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SPECTRAL COMPUTED TOMOGRAPHY WITH LINEARIZATION
AND PRECONDITIONING\ast 

YUNYI HU\dagger , MARTIN S. ANDERSEN\ddagger , AND JAMES G. NAGY\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In the area of image sciences, the emergence of spectral computed tomography (CT)
detectors highlights the concept of quantitative imaging, in which not only are reconstructed images
offered, but weights of different materials that compose the object are also provided. If a detector is
made up of several energy windows and each energy window is assumed to detect a specific range of
energy spectrum, then a nonlinear matrix equation is formulated to represent the discretized process
of attenuation of x-ray intensity. In this paper, we present a linearization technique to transform this
nonlinear equation into an optimization problem that is based on a weighted least squares term and a
nonnegative bound constraint. To solve this optimization problem, we propose a new preconditioner
that can significantly reduce the condition number, and with this preconditioner, we implement a
highly efficient first order method, the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), to
achieve substantial improvements on convergence speed and image quality. We also use a combination
of generalized Tikhonov regularization and \ell 1 regularization to stabilize the solution. With the
introduction of new preconditioning, a linear inequality constraint is introduced. In each iteration,
we decompose this constraint into small-sized problems that can be solved with fast optimization
solvers. Numerical experiments illustrate convergence, effectiveness, and significance of the proposed
method.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . preconditioning, image reconstruction, tomography, FISTA

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 65F22, 65F10, 49N45, 65K99

\bfD \bfO \bfI . 10.1137/18M1194419

1. Introduction. The development of new energy-windowed spectral computed
tomography (CT) machines has received a great deal of interest in recent years; see,
e.g., [1, 24]. These detectors assume that x-rays emitted by the x-ray source are
composed of a spectrum of different energies, and in each energy window, the detector
can detect a specific range of energy. Moreover, it assumes that the detector can
perform photon counting and that the data collected by the detector are nonnegative
integers. Compared with traditional CT machines, we can avoid introducing beam-
hardening artifacts [19] and improve quality of reconstructed images. To reconstruct
images of an object, we need to solve a nonlinear equation

(1.1) \bfitY = exp
\bigl( 
 - \bfitA \bfitW \bfitC T

\bigr) 
\bfitS + \bfscrE ,

where \bfitY is a matrix that gathers the projected data of each energy window in the
corresponding column, and the exponential operator is applied elementwise (i.e., it is
not a matrix function). \bfitA is a matrix that is related to the quantitative information
of ray trace, and \bfitC is a matrix that contains linear attenuation coefficients for par-
ticular (known) materials at specified energies. \bfitS is the matrix that accumulates the
spectrum energies for each energy window in the corresponding column. We assume
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PRECONDITIONED SPECTRAL COMPUTED TOMOGRAPHY S371

that \bfitS is square and invertible. Moreover, \bfscrE represents the noise term and we assume
that Eil \sim \scrN (0, yil) for each component Eil in \bfscrE and yil in \bfitY . We assume that these
data are known and the target is to solve the unknown weight matrix \bfitW . \bfitW is of
the size Nv \times Nm, where Nv is the number of voxels (pixels if 2D) for each material
map and Nm is the number of materials. Since the weight matrix \bfitW represents the
material maps of different materials, then it must be nonnegative and we need to add
a lower bound \bfitW \geqslant 0.

To solve (1.1), we want to vectorize it first. Then we use the Taylor expansion
to remove the pointwise exponential function and obtain an approximate linearized
equation. Under the Gaussian assumption, as we show in section 2, we can transform
this equation into a weighted least squares problem under bound constraints:

min
\bfitw 

1

2
\| \scrA \bfitw  - \bfitb \| 2\bfSigma  - 1

subject to \bfitw \geqslant 0,
(1.2)

where \scrA = \bfitC \otimes \bfitA , \bfitb =  - log (\bfity ), \bfity = vec (\bfitY ), and \bfitw = vec (\bfitW ). \Sigma  - 1, which
combines information from \bfitS and \bfity , is the inverse covariance matrix generated by
Gaussian noise and log transformation. \| \cdot \| 2\bfSigma  - 1 represents a weighted 2-norm and

\| \scrA \bfitw  - \bfitb \| 2\bfSigma  - 1 = (\scrA \bfitw  - \bfitb )
T
\Sigma  - 1 (\scrA \bfitw  - \bfitb ) . \bfitC is of the size Ne\times Nm, where Ne is the

number of energy bins and Nm is the number of materials. Since each column of C
collects the corresponding linear attenuation coefficients, and two materials, such as
adipose and glandular, might be similar to each other, the matrix C is likely to be ill-
conditioned. On the other hand, problem (1.2) is similar to a quadratic programming
problem under bound constraints. However, direct implementation of an optimization
solver does not provide high-quality reconstruction because the ray trace matrix \bfitA is
large and ill-conditioned, and the columns of the linear attenuation coefficient matrix
\bfitC might be nearly collinear.

Because of the ill-posedness, Barber et al. [1] proposed a preconditioner based
on the eigenvalue decomposition of the matrix product of linear attenuation coeffi-
cients, \bfitC T\bfitC , to orthogonalize columns of \bfitC . They also suggest using a Poisson noise
assumption and construct loss functions that are based on either the maximum likeli-
hood estimator (MLE) or the nonlinear least squares term. Using these types of loss
functions and the proposed preconditioner, a Chambolle--Pock primal-dual method [5]
is implemented to solve the corresponding optimization problem. However, because
the MLE for the Poisson model is nonlinear, it is not obvious how this preconditioner
can reduce the condition number of the Hessian matrix. Moreover, because each iter-
ation of a second order method for large 3D imaging problems is very costly (in terms
of both the computations and storage requirements), in this paper we consider first
order methods. With a first order method, it is not necessary to construct either the
Hessian or Hessian-vector multiplication in each step.

To mitigate the ill-posedness, we propose a new preconditioner that is based on
a rank-1 approximation of the matrix \bfitY . With this rank-1 approximation, we can
estimate the Hessian of the objective function in (1.2) by a Kronecker product of two
parts. The first part of this Kronecker product is of the size Nm \times Nm, where Nm

denotes the number of materials; usually this is quite small, e.g., Nm = 2 or 3. This
matrix product is also symmetric and positive definite, so we can construct a precon-
ditioner from its inverse Cholesky factorization, and thus transform it into an identity
in the preconditioned system. Because the conditioning of the Hessian is closely re-
lated to these two matrices and one of them has been transformed into an identity,
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S372 YUNYI HU, MARTIN S. ANDERSEN, AND JAMES G. NAGY

we have reduced the condition number significantly. Moreover, it is an economical
preconditioner since we only need to compute the preconditioner once and can reuse
it in future iterations. The preconditioner proposed in [1] includes only the data of
\bfitC , the matrix of linear attenuation coefficients of material and energy. Compared
with this, the preconditioner proposed in this paper includes the information of linear
attenuation coefficients, the energy spectrum, and photon counting data. It offers a
more physically meaningful approximation of the Hessian.

In addition, with the weighted least squares objective function, it is much easier to
analyze the condition number before and after preconditioning. Since the performance
of a first order method is closely related to the condition number of the Hessian, it
is intuitive to implement a first order method if we can reduce the condition number
significantly. Based on this idea, the Fast Iterative Shrinkage-Thresholding Algo-
rithm (FISTA) [2, 21, 20] comes into view. FISTA is a first order method that has
an ``optimal"" function convergence rate, \scrO 

\bigl( 
1/k2

\bigr) 
, where k is the number of itera-

tions. Furthermore, this method is suitable for solving problems that have a form of
f (\bfitx ) + g (\bfitx ) where both f (\bfitx ) and g (\bfitx ) are convex but g (\bfitx ) is possibly nonsmooth.
This f (\bfitx ) can be the weighted least squares term in problem (1.2), and g (\bfitx ) can
represent a nonsmooth regularization term such as \ell 1 regularization or nonnegative
constraints. Even if we can achieve fast convergence, the introduction of a precon-
ditioner complicates the bound constraints. The previous bound constraints have
become linear inequality constraints because of the preconditioner. However, we can
construct a projection problem that can find the closest solutions to satisfy these
constraints. Moreover, this projection problem is separable, and we can apply highly
efficient solvers to compute the solutions to these decomposed small-sized problems.
Generally speaking, the implementations of our preconditioner, FISTA, and projec-
tion problem complement each other and exhibit high-quality reconstructed images
and fast convergence results.

This paper is organized as follows. In section 2, we review the continuous energy-
windowed spectral CT model and the corresponding discretized nonlinear matrix
equation. The linearization, vectorization, and setup of the optimization problem are
also included in section 2. The key idea of this paper, preconditioning, is introduced
in section 3. In this section, both the derivation of our preconditioner and an analysis
of the reduction of the condition number are presented. The choice of regularization
will be exhibited in this section as well. In section 4, we study FISTA and how we
construct and solve the projection problems. Moreover, numerical experiments are
presented in section 5, and concluding remarks are given in section 6.

2. The energy-windowed spectral CT model. In this section, we start with
an introduction to the basic model. Then we show how to discretize this model
to obtain a matrix equation. Since we do not want to solve this matrix equation
directly, we therefore vectorize it and take the Taylor expansion to the first order
term to remove the exponential function. In this case, we can obtain a linear system
with transformed noise. With this transformed noise, we can build a weighted least
squares optimization problem under bound constraints.

In CT, source x-ray beams are composed of a spectrum of different energies [4].
Recent technological developments have resulted in the design of new photon count-
ing detectors that can discriminate the measured data into specific energy windows.
Image reconstruction algorithms that exploit this information can avoid introducing
beam-hardening artifacts, obtain material decomposition, and improve the quality of
reconstructed images. The mathematical model for image reconstruction uses Beer's
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PRECONDITIONED SPECTRAL COMPUTED TOMOGRAPHY S373

law [12], which states that the change in x-ray intensity before and after illumination
through the object is
(2.1)

y
(k)
i =

\int 
E

S(k)(e) exp

\biggl( 
 - 
\int 
t\in l

\mu (\vec{}r (t) , e) d t

\biggr) 
d e+ \eta 

(k)
i ,

\biggl\{ 
i = 1, 2, . . . , Nd \times Np,
k = 1, 2, . . . , Nb,

where the following hold:

\bullet y
(k)
i is the x-ray intensity of the ith pixel in the kth detector bin.

\bullet E is the photon flux density. Figure 5.2 shows a curve of E versus photon
energy.

\bullet Nd is the number of detector pixels. For a material map of the size n\times n, we
assume Nd = n.

\bullet Np is the number of projections. For cone/fan beam CT, projections are
uniformly distributed from 0 to 360 degrees.

\bullet Nb is the number of detector bins. For an energy-windowed CT machine, we
usually assume that it has 5 to 6 energy bins.

\bullet S(k)(e) represents photon flux density for the kth detector bin, which is the
number of incident photons at the energy e in the kth energy window.

\bullet \mu (\vec{}r (t) , e) denotes the linear attenuation coefficient that is related to the
position function \vec{}r (t) and the energy level e.

\bullet \eta 
(k)
i is the error term for the ith element in the kth energy bin, and it is
assumed to be Gaussian for this model.

In (2.1), the unknown linear attenuation coefficient \mu (\vec{}r (t) , e) is dependent on the
position function r (t) and the energy levels e. If the object is assumed to be com-
posed of several different materials, then a material expansion is introduced to further
decompose the function \mu (\vec{}r (t) , e) [11]:

(2.2) \mu (\vec{}r (t) , e) =

Nm\sum 
m=1

um,ewm (\vec{}r) ,

where the following hold:
\bullet Nm is the number of materials that form the object.
\bullet um,e is the linear attenuation coefficient for the mth material at the energy
level e.

\bullet wm (\vec{}r) is the unknown weight of the mth material at the position \vec{}r.
With this decomposition, the unknown variable has been shifted from \mu (\vec{}r (t) , e) to
the weight fraction wm (\vec{}r). If we also assume that wm (\vec{}r) can be represented as a
sum of product of weights and basis functions \phi j (\vec{}r), then another expansion can be
expressed by

(2.3) wm (\vec{}r) =

Nv\sum 
j=1

wj,m\phi j (\vec{}r) ,

where the following hold:
\bullet Nv is the number of voxels (pixels if 2D) of images that compose the object.
\bullet wj,m is the weight fraction of the mth material in the jth voxel (pixels if 2D).
\bullet \phi j (\vec{}r) is the basis function of image representation. The line integral of the
basis function, ai,j , is the length of the x-ray beam through the jth voxel
(pixel if 2D), incident onto the ith element of the product of detector pixels
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S374 YUNYI HU, MARTIN S. ANDERSEN, AND JAMES G. NAGY

Nd and the number of projections Np:

(2.4) ai,j =

\int 
t\in l

\phi j (\vec{}r (t)) d t.

Then the line integral in (2.1) can be simplified by expansion (2.3) and integral (2.4):
(2.5)\int 

t\in l

\mu (\vec{}r (t) , e) d t =

Nm\sum 
m=1

Nv\sum 
j=1

um,ewj,m

\int 
t\in l

\phi j (\vec{}r (t)) d t =

Nv\sum 
j=1

Nm\sum 
m=1

ai,jwj,mum,e.

If we also discretize the integral over the energy E and ignore quadrature errors, then
the discrete model of (2.1) can be written as

(2.6) y
(k)
i =

Ne\sum 
e=1

s(k)e exp

\left(   - 
Nv\sum 
j=1

Nm\sum 
m=1

ai,jwj,mum,e

\right)  + \eta 
(k)
i ,

where Ne is the number of discrete energies. If we collect ai,j , wi,j , and um,e in a

matrix form and concatenate y
(k)
i , s

(k)
e , \eta 

(k)
i with respect to their energy windows,

then the corresponding matrix equation of (2.6) can be represented as

(2.7) \bfitY = exp
\bigl( 
 - \bfitA \bfitW \bfitC T

\bigr) 
\bfitS + \bfscrE ,

where the following hold:
\bullet \bfitY is a matrix of the size (Nd \cdot Np) \times Nb that gathers x-ray photons of each
energy window in the corresponding column.

\bullet \bfitA is a matrix of the size (Nd \cdot Np)\times Nv that collects the fan-beam geometry
and each element corresponds to ai,j .

\bullet \bfitC is a matrix of the size Ne \times Nm that accumulates linear attenuation coef-
ficients and each entry corresponds to ue,m, the linear attenuation coefficient
of the energy e, and the mth material.

\bullet \bfitS is a matrix of the size Ne \times Nb and each column collects the spectrum
energy of a specific range. In the forward problem, we use the full spectrum,
but when we solve the inverse problem, the average in each energy window
is used to represent the corresponding spectral energy. Therefore, Nb = Ne

for the inverse problem and \bfitS is an invertible diagonal matrix because the
means are placed in the diagonal. A detailed example is shown in Figure 5.2.

\bullet \bfscrE is the noise matrix that is of the size (Nd \cdot Np)\times Nb. The assumption for
the noise is Eil \sim \scrN (0, yil) for each element Eil in \bfscrE and yil in \bfitY .

In (2.7), the exponential operator is applied elementwise (i.e., it is not a matrix func-
tion). In addition to (2.7), we also require that weight fractions should be nonnegative,
and this can be illustrated by the constraint \bfitW \geqslant 0.

In several cases, the composition of materials can be similar. For example, glan-
dular and adipose have similar attenuation coefficients at the same energy level, which
causes collinearity. After discretization, the columns of \bfitC can be nearly dependent.
Moreover, \bfitA is large scale and sparse and is highly likely to have small singular values.
As we will see later, the Hessian system involves the Kronecker product \bfitC \otimes \bfitA , and
it can cause ill-posedness. Since it is challenging to solve this equation directly, it is
important to consider approaches that facilitate the process. First, we can introduce
a preconditioning matrix \bfitM into (2.7):

(2.8) \bfitY = exp
\bigl( 
 - \bfitA \bfitW \bfitM  - T\bfitM T\bfitC T

\bigr) 
\bfitS + \bfscrE .
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PRECONDITIONED SPECTRAL COMPUTED TOMOGRAPHY S375

If we let \~\bfitW = \bfitW \bfitM  - T and \~\bfitC = \bfitC \bfitM , then (2.8) is equivalent to

(2.9) \bfitY = exp
\Bigl( 
 - \bfitA \~\bfitW \~\bfitC T

\Bigr) 
\bfitS + \bfscrE .

So far, we have not introduced how to choose the preconditioner \bfitM . The choice of \bfitM 
depends on linearization and approximation. In section 3.1, we will state the process
in detail, and in the new coordinate system defined by \bfitM , the corresponding Hessian
will be better conditioned. With the help of the preconditioning matrix \bfitM , we have
transformed the original system of solving \bfitW into the new system of solving \~\bfitW .
Since each entry of \~\bfitW is a linear combination of all entries in the corresponding row
of \bfitW , we can try to find a matrix \bfitM such that the new system is better conditioned
than the original one.

On the other hand, we do not want to solve the nonlinear matrix equation (2.9) di-
rectly because it might introduce a tensor when we compute second order derivatives.
In this case, we want to vectorize (2.9) on both sides and linearize it to construct a
weighted least squares optimization problem. In the forward problem, we use the full
spectrum, and the matrix \bfitS is then usually rectangular. When we solve the inverse
problem, we choose the average in each energy window to represent the corresponding
energy spectrum. In this case, Nb = Ne and the matrix \bfitS in the inverse problem is a
nonsingular diagonal matrix. So we can multiply \bfitS  - 1 on both sides of (2.9):

(2.10) \bfitY \bfitS  - 1 = exp
\Bigl( 
 - \bfitA \~\bfitW \~\bfitC T

\Bigr) 
+ \bfscrE \bfitS  - 1.

Vectorizing both sides of (2.10), and using properties of Kronecker products, we obtain

(2.11)
\bigl( 
\bfitS  - T \otimes \bfitI 

\bigr) 
\bfity = exp

\Bigl\{ 
 - 
\Bigl( 
\~\bfitC \otimes \bfitA 

\Bigr) 
\~\bfitw 
\Bigr\} 
+

\bigl( 
\bfitS  - T \otimes \bfitI 

\bigr) 
\bfite ,

where \bfity = vec(\bfitY ), \~\bfitw = vec( \~\bfitW ), and \bfite = vec (\bfitE ). If we let \~\bfity =
\bigl( 
\bfitS  - T \otimes \bfitI 

\bigr) 
\bfity and

\~\bfite =
\bigl( 
\bfitS  - T \otimes \bfitI 

\bigr) 
\bfite , then we can subtract \~\bfite on both sides of (2.11) and obtain

(2.12) \~\bfity  - \~\bfite = exp
\Bigl\{ 
 - 
\Bigl( 
\~\bfitC \otimes \bfitA 

\Bigr) 
\~\bfitw 
\Bigr\} 
.

By taking the logarithm on both sides of (2.12), we can obtain a linear equation

(2.13) log (\~\bfity  - \~\bfite ) =  - 
\Bigl( 
\~\bfitC \otimes \bfitA 

\Bigr) 
\~\bfitw .

However, the left-hand side of (2.13) contains the transformed error term \~\bfite , so we
cannot solve this equation directly. In this case, we can separate the error term \~\bfite 
from \~\bfity using a first order Taylor expansion at \~\bfity :

(2.14) log (\~\bfity  - \~\bfite ) = log (\~\bfity ) - diag (\~\bfity )
 - 1

\~\bfite +\scrO 
\bigl( 
\| \~\bfite \| 22

\bigr) 
.

If we use the first two terms on the right-hand side of (2.14) to estimate the term
log (\~\bfity  - \~\bfite ), then (2.13) can be expressed by a linear equation with the error term

diag (\~\bfity )
 - 1

\~\bfite . Letting \bfitb =  - log (\~\bfity ), then (2.13) is approximately equal to

(2.15) \bfitb \approx 
\Bigl( 
\~\bfitC \otimes \bfitA 

\Bigr) 
\~\bfitw  - diag (\~\bfity )

 - 1
\~\bfite .

With this equation and the Gaussian assumption of noise \bfite \sim \scrN (0, diag (\bfity )), we
have

(2.16) \bfitb | \~\bfitw \sim \scrN 
\Bigl( \Bigl( 

\~\bfitC \otimes \bfitA 
\Bigr) 

\~\bfitw , \Sigma 
\Bigr) 
,
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where the noise covariance matrix \Sigma is expressed by

(2.17) \Sigma = diag (\~\bfity )
 - 1 \bigl( 

\bfitS  - T \otimes \bfitI 
\bigr) 
diag (\bfity )

\bigl( 
\bfitS  - 1 \otimes \bfitI 

\bigr) 
diag (\~\bfity )

 - 1
,

and the inverse covariance matrix is given by

(2.18) \Sigma  - 1 = diag (\~\bfity ) (\bfitS \otimes \bfitI ) diag (\bfity )
 - 1 \bigl( 

\bfitS T \otimes \bfitI 
\bigr) 
diag (\~\bfity ) .

Since \bfitY is a matrix that collects the number of photons of each energy window in the
corresponding column, each entry of \bfitY is a positive integer whose value can be on the
order of hundreds of thousands. As long as the noise does not dominate the projected
data, we expect the entries of \~\bfity will be larger than zero. From expression (2.18), we
can see that the structure of \Sigma  - 1 depends on the structure of the matrix \bfitS . If \bfitS is
diagonal, then \Sigma is also diagonal. If we let \scrA = \~\bfitC \otimes \bfitA , then (see, e.g., [3]) the best
unbiased linear estimator of \~\bfitw for the Gaussian model (2.16) is the solution of

(2.19) min
\~\bfitw 

1

2
(\scrA \~\bfitw  - \bfitb )

T
\Sigma  - 1 (\scrA \~\bfitw  - \bfitb ) .

In addition, we require that \bfitW \geqslant 0, and with the preconditioner, these constraints
are transformed into (\bfitM \otimes \bfitI ) \~\bfitw \geqslant 0. Therefore, we can formulate a weighted least
squares problem under bound constraints

min
\~\bfitw 

1

2
\| \scrA \~\bfitw  - \bfitb \| 2\bfSigma  - 1

subject to (\bfitM \otimes \bfitI ) \~\bfitw \geqslant 0.
(2.20)

In (2.20) the norm \| \cdot \| 2\bfSigma  - 1 corresponds to the weighted inner product given in (2.19).
From this expression, we know that the objective function is convex. Moreover, the
inverse covariance matrix \Sigma  - 1 is diagonal as long as \bfitS is diagonal and this opti-
mization problem has linear inequality constraints. Based on these observations, we
can identify four challenges involved in solving this optimization problem. First, we
need to choose an appropriate preconditioning matrix to reduce the ill-conditioning
of the Hessian. Second, we want to select suitable regularizations for the correspond-
ing materials. Third, we have to find an efficient method for solving the constrained
weighted least squares problem. These three challenges are related to each other,
and an appropriate preconditioner with appropriate regularizations will be beneficial
for the solver efficiency. Finally, we should handle linear inequality constraints in an
efficient way. We will address these four challenges in the following sections.

3. Preconditioning and regularization.

3.1. Preconditioning. The choice of the preconditioning matrix \bfitM is crucial
for solving the optimization problem (2.20). If we do not have a preconditioner or
we choose the preconditioner \bfitM as the identity, the original Hessian for the weighted
least squares problem (2.20) is expressed by

(3.1) \bfitH =
\bigl( 
\bfitC T \otimes \bfitA T

\bigr) 
\Sigma  - 1 (\bfitC \otimes \bfitA ) .

An appropriate preconditioner can transform the original ill-posed system into a
better-conditioned system and thus bring faster convergence speed as well as higher
quality of reconstructed images. In general, the preconditioned Hessian \~\bfitH can be
represented as

(3.2) \~\bfitH = \scrA T\Sigma  - 1\scrA =
\Bigl( 
\~\bfitC T \otimes \bfitA T

\Bigr) 
\Sigma  - 1

\Bigl( 
\~\bfitC \otimes \bfitA 

\Bigr) 
,
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where \~\bfitC = \bfitC \bfitM . From this expression, it is still not obvious how to construct the
preconditioner. However, if we can separate the noise covariance matrix \Sigma  - 1 into
a Kronecker product of two terms, we can merge several terms using properties of
the Kronecker product and transform parts of the Hessian into an identity with the
help of \bfitM . To realize this idea, we review the expression of \Sigma  - 1 in (2.18), where
we can see that it contains the Kronecker products \bfitS \otimes \bfitI and \bfitS T \otimes \bfitI , and it is not
necessary to separate these two terms. So we focus on the other terms, which include
diag \{ \~\bfity \} and diag \{ \bfity \}  - 1

. By definition, these two terms are related to each other by
\~\bfity =

\bigl( 
\bfitS  - T \otimes \bfitI 

\bigr) 
\bfity . In this case, if we can express diag \{ \bfity \} into a Kronecker product

of two terms, then we will reach the goal.
Recall that \bfity = vec (\bfitY ). Therefore, if we can find two rank-1 matrices, \bfitu and \bfitv ,

such that \bfitY \approx \bfitu \bfitv T , then

(3.3) diag \{ \bfity \} \approx diag
\bigl\{ 
vec

\bigl( 
\bfitu \bfitv T

\bigr) \bigr\} 
= diag \{ \bfitv \} \otimes diag \{ \bfitu \} .

These two rank-1 matrices can be obtained by solving a nearest Kronecker product
problem, which is equivalent to a rank-1 approximation of \bfitY in terms of the Frobenius
norm:

(3.4) min
\bfitu , \bfitv 

\| \bfitY  - \bfitu \bfitv T \| F .

The solution to this problem has been studied extensively [23]. Using the singular
value decomposition (SVD), one solution to (3.4) can be expressed by \bfitu =

\surd 
\sigma 1\bfitu 1

and \bfitv =
\surd 
\sigma 1\bfitv 1, where \bfitu 1 and \bfitv 1 are the first left and right singular vectors and

\sigma 1 is the corresponding largest singular value of \bfitY . Since we only need these terms
rather than a full SVD, we can use the MATLAB function svds, or other efficient
approaches, such as PROPACK [14], to calculate only \sigma 1, \bfitu 1, and \bfitv 1.

After we have obtained \bfitu and \bfitv , we can estimate the matrix diag \{ \bfity \} as a Kron-
ecker product of two terms as (3.3). In addition, the term diag \{ \~\bfity \} can be represented
by

diag \{ \~\bfity \} = diag
\bigl\{ \bigl( 

\bfitS  - T \otimes \bfitI 
\bigr) 
vec (\bfitY )

\bigr\} 
\approx diag

\bigl\{ \bigl( 
\bfitS  - T \otimes \bfitI 

\bigr) 
vec

\bigl( 
\bfitu \bfitv T

\bigr) \bigr\} 
= diag

\bigl\{ 
vec

\bigl( 
\bfitu \bfitv T\bfitS  - 1

\bigr) \bigr\} 
= diag

\bigl\{ 
\bfitS  - T\bfitv 

\bigr\} 
\otimes diag \{ \bfitu \} .

(3.5)

If we substitute the terms in (3.3) and (3.5) for the same terms in (2.18), we can
obtain that

(3.6) \Sigma  - 1 \approx 
\Bigl( 
diag

\bigl\{ 
\bfitS  - T\bfitv 

\bigr\} 
\bfitS diag \{ \bfitv \}  - 1

\bfitS Tdiag
\bigl\{ 
\bfitS  - T\bfitv 

\bigr\} \Bigr) 
\otimes diag \{ \bfitu \} .

So the preconditioned Hessian matrix is given by

\~\bfitH =
\Bigl( 
\~\bfitC T \otimes \bfitA T

\Bigr) 
\Sigma  - 1

\Bigl( 
\~\bfitC \otimes \bfitA 

\Bigr) 
\approx 

\Bigl( 
\~\bfitC T \otimes \bfitA T

\Bigr) \Bigl[ 
diag

\bigl\{ 
\bfitS  - T\bfitv 

\bigr\} 
\bfitS diag \{ \bfitv \}  - 1

\bfitS Tdiag
\bigl\{ 
\bfitS  - T\bfitv 

\bigr\} 
\otimes diag \{ \bfitu \} 

\Bigr] \Bigl( 
\~\bfitC \otimes \bfitA 

\Bigr) 
=

\Bigl( 
\~\bfitC Tdiag

\bigl\{ 
\bfitS  - T\bfitv 

\bigr\} 
\bfitS diag \{ \bfitv \}  - 1

\bfitS Tdiag
\bigl\{ 
\bfitS  - T\bfitv 

\bigr\} 
\~\bfitC 
\Bigr) 
\otimes 
\bigl( 
\bfitA Tdiag \{ \bfitu \} \bfitA 

\bigr) 
.

(3.7)

Since the size of \~\bfitC is Ne \times Nm, then the first part of the Kronecker product in
(3.7) is a square matrix of the size Nm \times Nm. In other words, this part only de-
pends on the number of materials that compose the object. Usually, we only con-
sider 2 or 3 materials for the object so that the size of the matrix products for this
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part is usually either 2 \times 2 or 3 \times 3. Moreover, the matrix \bfitY gathers the number
of photons of each energy window in the corresponding column so all of its entries
are positive integers. In this case, we can choose \bfitu and \bfitv to be positive such that
\bfitC Tdiag

\bigl\{ 
\bfitS  - T\bfitv 

\bigr\} 
\bfitS diag \{ \bfitv \}  - 1

\bfitS Tdiag
\bigl\{ 
\bfitS  - T\bfitv 

\bigr\} 
\bfitC is a symmetric positive definite ma-

trix. Therefore, we can calculate \bfitM with the Cholesky decomposition:

(3.8) \bfitC Tdiag
\bigl\{ 
\bfitS  - T\bfitv 

\bigr\} 
\bfitS diag \{ \bfitv \}  - 1

\bfitS Tdiag
\bigl\{ 
\bfitS  - T\bfitv 

\bigr\} 
\bfitC = \bfitG T\bfitG ,

where\bfitG is an upper triangular matrix with positive diagonal entries. Since \~\bfitC = \bfitC \bfitM ,
we can choose \bfitM = \bfitG  - 1 to transform this part into identity. From expression (3.7),
we see that the preconditioned Hessian, \~\bfitH , is dependent on a Kronecker product of
two parts, and the first part has been transformed into an identity. In particular,
since the condition number of this part is typically significantly greater than 1, the
condition number of the preconditioned Hessian \~\bfitH is significantly smaller than the
original Hessian \bfitH .

After we have obtained the matrix \bfitM , we can analyze the effect of precondition-
ing using the SVD. Without preconditioning, the Hessian matrix \bfitH depends on two
parts, \bfitC Tdiag

\bigl\{ 
\bfitS  - T\bfitv 

\bigr\} 
\bfitS diag \{ \bfitv \}  - 1

\bfitS Tdiag
\bigl\{ 
\bfitS  - T\bfitv 

\bigr\} 
\bfitC and \bfitA Tdiag \{ \bfitu \} \bfitA . If we as-

sume the SVD for these two matrices are \bfitU 1\Sigma 1\bfitV 
T
1 and \bfitU 2\Sigma 2\bfitV 

T
2 , then the condition

number of the original Hessian \bfitH is closely related to \Sigma 1 and \Sigma 2. Let the largest and
smallest singular values of \Sigma 1 and \Sigma 2 be \sigma 1max, \sigma 1min and \sigma 2max, \sigma 2min, respectively;
then the condition number of the original Hessian, \kappa (\bfitH ), can be estimated as

(3.9) \kappa (\bfitH ) =
\sigma 1max\sigma 2max

\sigma 1min\sigma 2min
.

On the other hand, the condition number of the preconditioned Hessian can be ap-
proximated by

(3.10) \kappa ( \~\bfitH ) =
\sigma 2max

\sigma 2min
.

Since the fraction \sigma 1max/\sigma 1min is most likely to be significantly greater than 1, the
condition number of \~\bfitH is likely to be much smaller than \bfitH . To validate this phenom-
enon, we can build a numerical example to compare the condition numbers. For an
object that is composed of two materials, with each material map of the size 16\times 16,
we can construct the original Hessian \bfitH and the preconditioned Hessian \~\bfitH explicitly
and compute the estimations of condition numbers for these two Hessian matrices.
The result is presented in Table 3.1.

Table 3.1
Comparison of condition numbers.

Matrix types Condition numbers
Original Hessian 2.00 e+06
Preconditioned Hessian 2.59 e+04

From Table 3.1, we can see that the difference between \kappa (\bfitH ) and \kappa ( \~\bfitH ) is around
two orders of magnitude, which indicates the significance of this preconditioner. For
a linear system that involves the preconditioned Hessian \~\bfitH , the convergence rate is
highly dependent on the condition number. With a better-conditioned system, we can
compute the solution in a more efficient way. Moreover, we will validate the strength
of this preconditioner by solving the preconditioned system versus the original system.
More details are presented in section 5.
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3.2. Regularization. With the help of our preconditioner, we can speed up an
optimization algorithm and achieve higher accuracy. To further alleviate the noise
amplification, it is important to add regularization terms to the objective function.
In total, we have m materials, and the weights of these m materials are not equal.
Rather than adding a single regularization to all weights, we should add a specific
regularization to each material. In addition, for different materials, we can choose dis-
tinct regularizations to match their properties. For the dominant material, we select
the generalized Tikhonov regularization to smooth the edges. For other materials, we
choose the \ell 1 regularization to penalize the sum of weights. Based on this idea, we
can represent the regularization term as a sum of m parts:

(3.11) R (\bfitw ) =

m\sum 
i=1

\alpha i

2
Ri (\bfitw i) ,

where \bfitw i is the vectorization form of the ith weight matrix, Ri (\bfitw i) is the correspond-
ing regularization term, and \alpha i is the regularization parameter.

The choice of what type of regularization to use is problem-specific, and a priori
knowledge of the object being imaged could inform this decision. For example, if it is
known that the object contains two material maps with relatively equal distributions,
we might select two generalized Tikhonov regularizations. In breast imaging, if the
object is dominated by glandular and adipose tissue, it might make sense to use a
generalized Tikhonov regularization for each of them. On the other hand, it could be
the case that the object is dominated by one material (or one set of materials), with a
relatively sparse distribution of another material. In the breast imaging situation, the
object may contain small microcalcifications or areas highlighted by an iodine tracer.
In this case, one can use generalized Tikhonov regularizations for the dominating
materials (e.g., glandular and adipose tissue) and an \ell 1 regularization for the sparse
material. We illustrate this with two materials, one that dominates, and one that is
sparse:

(3.12) R (\bfitw ) =
\alpha 1

2
\| \bfitL \bfitw 1\| 22 +

\alpha 2

2
\| \bfitw 2\| 1.

If we add these regularization terms to the objective function in (2.20), we can rewrite
it as an augmented system:

min
\~\bfitw 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\Biggl[ \surd 

2
2 \Sigma  - 1

2

\Bigl( 
\~\bfitC \otimes \bfitA 

\Bigr) 
\sqrt{} 

\alpha 1

2
\~\bfitL 

\Biggr] 
\~\bfitw  - 

\biggl[ 
\Sigma  - 1

2 \bfitb 
0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

2

+
\alpha 2

2

\bigl[ 
0 1

\bigr] 
(\bfitM \otimes \bfitI ) \~\bfitw 

subject to (\bfitM \otimes \bfitI ) \~\bfitw \geqslant 0,

(3.13)

where \~\bfitL =
\bigl[ 
\bfitL 0

\bigr] 
(\bfitM \otimes \bfitI ). As we can see, the objective function in this problem

consists of two parts: one is smooth and convex, and the other one is possibly non-
smooth. Because of these properties, we can think about using FISTA [2] to solve
this problem. It not only fits the features of the objective function but also pro-
vides an optimal convergence rate. In addition, we are concerned about the linear
inequality constraints, and in each step, we can maintain these constraints by solving
a projection problem that is based on the 2-norm.
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4. FISTA and projections. In this section, we first briefly present the main
algorithm FISTA. To implement FISTA to solve the target optimization problem, we
need to determine the step size and handle the nonnegative constraints. For the step
size, we introduce how to compute the Lipschitz constant numerically and then choose
a constant step size based on the calculated Lipschitz constant. For the nonnegative
constraints, we build another quadratic programming problem and solve it with a
delicate decomposition and efficient algorithms.

4.1. FISTA. The Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) is
a first order method that belongs to the family of Iterative Shrinkage-Thresholding
Algorithms (ISTAs). This method was proposed by Beck et al., and compared with
the \scrO (1/k) rate of convergence of ISTA, it has a best function value convergence rate
\scrO 
\bigl( 
1/k2

\bigr) 
, where k is the number of iterations. Moreover, it is very appropriate for

problems in imaging science because it is usually used to solve the nonsmooth convex
problem

(4.1) min
\bfitx 

f (\bfitx ) + g (\bfitx ) ,

where f (\bfitx ) and g (\bfitx ) are both convex functions and g (\bfitx ) might not be smooth. In
imaging sciences, f (\bfitx ) is likely to be a least squares loss function to test the goodness
of fit, and g (\bfitx ) can be a regularization term such as an \ell 1 penalty or a total variation
regularization. For problem (3.13), we construct an augmented loss function that
merges the generalized Tikhonov regularization term, which corresponds to f (\bfitx ) in
(4.1). For the regularization term, the \ell 1 regularization is nonsmooth but convex, and
this matches g (\bfitx ) in (4.1).

The details of this algorithm are shown in Algorithm 4.1. For the main algorithm,
we need to first compute the smallest Lipschitz constant K. Then we can update the
current step using FISTA. Because of the linear inequality constraints, we need to
project the new step onto these constraints to keep the solution feasible. We would
like to implement FISTA with a constant step size to solve the optimization problem
(3.13). To implement this method, we need several preparations, which we will discuss
in the following sections.

Algorithm 4.1 FISTA and projections [2].

1: Initialization:
2: Calculate the smallest Lipschitz constant K in (4.3) by the Power Method.

3: Set up the initial guess \~\bfitW 0; Let \bfity 0 = vec
\Bigl( 
\~\bfitW 0

\Bigr) 
, \bfitx old = \bfity 0 and t1 = 1;

4: for k = 1, 2, . . . do
5: Calculate the gradients, \nabla f (\bfity k) and \nabla g (\bfity k), of f (\bfity k) and g (\bfity k) in (4.2);
6: \bfitx k = \bfity k  - 1

L(f) [\nabla f (\bfity k) +\nabla g (\bfity k)];

7: Reshape \bfitx k into a matrix and use CVXGEN to solve the projection problems
to obtain \bfitx new as (4.6);

8: tk+1 =
1+

\surd 
1+4t2k
2 ;

9: \bfity k+1 = \bfitx new +
\Bigl( 

tk - 1
tk+1

\Bigr) 
(\bfitx new  - \bfitx old);

10: \bfitx old = \bfitx new.D
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4.2. Lipschitz constant. The first step is to calculate the smallest Lipschitz
constant. If we let

(4.2)
f ( \~\bfitw ) =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\Biggl[ \surd 

2
2 \Sigma  - 1

2

\Bigl( 
\~\bfitC \otimes \bfitA 

\Bigr) 
\sqrt{} 

\alpha 1

2
\~\bfitL 

\Biggr] 
\~\bfitw  - 

\biggl[ 
\Sigma  - 1

2 \bfitb 
0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

2

,

g ( \~\bfitw ) = \alpha 2

2

\bigl[ 
0 1

\bigr] 
(\bfitM \otimes \bfitI ) \~\bfitw ,

then we need the smallest Lipschitz constant K for \nabla f ( \~\bfitw ), which is the largest
eigenvalue for \nabla 2f ( \~\bfitw ). That is to say,

(4.3) K = \lambda max

\Bigl[ \Bigl( 
\~\bfitC T \otimes \bfitA T

\Bigr) 
\Sigma  - 1

\Bigl( 
\~\bfitC \otimes \bfitA 

\Bigr) 
+ \alpha 1

\~\bfitL T \~\bfitL 
\Bigr] 
.

Since we only need the largest eigenvalue, it is not necessary for us to construct
these matrices explicitly; instead we can use an iterative approach, such as the Power
Method [6]. Note that we only need to calculate K once for all FISTA iterations. The
details are shown in Algorithm 4.2.

Algorithm 4.2 Power Method [6].

1: Initialization:
2: Generate a random vector \bfitq 0 and normalize \bfitq 0;
3: for i = 1, 2, . . . do

4: \bfitz i =
\Bigl[ \Bigl( 

\~\bfitC T \otimes \bfitA T
\Bigr) 
\Sigma  - 1

\Bigl( 
\~\bfitC \otimes \bfitA 

\Bigr) 
+ \alpha 1

\~\bfitL T \~\bfitL 
\Bigr] 
\bfitq i - 1;

5: \bfitq i = \bfitz i/ \| \bfitz i\| 2;
6: \lambda i = \bfitq T

i

\Bigl[ \Bigl( 
\~\bfitC T \otimes \bfitA T

\Bigr) 
\Sigma  - 1

\Bigl( 
\~\bfitC \otimes \bfitA 

\Bigr) 
+ \alpha 1

\~\bfitL T \~\bfitL 
\Bigr] 
\bfitq i.

4.3. Projections. In addition to the largest eigenvalue, we also need to handle
the linear inequality constraints (\bfitM \otimes \bfitI ) \~\bfitw \geqslant 0. Generally speaking, we can regard
problem (3.13) as a quadratic programming problem under these specific constraints.
To impose the linear inequality constraints, we can construct another quadratic pro-
gramming problem that offers a nearest solution to satisfy these constraints. If we
assume that we have obtained \~\bfitw k in the kth step, then we build a projection problem
of the form

min
\~\bfitw new

\| \~\bfitw new  - \~\bfitw k\| 22

subject to (\bfitM \otimes \bfitI ) \~\bfitw new \geqslant 0.
(4.4)

For small- and medium-sized problems, we can solve it efficiently by direct implemen-
tation of standard optimization algorithms. For example, we can use CVX [7, 8] to
solve problem (4.4), which turns out to be low-cost both in storage and calculation
consumptions. However, there are challenges for large-scale problems. For example,
saving long vectors or constructing sparse matrices might require large storage space.
Therefore, we should find a method for decomposing problem (4.4) into small pieces
and try to solve each small problem accurately and efficiently.

Suppose we reshape vectors into matrices, for example, using the MATLAB
reshape function, \~\bfitW new = reshape ( \~\bfitw new, Nv, Nm) and \~\bfitW k = reshape ( \~\bfitw k, Nv, Nm).
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Then by Kronecker product properties and the connection between the 2-norm and
the Frobenius norm, problem (4.4) is equivalent to

min
\~\bfitW new

\bigm\| \bigm\| \bigm\| \~\bfitW new  - \~\bfitW k

\bigm\| \bigm\| \bigm\| 2
F

subject to \~\bfitW new\bfitM 
T \geqslant 0.

(4.5)

If we focus on each row of \~\bfitW k, \~\bfitW k (i, :), then problem (4.5) can be rewritten as

min
\~\bfitW new

Nv\sum 
k=1

\bigm\| \bigm\| \bigm\| \~\bfitW new (i, :) - \~\bfitW k (i, :)
\bigm\| \bigm\| \bigm\| 2
2

subject to \~\bfitW new (i, :)\bfitM T \geqslant 0,

(4.6)

where \~\bfitW new (i, :) is the corresponding ith row in \~\bfitW new. It is obvious that this
problem is separable, and the original problem (4.5) can be separated into small-sized
problems that only involve each row of \~\bfitW new and \~\bfitW k. Since each row only depends
on the number of materials Nm, then the size of each problem is usually 2\times 1 or 3\times 1.
In this case, we can solve each small-sized problem efficiently and concatenate the
solutions into a large matrix. To realize this idea, we can find a highly efficient solver
for small-sized problems and loop around the number of voxels (pixels if 2D) Nv. In
this paper, we choose CVXGEN [15, 16, 17, 18] to generate a customized solver for
small quadratic programming problems. It is a problem-specific, fast, and accurate
code generator which can achieve advanced performance in particular for small-sized
quadratic programming problems. In addition, if computer clusters are available, we
can write parallel programming codes, such as MPI or OpenMP, and compute the
solution to this projection problem in parallel. The speedup in this case relies on
the number of available compute nodes, but clearly there is potential for significant
speedup with such an approach.

In conclusion, we can see that this algorithm incorporates the advantages of the
Power Method, FISTA, and the fast solver, CVXGEN, for small-sized problems. With
the Power Method, we only need to save the Hessian-vector multiplication rather
than the full Hessian, and it is very cheap to compute. Moreover, we can achieve
a rapid convergence by FISTA in the main loop. Finally, the projection problem is
decomposed into many small pieces, and each can be solved by CVXGEN efficiently.

5. Numerical experiments. To test the performance of our preconditioner
and the main algorithm, we set up a test problem that is composed of two materials,
plexiglass and polyvinyl chloride (PVC). The size of each material map is 128\times 128.
The first material map is a circular mask that dominates the object, while the second
material map consists of small ``spikes"" that are scattered randomly inside the circle.
The number of ``spikes"" is chosen to 50. Outside of the circle, we assume that there
exist no weights of the object. These two images are shown in Figure 5.1.

Inside the mask, the darker blue areas for the first material map are mainly located
in the upper left and lower right corners, which correspond to blank points. Other
areas inside the circle are represented by heavily weighted yellows and greens. In the
second material map, the weights are scattered around the image and only occupy a
small part of the area in total. This test problem can be regarded as a simplification
of a real-life application. For example, in medical imaging for cancer detection, the
first material map is similar to a small area of human body or tissue, while the second
material map can represent the calcium located inside this area.
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Fig. 5.1. The original material maps for plexiglass (left) and PVC (right).

In addition to the test images, we also need other parameters in (1.1). To generate
the ray trace matrix \bfitA , we use the MATLAB function fanbeamtomolinear from
AIR Tools [13, 10, 9] to simulate a fan-beam geometry with a flat detector. Other
parameters that we need to choose in this function are presented in Table 5.1.

Table 5.1
Geometry parameters of CT machine.

Items Parameters (cm)
Width of domain 2.0
Distance from source to rotation center 3.0
Distance from source to detector 5.0
Detector width 4.0

In addition, we use 180 projections in total which are equally distributed from 0
to 360 degrees. The spectral energy of the x-ray source is generated by the MATLAB
function spektrSpectrum [22] with 120 keV voltage as input. The detector is assumed
to be photon-counting with 5 energy windows. From the first energy window to the
fifth energy window, we assume that they can detect the range of photon energies 10
to 34 keV, 35 to 49 keV, 50 to 64 keV, 65 to 79 keV, and 80 to 120 keV, respectively.

The plot of photon flux density versus photon energy is presented in Figure 5.2.
In Figure 5.2, the curve represents the photon intensity of the x-ray source, and the
gray boxes indicate energy windows of the detector. Moreover, the black dots are
the values of the mean photon energy in each energy window. When we build the
test problem, the full energy spectrum and all the corresponding linear attenuation
coefficients are used, while only the mean photon energies and the corresponding
linear attenuation coefficients are applied for reconstruction. As is well known, this
strategy of generating data on a finer grid and solving it on a coarser grid is a standard
approach to avoiding what is called the inverse crime.

We also plot the curves of linear attenuation coefficients with respect to photon
energy in Figure 5.3. From the figure, we can see that the slopes of these two curves
are close to each other, which is likely to introduce collinearity between coefficients.
Moreover, we assume that the entries of the matrix \bfitY follow a Poisson distribution,
and for large-scale problems, from the Central Limit Theorem, the Poisson distri-
bution is approximated well by a Gaussian distribution. So the assumption of the
Gaussian model is valid.
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Fig. 5.2. Detector bins and photon flux density.

The reconstructed images are shown in Figure 5.4, which shows that we achieve
almost perfect separation for these two materials. Moreover, the reconstructed images
have excellent quality in terms of visuality. Both material maps are relatively close
to the true images. In the first material map, the distribution of weights is easy to
identify. The low intensity pixels are located in the upper left and lower right areas
of the circle, while other places are occupied by the yellows and greens. Moreover, we
can easily recognize the edges of the circle that indicate the boundary of the object,
which is a plus. As we can see, the reconstruction of small ``spikes"" is extremely
difficulty because of the randomness of weights and spots. However, we can see that
the small ``spikes"" are scattered in the same positions as the true image, while they
are masked by the shade of a circle. These results present the significance of methods
proposed in this paper.

To further validate the results, we plot the relative errors of these two materials
versus the number of FISTA iterations. The decrease of relative errors of correspond-
ing materials is shown in Figure 5.5. From this figure, we can see that the relative
error of the first material drops sharply as the number of iterations increases. It
then stagnates after around 150 iterations. However, the relative error of the second
material only decreases fast in the beginning, and after several iterations the rate of
change slows down and the relative error cannot reduce further. We can also iden-
tify the same phenomenon by comparing the true and reconstructed images of the
second material map. Even if the spots of these ``spikes"" are approximately correct,
the numerical weights of these dots might not be the same. Moreover, there are a
large number of small values in the background of the reconstructed image, causing
somewhat large relative errors, even though visually the result looks quite good.

Other accuracy measures illustrate this phenomenon. In Figure 5.6, we plot the
mean squared error (MSE) at each iteration. In Figure 5.7, the structural similarity
index (SSIM) is presented.
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Fig. 5.3. Linear attenuation coefficients and photon flux density.
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Fig. 5.4. The reconstructed images for plexiglass (left) and PVC (right).

Not surprisingly MSE produces information very similar to the relative errors,
but it also shows a clear diminution for the second material in Figure 5.6. The SSIM
is a metric for image quality, and large values correspond to better solutions. From
Figure 5.7, it can be seen that the quality of the reconstructed first material map
improves slowly in the early iterations, but it achieves a higher quality measure in
the end compared with the second material map. In summary, all of these errors and
quality measures illustrate fast convergence to high-quality reconstructions.

It may also be of interest to observe the decay of norm of the gradient at each
iteration, which is shown in Figure 5.8. From this figure, we can see that the norm
of the gradient decreases significantly in the beginning and levels off after a sufficient
number of iterations, indicating the convergence to a minimizer.

To further validate the strength of our proposed preconditioner, we compare the
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Fig. 5.5. The related errors for each iteration (with preconditioner) for plexiglass and PVC.
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Fig. 5.6. MSE for each iteration (with preconditioner) for plexiglass and PVC.

performance with a preconditioner proposed by Barber et al. [1], and the performance
without using any preconditioners. As previously mentioned, the approach proposed
in [1] is based on the eigenvalue decomposition of \bfitC T\bfitC . The results are shown in
Figure 5.9, where we plot the decay of relative errors for these three cases. To reduce
clutter in this plot, we only show results for the first material; the behavior for the
second material is the same.
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Fig. 5.7. SSIM for each iteration (with preconditioner) for plexiglass and PVC.
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Fig. 5.8. The norm of the gradient for overall materials, normalized by the 2-norm of the image.

From this figure, we can easily observe that both preconditioners are effective at
accelerating convergence, with our approach producing the fastest convergence and
the lowest relative errors.
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Fig. 5.9. The decay of related errors with new preconditioner, with Barber's [1] preconditioner,
and with no preconditioner.

6. Conclusions and remarks. In this paper, we use the Gaussian assumption
of noise to construct a weighted least squares problem under bound constraints for
energy-discriminating x-ray detectors in computed tomography. Based on this prob-
lem, we propose a new preconditioner that includes not only the information of the
linear attenuation coefficient matrix \bfitC but also the projected data matrix \bfitY and
the energy spectrum matrix \bfitS . With this new preconditioner, the condition number
of the Hessian can be reduced significantly. To implement this new preconditioner
within an optimization framework, we suggest using a first order method, FISTA,
that can generate fast convergence speed. Because of the introduction of the new
preconditioner, we recommend constructing a projection problem and computing the
nearest step that will satisfy the linear inequality constraints for each iteration. Fi-
nally, numerical experiments also specify the advantages of the method mentioned in
this paper. For future work, it would be interesting to consider other regularization
schemes to emphasize the edges of the object, such as total variation.
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