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Abstract

We study dynamics of phase-differences (PDs) of coupled oscillators
where both the intrinsic frequencies and the couplings vary in time. In
case the coupling coefficients are all nonnegative, we prove that the PDs
are asymptotically stable if there exists T > 0 such that the aggregation
of the time-varying graphs across any time interval of length T has a span-
ning tree. We also consider the situation that the coupling coefficients may
be negative and provide sufficient conditions for the asymptotic stability of
the PD dynamics. Due to time-variations, the PDs are asymptotic to time-
varying patterns rather than constant values. Hence, the PD dynamics can
be regarded as a generalisation of the well-known phase-locking phenom-
ena. We explicitly investigate several particular cases of time-varying graph
structures, including asymptotically periodic PDs due to periodic coupling
coefficients and intrinsic frequencies, small perturbations, and fast-switching
near constant coupling and frequencies, which lead to PD dynamics close
to a phase-locked one. Numerical examples are provided to illustrate the
theoretical results.

1 Introduction

The Kuramoto model of coupled oscillators [1, 2] has been one of the most pop-
ular mathematical model to describe collective dynamics in, for instance, neural
systems [3], power grids [4], and seismology [5], due to its ability to describe the
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phase dynamics of coupled systems [6, 7]. A standard first-order Kuramoto model
can be described as follows:

θ̇i = ωi +
n∑
j=1

aij sin(θj − θi), i = 1, . . . ,m, (1)

where θi ∈ S1 is the phase of the i-th oscillator, ωi is its intrinsic frequency, and aij
is the coupling strength measuring the strength of the influence of oscillator j on i.
Among the rich spectrum of dynamics (1) possesses, synchronization phenomenon
has attracted a lot of interest from diverse fields. Also known as phase-locked
equilibrium, synchronization refers to the state where oscillators lock their phase
differences (PD) via local interactions, namely, the limit limt→∞(θi(t)−θj(t)) ex-
ists for all i, j. This model exhibits phase transitions at critical values of coupling,
beyond which a collective behavior is achieved [8].

Meanwhile, the last two decades have witnessed the new field of network sci-
ence bringing new insights into the study of models of collective behavior, such as
the Kuramoto model (1), where the set {aij} in (1) is identified with a (weighted)
graph structure. New results have been obtained with the help of the emerging new
methodologies, such as the dimension reduction ansatz [9, 10] and the consensus
analysis in networked system [11, 12] with the Lyapunov function method, and the
effects of small-world and scale-free structures on synchronization were studied
[13, 14]. For more details, we refer to the comprehensive review literature [15, 16]
and the references therein.

The majority of the existing literature is concerned with networks with static
topology and couplings. However, many real-world applications from the social,
natural, and engineering disciplines include a temporal variation in the topology
of the network. In communication networks, for example, some connections may
fail due to occurrence of an obstacle between agents [17] and new connections
may be created when one agent enters the effective region of other agents [18, 19].
Time variability in the system structure has been experimentally reported for brain
signals [20, 21]. Hence, there are important cases where the model should be for-
mulated with time-varying parameters, which may lead nonequilibrium dynamics.
Synchronization of time-varying networks has recently attracted a lot of attention
in the scientific literature [22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. However, only
very few papers have studied time-varying (also termed time-dependent) param-
eters in the Kuramoto model. In [32, 33], the techniques of order parameters,
thermodynamic limits, and the Ott-Antonsen ansatz as well as the dimension re-
duction method were extended to treat the Kuramoto model with a time-varying
coupling that originates from another nonconstant mean field [34], and stable time-
dependent collective dynamics were identified. The time-varying model was also
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investigated from a control point of view. In [35], minimising the L2-norm of
time-varying coupling were studied subject to synchrony performance, and in [36],
input-to-state stability was considered. In addition, negative couplings should also
be considered in a number of physical scenarios, for instance, in repressive synap-
tic couplings from inhibitory neurons in neural systems, inhibitory/inactive inter-
actions in genetic regulation networks, and hostile relationship in social networks.

In this paper, we study phase dynamics of the Kuramoto model where both
coupling strengths and frequencies are time varying, and additionally the coupling
strengths are allowed to assume negative values. Specifically, we consider the
system

θ̇i = ωi(t) +

m∑
j=1

aij(t) sin(θj − θi), i = 1, . . . ,m, (2)

where ωi and aij are varying with respect to time. We mathematically formulate
the non-equilibrium dynamics in the model by the phase differences (PDs) between
oscillators. In comparison, the existing literature mostly uses self-consistent solu-
tions [15] to investigate the phase difference between individual oscillators and the
mean-field frequency [37], derive empirical criterions of stability for the distribu-
tions of parameters [9, 10, 38], and discuss the cases of phase shift in the coupling
function [39].

We derive and prove a series of sufficient conditions that guarantee that the PDs
are asymptotically stable, in particular for the scenarios when negative couplings
occur. In general, asymptotically stable PDs need not be constants but may be func-
tions of time. We study three specific scenarios of time-variability, which include
periodicity, small perturbations, and fast-switching in the time-varying couplings
and intrinsic frequencies. We identify the phase-unlocking dynamics in each case.

This paper is organized as follows. In Section 2, asymptotic stability of PDs is
investigated. Particular cases of asymptotic PD dynamics are studied in Section 3
with numerical examples. Section 4 concludes the paper.

Notation. Rn and Cn stand for the n-dimensional Euclidean real and complex
spaces, respectively. For a symmetric square matrix B ∈ Rm,m, we order the
eigenvalues as λ1(B) ≤ λ2(B) ≤ · · · ≤ λm(B), counting multiplicities. The
Euclidean norm of a vector and the matrix induced by it is denoted by ‖ · ‖. For
a subspace L in Rm and an L -invariant matrix U ∈ Rm,m (i.e., Uy ∈ L for all
y ∈ L ), the matrix norm ‖ · ‖L is defined by

‖U‖L = max
y∈L , ‖y‖=1

‖Uy‖.

The set of nonnegative integers is denoted by Z+ and positive integers by N. De-
note [z]− = min{z, 0}. Boldface 1 stands for the column vector of proper dimen-
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sions with all components equal to 1, o(ε) denotes the infinitesimal as ε → 0, and
bzc stands for the largest integer less than or equal to z.

2 Stability analysis

Let G = {V,E,A} be a directed, weighted and signed graph, where V = {1, . . . ,m}
stands for the node set and E for the link set, such that (i, j) ∈ E if there is a link
from node j to node i, and A = {aij} stands for the weight set. It holds that
(i, j) ∈ E if and only if aij 6= 0. We do not consider self-links, i.e., aii = 0 ∀i.
The (signed) Laplacian of the graph is defined as L = [lij ]

m
i,j=1 with lij = −aij

for i 6= j and lii = −
∑

j 6=i lij . In the particular case of nonnegative coupling
coefficients, lij ≤ 0 for all i 6= j so that −L is a Metzler matrix. We use
Ni = {j : (i, j) ∈ E} to denote the (in-)neighborhood of node i. The set of
nodes having links to both i and j is denoted by Λij = {k : aik > 0 and ajk > 0}.
For η > 0, the threshold graph (or, the η-graph) of L is defined as that the graph
whose link set E is composed of those edges (i, j) with lij < −η.

The notation extends to the time-varying case in an obvious way. Thus, the
time-varying adjacency matrix A(t) = [aij(t)] corresponds to a dynamical graph
G(t) with a (fixed) node set V and time-varying link set E(t). The time-varying
LaplacianL(t) has components lij(t) = −aij(t) for i 6= j and lii(t) = −

∑m
j=1 lij(t).

The time-varying in-neighborhood of node i isNi(t) = {j : aij(t) 6= 0}, and sim-
ilarly

Λij(t) = {k : aik(t) > 0 and ajk(t) > 0}. (3)

We are interested in the dynamics of the phase differences (PDs) θij(t) :=
θi(t)− θj(t) between the oscillators. Clearly only m(m− 1)/2 of these quantities
are independent since θii = 0 and θij = −θji. As a shorthand notation, the collec-
tion of phase differences will be denoted by the corresponding uppercase symbol,
i.e., Θ = {θij : i > j; i, j = 1, . . . ,m} ∈ Rm(m−1)/2, and ‖Θ‖ then refers to the
norm of in Rm(m−1)/2. Correspondingly, we talk about phase difference regions
A in Rm(m−1)/2, but also regard them as a subset of Rm2

subject to the constraints
mentioned above. The following definition is a generalization of the phase-locking
dynamics of the standard Kuramoto model (1), as extended to (2). Similar to θij ,
the notation φij(t) = φi(t)−φj(t) stands for the phase differences for any solution
φ(t) = {φi(t)}mi=1 of (2). Motivated by the asymptotic stability of trajectories, also
known as attractive trajectory and extreme stability [40], we present the following
definition.

Definition 1. The PD trajectories of the system (2) is said to be asymptotically
stable within a phase difference region A ⊂ Rm×(m−1)/2 if for any two solutions
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φ(t) and θ(t) of (2), the phase differences satisfy lim
t→∞
|φij(t) − θij(t)| = 0 for

all i, j whenever the initial conditions {φij(0)}i>j , {θij(0)}i>j belong to A . In
addition, if the convergence is exponential, i.e., there exist positive constants M ,
T , and ε such that

|φij(t)− θij(t)| ≤M max
i,j
|φij(0)− θij(0)| exp(−εt)

for t ≥ T and all i, j = 1, . . . ,m, then the PD trajectories of system (2) is said to
be exponentially asymptotically stable within a phase difference region A .

In this paper, for r ∈ [0, π/2), we consider PD regions of the form

A r = {θij : |θij | ≤ r, i > j}.

Guaranteeing that the phase trajectory θ(t) starting from within A r stays inside
A r requires some conditions, such as those given in the next lemma.

Lemma 1. The set A r is invariant for system (2) if

ωi(t)− ωj(t)− [aij(t) + aji(t)] sin(r)−
∑

k/∈Λij(t),k 6=i,j

{[aik(t)]− + [ajk(t)]
−} sin(r)

−
∑

k∈Λij(t)

min{aik(t), ajk(t)} sin(r) < 0 (4)

for all i 6= j and t ≥ 0, where [aij(t)] is the time-varying weighted adjacency
matrix and Λij(t) is defined in (3).

This lemma is proved in Appendix A. The following result follows by the
lemma and is useful towards a robust condition for the invariance of A r, when,
for instance, the time variation is not exactly known due to noise, unknown fail-
ures, or uncertainties.

Proposition 1. The set A r is invariant for system (2) if

∆ω

sin(r)
≤ µ0 + µ2 − µ1, (5)

where ∆ω = supt maxi,j |ωi(t)− ωj(t)| is the maximum frequency displacement,

µ0 = sup
t

min
i,j

∑
k∈Λij(t)

min{aik(t), ajk(t)}

is the minimum value of ergodic coefficient of the graphs with the adjacency matrix
[a+
ij(t)],

µ1 = sup
t

max
i,j

∑
k/∈Λij(t),k 6=i,j

{−[aik(t)]
− − [ajk(t)]

−},

and µ2 = supt mini,j [aij(t) + aji(t)].

5



Both conditions (4) and (5) are in fact rather conservative. In the following, we
assume the invariance of A r and validate it through simulations.

We first consider the case of the nonnegative coupling coefficients and have the
following result immediately as a consequence from [41].

Theorem 1. Assume aij(t) ≥ 0, ∀i 6= j and t ≥ 0. Suppose that A r is invariant
for (2) for some r ∈ [0, π/2). Then the PD trajectories of system (2) are asymptot-
ically stable within A r if there exist T > 0, and sequences 0 = t1 < t2 < · · · <
tn < · · · and ηn > 0, n ∈ N, with

∑∞
n=1 ηn = +∞, such that when each time

interval [tn, tn+1] is partitioned into m− 1 time bins with

tn = t0n < t1n < · · · < tm−1
n = min{tn, tn−1 + T},

then the ηn-graph corresponding to the Laplacian matrix Zk,n = [zk,nij ] with com-
ponents

zk,nij = −
∫ tk+1

n

tkn

aij(s) ds, i 6= j; zk,nii = −
∑
j 6=i

znij(t),

has a spanning tree for all k = 1, . . . ,m− 1 and n ∈ N.

Proof. Consider two solutions θ, φ of (2). The differences δi = φi − θi between
the two solutions evolve by the equations

δ̇i =
m∑
j=1

aij(t)[sin(φj(t)− φi(t))− sin(θj(t)− θi(t))].

Denoting the phase differences by φij = φi − φj and θij = θi − θj , by the mean
value theorem there exist numbers ζij ∈ [min(θij , φij),max(θij , φij)] such that

δ̇i =
m∑
j=1

[aij(t) cos(ζji(t))](δj − δi), i = 1, . . . ,m. (6)

It can be seen that cos ζij = cos ζji for all i, j. Let B(t) = [bij(t)] with bij(t) =
−aij(t) cos(ζji(t)), which is nonpositive for i 6= j and bii(t) = −

∑
j 6=i bij(t).

Since {θij(t)}i>j and {φij(t)}i>j belong to A r for all t ≥ 0, we have {ζij(t)}i>j ∈
A r for all t ≥ 0. Hence, the ηn cos(r)-graph with the Laplacian

∫ tk+1
n

tkn
B(s)ds has

a spanning tree for all k = 1, . . . ,m− 1 and n ∈ N. Theorem 1 in [41] shows that

lim
t→∞
|δi(t)− δj(t)| = 0, ∀ i, j = 1, . . . ,m.

Note that
φij − θij = φi − φj − θi + θj = δi − δj .

Hence, limt→∞[φij(t)− θij(t)] = 0 for all i, j, which completes the proof.
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The following corollary is a direct consequence of Theorem 1; see also [42,
Theorem 1] and [30, Theorem 31].

Corollary 1. Assume aij(t) ≥ 0, ∀i, j. Let r ∈ [0, π/2), and suppose that A r

is invariant for (2). Then the PD trajectories of (2) are exponentially asymptot-
ically stable within A r if there exist T > 0 and η > 0 such that the η-graph
corresponding to the Laplacian matrix Z(t) = [zij(t)] with components

zij(t) =

{
−
∫ t+T
t aij(s) ds, i 6= j,

−
∑

j 6=i zij(t), i = j,
(7)

has a spanning tree for all t ≥ 0.

Remark 1. Theorem 1 and Corollary 1 can be further extended, for instance to the
case when there are two or more disjoint node subsets such that in the subgraph
of each subset the conditions of Theorem 1 hold. Then one can conlude that in
each node subset the PD trajectories are asymptotically stable; however, the PDs
between oscillators in different node subset may fail to be stable.

We next consider the case when the coupling coefficients aij(t) are allowed to
have negative values. We can prove the following result by employing a matrix
measure similar to the one proposed in [43].

Theorem 2. Let r ∈ [0, π/2), and suppose that A r is invariant for (2). Let

crij(t) =

{
[aij(t) + aji(t)] cos(r) aij(t) + aji(t) > 0

aij(t) + aji(t) aij(t) + aji(t) ≤ 0
,

ãrij =

{
aik(t) cos(r) aik(t) > 0

aik(t) aik(t) ≤ 0
. (8)

Define the index

ξ(L(t), r) := −min
i 6=j
{crij(t) +

∑
k 6=i,j

min(ãrik(t), ã
r
jk(t))}. (9)

If there exists T > 0 and η > 0 such that (1/T )
∫ T
t+T ξ(L(s), r)ds ≤ −η for all t,

then the PD trajectories of the coupled system (2) are exponentially asymptotically
stable within A r.

Proof. Define V (δ) = maxi δi −minj δj . Let δi(t) be a solution of (6). For any
t ≥ 0, let i∗ be any index such that δi∗ = maxi δi(t), and similarly, i∗ be any index
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such that δi∗ = mini δi(t). Note that i∗ and i∗ are time-varying. Then,

d[δi∗ − δi∗ ]
dτ

|τ=t

=

m∑
j=1

ai∗j cos(ζi∗j(t))[δj(t)− δi∗(t)]−
m∑
k=1

ai∗k cos(ζi∗k(t))[δk(t)− δi∗(t)]

= (−ai∗i∗ − ai∗i∗) cos(ζi∗i∗(t))[δi∗(t)− δi∗(t)]
−
∑

j 6=i∗,i∗
ai∗j cos(ζi∗j(t))[δi∗(t)− δj(t)]−

∑
k 6=i∗,i∗

ai∗k cos(ζi∗j(t))[δk(t)− δi∗(t)]

≤ −crij(t)[δi∗(t)− δi∗(t)]−
∑

j 6=i∗,i∗

ãri∗j [δi∗(t)− δj(t)]−
∑

k 6=i∗,i∗

ãri∗k[δk(t)− δi∗(t)]

≤ −

crij(t) +
∑

j 6=i∗,i∗

min(ãri∗j , ã
r
i∗j)

 [δi∗(t)− δi∗(t)] ≤ ξ(L(t), r)V (δ(t)),

where the ζij are defined in (6) and satisfy cos(ζij) = cos(ζji). Since the above
holds for all i∗ and i∗ that pick the maximum and minimum of δi(t), we have

dV (δ(τ))

dτ
|τ=t ≤ ξ(L(t), r)V (δ(t)),

which implies

V (δ(t)) ≤ exp

(∫ t

0
ξ(L(s), r)ds

)
V (δ(0)).

The condition (1/T )
∫ T
t+T ξ(L(s), r)ds ≤ −η implies that

∫∞
0 ξ(L(s), r)ds =

−∞. Therefore, limt→∞ V (δ(t)) = 0 holds uniformly, and so limt→∞[δi(t) −
δj(t)] = 0 uniformly for all i, j. The proof is completed by the same arguments as
in the proof of Theorem 1.

Remark 2. By the transformation (6), the asymptotic stability of the phase dif-
ference trajectories corresponds to the synchronization of the time-varying system
(6). The method of the proof of Theorem 2 is analogous to the Hajnal diameter
approach used in [27, 28, 30].

Finally, we consider the case that L(t) is symmetric and positive semidefinite
but some elements aij(t) (i 6= j) may be negative. To this end, we need the
following lemmas.
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Lemma 2. Let L = [lij ]
m
i,j=1 ∈ Rm,m be a symmetric square matrix satisfying (i)

all row sums equal to zero, and (ii) zero is a simple eigenvalue. Let r ∈ [0, π/2)
and define the matrix L̃r = [l̃rij ]

m
i,j=1 by

l̃rij =


lij cos(r), i 6= j, lij ≤ 0

lij , i 6= j, lij > 0

−
∑

k 6=i l̃
r
ik, i = j

. (10)

Let χ1 and χ2 denote the smallest eigenvalues of L and L̃r, respectively, over the
eigenspace orthogonal to 1 = [1, . . . , 1]> ∈ Rm. Then χ1 ≥ χ2.

The proof of this lemma is given in Appendix B.

Lemma 3. Let G(t) be a symmetric matrix with piecewise continuous elements,
such that G(t) is positive semidefinite, has all row sums equal to zero, and there
exists R > 0 such that ‖G(t)‖ ≤ R, ∀t ≥ 0. Let Ḡ(t, s) = (1/(t− s))

∫ t
s G(τ)dτ

and define ˜̄Gr(t, s) analogously to (10). Suppose there exists h > 0 such that∑∞
k=0 βk = +∞, where

βk = λ2( ˜̄Gr((k + 1)h, kh)).

Then the time-varying linear system

ẋ = −G(t)x (11)

reaches consensus, i.e., limt→∞[xi(t)− xj(t)] = 0 ∀i, j, where the xi denote the
components of x ∈ Rm. If, in addition, there exists β̂ > 0 such that βk > β̂ for all
k ∈ Z+, then the convergence is exponential.

The proof of this lemma is given in Appendix C.
Thus, whenL(t) is symmetric and positive semidefinite, the next result follows.

Theorem 3. Suppose that A r is invariant for the system (2) for some r ∈ [0, π/2)
and L(t) is symmetric and positive semidefinite for all t ≥ 0. Let L̄(t, s) = (1/(t−
s))
∫ t
s L(τ)dτ and

αk(h) = λ2( ˜̄Lr(kh, (k + 1)h))

for some h > 0, where ˜̄Lr(kh, (k + 1)h) is defined analogously to (10). If there
exists h > 0 such that

∑∞
k=0 αk(h) = +∞, then the PD trajectories of the system

(2) are asymptotically stable within A r.
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Proof. Consider the equations (6). LetB(t) = [bij(t)], with bij(t) = −aij(t) cos(ζji(t))

if i 6= j and bii(t) = −
∑

j 6=i bij(t). Let %k be the smallest eigenvalue of
(

1
h

∫ (k+1)h
kh B(s)ds

)
over the eigenspace orthogonal to 1. Since L(t) is symmetric and positive semidef-
inite, so is B(t). By Lemma 2,

%k = λ2

(
1

h

∫ (k+1)h

kh
B(s)ds

)
≥ λ2

(
˜̄Br((k + 1)h, kh)

)
= αk ≥ 0.

Then,
∑∞

k=0 %k ≥
∑∞

k=0 αk = +∞, and Theorem 3 follows by Lemma 3.

Moreover, we have the following result on exponential asymptotic stability.

Corollary 2. Under the hypotheses and notations in Theorem 3, if there exist h > 0
and α̂ > 0 such that

αk = λ2( ˜̄Lr(kh, (k + 1)h)) > α̂, (12)

then the PD trajectories of the coupled system (2) are exponentially asymptotically
stable within A r.

3 Asymptotic dynamics of phase differences

In this section, we investigate time-varying patterns of phase differences in (2) in
three common scenarios.

3.1 Asymptotic periodicity

Definition 2. A vector-valued function x(t) ∈ Rn is said to be asymptotically
periodic (AP) with period T if there exists a T -periodic function x∗(t) such that
limt→∞ ‖x(t) − x∗(t)‖ = 0. In addition, if the convergence is exponential, then
x(t) is said to be exponentially asymptotically periodic (EAP).

Consider the following hypothesis:
H1: ωi(t) and aij(t) are piecewise continuous and periodic with a fixed period

T for all i, j = 1, . . . ,m.
Then we have the following result.

Proposition 2. Assume the hypotheses H1, let r ∈ [0, π/2), and suppose that A r

is invariant for (2). Then the PD trajectories of (2) starting from initial values in
A r are exponentially asymptotically periodic provided any one of the following
conditions holds:
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1. aij(t) ≥ 0 for all i 6= j and t ≥ 0, and there exist T > 0 and η > 0 such
that the η-graph corresponding to the Laplacian matrix [

∫ T
0 −aij(s)ds]

m
i,j=1

with aii(t) = −
∑

j 6=i aij(t) has a spanning tree;

2. aij(t) ∈ R for all i, j and t ≥ 0, there exists η > 0 such that (1/T )
∫ T

0 ξ(L(s), r)ds ≤
−η, where ξ(L(t), r) is as defined in (9);

3. aij(t) ∈ R for all i, j and t ≥ 0, L(t) is symmetric and positive semidefinite
for all t ∈ [0, T ], and the inequality (12) holds.

Proof. On the basis of Hypothesis H1, condition 1 implies that the η-graph cor-
responding to the Laplacian matrix Z(t) defined in (7) has a spanning tree for all
t ≥ 0. Condition 2 implies that (1/T )

∫ t+T
t ξ(L(s), r)ds ≤ −η for all t ≥ 0.

Finally, condition 3 implies that L(t) is symmetric and positive semidefinite for
all t ≥ 0. Thus, under any one of these conditions, Corollary 1, Theorem 2, and
Corollary 2 guarantee that the PD trajectories are exponentially stable.

Let Θ(t) = [θij(t)]i>j and Φ(t) = [φij ]i>j be the phase differences of the solu-
tions of (2) with initial values such that Θ(0) = [θij(0)]i>j and Φ(0) = [φij(0)]i>j .
We have

‖Θ(t)− Φ(t)‖ ≤M‖Θ(0)− Φ(0)‖ exp(−εt) (13)

for some M and ε > 0. Consider the mapping

H : Ω→ Ω, Θ(0) 7→ Θ(T ),

where Ω is the compact hypercube in Rm(m−1)/2 given by

Ω = {[θij ]i>j : |θij | ≤ r, i, j = 1, . . . ,m} .

We will show that the mapping H is well defined. Let two initial values θ(0) and
ϑ(0) belonging to A r be given such that θi(0)− θj(0) = ϑi(0)− ϑj(0) = θij(0)
for all i > j, which implies θij(0) ∈ [−r, r], and there exists a unique θ0 such that
ϑi(0) = θi(0) + θ0 for all i = 1, . . . ,m. Let the solution of (2) with these initial
values be denoted by θi(t) and ϑi(t), respectively, which are still contained in A r.

Let ψi(t) = θi(t) + θ0 for all i = 1, . . . ,m. Noting that

ψ̇i = θ̇i = ωi(t) +

m∑
j=1

aij(t) sin [(θj + θ0)− (θi + θ0)]

= ωi(t) +
m∑
j=1

aij(t) sin [ψj − ψi] , i = 1, . . . ,m,

11



one can see that {ψi(t) : i = 1, . . . ,m} are solutions of (2) with initial values
ψi(0) = ϑi(0). By the uniqueness of the solution, ϑi(t) = ψi(t) = θi(t) + θ0

for all t ≥ 0 and i. Hence, ϑij(t) = θij(t) for all i, j. Therefore, given the initial
values of PD, Θ(0) ∈ Ω, the PD Θ(t) ∈ Ω of the solutions of (2) exists and is
unique; that is, the mapping H is well-defined.

Thus, there exists an integer K such that M exp(−εTK) < 1. Then

‖H(K) ◦Θ(0)−H(k) ◦ Φ(0)‖ ≤M exp(−εTK) ‖Θ(0)− Φ(0)‖,

which implies that H(K) is a contraction map. Hence, there exists a unique fixed
point Θ∗ = [θ∗ij ]i>j of H(K), namely, H(K)(Θ∗) = Θ∗. Note that H(Θ∗) is still a
fixed point of H(K). By the uniqueness of the fixed point of the contraction map,
H(Θ∗) = Θ∗. Hence, θ∗ij(0) = θ∗ij(T ). Consider the solution θ∗i (t) of (2) with
θ∗i (0) − θ∗j (0) = θ∗ij(0). Under the hypotheses H1, we have θ∗ij(t + T ) = θ∗ij(t)
for all t ≥ 0 and i, j = 1, . . . ,m. That is, θ∗ij(t) = θ∗i (t) − θ∗j (t) is periodic with
period T . Combined with the conditions of Corollary 1, and Theorems 2 and 3, this
periodic PD trajectory is exponentially asymptotically stable, which completes the
proof.

As a numerical example, we consider a network of five Kuramoto oscillators
with periodical switching between two coupling matrices A and two intrinsic fre-
quencies ω as follows:

ω(t) =

{
ω1, t ∈ [(2k − 1)T, 2kT )

ω2, t ∈ [2kT, (2k + 1)T )
L(t) =

{
L1, t ∈ [(2k − 1)T, 2kT )

L2, t ∈ [2kT, (2k + 1)T )

with k ∈ N, where T = 2 (sec) and

ω1 = [0.1294, 1.9765, 1.8790, 0.7331, 1.1332]>,

ω2 = [1.9578, 0.5295, 1.1234, 1.3591, 2.1786]>,

L1 =


−4.5343 0.5795 1.7331 0.9795 1.2422

0.2241 −1.9971 0.4334 0.2703 1.0692
1.6323 −0.0286 −3.5243 1.2298 0.6908
0.1402 0.7296 0.6795 −2.4363 0.8870
0.5957 0.4723 0.4909 −0.0119 −1.5470

 ,

L2 =


−4.6960 0.3018 1.7915 1.6922 0.9105

0.1732 −2.3331 1.6492 0.3674 0.1433
1.0687 0.4723 −3.1947 0.5293 1.1245
0.7140 1.1625 0.0833 −3.1210 1.1612
1.3104 0.1241 1.3107 1.1887 −3.9339

 .
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(The components of L1,2 and ω1,2 are randomly generated until the specific criteria
of Proposition 2 are met.) Taking r = π/3, we calculate ξ(L1, r) = 0.0858 and
ξ(L2, r) = −0.1249. Thus, ξ(L1, r) + ξ(L2, r) = −0.0391 < 0; hence, the
conditions of Theorem 2 and Proposition 2 hold.

As shown in Fig. 1, the phase differences are asymptotically stable and con-
verge to periodic trajectories. In addition, A r (with r = π/3) is indeed found to
be invariant for (2).
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Figure 1: Dynamics of the phase differences: θ1(t) − θ2(t) (red), θ2(t) − θ3(t)
(black), θ3(t) − θ4(t) (blue), and θ4(t) − θ5(t) (yellow) of ten simulations with
randomly chosen initial values from [−π/6, π/6] following a uniform distribution.
The two horizontal green dashed lines mark the values±π/3 corresponding to±r.

3.2 Small perturbations

For a small parameter ε, consider the following hypothesis:
H2: The frequencies and coupling strengths have the form

ωi(t) = ω̄i + εΩi(t), aij(t) = āij + εAij(t), (14)

where Ωi(t) and Aij(t) are piecewise continuous, bounded, and periodic functions
with period T such that∫ T

0
Ωi(t)dt = 0,

∫ T

0
Aij(t)dt = 0. (15)

Let θ̄ij , with |θ̄ij | ∈ [0, π/2] for all i, j, be constant PDs of the the phase-locked
solution of the following system with static parameters:

˙̄θi = ω̄i +
m∑
j=1

āij sin(θ̄j − θ̄i), i = 1, . . . ,m. (16)

13



Namely, there exist Ω > 0 and ϑ̄ij ∈ [0, 2π) with θ̄ij = ϑ̄i − ϑ̄j , such that

θ̄i(t) = Ωt+ ϑ̄i, i = 1, . . . ,m. (17)

For ε→ 0, we consider a perturbation solution of (2) in the form

θi(t) = θ̄i(t) + εΦi(t) + o(ε). (18)

Differentiating both sides of (18) and comparing terms of first order in ε gives

Φ̇i = Ωi(t) +
m∑
j=1

Aij(t) sin(θ̄ji) +
m∑
j=1

āij cos(θ̄ji)[Φj − Φi]. (19)

Proposition 3. Let r ∈ [0, π/2) and suppose that A r is invariant in (2), the hy-
potheses H2 hold, and (16) possesses a phase-locked solution [θ̄1(t), . . . , θ̄m(t)]> ∈
A r as described by (17). Suppose further that any one of the following conditions
holds:

1. aij(t) ≥ 0 for all i 6= j and t ≥ 0, and the graph corresponding to the
Laplacian L̄ = [L̄ij ] with

L̄ij = −āij , i 6= j; L̄ii = −
m∑
j=1

l̄ij ,

has a spanning tree;

2. ξ(L̄, r) < 0;

3. L(t) is symmetric and positive semidefinite for all t ≥ 0, and λ2(L̄) > 0.

Then there exist U > 0 and Φi(t) satisfying |Φi(t)| < U for all i and t, such
that (2) has a solution in the form of θi(t) = θ̄i(t) + εΦi(t) + o(ε) as ε → 0.
Furthermore, if ε is sufficiently small, the PD trajectories θij(t) = θi(t) − θj(t)
are asymptotically stable with Ar.

Proof. We first show that the Φi(t) are bounded. Let Y = [yij ], where yij =
āij cos(θ̄ji) for i 6= j and yii = −

∑m
j=1 yij , and

zi(t) = Ωi(t) +
m∑
j=1

Aij(t) sin(θ̄ji), i = 1, . . . ,m.

Then we can rewrite (19) in the compact form

Φ̇ = z(t) + Y Φ(t), (20)

14



where z(t) = [z1(t), . . . , zm(t)]> and Φ(t) = [Φ1(t), . . . ,Φm(t)]>. The solution
of (20) is

Φ(t) = exp(Y t)Φ(0) +

∫ t

0
exp(Y (t− s))z(s)ds. (21)

We shall prove that ‖Φ(t)‖ is bounded by some constant for all t ≥ 0. To this end,
we require the following lemma.

Lemma 4. Any one of conditions 1, 2 and 3 of Theorem 3 implies that Y has a
simple zero eigenvalue and all other eigenvalues have negative real parts.

See Appendix D for a proof. This lemma implies that the first term ‖ exp(Y t)Φ(0)‖
is bounded for t ≥ 0. We write Y = QJQ−1 in the Jordan canonical form
J = diag[J1, . . . , JK ], where Jk ∈ Rnk is the k-th Jordan block corresponding
to the eigenvalue λk of Y , which may contain complex elements. The arguments
below apply for the complex space Cm with the Euclidean norm ‖ · ‖.

Without loss of generality, we set J1 = 0 corresponding to the single zero
eigenvalue. Thus, the second term in (21) can be transformed into

Q−1

∫ t

0
exp(Y (t− s))z(s) ds =

∫ t

0
exp(J(t− s))z̃(s) ds

with z̃(s) = Q−1z(s). The component corresponding to the Jordan block Jk can
be written as

∫ t
0 exp(Jk(t − s))zk(s) ds, where zk is the component vector corre-

sponding to Jk.
We will show that

∫ t
0 exp(Jk(t − s))zk(s)ds is bounded for each k ≥ 1. For

each k > 1, there exists a norm ‖ · ‖k such that∥∥∥∥∫ t

0
exp(Jk(t− s))zk(s) ds

∥∥∥∥
k

≤
∫ t

0
‖exp(Jk(t− s))‖k ‖z

k(s)‖k ds

≤
∫ t

0
exp(−λk(t− s))‖zk(s)‖k ds

because the eigenvalues of exp(J(t − s)) are exp(λk(t − s)). Since Re(λk) < 0
and z(s) (z̃(s)) is bounded, we conclude that

∫ t
0 exp(Jk(t−s))zk(s) ds is bounded

by some constant for all k > 1.
Consider the component corresponding to J1 = 0:

∫ t

0
z̃(s)ds =

bt/T c∑
q=0

∫ (q+1)T

qT
z̃(s)ds+

∫ t

bt/T cT
z̃(s)ds =

∫ t

bt/T cT
z̃(s)ds.
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Since
∫ t+T
t z(t) = 0 for all t ≥ 0, this term is bounded, because

∫ (q+1)T
qT z̃(s)ds =

0 for t ≥ 0 and z(s) (z̃(s)) is bounded. Hence
∫ t

0 exp(J(t−s))z̃(s) ds is bounded,
and therefore one can see that Φ(t) is bounded. This proves the first statement of
this proposition.

We next prove that the phase difference trajectories are asymptotically stable.
(i) Under condition 1, namely that the graph associated with L̄ has a spanning
tree, a sufficiently small ε guarantees that the graphs of L(t) have spanning trees
for all t ≥ 0. By Theorem 1 we conclude that the PD trajectories of the time-
varying system (2) under H2 are asymptotically stable. (ii) Under condition 2, a
sufficiently small ε guarantees that ξ(L(t), r) < ξ(L̄, r)/2 , which implies the PD
trajectories are asymptotically stable by Theorem 2. (iii) Under condition 3, which
is a special form of the arguments above since J is diagonal, a sufficiently small ε
guarantees that (12) holds for some h > 0 and α̂ > 0. Hence, the PD trajectories
are asymptotically stable by Corollary 2. This completes the proof.

Remark 3. It can be seen that from the proof of Proposition 3 that, under the con-
ditions of Proposition 3, the phase difference trajectories are asymptotically peri-
odic with period equal to that of the time-varying parameters, as a consequence of
Proposition 2. The adiabatic case of a large T , the transition rate used in [32] im-
plies a slow (induced by the slow periodicity of the time-varying parameters) and
small (induced by the small perturbation of the time-varying parameters) phase
dynamics as well as the phase-difference trajectories.

To illustrate with a numerical example, we generate a connected undirected
Erdős-Renyi random graph with m = 20 nodes with linking probability p = 0.2.
Let Ā = [āij ] denote its adjacency matrix. We set

ωi(t) = ω̄i + ε sin(t+ αi), aij(t) =

{
0, āij = 0,

1 + ε cos(t+ βij), āij 6= 0,

where the αi and βij are randomly picked in [−r/2, r/2] with r = π/3, following
a uniform distribution. We take ε = 0.1. We simulate this system ten times with
random initial values picked from the interval [−r/2, r/2]. For comparison, we
also simulate the Kuramoto model (16) with fixed frequencies and linking coef-
ficients and the same initial values of those of (2). As shown in the top panel of
Fig. 2, θ1(t) is essentially indistinguishable from its first-order approximation

θ1(t) ≈ θ̄1(t) + εΘ1(t)

with θi(0) = θ̄i(0) and Θi(0) = 0 for all i = 1, . . . ,m. The PD trajectories
of the time-varying Kuramoto network are asymptotically stable and the phase
differences are close to those of the phase-locked difference of the static system
(16). In addition, A r (with r = π/3) is indeed found to be invariant for (2).
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Figure 2: Top panel: Dynamics of θ1(t) (red solid line) and its approximation
θ̄1(t)+εΘ1(t) (blue dashed line). Bottom panel: Dynamics of the phase differences
θ1(t)− θ4(t) (red solid lines), θ3(t)− θ7(t) (blue solid lines), and θ17(t)− θ11(t)
(black solid lines) of ten simulations, and the comparisons: θ̄1(t) − θ4(t) (red
dashed line), θ̄3(t) − θ̄7(t) (blue dashed line), and θ̄17(t) − θ̄11(t) (black dashed
line). The two horizontal green dashed lines mark the values ±π/3 corresponding
to ±r.
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3.3 Fast Switching

In this subsection, we consider the scenario that the time-variation of the parame-
ters is due to fast switching near certain constants with speed 1/ε, where ε > 0 is a
small parameter, analogously to [25, 22].

Consider the following hypotheses.
H3: ωi(t) and aij(t) are piecewise continuous, bounded, periodic functions

with period εT with average values

ω̄i =
1

εT

∫ εT

0
ωi(s)ds, āij =

1

εT

∫ εT

0
aij(s)ds. (22)

By this hypothesis, let

l̄ij =

{
−āij , i 6= j,

−
∑m

j=1 l̄ij , i = j,
L̄ := [l̄ij ], (23)

ω̃i(s) = ωi(εs), ãij(s) = aij(εs)

and note that they are periodic functions with period T and satisfy

1

T

∫ t+T

t
ω̃i(s)ds = ω̄i,

1

T

∫ t+T

t
ãij(s)ds = āij

for all t.
Let θ(t) = [θ1(t), . . . , θm(t)]> be the solution of (2) with the time-varying pa-

rameters ωi(t) and aij(t) satisfying hypotheses H3, and θ̄(t) = [θ̄1(t), . . . , θ̄m(t)]>

be the solution of (16) with constant parameters ω̄i and āij as in (22). We assume
that (16) possesses a stable phase-locked equilibrium, denoted by θ̄i(t), with phase
differences θ̄ij = θ̄i − θ̄j being constants in time.

Let ∆i(t) = θi(t)− θ̄i(t), which obey

∆̇i = [ω̃i(t/ε)− ω̄i] +
m∑
j=1

[ãij(t/ε)− āij ] sin(θ̄ji)

+

m∑
j=1

ãij(t/ε)[sin(θji(t))− sin(θ̄ji)]

= [ω̃i(t/ε)− ω̄i] +

m∑
j=1

[ãij(t/ε)− āij ] sin(θ̄ji)

+
m∑
j=1

ãij(t/ε) cos(ζji(t))[∆j −∆i], i = 1, . . . ,m, (24)
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where ζji ∈ [min(θji(t), θ̄ji),max(θji(t), θ̄ji)] are picked by the mean-value the-
orem with cos(ζij) = cos(ζij). We then have the following result.

Proposition 4. Let r ∈ [0, π/2) and suppose that A r is invariant for (2), H3

holds, (16) possesses a phase-locked solution [θ̄1(t), . . . , θ̄m(t)]> ∈ A r as de-
scribed by (17), and L(t) is symmetric and positive semidefinite for all t ≥ 0. If
λ2(L̄) > 0, where L̄ is defined in (23). Then there exists some ε′ > 0 such that the
PD trajectories of (2) have the form of θij(t) = θ̄ij + εΥij(t) as t→∞ for some
functions Υij(t) bounded with respect to t > 0 and ε′ > ε > 0. In addition, if ε is
sufficiently small, then the PD trajectories is asymptotically stable within A r.

Let

ri(s) = [ω̃i(s)− ω̄i] +

m∑
j=1

[ãij(s)− āij ] sin(θ̄ji),

and r(s) = [r1(s), . . . , rm(s)]>, which implies
∫ s+T
s r(χ)dχ = 0 for all s ≥ 0.

Let

Rij(t, ε) =

{
ãij(t/ε) cos(ζji(t)) i 6= j

−
∑m

k=1Rik(t, ε) i = j.

and define the matrix R(t, ε) = [Rij(t, ε)]
m
i,j=1. It can be seen that R(t, ε) is sym-

metric for all t due to the symmetry ofL(t) and cos(ζij). Then (24) can be rewritten
in the compact form

∆̇ = r(t/ε) +R(t, ε)∆(t), ∆(t) = [∆1(t), . . . ,∆m(t)]>. (25)

We first prove a lemma as a preparation for the proof of Proposition 4.

Lemma 5. Let U(t, s; ε) be the state-transition matrix of the linear system

ż = R(t, ε)z(t) (26)

and assume the conditions in Proposition 4. Then there exist positive numbers ε′,
M , T1, and α such that for each s ≥ 0, the inequality

‖U(t, s; ε)− 1

m
1⊗ 1‖ ≤M exp(−α(t− s)) (27)

holds for all ε ∈ (0, ε′) and t ≥ s+ T1. In addition, let

L = {x = [x1, . . . , xm]> :

m∑
i=1

xi = 0}.

Then U(t, s; ε)L ⊂ L and for each s ≥ 0

‖U(t, s; ε)‖L ≤M exp(−α(t− s))

for all ε ∈ (0, ε′) and t ≥ s+ T1.
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Proof. The conditions of Proposition 4, the symmetry of R(t, ε), and Theorem 3
give

1

T

∫ t+T

t
R(s, ε) ds ≤ cos(r)

2
L̄,

which implies λ2[(1/T )
∫ t+T
t R(s, ε)ds] ≤ cos(r)/2λ2(L̄) is negative. Therefore,

for each initial time s and initial value z(s) = z0, the solution of (26), denoted
by U(t, s; ε)z0, reaches consensus exponentially at a rate O(exp(−α(t − s)), for
some α > 0 depending on T and cos(r)/2λ2(L̄).

Let z(t) = U(t, s)z0. Noting the fact that

d

dt

(
1>z(t)

)
= 1>R(t, ε)z(t) = 0

for any z0 ∈ Rm, we have 1>U(t, s; ε) = 1 by the symmetry of R(t, ε). Hence, in
both cases, from [45], one can see that

lim
t→∞

U(t, s; ε)z0 = ζ1 (28)

for some ζ ∈ R.
Since on the one hand

1

m
1>U(t, s; ε)z0 =

1

m
1>z0

and on the other hand

1

m
1>1ζ = ζ,

we have ζ = (1/m)
∑m

i=1 z
0
i . Since this holds for all z0 ∈ Rm, the first statement

is proved.
For any y = [y1, . . . , ym] ∈ L , namely,

∑m
i=1 yi = 0, we have

1>U(t, s; ε)y = U(t, s; ε)1>y = 0, ∀ t ≥ s.

In other words, U(t, s)y ∈ L for all t ≥ s. Therefore, U(t, s; ε)L ⊂ L .
Thus, by (27) and the fact that 1>y = 0, we have

‖U(t, s; ε)− 1

m
11>y‖ = ‖U(t, s; ε)y‖L ≤M exp(−α(t− s))‖y‖, (29)

which proves the second statement, and completes the proof of the lemma.
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Let w(t, s; ε) = ∂U(t,s;ε)
∂s and note that

∂w(t, s; ε)

∂t
=

∂

∂t

∂U(t, s; ε)

∂s
=

∂

∂s

∂U(t, s; ε)

∂t

=
∂

∂s
R(t, ε)U(t, s) = R(t, ε)w(t, s),

and w(t, t; ε) = R(t, ε). Hence,

w(t, s; ε) = U(t, s; ε)R(s, ε).

This implies that each column vector of w(t, s; ε) is a bounded linear combination
of the column vectors of U(t, s; ε). In addition,

1>w(t, s; ε) = 1>U(t, s; ε)R(s, ε) = 1>R(s, ε) = 0,

implying that w(t, s; ε) belongs to the subspace L. Thus,

‖w(t, s; ε)‖ ≤M1 exp(−α(t− s)) (30)

for some M1 > 0 and all t > s ≥ 0.

Proof of Proposition 4. Let ε ∈ (0, ε′). We rewrite U(t, s; ε) and w(t, s; ε) as
U(t, s) and w(t, s) respectively for simplicity.

The solution of (25) has the form

∆(t) = U(t, 0)∆(0) +

∫ t

0
U(t, τ)r(τ/ε)dτ.

Equivalently,

∆(t) = 1ζ + U(t, 0)∆(0)− 1ζ + εO(t)

with O(t) = 1
ε

∫ t
0 U(t, τ)r(τ/ε)dτ . By Lemma 5, the term U(t, 0)∆(0) converges

to 1ζ for ζ =
∑m

i=1 ∆i(0). That is, limt→∞ U(t, 0)∆(0) − 1ζ = 0. The term
εO(t) becomes∫ t

0
U(t, τ)r(τ/ε)dτ =

K∑
n=0

∫ (n+1)εT

nεT
U(t, τ)r(τ/ε)dτ +

∫ t

KεT
U(t, τ)r(τ/ε) dτ,

where K = b(t− s)/(εT )c. Using the fact that

U(t, τ) = U(t, nεT ) + (τ − nεT )

∫ 1

0
w(t, λτ + (1− λ)(nεT )) dλ,
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we have ∫ (n+1)εT

nεT
U(t, τ)r(τ/ε) dτ =

∫ (n+1)εT

nεT

[
U(t, nεT )

+(τ − nεT )

∫ 1

0
w(t, λτ + (1− λ)(nεT ) dλ

]
r(τ/ε) dτ.

Note∫ (n+1)εT

nεT
U(t, nεT )r(τ/ε) dτ = U(t, nεT )ε

∫ (n+1)T

nT
r(χ) dχ = 0.

Using the fact 1>R(t, ε) = 0, the symmetry of R(t, ε), Lemma 5, and the inequal-
ity (30), we obtain

‖w(t, s)‖ ≤M2 exp(−α(t− s)) ∀ t > s ≥ 0

for some M2 > 0 and α > 0. Thus, one can derive∥∥∥∥∥
∫ (n+1)εT

nεT
(τ − nεT )

∫ 1

0
w(t, λτ + (1− λ)(nεT )) dλ r(τ/ε) dτ

∥∥∥∥∥
≤ εM3 exp(−α(t− (n+ 1)εT ))

for some M3 ≥M2 > 0. Hence,∥∥∥∥∥
K∑
n=0

∫ (n+1)εT

nεT
U(t, τ)r(τ/ε) dτ

∥∥∥∥∥
≤ εM3

K∑
n=0

exp(−α(t− (n+ 1)εT )) ≤ εM3
exp(2αεT )

exp(αεT )− 1
.

In addition, ∥∥∥∥∫ t

KεT
U(t, τ)r(τ/ε) dτ

∥∥∥∥ ≤ εM4

for some M4 > 0 with |U(t, τ)r(τ/ε)| ≤M4.
To sum up, noting that the constants M1,2,3,4 are independent of ε, one can

conclude that the term O(t) is bounded with respect to both ε and t. Hence,

∆(t) ∼ 1ζ + εO(t), as t→∞
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Let Υij(t) = Oj(t) − Oi(t), which are bounded with respect to t ≥ 0 and
ε > 0, and θ̄ij are the PDs of the phase-locked equilibrium of (2) when ωi(t) ≡ ω̄ij
and aij(t) ≡ āij . Thus, the PD of (2) can be written in the form

θij(t) = θ̄i(t)− θ̄j(t) + ∆i(t)−∆j(t)

∼ θ̄ij + εΥij(t), as t→∞.

This completes the proof.

To illustrate, we consider a network of five Kuramoto oscillators whose cou-
pling matrix switches between the following two symmetric matrices:

L1 =


−1.6793 −0.3012 2.3645 −0.2241 −0.1599
−0.3012 −1.0878 1.0473 −0.4689 0.8106
2.3645 1.0473 −3.3379 −0.4142 0.3403
−0.2241 −0.4689 −0.4142 −0.4065 1.5137
−0.1599 0.8106 0.3403 1.5137 −2.5046



L2 =


−8.4835 1.6123 2.5756 2.1175 2.1780
1.6123 −4.3012 2.2760 0.5141 −0.1013
2.5756 2.2760 −8.3439 2.1106 1.3817
2.1175 0.5141 2.1106 −4.6359 −0.1064
2.1780 −0.1013 1.3817 −0.1064 −3.3521


and the intrinsic frequency vector switches between the following two vectors:

ω1 = [1.3468, 0.0850, 1.8434, 1.9853, 1.1750]>,

ω2 = [2.2854, 0.6908, 2.4129, 0.5544, 2.7517]>.

(The parameters of this example L1,2 and ω1,2 are randomly generated until the
specific criteria of Proposition 4 are met.) The system is switched with a frequency
h. It can be checked that Θr with r = π/3 is invariant for the switched system,
and λ2((L1 +L2)/2) = −2.5004. Therefore, by Proposition 4, the PD trajectories
asymptotically approach those of the averaged system as h → ∞. As shown in
Fig. 3, the averaged system of Kuramoto model possesses a phase-locked equilib-
rium. As the switching frequency increases from 10 Hz to 50 Hz, the PD dynamics
asymptotically converge to the phase-locked equilibrium as t → ∞, provided ε is
sufficiently small (i.e., the switching frequency is sufficiently high).

4 Conclusion

When the couplings and intrinsic frequencies vary in time, the Kuramoto model
cannot maintain phase-locking states when the number of oscillators is finite. In
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Figure 3: Evolution of the phase differences of the switched Kuramoto model,
θ1(t) − θ2(t) (red), θ2(t) − θ3(t) (black), θ3(t) − θ4(t) (blue), and θ4(t) − θ5(t)
(yellow), asymptotically approaching constant values in ten simulations starting
from randomly chosen initial values in [−π/3, π/3]. The two horizontal green
dashed lines mark the values±π/3 corresponding to±r. The switching frequency
h is 10 Hz in the top Panel and 50 Hz in the bottom panel.
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this paper, we have studied asymptotical stability of non-equilibrium phase-unlocking
dynamics. Assuming that the PDs remain in the interval [−π/2, π/2] whenever the
initial differences do, we have derived sufficient conditions for the asymptotical
stability of PDs. As a particular novelty, we have allowed negative couplings in
the analysis. Moreover, we have identified and proved asymptotic PD dynamics in
various scenarios and illustrated them by numerical examples. In a future investi-
gation, we will study the situation when the phase differences may be larger than
π/2 and the couplings and intrinsic frequencies may be stochastically changing.
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Appendix A

Proof of Lemma 1. Let t∗ = sup{t : θ(τ) ∈ A r ∀ τ ∈ [0, t)}. We shall prove
Lemma 1 by showing t∗ =∞. Assume not. Then for each index i∗ with θi∗(t∗) =
maxi θi(t

∗) and each j∗ with θj∗(t
∗) = minj θj(t

∗), we have θi∗(t∗)−θj∗(t∗) = r.
Note that

ai∗j(t
∗) sin(θj(t

∗)− θi∗(t∗)) ≤ − sin(r)[ai∗j(t
∗)]−

aj∗k(t
∗) sin(θk(t

∗)− θj∗(t∗)) ≥ sin(r)[aj∗k(t
∗)]−

and when j ∈ Λi∗j∗(t
∗) (i.e., ai∗j(t∗) > 0 and aj∗j(t

∗) > 0),

ai∗j(t
∗) sin(θj(t

∗)− θi∗(t∗))− aj∗j(t∗) sin(θj(t
∗)− θj∗(t∗))

≤ −min{ai∗j(t∗), aj∗j(t∗)} [sin(θi∗(t
∗)− θj(t∗)) + sin(θj(t

∗)− θj∗(t∗))] .
≤ −min{ai∗j(t∗), aj∗j(t∗)} sin(r).
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Therefore,

θ̇i∗ − θ̇j∗ |t=t∗ = ωi∗(t
∗)− ωj∗(t∗)− [ai∗j∗(t

∗) + aj∗i∗(t
∗)] sin(r)

+
∑
j 6=j∗

ai∗j(t
∗) sin(θj(t

∗)− θi∗(t∗))−
∑
k 6=i∗

aj∗k(t
∗) sin(θk(t

∗)− θj∗(t∗))

≤ ωi∗(t)− ωj∗(t∗)− [ai∗j∗(t
∗) + aj∗i∗(t

∗)] sin(r)

−
∑

j /∈Λi∗j∗ (t∗),j 6=i∗,j∗

{[ai∗j(t∗)]− + [ai∗j(t
∗)]−} sin(r)

−
∑

k∈Λi∗j∗ (t∗)

min{ai∗j(t∗), aj∗j(t∗)} sin(r) < 0.

Thus θi∗(t)− θj∗(t), and hence maxi θi(t)−mini θi(t), decreases in a small time
interval starting at t = t∗. This contradicts the definition of t∗. Therefore, t∗ =
∞.

Appendix B

Proof of Lemma 2. Since L is symmetric, L̃r is symmetric with all row sums equal
to 0. Hence, L̃r − L is a symmetric Metzler matrix with all row sums equal to
zero, and is negative semidefinite because it is semi-diagonally dominant; so, all
its eigenvalues are non-positive. Thus, for each x ∈ Rn with x>1 = 0, we have

x>L̃rx ≤ x>Lx.

Therefore, χ1 ≥ χ2.

Appendix C

Proof of Lemma 5. The idea of the proof of this lemma comes from [44] with nec-
essary modifications, in particular towards continuous-time systems.

From the hypotheses on G(t), one can see that λ1(G(t)) = 0. Let P be an
arbitrary orthogonal matrix whose first column equals 1/

√
m. Since G(t)1 = 0

for all t, we can write

P>G(t)P =

[
0 0
0 C(t)

]
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for some symmetric and positive semidefinite C(t) ∈ Rm−1,m−1. Furthermore,
λ2(G(t)) = λ1(C(t)). Let y = P>x, y = [y1, z]

> with y1 ∈ R. By (11),{
ẏ1 = 0

ż = −C(t)z
.

Consider the linear time-varying system

ż = −C(t)z (31)

and let U(t, s) be its state-transition matrix for t ≥ s. We shall show that

λm−1

[
U>((k + 1)h, kh)U((k + 1)h, kh)

]
≤ 1− hβk

(1 +Rh)2
. (32)

To this end, let zk be the unit eigenvector of U>((k + 1)h, kh)U((k + 1)h, kh)
associated with its largest eigenvalue, denoted by ρk. Thus, letting zk+1 = U((k+
1)h, kh)zk, which is a solution of (31) with z(kh) = zk, denoted by z(s) at s =
(k + 1)h, we have

‖zk+1‖2 = zk
>
U>((k + 1)h, kh)U((k + 1)h, kh)zk = ρk.

Noting that

zk+1 = zk +

∫ (k+1)h

kh
[−C(s)]z(s)ds,

and that C(t) is positive semidefinite, we have

‖z(t)− zk‖2 =

∥∥∥∥∫ t

kh
[−C(s)]z(s) ds

∥∥∥∥2

≤
{∫ t

kh
‖[C(s)]1/2z(s)‖2 ds

}{∫ t

kh
‖[C(s)]1/2z(s)‖2 ds

}
≤ Rh

∫ (k+1)h

kh
z(s)>C(s)z(s) ds (33)

for all t ∈ [kh, (k + 1)h]. From the definition of βk, we have

β
1/2
k

√
h ≤

{
zk
>
∫ (k+1)h

kh
[C(s)] ds zk

}1/2

=

{∫ (k+1)h

kh
‖[C(s)]1/2zk‖2 ds

}1/2

≤

{∫ (k+1)h

kh
‖[C(s)]1/2z(s)‖2 ds

}1/2

+

{∫ (k+1)h

kh
‖[C(s)]1/2‖2‖zk − z(s)‖2 ds

}1/2

≤

{∫ (k+1)h

kh
z>(s)[C(s)]z(s) ds

}1/2

+
√
R

{∫ (k+1)h

kh
‖zk − z(s)‖2 ds

}1/2

27



which, combined with (33), implies that

β
1/2
k

√
h ≤ (1 +Rh)

{∫ (k+1)h

kh
z(s)>[C(s)]z(s) ds

}1/2

,

that is, ∫ (k+1)h

kh
z(s)>[C(s)]z(s) ds ≥ βkh

(1 +Rh)2
.

Note that

d

dt
z>(t)z(t) = −2z(t)>C(t)z(t),

which implies

ρk = zk+1>zk+1 = 1− 2

∫ (k+1)h

kh
z(s)C(s)z(s) ds ≤ 1− 2βkh

(1 +Rh)2
.

This proves (32), and yields hβk/[(1 +Rh)2] < 1. Therefore,

‖z(nh)‖2 = ‖U(nh, (n− 1)h)x((n− 1)h)‖2 ≤
[
1− hβn

(1 +Rh)2

]
‖z((n− 1)h)‖2

≤
n∏
k=0

[
1− hβk

(1 +Rh)2

]
‖z(0)‖2. (34)

Since
∑∞

k=0 βk = +∞, we conclude lim
n→∞

‖z(nh)‖ = 0. Moreover, for t ≥ 0 and

p := bt/hc,

‖z(t)‖ ≤ exp(R(t− ph))‖z(ph)‖ ≤ exp(Rh)‖z(ph)‖

since ‖C(t)‖ ≤ R for all t ≥ 0. Thus, limt→∞ ‖z(t)‖ = 0. In other words,
limt→∞ y(t) = [y(0), 0, . . . , 0]>. Using the definition of P , we conclude

lim
t→∞

x(t) = lim
t→∞

Py(t) = y(0)1,

that is, the system reaches consensus. Furthermore, if βk > β0 for all k, it can be
seen from (34) that

‖z(t)‖ ≤ exp(Rh) ‖z(ph)‖ ≤ exp(Rh) γp‖z(0)‖,

where γ =
[
1− hβ0

(1+Rh)2

]
. Hence the convergence is exponential.
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Appendix D

Proof of Lemma 4. This claim trivially holds for conditions 1 and 3 in Proposition
3. In fact, under condition 2, assume that Z has some eigenvalues with positive
real parts, which implies that the linear system

u̇ = Zu (35)

is unstable and unbounded for almost every initial condition. Here u = [u1, . . . , um]>.
However, by similar arguments as in the proof of Theorem 2, we can conclude that
(35) reaches consensus, namely, limt→∞(ui(t) − uj(t)) = 0 for all i, j. This im-
plies that for any set of initial values there exists some u0 such that limt→∞ ui(t) =
u0 for all i. This contradicts the assumption of eigenvalues having positive real
parts, and completes the proof of the claim.
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