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Abstract

We introduce and investigate the resolvent order, which is a binary relation on the set of firmly
nonexpansive mappings. It unifies well-known orders introduced by Loewner (for positive
semidefinite matrices) and by Zarantonello (for projectors onto convex cones). A connection
with Moreau’s order of convex functions is also presented. We also construct partial orders on
(quotient sets of) proximal mappings and convex functions. Various examples illustrate our
results.
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1 Introduction

In this paper, we assume that
X is a real Hilbert space, (1)

with inner product 〈·, ·〉 and induced norm ‖·‖. We denote the set of all functions from X to
R ∪ {+∞} that are convex1, lower semicontinuous and proper by Γ0(X). Let A : X ⇒ X be a
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†Mathematics, University of British Columbia, Kelowna, B.C. V1V 1V7, Canada. E-mail: heinz.bauschke@ubc.ca.
‡Mathematics, University of British Columbia, Kelowna, B.C. V1V 1V7, Canada. E-mail: shawn.wang@ubc.ca.
1We assume the reader is familiar with basic convex analysis; see, e.g., [12, 13, 17, 21, 18, 4].
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set-valued operator, i.e., (∀x ∈ X) Ax ⊆ X and denote the graph of A by gra A. Recall that A is
monotone if

(∀(x, x∗) ∈ gra A)(∀(y, y∗) ∈ gra A) 〈x − y, x∗ − y∗〉 ≥ 0 (2)

and that A is maximally monotone if it is monotone and cannot be extended without destroying
monotonicity. The notion of maximal monotonicity has proven to be useful in modern optimiza-
tion and nonlinear analysis; see, e.g., [4, 5, 6, 8, 18, 19, 20, 24, 25]. We denote the set of maximally
monotone operators on X by M(X). This set includes subdifferential operators of functions in
Γ0(X) as well as all square matrices with symmetric parts that are positive semidefinite. Further-
more, we denote by F (X) the set of all mappings T : X → X that are firmly nonexpansive2, i.e.,

(∀x ∈ X)(∀y ∈ X) ‖Tx − Ty‖2 ≤ 〈x − y, Tx − Ty〉 . (3)

Thanks to the work of Minty [15] (see also [9]), we can identify a maximally monotone operator A
from M(X) with with its resolvent in F (X) via

JA := (Id+A)−1. (4)

Here Id = ∇ q = ∂ q is the identity operator on X, where q : x 7→ 1
2‖x‖2. If we focus instead on the

important subset of subdifferential operators in M(X), then we recover Moreau’s [16] proximal
mapping (or proximity operator)

P f := J∂ f = (Id+∂ f )−1, (5)

where f ∈ Γ0(X) and ∂ f ∈ M(X) is the subdifferential operator of f . The set of proximal
mappings, which we write as P(X), can also be described as follows. Given f ∈ Γ0(X), let
env( f ) := q � f be the (Moreau) envelope of f , where � denotes infimal convolution. The set of all
envelopes is written as M 0(X). Then

∇ env( f ∗) = P f = J∂ f = (Id+∂ f )−1, (6)

where f ∗ ∈ Γ0(X) is the Fenchel conjugate of f . (Thus, we can loosely write M 0(X) = Γ0(X)� q
and ∇M 0(X) = P(X).)

Having set up the necessary notation, we can now describe the goal and the organization of this
paper.

The goal of this paper is to introduce a new order3 on F (X) which we call the resolvent order. It
induces orders on P(X), M(X), Γ0(X), and M 0(X) which will allow us to unify and connect to several
well known orders from linear and nonlinear analysis, namely to the orders by Zarantonello, by Loewner,
and by Moreau. We provide several examples and also present a partial order on (a quotient set of) the set
of proximal mappings P(X) and on (a quotient set of) the set of convex functions Γ0(X).

The remainder of the paper is organized as follows. In Section 2, we present various results that
make the proofs of the main results more structured. The resolvent order on F (X) is defined in

2 Note that by the Cauchy–Schwarz inequality, every firmly nonexpansive mapping is nonexpansive, i.e., Lipschitz
continuous with constant 1.

3To keep the language in this paper from being overly technical, we will refer to an “order” as a binary relation that
is at least reflexive.
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Section 3, where we also provide basic properties and characterizations for P(X). In fact, transi-
tivity of the order is established for P(X). In Section 4, we discuss partitions of the identity and
show that transitivity fails for F (X). In Sections 5, 6, and 7, we connect the resolvent order to
the orders by Zarantonello, by Loewner, and by Moreau, respectively. New orders on M(X) and
Γ0(X) are introduced in Section 8. These orders are not partial orders. A quotient construction is
presented in Section 9 which results in partial orders on P(X) and on Γ0(X).

The notation we employ is standard and follows, e.g., [4].

2 Auxiliary results

In this section, we collect various results that will be useful later.

Fact 2.1. Let T : X → X. Then the following are equivalent:

(i) T is firmly nonexpansive, i.e., (∀x ∈ X)(y ∈ X) 〈Tx − Ty, x − y〉 ≥ ‖Tx − Ty‖2.
(ii) (∀x ∈ X)(y ∈ X) ‖Tx − Ty‖2 + ‖(x − Tx)− (y − Ty)‖2 ≤ ‖x − y‖2.

(iii) Id−T is firmly nonexpansive.
(iv) 2T − Id is nonexpansive.

Proof. See, e.g., [4], [10], or [11]. �

Corollary 2.2. The sets F (X) and P(X) are convex. If λ ∈ [0, 1], then λF (X) ⊆ F(X) and λP (X) ⊆
P(X).

Proof. For F (X), the convexity follows using the last item from Fact 2.1 (see also [2, Corollary 1.8]).
For the convexity of P(X), see [16]. To obtain the inclusions, it suffices to note that 0 ∈ P(X). �

Lemma 2.3. Let T1 and T2 be firmly nonexpansive on X. Then T2 − T1 is nonexpansive.

Proof. By Fact 2.1, we can write each Ti = (Id+Ni)/2, where Ni is nonexpansive. It follows that
T2 − T1 = (N2 − N1)/2 is nonexpansive. �

Fact 2.4. Let f ∈ Γ0(X) and set h := f ∗ − q. Then the following are equivalent:

(i) f is Fréchet differentiable on X and ∇ f is nonexpansive.
(ii) f is Fréchet differentiable on X and ∇ f is firmly nonexpansive.

(iii) q− f is convex
(iv) f ∗ − q is convex.
(v) h ∈ Γ0(X) and f = env(h∗).

(vi) h ∈ Γ0(X) and ∇ f = Ph.

Proof. See [4, Theorem 18.17], and also [1], [3], [16]. �
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Corollary 2.5. Any linear combination of proximal mappings that is monotone and nonexpansive is actu-
ally a proximal mapping.

Proof. Let h1, . . . , hn be in Γ0(X) such that P := ∑
n
i=1 αi Phi

is nonexpansive and monotone. Set
(∀i ∈ {1, . . . , n}) fi := env(h∗i ) = h∗i � q = (hi + q)∗, f := ∑

n
i=1 αi fi and h := f ∗ − q. Then P = ∇ f

and f is thus convex and Fréchet differentiable. By Fact 2.4, h ∈ Γ0(X) and P = ∇ f = Ph. �

Corollary 2.6. Let P1 and P2 be proximal mappings. Then P1 − P2 is a proximal mapping if and only if
P1 − P2 is monotone.

Proof. “⇒”: Clear. “⇐”: By Lemma 2.3, P1 − P2 is nonexpansive. Now apply Corollary 2.5. �

Fact 2.7. Let T : X → X be linear and self-adjoint. Then T is firmly nonexpansive if and only if T is
monotone and nonexpansive, in which case T is a proximal mapping

Proof. See [4, Corollary 18.15] and also [1]. �

3 The resolvent order

From the point of view of monotone operator theory, the set of firmly nonexpansive mappings is
the same as the set of resolvents. This motivates the language in the following definition.

Definition 3.1. (resolvent order) We define on F (X) a binary relation via

T1 � T2 :⇔ T2 − T1 ∈ F(X). (7)

Let us collect some basic properties.

Lemma 3.2. Let T, T0, T1 be in F (X). The binary relation � satisfies the following:

(i) (reflexivity) T � T.
(ii) (existence of least and greatest element) 0 � T � Id.

(iii) (order reversal) T0 � T1 ⇔ Id−T1 � Id−T0.
(iv) T0 � T1 ⇔ (∀λ ∈ [0, 1]) T0 � (1 − λ)T0 + λT1 � T1.

Proof. (i): T − T = 0 is firmly nonexpansive. (ii): T − 0 = T is firmly nonexpansive as is Id−T by
Fact 2.1. (iii): Indeed, T1 − T0 = (Id−T0)− (Id−T1). (iv): Suppose that T0 � T1, i.e., T1 − T0 ∈
F (X). Let λ ∈ [0, 1]. Then T1 − ((1 − λ)T0 + λT1) = (1 − λ)(T1 − T0) and (1 − λ)T0 + λT1 − T0 =
λ(T1 − T0) both of which are firmly nonexpansive by Corollary 2.2. The converse implication is
trivial. �

The following two observations are easily verified.
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Example 3.3. (lack of symmetry) Suppose that X 6= {0}. Then 0 � Id but Id 6� 0.

Example 3.4. (lack of antisymmetry) Suppose that x1 and x2 are two distinct vectors in X, and set
(∀x ∈ X) T1(x) := x1 and T2(x) := x2. Then T1 � T2 and T2 � T1 yet T1 6= T2.

In Section 9, we will present a quotient construction that makes the binary relation antisymmet-
ric.

We now turn to proximal mappings which allows us to obtain stronger conclusions.

Theorem 3.5. Let f and g be in Γ0(X). Then the following are equivalent:

(i) P f � Pg, i.e., Pg −P f ∈ F (X).
(ii) Pg −P f ∈ P(X).

(iii) env(g∗)− env( f ∗) ∈ M 0(X).
(iv) env( f )− env(g) ∈ M 0(X).

Proof. “(i)⇐(ii)”: Clear. “(i)⇒(ii)”: Since Pg −P f is firmly nonexpansive it is also monotone. Now
apply Corollary 2.6. “(ii)⇒(iii)”: Integrate. “(ii)⇐(iii)”: Differentiate. “(iii)⇐(iv)”: This is clear
since env(g∗)− env( f ∗) = (q− env(g))− (q− env( f )) = env( f )− env(g). �

Theorem 3.6. (transitivity for proximal mappings) Let f , g, h be in Γ0(X) such that P f � Pg and
Pg � Ph. Then P f � Ph.

Proof. By the hypothesis and Theorem 3.5, there exist a and b in Γ0(X) such that

Pg −P f = Pa and Ph −Pg = Pb . (8)

Adding yields Ph −P f = Pa +Pb. On the other hand, Pa +Pb is monotone because Pa and Pb are
monotone. Altogether, we deduce from Corollary 2.6, that Ph −P f is a proximal mapping. �

Corollary 3.7. (proximal mappings are directed) (P(X),�) is a directed set.

Proof. The reflexivity of � was observed in Lemma 3.2(i) while the transitivity of � is a con-
sequence of Theorem 3.6. Finally, if P1 and P2 are in P(X), then P1 � Id and P2 � Id by
Lemma 3.2(ii). �

We conclude this section with an example.

Example 3.8. Denote the unit ball centered at 0 of radius 1 in X by C, and set T := Id−PC. Then
(∀n ∈ N) Tn = Id−PnC ∈ P(X) and Tn − Tn+1 = P(n+1)C −PnC ∈ P(X). Consequently,

(∀n ∈ N) 0 � Tn+1 � Tn � · · · � T � T0 = Id . (9)

Proof. The identity for Tn is easily verified by mathematical induction and discussing cases. To
verify that Tn − Tn+1, observe that by Corollary 2.6 it suffices to show that Tn − Tn+1 is monotone.
In turn, this is achieved by discussing cases and invoking the Cauchy–Schwarz inequality. �
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4 Partitions of the identity and the partial sum property

In this section, we discuss partial sums of firmly nonexpansive mappings arising in partitions
of the identity. Somewhat surprisingly, we also show that the transitivity result for proximal
mappings (Theorem 3.6) fails for firmly nonexpansive mappings (see Example 4.5 below).

We start with a positive result.

Lemma 4.1. Let T1, T2, T3 be in F (X) such that such that T1 + T2 + T3 = Id. Then T1 + T2 is firmly
nonexpansive.

Proof. Since T1 + T2 = Id−T3, this follows from Fact 2.1. �

For proximal mappings we are able to extend Lemma 4.1 from 3 to any number of operators:

Theorem 4.2. (partial sum property for proximal mappings) Let n ∈ {1, 2, . . .}, let P1, . . . , Pn be in
P(X) such that P1 + P2 + · · ·+ Pn = Id, and let m ∈ {1, . . . , n}. Then P1 + · · ·+ Pm ∈ P(X).

Proof. There exist functions f1, . . . , fn in Γ0(X) such that for each i, ∇ env( f ∗i ) = Pi, and env( f ∗1 ) +
· · ·+ env( f ∗n ) = q. It follows that

q−
(

env( f ∗1 ) + · · ·+ env( f ∗m)
)

= env( f ∗m+1) + · · ·+ env( f ∗n ) (10)

is convex. By Fact 2.4, ∇(env( f ∗1 ) + · · ·+ env( f ∗m)) = P1 + · · ·+ Pm is a proximal mapping. �

Surprisingly, the counterpart of Theorem 4.2 for firmly nonexpansive mappings is false as the
next two results show.

Lemma 4.3. In X = R2, let n ∈ {2, 3, . . .}, let θ ∈
]

arccos(1/
√

2), arccos(1/
√

2n)
]

, set α :=
1/(2n cos(θ)), and denote by Rθ be the counterclockwise rotator by θ. Then the following hold:

(i) αRθ and αR−θ are firmly nonexpansive.
(ii) nαRθ and nαR−θ are not firmly nonexpansive.

(iii) nαRθ + nαR−θ = Id.

Proof. Observe that (∀x ∈ X) 〈x, Rθx〉 = cos(θ)‖x‖2 = cos(θ)‖Rθ x‖2. It follows that

(∀α ∈ R+) αRθ ∈ F (X) ⇔ α ∈ [0, cos(θ)]. (11)

Let α ∈ R++ satisfy

nαRθ + nαR−θ = nα(Rθ + R−θ) = nα

(

2 cos(θ) 0
0 2 cos(θ)

)

= Id; (12)

equivalently,

α :=
1

2n cos(θ)
. (13)
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Combining (11) and (13) yields

αRθ ∈ F(X) ⇔ 1

2n
≤ cos2(θ). (14)

On the other hand, (nα)Rθ /∈ F (X) ⇔ nα > cos(θ) ⇔ (2 cos(θ))−1
> cos(θ). Altogether,

[

αRθ ∈ F (X) and nαRθ /∈ F(X)
]

⇔ cos(θ) <
1

2 cos(θ)
≤ n cos(θ) (15a)

⇔ cos2(θ) <
1

2
≤ n cos2(θ) (15b)

⇔ cos(θ) <
1√
2
≤

√
n cos(θ) (15c)

⇔ 1√
2n

≤ cos(θ) <
1√
2

. (15d)

Note that (15) has no solution for n = 1; however, (15) has solutions for every n ≥ 2. Because
R−θ = R∗

θ , the result follows with [4, Corollary 4.3] or by arguing along the same lines as above
for R−θ. �

We now obtain the following direct consequence of Lemma 4.3:

Example 4.4. (partial sum property fails for general firmly nonexpansive mappings) Let n ∈
{2, 3, . . .}, and let θ, α, and R±θ be as in Lemma 4.3. Furthermore, set T1 := · · · = Tn := αRθ and
Tn+1 := · · · = T2n := αR−θ. Then each Ti is firmly nonexpansive, T1 + · · ·+ T2n = Id, yet T1 + · · ·+ Tn

is not firmly nonexpansive.

We conclude this section with another negative result.

Example 4.5. (lack of transitivity for firmly nonexpansive mappings) Suppose that X = R2, and
set R := αRθ and S := αR−θ, where θ and α are as in Example 4.4 for n = 2. Then

R and S are firmly nonexpansive, (16a)

2R and 2S are not firmly nonexpansive, (16b)

2R + 2S = Id. (16c)

Now set
T1 := S, T2 := R + S, T3 := 2R + S. (17)

Then T1 ∈ F (X) by (16a). Next, (16a) and (16c) imply that T3 = Id−S ∈ F(X). Since F (X) is convex
(Corollary 2.2), it follows that T2 = (T1 + T3)/2 ∈ F (X). Because T2 − T1 = T3 − T2 = R ∈ F(X) by
(16a), we have

T1 � T2 and T2 � T3. (18)

On the other hand, T3 − T1 = 2R /∈ F(X) by (16b). Thus,

T1 6� T3. (19)

Altogether, we deduce that
(F (X),�) is not transitive. (20)
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5 Compatibility with Zarantonello’s partial order

Zarantonello introduced in [22, 23] a partial ordering of the set of projectors onto nonempty closed
convex cones contained in X via

PC �Z PD :⇔ PC PD = PC . (21)

He established various nice properties which we collect in the following result.

Fact 5.1. (Zarantonello) Let C and D be nonempty closed convex cones in X. Then the following hold:

(i) PC �Z PD ⇔ PD −PC is a projector, in which case4 PD −PC = PD∩C⊖ .
(ii) PC �Z PD ⇔ [PC PD = PD PC and (∀x ∈ X) 〈x, PC x〉 ≤ 〈x, PD x〉].

(iii) PC �Z PD ⇒ C ⊆ D.
(iv) PC �Z PD ⇒ PC, PD, PC⊖ , PD⊖ pairwise commute with their products being the projectors onto the

intersection of their ranges (PC PD = PC PD = PC∩D, etc.).
(v) Suppose that C and D are subspaces. Then PC �Z PD ⇔ C ⊆ D.

Proof. (i)–(iv): See [22, Lemma 5.12] and [23, page 347]. (v): If C ⊆ D, then D = C ⊕ (D ∩ C⊥),
which implies that PD −PC = PD∩C⊥ is a projector and PC �Z PD by (i). The other implication is
(iii). �

Remark 5.2. Generalizing (21) and hoping that Fact 5.1(i) holds by just replacing projectors by proximal
mappings will not work: indeed, P f −P f = 0 = P{0} is a proximal map and a projector yet P f P f 6= P f .

Next, let us show that Zarantonello’s order is compatible with the order from Definition 3.1:

Lemma 5.3. (compatibility with Zarantonello’s order) Let C and D be nonempty closed convex cones
in X. Then PC �Z PD ⇔ PC � PD.

Proof. “⇒”: Assume that PC �Z PD. By Fact 5.1(i), PD −PC is a projector, hence a proximal
mapping and thus firmly nonexpansive. Therefore, PC � PD. “⇐”: Assume that PC � PD, i.e.,
PD −PC is firmly nonexpansive. By Theorem 3.5, PD −PC is a proximal mapping. Hence, for

f := 1
2 d2

C − 1
2 d2

D, (22)

there exists h ∈ Γ0(X) such that

∇ f = (Id−PC)− (Id−PD) = PD −PC = Ph . (23)

Since Ph is monotone, the function f is convex and so f ∈ Γ0(X). Now ∇ f = Ph = (Id+∂h)−1 ⇒
∂ f ∗ = (∇ f )−1 = Id+∂h = ∂(q+h). Thus, after integrating and noting that (23) is invariant under
adding constants to h, we may and do assume that

h = f ∗ − q . (24)

4Here C⊖ :=
{

x ∈ X
∣

∣ sup 〈C, x〉 = 0
}

is the polar cone of C.
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Furthermore, combining [4, Example 13.3(ii) and Example 13.24(iii)] yields
(

1
2 d2

C

)∗
= q+ιC⊖ . (25)

Let us now compute f ∗ at u ∈ X. By [4, Proposition 14.19],

f ∗(u) = sup
v∈dom((1/2)d2

D)
∗

(

(

1
2 d2

C

)∗
(u + v)−

(

1
2 d2

D

)∗
(v)

)

(26a)

= sup
v∈D⊖

(

q(u + v) + ιC⊖(u + v)− q(v)
)

(26b)

= q(u) + sup
v∈D⊖

(

〈u, v〉+ ιC⊖(u + v)
)

. (26c)

Two cases are now conceivable.

Case 1: (∃ v ∈ D⊖) u + v /∈ C⊖.
Then f ∗(u) = +∞ and hence f ∗(u)− q(u) = +∞.

Case 2: u + D⊖ ⊆ C⊖.
Then

f ∗(u)− q(u) = sup
v∈D⊖

〈u, v〉 = ι∗D⊖(u) = ιD⊖⊖(u) = ιD(u) ∈ {0,+∞}. (27)

Altogether, h = f ∗ − q takes only values in {0,+∞}, i.e., h is an indicator function Thus, Ph must
be a projector5. Therefore, by Fact 5.1(i), PC �Z PD. �

6 Compatibility with the Loewner order via resolvents

In this section, we assume that

X = S
n :=

{

A ∈ R
n×n

∣

∣ A = A∗} (28)

is the finite-dimensional Hilbert space of all real symmetric matrices of size n × n with the in-
ner product 〈A, B〉 being the trace of AB. We shall focus on the closed convex cone of positive
semidefinite matrices:

S
n
+ :=

{

A ∈ S
n
∣

∣ (∀x ∈ R
n) 〈x, Ax〉 ≥ 0

}

=
{

A ∈ S
n
∣

∣ A is monotone
}

. (29)

Let A and B be in Sn
+. The classical Loewner (or Löwner) order [14] states

B �L A :⇔ A − B ∈ S
n
+, i.e., A − B is monotone. (30)

5We may obtain additional information as follows. Suppose first, as in Case 2, that u + D⊖ ⊆ C⊖. This case must
occur since h is proper. (In passing, note that this precisely states that u is in the so-called star-difference C⊖ ∗− D⊖; see
[12].) Since 0 ∈ D⊖, it is clear that u ∈ C⊖. On the other hand, since we are working with cones, we have (∀ε > 0)
εu + D⊖ = ε(u + D⊖) ⊆ εC⊖ = C⊖. Letting ε → 0+, we deduce that D⊖ ⊆ C⊖ and thus C ⊆ D as is also guaranteed
by Fact 5.1(i). If conversely u ∈ C⊖, then u + D⊖ ⊆ u + C⊖ ⊆ C⊖. Altogether, we have shown that u is as in Case 2 if
and only if u ∈ C⊖. Therefore, h = ιD∩C⊖ , which is consistent with Fact 5.1(i).

9



Passing to resolvents, we have

B �L A ⇔ Id+B �L Id+A ⇔ (Id+A)−1 �L (Id+B)−1 ⇔ JA �L JB . (31)

The question now arises whether the Loewner order for resolvents is compatible with our order
from Definition 3.1. Clearly,

JA � JB ⇒ JB − JA is monotone ⇔ JA �L JB . (32)

Conversely, assume that JA �L JB, i.e., JB − JA is monotone. On the other hand, JB − JA is nonex-
pansive by Lemma 2.3. Altogether, by Fact 2.7, JB − JA is firmly nonexpansive, i.e., JA � JB. In
summary,

B �L A ⇔ JA �L JB ⇔ JA � JB, (33)

which shows that the Loewner order and our order are compatible. (In passing, we note that the
comments in this section have extensions to self-adjoint operators on Hilbert space.)

7 A connection to Moreau’s order

In his seminal work [16], Moreau introduced an order of Γ0(X) via

g �M f :⇔ (∃ h ∈ Γ0(X)) f = g + h. (34)

In fact, using this notation, we can write the equivalence of (iii) and (iv) in Fact 2.4, which was
first observed by Moreau [16], more succinctly as f �M q ⇔ q �M f ∗. To make the connection
with our order, let us take f and g from Γ0(X). Using Corollary 2.6 and Theorem 3.5, we have the
following equivalences:

env(g) �M env( f ) ⇔ env( f )− env(g) is convex ⇔ env(g∗)− env( f ∗) is convex (35a)

⇔ Pg −P f is monotone ⇔ env( f )− env(g) ∈ M 0(X) (35b)

⇔ Pg −P f ∈ P(X) ⇔ P f � Pg . (35c)

Hence, our order is compatible with Moreau’s order when restricted to M 0(X), the set of envelope
functions on X.

8 Ordering monotone operators and convex functions

The classical bijection between the maximally monotone operators on X and the firmly nonexpan-
sive mappings on X, introduced by Minty [15] (see also [9]), is

M(X) → F(X) : A 7→ JA = (Id+A)−1. (36)
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We thus define a new binary relation on M(X) via

B � A :⇔ JA � JB . (37)

For instance, we have NX = 0 � A � N{0} by Lemma 3.2(ii) while Lemma 3.2(iv) gives a state-
ment relating to the resolvent average introduced in [2]. The results in Section 6 show that when
X = Rn and we consider Sn

+, which is a subset of M(X), then these notions are compatible (see
(33)).

Furthermore, we can use this binary relation on M(X) to define a new binary relation on Γ0(X)
via

g � f :⇔ ∂g � ∂ f . (38)

With these definitions and using (35), we have the equivalences

g � f ⇔ ∂g � ∂ f ⇔ J∂ f � J∂g ⇔ P f � Pg ⇔ env(g) �M env( f ) (39)

which show that our binary relation on Γ0(X) plays along nicely with Moreau’s order.

Let us present another example. Let A and B be in Sn
+ and define the quadratic forms

(∀x ∈ R
n) qA(x) := 1

2 〈x, Ax〉 and qB(x) := 1
2 〈x, Bx〉 . (40)

Then ∇ qA = A and ∇ qB = B. Using (31), we see that

qB ≤ qA (pointwise) ⇔ 0 ≤ qA−B ⇔ A − B ∈ S
n
+ ⇔ B �L A ⇔ JA � JB (41a)

⇔ B � A ⇔ ∇ qB � ∇ qA ⇔ qB � qA ⇔ PqA
� PqB

(41b)

⇔ env(qB) �M env(qA). (41c)

This nicely illustrates the connections between the various orders considered in this paper.

9 New partial orders

In our final section, we introduce a quotient space construction which remedies the lack of anti-
symmetry observed in Example 3.4.

We start with a simple but useful result.

Lemma 9.1. Let T ∈ F (X) be such that −T ∈ F (X). Then T is a constant mapping.

Proof. Take x and y from X. Then

‖Tx − Ty‖2 ≤ 〈Tx − Ty, x − y〉 and ‖(−T)x − (−T)y‖2 ≤ − 〈Tx − Ty, x − y〉 . (42)

Thus,

0 ≤ ‖Tx − Ty‖2 (43a)
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≤ min
{

〈Tx − Ty, x − y〉 ,− 〈Tx − Ty, x − y〉
}

(43b)

= −| 〈Tx − Ty, x − y〉 | (43c)

≤ 0. (43d)

Therefore, Tx − Ty = 0. �

We now define a binary relation on F(X) via

T1 ∼ T2 :⇔ T2 − T1 is a constant mapping. (44)

It is straightforward to check that (F (X),∼) is an equivalence relation. Denote the corresponding
quotient set by

[F (X)] := F (X)/∼. (45)

Now define a binary relation on [F (X)] by

[T1] � [T2] :⇔ T1 � T2. (46)

Then ([F (X)],�) is reflexive; moreover, by Lemma 9.1, ([F (X)],�) is antisymmetric. If we restrict
to proximal mappings, then ([P(X)],�) is also transitive by Theorem 3.6. In summary,

(

[P(X)],�
)

is a partially ordered set. (47)

Finally, let us investigate (44) from the view point of maximally monotone operators via (36).

Lemma 9.2. Let A and B be in M(X) and let c ∈ X. Then the following are equivalent:

(i) (∀x ∈ X) JB x = c + JA x.
(ii) (∀x ∈ X) Bx = −c + A(x − c).

(iii) gra B = (c,−c) + gra A.

Proof. “(i)⇒(iii)”: By assumption, (∀x ∈ X) (JB x, x − JB x) = (c,−c) + (JA x, x − JA x). Using the
Minty parametrization (see [4, (23.18)]) of the graph, we see that gra B = (c,−c) + gra A. The
other implications are proved similarly. �

In view of Lemma 9.2, the equivalence relation (44) in F(X) gives rise to the following equiva-
lence relation on M(X):

A ∼ B :⇔ (∃ c ∈ X)(∀x ∈ X) Bx = −c + A(x − c). (48)

In turn, we can “integrate” (48) to obtain the following equivalence relation on Γ0(X):

f ∼ g :⇔ (∃ c ∈ X)(∃ γ ∈ R)(∀x ∈ X) g(x) = f (x − c)− 〈c, x〉+ γ. (49)

The last equivalence relation induces a quotient set [Γ0(X)] := Γ0(X)/∼. Interpreting (47) in this
setting, we obtain the following result.

Theorem 9.3. Equip the quotient set [Γ0(X)] with the binary relation

[g] � [ f ] :⇔ [P f ] � [Pg] ⇔ P f � Pg . (50)

Then
(

[Γ0(X)],�
)

is a partially ordered set. (51)
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