

G′
3(s̃)[r] = U(0),

G′
4(s̃)[r] = V (0).

(66)

We wish to prove the existence of Lagrange multipliers, which is guaranteed if a local optimal

solution of problem (63) is a regular point of operator G (in virtue of Theorem 5).

Remark 6. Since for problem (63) N = {0}, then N (G(s̃)) = {0}. Thus, from Definition 6

we conclude that s̃ = (ũ, ṽ, f̃) ∈ Sad is a regular point if for any (gu, gv , U0, V0) ∈ Y there exists
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r = (U, V, F ) ∈ Wu ×Wv × C(f̃) such that

G′(s̃)[r] = (gu, gv , U0, V0),

where C(f̃) := {θ(f − f̃) : θ ≥ 0, f ∈ F} is the conical hull of f̃ in F .

Lemma 8. Let s̃ = (ũ, ṽ, f̃) ∈ Sad (Sad defined in (64)), then s̃ is a regular point.

Proof. Let (gu, gv , U0, V0) ∈ Y. Since 0 ∈ C(f̃) = {θ(f − f̃) : θ ≥ 0, f ∈ F}, it is sufficient to show

the existence of (U, V ) ∈ Wu ×Wv solving the linear problem





∂tU −∆U −∇ · (U∇ṽ)−∇ · (ũ∇V ) = gu in Q,

∂tV −∆V + V − U − f̃ V χ
Ωc

= gv in Q,

U(0) = U0, V (0) = V0 in Ω,

∂U

∂n
= 0,

∂V

∂n
= 0 on (0, T )× ∂Ω.

(67)

Since (67) is a linear system we argue in a formal manner, proving that any regular enough solution

is bounded in Wu ×Wv. A detailed proof can be made by using, for instance, a Galerkin method.

Testing (67)1 by U and (67)2 by −∆V , we have

1

2

d

dt
(‖U‖2 + ‖∇V ‖2) + ‖∇U‖2 + ‖∇V ‖2 + ‖∆V ‖2

≤ |(U∇ṽ,∇U)|+ |(ũ∇V,∇U)|+ |(gu, U)|+ |(U,∆V )|+ |(f̃V χ
Ωc
,∆V )|+ |(gv ,∆V )|. (68)

Using the Hölder and Young inequalities on the terms on the right side of (68) and taking into
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account (6) we obtain

|(U∇ṽ,∇U)| ≤ ‖U‖L4‖∇ṽ‖L4‖∇U‖ ≤ C‖U‖1/4‖∇ṽ‖L4‖U‖7/4
H1

≤ δ‖U‖2H1 +Cδ‖∇ṽ‖8L4‖U‖2, (69)

|(ũ∇V,∇U)| ≤ ‖ũ‖L4‖∇V ‖L4‖∇U‖ ≤ δ‖∇U‖2 + Cδ‖ũ‖2L4‖∇V ‖1/2‖∇V ‖3/2
H1

≤ δ(‖∇U‖2 + ‖∇V ‖2H1) + Cδ‖ũ‖8L4‖∇V ‖2, (70)

|(gu, U)| ≤ δ‖U‖2 + Cδ‖gu‖2, (71)

|(U,∆V )| ≤ δ‖∆V ‖2 + Cδ‖U‖2, (72)

|(f̃ V χ
Ωc
,∆V )| ≤ ‖f̃‖L4‖V ‖L4‖∆V ‖ ≤ δ‖∆V ‖2 + Cδ‖f̃‖2L4‖V ‖2H1 , (73)

|(gv ,∆V )| ≤ δ‖∆v‖2 + Cδ‖gv‖2. (74)

On the other hand, testing by V in (67)2 we obtain

1

2

d

dt
‖V ‖2 + ‖∇V ‖2 + ‖V ‖2 ≤ |(U, V )|+ |(f̃ V χ

Ωc
, V )|+ |(gv, V )|

≤ δ‖V ‖2H1 + Cδ‖U‖2 + Cδ‖f̃‖2L4‖V ‖2 + Cδ‖gv‖2. (75)

Summing the inequalities (68) and (75), and then adding ‖U‖2 to both sides of the inequality

obtained, and taking into account (69)-(74), for δ small enough, we have

d

dt
(‖U‖2 + ‖V ‖2H1) + C‖U‖2H1 + C‖V ‖2H2 ≤ C(1 + ‖∇ṽ‖8L4)‖U‖2 + C(‖gu‖2 + ‖gv‖2)

+ C‖ũ‖8L4‖∇V ‖2 + C‖f̃‖2L4‖V ‖2H1 . (76)

From (76) and Gronwall lemma we deduce that there exists a positive constant C that depends on

T , ‖U0‖, ‖V0‖H1 , ‖ũ‖L8(L4), ‖∇ṽ‖L8(L4), ‖f̃‖L2(L4), ‖gu‖L2(Q) and ‖gv‖L2(Q) such that

‖U, V ‖L∞(L2×H1)∩L2(H1×H2) ≤ C. (77)

In particular, from (77) we obtain that (U, V ) ∈ L10/3(Q)× L10(Q), and since f̃ ∈ L4(Qc) we have

f̃ V χ
Ωc

∈ L20/7(Q). Then, applying Lemma 1 (for p = 20/7) to (67)1, we deduce that

V ∈ X20/7.
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By Sobolev embeddings V ∈ L∞(Q), so that f̃ V χ
Ωc

∈ L4(Q). Thus, using that U ∈ L10/3(Q),

again by Lemma 1 (for p = 10/3) we obtain that

V ∈ X10/3. (78)

Now, testing (67)1 by −∆U we have

1

2

d

dt
‖∇U‖2 + ‖∆U‖2 ≤ |(U∆ṽ,∆U)|+ |(∇U · ∇ṽ,∆U)|+ |(ũ∆V,∆U)|

+ |(∇ũ · ∇V,∆U)|+ |(gu,∆U)|. (79)

Applying the Hölder and Young inequalities to the terms on the right side of (79), and using (6),

we have

|(U∆ṽ,∆U)| ≤ ‖U‖L6‖∆ṽ‖L3‖∆U‖ ≤ C‖U‖H1‖∆ṽ‖L3‖∆U‖

≤ δ‖U‖2H2 + Cδ‖U‖2H1‖∆ṽ‖2L3 , (80)

|(∇U · ∇ṽ,∆U)| ≤ ‖∇U‖L4‖∇ṽ‖L4‖∆U‖ ≤ C‖∇U‖1/4‖∇ṽ‖L4‖U‖7/4
H2

≤ δ‖U‖2H2 + Cδ‖∇U‖2‖∇ṽ‖8L4 , (81)

|(ũ∆V,∆U)| ≤ ‖ũ‖L6‖∆V ‖L3‖∆U‖ ≤ C‖ũ‖H1‖∆V ‖L3‖∆U‖

≤ δ‖U‖2H2 + Cδ‖ũ‖2H1‖∆V ‖2L3 , (82)

|(∇ũ · ∇V,∆U)| ≤ ‖∇ũ‖L3‖∇V ‖L6‖∆U‖ ≤ C‖∇ũ‖L3‖∇V ‖H1‖∆U‖

≤ δ‖U‖2H2 + Cδ‖∇ũ‖2L3‖V ‖2
W 7/5,10/3 , (83)

|(gu,∆U)| ≤ δ‖∆U‖2 + Cδ‖gu‖2. (84)

Now, we observe that
d

dt

(∫

Ω
U

)
=

∫

Ω
gu, which implies

1

2

d

dt

(∫

Ω
U

)2

=

(∫

Ω
gu

)(∫

Ω
U

)
≤ Cδ

(∫

Ω
gu

)2

+ δ

(∫

Ω
U

)2

(85)

and ∣∣∣∣
∫

Ω
U(t)

∣∣∣∣
2

≤
∣∣∣∣
∫

Ω
U0 +

∫ t

0

∫

Ω
gu

∣∣∣∣
2

≤ C. (86)

Summing inequalities (79), (85) and (86), and taking into account (80)-(84), for δ small enough, we
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obtain

d

dt
‖U‖2H1 + C‖U‖2H2 ≤ C‖U‖2H1‖∆ṽ‖2L3 + C‖∇U‖2‖∇ṽ‖8L4 + C‖ũ‖2H1‖∆V ‖2L3

+ C‖∇ũ‖2L3‖V ‖2
W 7/5,10/3 + C‖gu‖2 + C. (87)

We observe that from (78) we have V ∈ L∞(W 7/5,10/3) ∩ L10/3(W 2,10/3), and we know that

ũ ∈ X2, ṽ ∈ X4. Then, from (87) and Gronwall lemma we deduce

U ∈ L∞(H1) ∩ L2(H2) →֒ L10(Q).

Now, since U ∈ L10(Q) and f̃ V χ
Ωc

∈ L4(Q), we have U + f̃ V χ
Ωc

∈ L4(Q). Then, from (67)2 and

Lemma 1 (for p = 4) we conclude that V ∈ X4.

Finally, using that (ũ, U) ∈ L10(Q)2, (∆ṽ,∆V ) ∈ L4(Q)2, (∇ũ,∇U) ∈ L10/3(Q)2, and (∇ṽ,∇V ) ∈
L20(Q)2 we deduce

∇ · (U∇ṽ) +∇ · (ũ∇V ) ∈ L20/7 →֒ L2(Q). (88)

Therefore, thanks to (88), applying Lemma 1 (for p = 2) to (67)1, we conclude that U ∈ X2. Thus,

the proof is finished.

Remark 7. Using a classical comparison argument, inequality (6) and Gronwall lemma, the unique-

ness of solutions of system (67) is deduced.

Now we show the existence of Lagrange multiplier for problem (44) associated to any local

optimal solution s̃ = (ũ, ṽ, f̃) ∈ Sad.

Theorem 6. Let s̃ = (ũ, ṽ, f̃) ∈ Sad be a local optimal solution for the control problem (44). Then,

there exist a Lagrange multiplier ξ = (λ, η, ϕ1, ϕ2) ∈ L2(Q) × L4/3(Q) × (H1(Ω))′ × (W
3/2,4
n (Ω))′

such that for all (U, V, F ) ∈ Wu ×Wv × C(f̃)

αu

∫ T

0

∫

Ω
sgn(ũ− ud)|ũ− ud|13/7U + αv

∫ T

0

∫

Ω
(ṽ − vd)V + αf

∫ T

0

∫

Ωc

(f̃)3F

−
∫ T

0

∫

Ω

(
∂tU −∆U −∇ · (U∇ṽ)−∇ · (ũ∇V )

)
λ−

∫ T

0

∫

Ω

(
∂tV −∆V + V − U − f̃V χ

Ωc

)
η

−
∫

Ω
U(0)ϕ1 −

∫

Ω
V (0)ϕ2 +

∫ T

0

∫

Ωc

F ṽη ≥ 0. (89)
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Proof. From Lemma 8, s̃ ∈ Sad is a regular point, then from Theorem 5 there exists a Lagrange

multiplier ξ = (λ, η, ϕ1, ϕ2) ∈ L2(Q) × L4/3(Q) × (H1(Ω))′ × (W
3/2,4
n (Ω))′ such that by (60)3 one

must satisfy

J ′(s̃)[r]− 〈R′
1(s̃)[r], λ〉 − 〈R′

2(s̃)[r], η〉 − 〈R′
3(s̃)[r], ϕ1〉 − 〈R′

4(s̃)[r], ϕ2〉 ≥ 0, (90)

for all r = (U, V, F ) ∈ Wu ×Wv × C(f̃). Thus, the proof follows from (65), (66) and (90).

From Theorem 6, we derive an optimality system for problem (44), by considering the spaces

Wu0
= {u ∈ Wu : u(0) = 0}, Wv0 = {v ∈ Wv : v(0) = 0}.

Corollary 1. Let s̃ = (ũ, ṽ, f̃) ∈ Sad be a local optimal solution for the control problem (44). Then

the Lagrange multiplier (λ, η) ∈ L2(Q)× L4/3(Q), provided by Theorem 6, satisfies the system

∫ T

0

∫

Ω

(
∂tU −∆U −∇ · (U∇ṽ)

)
λ−

∫ T

0

∫

Ω
Uη

= αu

∫ T

0

∫

Ω
sgn(ũ− ud)|ũ− ud|13/7U, ∀U ∈ Wu0

, (91)

∫ T

0

∫

Ω

(
∂tV −∆V + V

)
η −

∫ T

0

∫

Ωc

f̃V η −
∫ T

0

∫

Ω
∇ · (ũ∇V )λ

= αv

∫ T

0

∫

Ω
(ṽ − vd)V, ∀V ∈ Wv0 , (92)

and the optimality condition

∫ T

0

∫

Ωc

(αf (f̃)
3 + ṽη)(f − f̃) ≥ 0 ∀f ∈ F . (93)

Proof. From (89), taking (V, F ) = (0, 0), and using that Wu0
is a vectorial space, we have (91).

Similarly, taking (U,F ) = (0, 0) in (89), and taking into account that Wv0 is a vectorial space, we

deduce (92). Finally, taking (U, V ) = (0, 0) in (89) we have

αf

∫ T

0

∫

Ωc

(f̃)3F +

∫ T

0

∫

Ωc

ṽηF ≥ 0 ∀F ∈ C(f̃).

Thus, choosing F = θ(f− f̃) ∈ C(f̃) for all f ∈ F and θ ≥ 0 in the last inequality, we have (93).
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Remark 8. A pair (λ, η) ∈ L2(Q)×L4/3(Q) satisfying (91)-(92) corresponds to the concept of very

weak solution of the linear system





∂tλ+∆λ−∇λ · ∇ṽ + η = −αusgn(ũ− ud)|ũ− ud|13/7 in Q,

∂tη +∆η +∇ · (ũ∇λ)− η + f̃ η χ
Ωc

= −αv(ṽ − vd) in Q,

λ(T ) = 0, η(T ) = 0 in Ω,

∂λ

∂n
= 0,

∂η

∂n
= 0 on (0, T ) × ∂Ω.

(94)

Theorem 7. Let s̃ = (ũ, ṽ, f̃) ∈ Sad be a local optimal solution for the problem (44) and ud ∈
L26/7(Q). Then the system (94) has a unique solution (λ, η) such that

λ ∈ X2, (95)

η ∈ X5/3. (96)

Proof. Since the desired state ud ∈ L26/7(Q), we have that h(ũ) := sgn(ũ−ud)|ũ−ud|13/7 ∈ L2(Q).

In fact, ũ is more regular because assuming ũ ∈ L20/7(Q), it can be proved that ũ ∈ L∞(H1) ∩
L2(H2) →֒ L10(Q) (see the proof of the Theorem 3 for more details).

Let s = T − t, with t ∈ (0, T ) and λ̃(s) = λ(t), η̃(s) = η(t). Then, system (94) is equivalent to





∂sλ̃−∆λ̃+∇λ̃ · ∇ṽ − η̃ = αuh(ũ) in Q,

∂sη̃ −∆η̃ −∇ · (ũ∇λ̃) + η̃ − f̃ η̃ χ
Ωc

= αv(ṽ − vd) in Q,

λ̃(0) = 0, η̃(0) = 0 in Ω,

∂λ̃

∂n
= 0,

∂η̃

∂n
= 0 on (0, T ) × ∂Ω.

(97)

Testing (97)1 by −∆λ̃ and (97)2 by η̃, and using Hölder and Young inequalities, we can obtain

1

2

d

ds
(‖∇λ̃‖2 + ‖η̃‖2) + ‖∆λ̃‖2 + ‖η̃‖2H1 ≤ δ(‖∇λ̃‖2H1 + ‖∆λ̃‖2 + ‖∇η̃‖2) +Cδ(1 + ‖f̃‖8/5

L4 )‖η̃‖2

+Cδ(‖ũ‖8L4 + ‖∇ṽ‖8L4)‖∇λ̃‖2 + Cδ(‖h(ũ)‖2 + ‖ṽ − vd‖2). (98)

Now, since
∂λ̃

∂n
= 0 on ∂Ω, then by [3, Corollary 3.5] we have

‖∇λ̃‖2H1 ≃ ‖∇λ̃‖2 + ‖∆λ̃‖2. (99)

30



Thus, taking δ small enough, from (98) and (99) we deduce the following energy inequality

d

ds
(‖∇λ̃‖2 + ‖η̃‖2) + C(‖∇λ̃‖2H1 + ‖η̃‖2H1) ≤ C(‖ũ‖8L4 + ‖∇ṽ‖8L4 + 1)‖∇λ̃‖2 + C(1 + ‖f̃‖8/5

L4 )‖η̃‖2

+ C(‖h(ũ)‖2 + ‖ṽ − vd‖2),

which, jointly with Gronwall lemma, implies

(∇λ̃, η̃) ∈ L∞(L2) ∩ L2(H1) →֒ L10/3(Q).

In particular, using that (∇λ̃,∇ṽ) ∈ L10/3(Q) × L20(Q), we have ∇λ̃ · ∇ṽ ∈ L20/7(Q) →֒ L2(Q).

Thus, applying Lemma 1 (for p = 2) to (97)1, we deduce (95).

On the other hand, since f̃ ∈ L4(Qc), η̃ ∈ L10/3(Q), we have

f̃ η̃ χ
Ωc

∈ L20/11(Q). (100)

Now, taking into account that ũ ∈ L∞(H1) ∩ L2(H2) →֒ L10(Q), ∆λ̃ ∈ L2(Q), and ∇ũ,∇λ̃ ∈
L10/3(Q), we deduce

∇ · (ũ∇λ̃) = ũ∆λ̃+∇ũ · ∇λ̃ ∈ L5/3(Q). (101)

Therefore, from (97)2, (100), (101) and Lemma 1 (for p = 5/3) we obtain (96).

In the following result, we obtain more regularity for the Lagrange multiplier (λ, η) than provided

by Theorem 6.

Theorem 8. Let s̃ = (ũ, ṽ, f̃) ∈ Sad be a local optimal solution for the control problem (44). Then

the Lagrange multiplier, provided by Theorem 6, satisfies (λ, η) ∈ X2 ×X5/3.

Proof. Let (λ, η) be the Lagrange multiplier given in Theorem 6, which is a very weak solution of

problem (94). In particular, (λ, η) satisfies (91)-(92).

On the other hand, from Theorem 7, system (94) has a unique solution (λ, η) ∈ X2 × X5/3.

Then, it suffices to identify (λ, η) with (λ, η). With this objective, we consider the unique solution

(U, V ) ∈ Wu×Wv of linear system (67) for gu := λ−λ ∈ L2(Q) and gv := sgn(η−η)|η−η|1/3 ∈ L4(Q)

(see Lemma 8 and Remark 7). Then, written (94) for (λ, η) (instead of (λ, η)), testing the first
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equation by U , and the second one by V , and integrating by parts in Ω, we obtain

∫ T

0

∫

Ω

(
∂tU −∆U −∇ · (U∇ṽ)

)
λ−

∫ T

0

∫

Ω
Uη = αu

∫ T

0

∫

Ω
sgn(ũ− ud)|ũ− ud|13/7U, (102)

∫ T

0

∫

Ω

(
∂tV −∆V + V − f̃V χ

Ωc

)
η −

∫ T

0

∫

Ω
∇ · (ũ∇V )λ = αv

∫ T

0

∫

Ω
(ṽ − vd)V. (103)

Making the difference between (91) for (λ, η) and (102) for (λ, η), and between (92) and (103), and

then adding the respective equations, since the right-hand side terms vanish, we have

∫ T

0

∫

Ω

(
∂tU −∆U −∇ · (U∇ṽ)−∇ · (ũ∇V )

)
(λ− λ)

+

∫ T

0

∫

Ω

(
∂tV −∆V + V − U − f̃V χ

Ωc

)
(η − η) = 0. (104)

Therefore, taking into account that (U, V ) is the unique solution of (67) for gu = λ − λ and

gv = sgn(η − η)|η − η|1/3, from (104) we deduce

‖λ− λ‖2L2(Q) + ‖η − η‖4/3
L4/3(Q)

= 0,

which implies that (λ, η) = (λ, η) in L2(Q)× L4/3(Q). As a consequence of the regularity of (λ, η)

we deduce that (λ, η) ∈ X2 ×X5/3.

Corollary 2. (Optimality System) Let s̃ = (ũ, ṽ, f̃) ∈ Sad be a local optimal solution for the control

problem (44). Then, the Lagrange multiplier (λ, η) ∈ X2 ×X5/3 satisfies the optimality system





∂tλ+∆λ−∇λ · ∇ṽ + η = −αusgn(ũ− ud)|ũ− ud|13/7 a.e. (t, x) ∈ Q,

∂tη +∆η +∇ · (ũ∇λ)− η + f̃ η χ
Ωc

= −αv(ṽ − vd) a.e. (t, x) ∈ Q,

λ(T ) = 0, η(T ) = 0 in Ω,

∂λ

∂n
= 0,

∂η

∂n
= 0 on (0, T )× ∂Ω,

∫ T

0

∫

Ωc

(αf (f̃)
3 + ṽ η)(f − f̃) ≥ 0 ∀f ∈ F .

(105)

Remark 9. If there is no convexity constraint on the control, that is, F ≡ L4(Qc), then (105)5
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becomes

αf (f̃)
3χ

Ωc
+ ṽ η χ

Ωc
= 0.

Thus, the control f̃ is given by

f̃ =

(
− 1

αf
ṽ η

)1/3

χ
Ωc
.

Appendix: Existence of Strong Solutions of Problem (10)

In this appendix we will prove Theorem 2.

Let us introduce the weak space

X := L∞(L2) ∩ L2(H1).

We define the operator R : X ×X → X5/3×X10/3 →֒ X ×X by R(uε, zε) = (uε, zε) the solution

of the decoupled linear problem





∂tu
ε −∆uε = ∇ · (uε+∇v(zε)) in Q,

∂tz
ε −∆zε = uε + f v(zε)+χΩc

− zε in Q,

uε(0) = uε0, zε(0) = vε0 − ε∆vε0 in Ω,

∂uε

∂n
= 0,

∂zε

∂n
= 0 on (0, T )× ∂Ω,

(106)

where vε := v(zε) is the unique solution of problem (11). In this Appendix, we will denote v(zε)

only by vε. Then, a solution of system (10) is a fixed point of R. Therefore, in order to prove the

existence of solution to system (10) we will use the Leray-Schauder fixed point theorem. In the

following lemmas, we will prove the hypotheses of such fixed point theorem.

Lemma 9. The operator R : X × X → X ×X is well defined and compact.

Proof. Let (uε, zε) ∈ X × X . Then, from the H2 and H3-regularity of problem (11) (see [15,

Theorem 2.4.2.7 and Theorem 2.5.11] respectively) we have vε ∈ L∞(H2) ∩ L2(H3). Thus, we

conclude that ∇vε ∈ L∞(H1) ∩ L2(H2) →֒ L10(Q), and taking into account that (uε, zε) ∈ X ×X ,

we have ∇ · (uε+∇vε) = uε
+∆vε +∇uε+ · ∇vε ∈ L5/3(Q). Then, by Lemma 1 (for p = 5/3), there
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exists a unique solution uε ∈ X5/3 of (106)1 such that

‖uε‖X5/3
≤ C(‖uε0‖W 4/5,5/3 , ‖uε‖X , ‖zε‖X ). (107)

Now, since X →֒ L10/3(Q) and vε ∈ L∞(Q), we have uε + f vε+χΩc
− zε ∈ L10/3(Q). Then, by

Lemma 1 (for p = 10/3), there exists a unique solution zε of (106)2 belonging to X10/3 such that

‖zε‖X10/3
≤ C(‖zε0‖W 7/5,10/3

n

, ‖uε‖X , ‖zε‖X , ‖f‖L4(Q)). (108)

Therefore, R is well defined. The compactness of R is consequence of estimates (107) and

(108), and the compact embedding X5/3 × X10/3 →֒ X × X . Indeed, it suffices to prove only the

compact embedding X5/3 →֒ X , because X10/3 →֒ X5/3. Let u ∈ X5/3, then from Lemma 4 we have

W 4/5,5/3(Ω) →֒ H1/2(Ω) and W 2,5/3(Ω) →֒ H17/10(Ω); thus

u ∈ X5/3 →֒ L∞(H1/2) ∩ L5/3(H17/10). (109)

Then, from (109) and Lemma 5 (for (p1, s1) = (∞, 1/2) and (p2, s2) = (5/3, 17/10)) we deduce that

u ∈ L∞(H1/2) ∩ L5/3(H17/10) →֒ L2(H3/2). (110)

Therefore, since the embedding H3/2(Ω) →֒ H1(Ω) is compact and ∂tu ∈ L5/3(Q), from [22,

Théorème 5.1, p. 58] and (110) we obtain that X5/3 is compactly embedded in X .

Lemma 10. Let (uε0, v
ε
0 − ε∆vε0) ∈ W 4/5,5/3(Ω)×W

7/5,10/3
n (Ω) with uε0 ≥ 0 in Ω and f ∈ L4(Qc).

Then, the fixed points of αR are bounded in X × X , independently of α ∈ [0, 1], with uε ≥ 0.

Proof. We assume α ∈ (0, 1]. Notice that if (uε, zε) is a fixed point of αR(uε, zε), then (uε, zε)

satisfies 



∂tu
ε −∆uε = α∇ · (uε+∇vε) in Q,

∂tz
ε −∆zε = αuε + αf vε+χΩc

− αzε in Q,

uε(0) = uε0, zε(0) = vε0 − ε∆vε0 in Ω,
∂uε

∂n
= 0,

∂zε

∂n
= 0 on (0, T )× ∂Ω.

(111)

The proof is carried out in three steps:
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Step 1: uε ≥ 0 and

∫

Ω
u(t) = mε

0.

Let (uε, vε) be a solution of (111), then ∂tu
ε, ∆vε and ∇ · (uε+∇vε) belong to L5/3(Q). Testing

(111)1 by uε− ∈ X →֒ L10/3(Q) →֒ L5/2(Q), where uε− := min{uε, 0} ≤ 0, and taking into account

that uε− = 0 if uε ≥ 0; ∇uε− = ∇uε if uε ≤ 0, and ∇uε− = 0 if uε > 0, we have

1

2

d

dt
‖uε−‖2 + ‖∇uε−‖2 = −α(uε+∇vε,∇uε−) = 0,

which implies that uε− ≡ 0 and, consequently, uε ≥ 0 and, therefore, uε+ = uε. Finally, integrating

(111)1 in Ω and using (13)1 we obtain

∫

Ω
uε(t) = mε

0.

Step 2: zε is bounded in X .

We observe that uε + 1 ≥ 1 and uε + 1 ∈ L∞(L1). Then, in particular, uε + 1 ∈ L1(Q) and

2

5
ln(uε + 1) = ln(uε + 1)2/5 ≤ (uε + 1)2/5 ∈ L5/2(Q),

hence ln(uε + 1) ∈ L5/2(Q).

Now, testing (111)1 by ln(uε + 1) ∈ L5/2(Q) and (111)2 by −∆vε ∈ L10/3(W 2,10/3) (rewritten

in terms of vε) we have

d

dt

(∫

Ω
(uε + 1) ln(uε + 1) +

1

2
‖∇vε‖2 + ε

2
‖∆vε‖2

)
+ 4‖∇

√
uε + 1‖2

+‖∆vε‖2 + α‖∇vε‖2 + αε‖∆vε‖2 + ε‖∇(∆vε)‖2

= −α

∫

Ω

uε

uε + 1
∇vε · ∇uε + α

∫

Ω
∇uε · ∇vε − α

∫

Ω
f vε+χΩc

∆vε

= α

∫

Ω

1

uε + 1
∇uε · ∇vε − α

∫

Ω
f vε+χΩc

∆vε. (112)

Applying Hölder and Young inequalities, we have

α

∫

Ω

1

uε + 1
∇uε · ∇vε ≤ α

2

∫

Ω

|∇uε|2
uε + 1

+
α

2

∫

Ω

|∇vε|2
uε + 1

≤ 2α‖∇
√
uε + 1‖2 + α

2
‖∇vε‖2, (113)

−α

∫

Ω
f vε+χΩc

∆vε ≤ α‖f‖L4‖vε‖L4‖∆vε‖ ≤ δ‖vε‖2H2 + α2Cδ‖f‖2L4‖vε‖2H1 . (114)

Moreover, integrating (111)2 in Ω, using (13), and taking into account that vε is the unique
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solution of the problem (11), we have

d

dt

(∫

Ω
vε
)
+

∫

Ω
vε = αmε

0 + α

∫

Ω
f vε+χΩc

.

Multiplying this equation by

∫

Ω
vε and using the Hölder and Young inequalities we obtain

1

2

d

dt

(∫

Ω
vε
)2

+

(∫

Ω
vε
)2

= αmε
0

(∫

Ω
vε
)
+ α

(∫

Ω
f vε+χΩc

)(∫

Ω
vε
)

≤ 1

2

(∫

Ω
vε
)2

+ α2(mε
0)

2C + α2C‖f‖2‖vε‖2. (115)

Adding (115) to (112), then replacing (113) and (114) in the resulting inequality, and taking into

account that α ≤ 1, we obtain

d

dt

(∫

Ω
(uε + 1) ln(uε + 1) +

1

2
‖vε‖2H1 +

ε

2
‖∆vε‖2

)
+ 2‖∇

√
uε + 1‖2 + C‖vε‖2H2 + ε‖∇(∆vε)‖2

≤ C((mε
0)

2 + ‖f‖2L4‖vε‖2H1). (116)

From (116) and Gronwall lemma we deduce that

‖vε‖2L∞(0,T ;H2(Ω)) ≤ 1

ε
exp(A(T ))

(
‖uε0‖2 + ‖vε0‖2H2 + C(mε

0)
2T
)

:= Kε
0 (m

ε
0, T, ‖uε0‖, ‖vε0‖H2 ,A(T )) , (117)

where

A(T ) := C

∫ T

0
‖f(s)‖2L4ds = C‖f‖2L2(L4).

Now, integrating (116) in (0,T) and using (117) we obtain

∫ T

0
‖vε(s)‖2H3ds ≤ 1

ε
C

(
‖uε0‖2 + ‖vε0‖2H2 + (mε

0)
2T + ( sup

0≤s≤T
‖vε(s)‖2H2)A(T )

)

:= Kε
1(m

ε
0, T, ‖uε0‖, ‖vε0‖H2 ,A(T )). (118)

Therefore, from (117) and (118) we conclude that vε is bounded in L∞(0, T ;H2(Ω))∩L2(0, T ;H3(Ω))

(independently of α ∈ (0, 1]), which implies that zε is bounded in X .

Step 3: uε is bounded in X .
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Testing (111)1 by uε we have

1

2

d

dt
‖uε‖2 + ‖∇uε‖2 = −α(uε∇vε,∇uε). (119)

Applying Hölder and Young inequalities, and using (6), we obtain

−α(uε∇vε,∇uε) ≤ α‖uε‖L4‖∇vε‖L4‖∇uε‖ ≤ C‖uε‖1/4‖∇vε‖L4‖uε‖7/4
H1

≤ 1

2
‖uε‖2H1 + C‖∇vε‖8L4‖uε‖2. (120)

Replacing (120) in (119), and taking into account that (mε
0)

2 =

(∫

Ω
uε(t)

)2

, we have

d

dt
‖uε‖2 + ‖uε‖2H1 ≤ C‖∇vε‖8L4‖uε‖2 + 2(mε

0)
2. (121)

In particular, using (6), (117), we obtain

‖∇vε‖8L4 ≤ C(Kε
0)

4.

Then, we can apply the Gronwall lemma in (121), obtaining

‖uε‖2L∞(0,T ;L2(Ω)) ≤ exp(C(Kε
0)

4)(‖uε0‖2 + 2(mε
0)

2T ) := Kε
2(m

ε
0, T, ‖uε0‖, ‖vε0‖H2 ,A(T )). (122)

Integrating (121) in (0, T ) we have

∫ T

0
‖uε(s)‖2H1ds ≤ ‖uε0‖2 + 2(mε

0)
2T + C(Kε

0)
4

∫ T

0
‖uε(s)‖2ds

≤ ‖uε0‖2 + 2(mε
0)

2T + C(Kε
0)

4Kε
2T

:= Kε
3(m

ε
0, T, ‖uε0‖, ‖vε0‖H2 ,A(T )). (123)

Thus, from (122) and (123) we deduce that uε is bounded in X . Consequently, the fixed points of

αR are bounded in X × X , independently of α > 0. For α = 0 the result is trivial.

Lemma 11. The operator R : X × X → X ×X , defined in (106), is continuous.
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Proof. Let {(uε
m, zεm)}m∈N ⊂ X × X be a sequence such that

(uεm, zεm) → (uε, zε) in X × X . (124)

In particular, {(uε
m, zεm)}m∈N is bounded in X × X , thus, from (107) and (108) we deduce that

sequence {(uεm, zεm) := R(uεm, zεm)}m∈N is bounded in X5/3×X10/3. Then, there exists a subsequence

of {R(uε
m, zεm)}m∈N, still denoted by {R(uεm, zεm)}m∈N, and an element (ûε, ẑε) ∈ X5/3 ×X10/3 such

that

R(uεm, zεm) → (ûε, ẑε) weakly in X5/3 ×X10/3 and strongly in X × X . (125)

Now, we consider system (106) written for (uε, zε) = R(uεm, zεm) and (uε, zε) = (uεm, zεm). From

(124) and (125), taking the limit in the system depending on m, as m goes to +∞, we deduce that

(ûε, ẑε) = R(limm→+∞(uεm, zεm)). Then, by uniqueness of limit the whole sequence {R(uεm, zεm)}m∈N

converges to (ûε, ẑε) strongly in X × X . Thus, operator R : X × X → X ×X is continuous.

Consequently, from Lemmas 9, 10 and 11, it follows that the operator R satisfy the hypotheses

of the Leray-Schauder fixed point theorem. Thus, we conclude that the map R has a fixed point

(uε, zε), that is R(uε, zε) = (uε, zε), which is a solution of system (10).
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