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Abstract

The paper is concerned with a zero-sum continuous-time stochastic differ-

ential game with a dynamics controlled by a Markov process and a terminal

payoff. The value function of the original game is estimated using the value

function of a model game. The dynamics of the model game differs from the

original one. The general result applied to differential games yields the ap-

proximation of value function of differential game by the solution of countable

system of ODEs.

Keywords: continuous time stochastic games, differential games, strategy

with memory, near optimal strategies, extremal shift.

1 Introduction

Continuous-time dynamical games can be classified as differential games, stochas-
tic differential games and Markov games (or continuous-time stochastic games). For
each type the existence theorem for the value function is proved (see [2], [9], [12],
[25], [30] for differential games case, [5], [8], [16], [27] for stochastic games case and
[15], [32] for continuous-time Markov games case). Moreover, it is shown that the
value function solves the Isaacs-Bellman equation (see [10], [28] for differential games
case, [4], [5], [27] for stochastic games case and [32] for continuous-time Markov
games case). The aim of this paper is to provide an approximation of a solution of a
continuous-time dynamical game by a solution of a game with a different dynamics.

First this problem was considered for particular cases in [1], [19]–[23]. In [20]–[23]
the approximation of the value function of differential game by the value function of
stochastic differential game was constructed. In [19] (see also [1]) the continuous-time
Markov game describing the system of interacting particles with the finite number
of states is considered by examining the differential game corresponding to the limit
case when the number of particles tends to infinity. It is proved that if the strategy
is optimal for the limit game then it is near optimal for the Markov game.
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In this paper we consider the following problem: given two stochastic games
controlled by Markov processes associated with generators of Lévy-Khintchine type,
construct the strategy in the first game approximating the value function of the
second game. To this end we use the extremal shift first proposed by Krasovskii and
Subbotin for differential games [25] (see also [29]). In this case the design of strategy
relies on a model of the system. In the early works by Krasovskii and Subbotin the
model was a copy of the original system [25], [24]. Later it was considered the case
when the original system is governed by a delay differential equation and the model
is governed by a differential equation [22], [26] and the case when the original system
is governed by a differential equation whereas the model is described by a stochastic
differential equation [20]–[23]. In [1] the extremal shift is constructed for the case
when the original system is the Markov chain describing many particle interacting
system and the model is governed by a differential equation.

We construct the extremal shift for the first game using the second game as a
model. If the player uses this strategy, then her outcome is estimated by the value
function of the second game, the rate of the proximity of the original and model
systems and the rate of the randomness of the dynamics of both games. Thus, the
result is primary applicable for the case when either the original system or the model is
deterministic. We apply it for the case when the first game is a differential game when
the second game is a continuous-time Markov game. This yields the approximation of
the value function of the differential game by the solution of the system of countably
many ODEs.

The paper is organized as follows. In Section 2 we describe the examining class of
games, define strategies with memory and introduce the assumptions. In Section 3
we define the extremal shift for a continuous-time stochastic game controlled by a
Markov process associated with a generator of Lévy-Khintchine type and formulate
the main result of the paper concerning upper and lower bounds of the value function.
In Section 4 we prove the main result. In Section 5 we recall the main notions of
the theory of differential games. Moreover we derive the near optimal strategies for
the differential game based on solution of the parabolic equation. Note that first
this construction was proposed by Krasovskii and Kotelnikova for pursuit-evasion
games [20]–[23]. In the last section we present the approximation of the value of the
differential game by the solution of the system of countably many ODEs.

2 Definitions and assumptions

For u ∈ U and v ∈ V let L1
t [u, v] : C

2(Rd) → C(Rd) be a generator of Lèvy-
Khintchine type i.e.

L1
t [u, v]ϕ(x) =

1

2
〈G1(t, x, u, v)∇,∇〉ϕ(x) + 〈f 1(t, x, u, v),∇〉ϕ(x)

+

∫

Rd

[ϕ(x+ y)− ϕ(x)− 〈y,∇ϕ(x)〉1B1
(y)]ν1(t, x, u, v, dy)].

Here B1 denotes the unit ball centered at the origin, G1(t, x, u, v) is a nonnegative
symmetric matrix, ν1(t, x, u, v, ·) is a measure on R

d such that ν1(t, x, u, v, {0}) = 0

2



and ∫

Rd

min{1, y2}ν1(t, x, u, v, ·)dy <∞.

The parameters u and v are considered as controls of the first and second players
respectively. The classes of admissible strategies of the first and second players are
described below. Note that under some conditions the operator L1

t [u, v] generates a
stochastic process X(·).

The first (respectively second) player wishes to minimize (respectively, maximize)
Eg(X(T )). In the paper we approximate the value of this game using a solution of
a stochastic game with a dynamics governed by a Markov process associated with a
generator of Lèvy-Khintchine type

L2
t [u, v]ϕ(x) ,

1

2
〈G2(t, x, u, v)∇,∇〉ϕ(x) + 〈f 2(t, x, u, v),∇〉ϕ(x)

+

∫

Rd

[ϕ(x+ y)− ϕ(x)− 〈y,∇ϕ(x)〉1B1
(y)]ν2(t, x, u, v, dy)].

In the general case, L1
t [u, v] 6= L2

t [u, v].
To simplify the designations we denote by Dt the Skorokhod space D([t, T ],Rd).

This set is endowed by the flow of σ-algebras Ft,s , B(D([t, s],Rd)). Here B(S)
denotes the Borel σ-algebra on metric space S. Recall [3, Theorem 12.5] that

Ft,s = σ{(πt1,...,tk)−1(A1, . . . , Ak) : t1, . . . , tk ∈ [t, s], A1, . . . , Ak ⊂ R
d},

where πt1,...,tk : Dt → R
k is a projection πt1,...,tkx(·) = (x(t1), . . . , x(tk)).

To simplify the designations put

Σi(t, x, u, v) ,

d∑

j=1

Gi
jj(t, x, u, v) +

∫

Rd

‖y‖2νi(t, x, u, v, dy).

bi(t, x, u, v) , f i(t, x, u, v) +

∫

Rd\B1

yνi(t, x, u, v, dy).

Note that the action of the generator Li
t[u, v] on the function x 7→ 〈a, x〉 for any

constant a ∈ R
d is equal to 〈a, bi(t, x, u, v)〉. Analogously, if ϑa(x) = ‖x− a‖2 then

Li
t[u, v]ϑa(x) = Σi(t, x, u, v) + 2〈x− a, bi(t, x, u, v)〉. (1)

Further, let A denote the set of functions α : R → [0,∞) such that α(δ) → 0 as
δ → 0.

We assume that the sets U , V , the generators L1, L2 and the function g satisfy
the following conditions

(L1) U , V are metric compact;

(L2) Gi, f i, i = 1, 2, are continuous function;

(L3) νi, i = 1, 2, are weakly continuous;
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(L4) there exist functions αi
1(·) ∈ A, i = 1, 2, such that for any t ∈ [0, T ], x ∈ R

d,
u ∈ U , v ∈ V

‖bi(t, x, u, v)− bi(s, x, u, v)‖2 ≤ αi
1(t− s);

(L5) there exist constants M i
0 and M i

1, i = 1, 2, such that for any t ∈ [0, T ], x ∈ R
d,

u ∈ U , v ∈ V
|Σi(t, x, u, v)| ≤M i

0, ‖bi(t, x, u, v)‖ ≤M i
1;

(L6) there exist constants Ki, i = 1, 2, such that for any t ∈ [0, T ], x, y ∈ R
d, u ∈ U ,

v ∈ V
‖bi(t, x, u, v)− bi(t, y, u, v)‖ ≤ Ki‖x− y‖;

(L7) g is Lipschitz continuous with constant R;

(L8) (Isaacs condition) either

(1) for any t ∈ [0, T ], x, ξ ∈ R
d, u ∈ U , v ∈ V

min
u∈U

max
v∈V

〈ξ, b1(t, x, u, v)〉 = max
v∈V

min
u∈U

〈ξ, b1(t, x, u, v)〉.

or

(2) for any t ∈ [0, T ], x, ξ ∈ R
d, u ∈ U , v ∈ V

min
u∈U

max
v∈V

〈ξ, b2(t, x, u, v)〉 = max
v∈V

min
u∈U

〈ξ, b2(t, x, u, v)〉.

Note (see [18, Theorems 5.4.2 and 5.5.1]) that under imposed conditions for each
t0, initial distribution m0, controls u ∈ U , v ∈ V and i = 1, 2 there exist a filtered
probability space and an adapted process X satisfying Law(X(t0)) = m0 and for any
ϕ ∈ Di

ϕ(X(t))−
∫ t

t0

Li
τ [u, v]ϕ(X(τ))dτ

is a martingale. Here the set Di is such thatDi ⊂ C2(Rd) and C2
b (R

d)∪{ϑa}a∈Rd ⊂ Di.
Now we turn to the formalization of the game with the dynamics given by the gen-

erator L1
t [u, v]. We assume that the players use randomized strategies with memory.

The following definition is inspired by the definition proposed in [14, p. 79].

Definition 1. Let t0 be an initial time. A strategy of the first player on [t0, T ] is a
5-tuple u = (ΩU ,FU , {FU

s }s∈[t0,T ], ux(·), P
U
x(·)) satisfying the following conditions

1. (ΩU ,FU , {FU
s }s∈[t0,T ]) is a filtered space;

2. for each function x(·) ∈ Dt0 ux(·) is a {FU
s }s∈[t0,T ]-progressive measur-

able stochastic process with values in U , whereas PU
x(·) is a probability on

(ΩU ,FU , {FU
s }s∈[t0,T ]).

3. if y(s) = x(s) for all s ∈ [t0, t] then for any A ∈ FU
t PU

x(·)(A) = PU
y(·)(A) and

ux(·)(s) = uy(·)(s) P
U
x(·)-a.s., s ∈ [t0, t];
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4. for any t ∈ [t0, T ] the function (x(·), s, ω) 7→ ux(·)(t, ω) is measurable with
respect to Ft0,t ⊗ B([t0, t])⊗ FU

t0,t.

A strategy u = (ΩU ,FU , {FU
s }s∈[t0,T ], ux(·), P

U
x(·)) is called stepwise if there exists

a partition ∆ = {tl}rl=1 of the interval [t0, T ] such that equality x(tk) = y(tk), k =
0, . . . , l − 1 implies that Px(·)(A) = Py(·)(A) for any A ∈ FU

tl−0 and ux(·)(s) = uy(·)(s)
for s ∈ [0, tl).

Note that the presented definition of strategy includes feedback strategies, and
randomized feedback strategies.

A strategy of the second player is a 5-tuple v = (ΩV ,FV , {FV
s }s∈[t0,T ], vx(·), P

V
x(·))

satisfying conditions similar to the conditions of Definition 1 with vx(·) taking values
in V .

Definition 2. Let (t0, x0) be an initial position and let u =
(ΩU ,FU , {FU

s }s∈[0,T ], ux(·), P
U
x(·)) and v = (ΩV ,FV , {FV

s }s∈[t0,T ], vx(·), P
V
x(·))

be strategies of the first and the second players respectively. A 5-tuple
(ΩX ,FX, {FX

s }s∈[t0,T ], X(·), P ) is a realization of the motion generated by the
strategies u, v and the initial position (t0, x0) if the following conditions hold true.

1. (ΩX ,FX , {FX
s }s∈[t0,T ]) is a filtered space.

2. P is a probability on (Ω,F , {Fs}s∈[t0,T ]), where Ω , ΩX × ΩU × ΩV , F ,

FX ⊗FU ⊗ FV , Fs , FX
s ⊗FU

s ⊗ FV
s .

3. X(·) is a {Fs}s∈[t0,T ]-adapted process on (Ω,F , {Fs}s∈[t0,T ]) with values in R
d.

4. X(t0) = x0 P -a.s.

5. The process

ϕ(X(t))−
∫ t

t0

L1
τ [u(τ), v(τ)]ϕ(X(τ))dτ (2)

is a {Fs}s∈[t0,T ]-martingale. Here u and v are stochastic processes defined by
the rules

u(τ, ωX, ωU , ωV ) , uX(·,ωX ,ωU ,ωV )(τ, ω
U),

v(τ, ωX, ωU , ωV ) , vX(·,ωX ,ωU ,ωV )(τ, ω
V ),

where (ωX, ωU , ωV ) ∈ Ω;

6. For any x(·) ∈ Dt0 and any random variable ζ ′ on (ΩU ,FU , {FU
s }s∈[t0,T ])

E
U
x(·)ζ

′ = E(ζ ′|X(·) = x(·)),

where E
U
x(·) denotes the expectation corresponding to the probability PU

x(·).

7. For any x(·) ∈ Dt0 and any random variable ζ ′′ on (ΩV ,FV , {FV
s }s∈[t0,T ])

E
V
x(·)ζ

′′ = E(ζ ′′|X(·) = x(·)),

where E
V
x(·) denotes the expectation corresponding to the probability P V

x(·).
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Remark 1. If the strategies u and v are stepwise then there exists at least one real-
ization of the corresponding motion. To show this consider the set of times of control
correction {τi}ni=1. The controls of the players are constant on each interval [τi, τi+1)
and they are determined only by values X(τ0), . . . , X(τi). There exists a realization
of the motion on each interval [τi, τi+1]. Combining this realization one can construct
the realization of the motion on the whole interval [t0, T ].

Given the strategies u, v, the outcome is not defined in the unique way. The
values

J∗(t0, x0, u, v) , sup{Eg(X(T )) : (ΩX ,F , {FX
s }s∈[0,T ], X(·), P ) realizing a

motion generated by the strategies u and v and the initial position (t0, x0)},

J∗(t0, x0, u, v) , inf{Eg(X(T )) : (ΩX ,F , {FX
s }s∈[0,T ], X(·), P ) realizing a

motion generated by the strategies u and v and the initial position (t0, x0)}

are the upper and lower outcomes according to the strategies u and v. The upper
value of the game is

Val+(t0, x0) = inf
u

sup
v

J∗(x0, u, v).

The lower value is equal to

Val−(t0, x0) = sup
v

inf
u

J∗(x0, u, v).

Obviously,
Val−(t0, x0) ≤ Val+(t0, x0).

Below we estimate this values using strategies based on the model of the game.

3 Extremal shift for continuous-time Markov

games

If A is a metric space then denote by rpm(A) the set of Radon probabilities on
A. If A is a compact then the rpm(A) is also a compact [31]. Below if µ is a function
with values in rpm(A), t ∈ [0, T ], B ⊂ A we write µ(t, B) instead of µ(t)(B). If
the function µ takes values in rpm(U) (respectively, in rpm(V )) then it is called
generalized control of the first (respectively, second) player.

Definition 3. A function c+ : [0, T ]× R
d → R is said to be u-stable with respect to

the generator L2 if

1. c+(T, x) = g(x);

2. for any t, θ ∈ [0, T ], t < θ there exists a filtered space (Ω̃t,θ, F̃ t,θ, {F̃ t,θ
s }s∈[t,θ])

such that for any ξ ∈ R
d, v ∈ Q one can find a {F̃ t,θ

s }s∈[t,θ]-progressively
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measurable generalized control of the first player on [t, θ] µt,θ
ξ,v, a {F̃ t,θ

s }s∈[t,θ]-
adapted process Y t,θ

ξ,v with values in R
d, and a probability P̃ t,θ

ξ,v on Ω̃t,θ such that

Y t,θ
ξ,v (t) = ξ P̃ t,θ

ξ,v-a.s., for any ϕ ∈ D2

ϕ(Y t,θ
ξ,v (s))−

∫ s

t

∫

U

L2
τ [w, v]ϕ(Y

t,θ
ξ,v (τ))µ

t,θ
ξ,v(τ, dw)dτ (3)

is a {F̃ t,θ
s }s∈[t,θ]-martingale and

c+(t, ξ) ≥ Ẽ
t,θ
ξ,vc+(θ, Y

t,θ
ξ,v (θ)); (4)

3. for any random variable φ on Ω̃t,θ dependence of Ẽt,θ
ξ,vφ on ξ and v is measurable;

4. for any ϕ ∈ D2 the function (ξ, v, s) 7→ Ẽt,θ
ξ,vϕ(Y

t,θ
ξ,v (s)) is measurable.

Here Ẽ
t,θ
ξ,v denotes the expectation corresponding to the probability P̃ t,θ

ξ,v .

The proposed definition of u-stability generalizes the definition given by Krasovskii
and Subbotion for differential games. This is proved in Proposition 2 below. The-
orem 1 provides the estimate of the function Val+(t0, x0) by the u-stable function
c+.

To estimate the function Val−(t0, x0) we will use v-stable functions.

Definition 4. A function c− : [0, T ]×R
d → R is v-stable with respect to the generator

L2 if

1. c−(T, x) = g(x);

2. for any t, θ ∈ [0, T ], t < θ there exists a filtered space (Ω
t,θ
,F t,θ

, {F t,θ

s }s∈[t,θ])
such that for any ξ ∈ R

d, u ∈ U one can find a {F t,θ

s }s∈[t,θ]-progressively
measurable generalized control of the second player on [t, θ] µt,θ

ξ,u, a {F t,θ

s }s∈[t,θ]-
adapted process Y t,θ

ξ,u with values in R
d, and a probability P

t,θ

ξ,u on Ω
t,θ

such that

Y t,θ
ξ,u(t) = ξ P

t,θ

ξ,u-a.s., for any ϕ ∈ D2

ϕ(Y t,θ
ξ,u(s))−

∫ s

t

∫

V

L2
τ [u, w]ϕ(Y

t,θ
ξ,u(τ))µ

t,θ
ξ,u(τ, dw)dτ

is a {F t,θ

s }s∈[t,θ]-martingale and

c−(t, ξ) ≤ E
t,θ

ξ,uc−(θ, Y
t,θ
ξ,u(θ));

3. for any random variable φ on Ω
t,θ

dependence of E
t,θ

ξ,uφ on ξ and u is measurable;

4. for any ϕ ∈ D2 the function (ξ, u, s) 7→ E
t,θ

ξ,uϕ(Y
t,θ
ξ,u(s)) is measurable.

7



Here E
t,θ

ξ,u denotes the expectation corresponding to the probability P
t,θ

ξ,u.

Given a u-stable function c+ and a partition ∆ = {tl}rl=0 of the interval
[t0, T ] we define the stepwise strategy û∆ = (ΩU ,FU , {FU

s }s∈[t0,T ], ux(·), Px(·)) by the
rules (5), (6) (see below). To this end we need some additional notion.

If condition (L8)–(1) is fulfilled then put

̟(t, z, ξ, u, v) , 〈z − ξ, b1(t, z, u, v)〉,

otherwise, put
̟(t, z, ξ, u, v) , 〈z − ξ, b2(t, ξ, u, v)〉.

For z, ξ ∈ R
d let ul[z, ξ] and vl[z, ξ] satisfy the condition

max
v∈V

̟(tl, z, ξ, ul[z, ξ], v) = min
u∈U

max
v∈V

̟(tl, z, ξ, u, v)

= max
v∈V

min
u∈U

̟(tl, z, ξ, u, v) = min
u∈U

̟(tl, z, ξ, u, vl[z, ξ]).

The functions (z, ξ) 7→ ul[z, ξ] and (z, ξ) 7→ vl[z, ξ] can be chosen to be measurable.
To define the strategy û∆ we construct a sequence of models of the game.

Definition 5. A 7-tuple (Γl,Gl, {Gl
s}s∈[t0,tl], P l

x(·), µ̂
l
x(·), v̂

l
x(·), Y

l
x(·)) is called a model of

the game for the partition ∆ and the number l if the following conditions hold true:

1. for each x(·) ∈ Dt0 P l
x(·) is a probability on Γl, µ̂l

x(·) is a {Gl
s}s∈[t0,tl]-

progressively measurable generalized control of the first player, v̂lx(·) is a

{Gl
s}s∈[t0,tl]-progressively measurable control of the second player, whereas Y l

x(·)

is a càdlàg {Gl
s}s∈[t0,tl]-adapted process with values in R

d;

2. Y l
x(·)(τ), µ̂

l
x(·)(τ, ·), v̂lx(·)(τ) depend only on x(t0), . . . , x(tj) where tj is the greatest

element of ∆ such that tj ≤ τ ;

3. for any k = 0, l and τ ∈ [tk, tk+1)

max
v∈Q

min
u∈U

̟(tk, x(tk), Y
l
x(·)(tk), u, v) = min

u∈U
̟(tk, x(tk), Y

l
x(·)(tk), u, v̂

l
x(·)(τ));

4. Y l
x(·)(t0) = x(t0) P l

x(·) − a.s., and for any ϕ ∈ D2

ϕ(Y l
x(·)(s))−

∫ s

t0

∫

U

L2
τ [w, v̂

l
x(·)(τ)]ϕ(Y

l
x(·)(τ))µ̂

l
x(·)(τ, dw)dτ

is a martingale;

5. E
l
x(·)c+(t0, Y

l
x(·)(t0)) ≥ . . . ≥ E

l
x(·)c+(tl, Y

l
x(·)(tl)), where E

l
x(·) denotes the expec-

tation corresponding to the probability P l
x(·).

Proposition 1. Assume that c+ is u-stable with respect to generator tl. Additionally,
let ∆ = {tl}rl=0 be a partition of [t0, T ]. Then for any l = 1, . . . , r there exists a model
for the partition ∆ and the number l.
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Proof. We construct the models inductively.
First, put Γ1 , Ω̃t0,t1 , G1 , F̃ t0,t1 , G1

s , F̃ t0,t1
s . For τ ∈ [t0, t1] set

v̂1x(·)(τ) , v0[x(t0), x(t0)].

Put
µ̂1
x(·)(τ, ·) , µt0,t1

x(t0),v1
(τ, ·), Y 1

x(·)(τ) , Y t0,t1
x(t0),v1

(τ), P 1
x(·) , P̃ t0,t+1

x(t0),v1

for v1 = v0[x(t0), x(t0)]. Obviously, (Γ1,G1, {Gl
s}s∈[t0,t1], P 1

x(·), µ̂
1
x(·), v̂

1
x(·), Y

1
x(·)) is a

model at t1.
Now assume that the model is constructed for the number l. Define the model

for l + 1 in the following way. Put Γl+1 , Γl × Ω̃tl,tl+1,

Gl+1
s ,

{
Gl
s ⊗ F̃ tl,tl+1

tl
, s ∈ [t0, tl]

Gl ⊗ F̃ tl,tl+1

s , s ∈ (tl, tl+1]

Gl+1 , Gl+1
tl+1

. Now let x(·) ∈ Dt0 . For γ ∈ Γl, ω ∈ Ω̃tl,tl+1 put

v̂l+1
x(·)(τ, γ, ω) ,

{
v̂lx(·)(τ, γ), τ ∈ [t0, tl),

vl[x(tl), Y
l
x(·)(tl, γ)], τ ∈ [tl, tl+1].

Choosing vl+1(γ) = vl[x(tl), Y
l
x(·)(tl, γ)], y

l(γ) = Y l
x(·)(tl, γ) put

µ̂l+1
x(·)(τ, γ, ω) ,

{
µ̂l
x(·)(τ, γ), τ ∈ [t0, tl),

µ
tl,tl+1

yl(γ),vl+1(γ)
(τ, ω), τ ∈ [tl, tl+1],

Y l+1
x(·) (τ, γ, ω) ,

{
Y l
x(·)(τ, γ), τ ∈ [t0, tl),

Y
tl,tl+1

yl(γ),vl+1(γ)
(τ, ω), τ ∈ [tl, tl+1].

Finally, let ml
x(·) be a probability on R

d defined by the rule ml
x(·)(Z) , P l

x(·){γ ∈ Γl :

Y l
x(·)(tl, γ) ∈ Z}. If A ∈ Γl, B ∈ Ω̃tl ,tl+1 then put

P l+1
x(·) (A×B) =

∫

Rd

P l
x(·)(A|Y l

x(·)(tl) = z)P̃
tl,tl+1

z,vl[x(tl),z]
(B)ml

x(·)(dz).

By construction the 7-tuple (Γl+1,Gl+1, {Gl+1
s }s∈[t0,tl], P l+1

x(·) , u
l+1
x(·), µ̂

l+1
x(·), v̂

l+1
x(·), Y

l+1
x(·) ) is a

model for l + 1.

To define the strategy û∆ consider (Γr,Gr, {Gr
s}s∈[t0,tl], P r

x(·), u
r
x(·), µ̂

r
x(·), v̂

l+1
x(·), Y

r
x(·))

that is the model of the game for the partition ∆ and the number r. The strategy
û = (ΩU ,FU , {FU

s }s∈[t0,T ], ux(·), P
U
x(·)) is defined by the rules

ΩU , Γr, FU , Gr, FU
s , Gr

s , PU
x(·) , P r

x(·), (5)

for τ ∈ [tl, tl+1)
ux(·)(τ, ω

U) , ul[x(tl), Y
r(tl, ω

U)]. (6)
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Below we use the following designations:

κ , sup
t∈[0,T ],x∈Rd,u∈U,v∈V

‖b1(t, x, u, v)− b2(t, x, u, v)‖2 (7)

Θ = κ +M1
0 +M2

0 , (8)

where constants M1
0 ,M

2
0 are introduced in condition (L5). Further, set

β , 2 + 2Ki. (9)

In formula (9) i = 1 if (L8)–(1) is fulfilled and i = 2 in the opposite case, Ki,
i = 1, 2, are Lipschitz constants for functions x 7→ bi(t, x, u, v) (see condition (L6)).
Additionally, put

C ,
√
TeβT . (10)

Recall that the payoff function g is Lipschitz continuous with constant R.

Theorem 1. If c+ is u-stable with respect to L2 then for any (t0, x0) ∈ [0, T ]× R
d

lim
δ↓0

sup{J(t0, x0, û∆, v) : d(∆) ≤ δ} ≤ c+(t0, x0) +R · C
√
Θ.

Corollary 1. If c+ is u-stable with respect to L2 then for any (t0, x0) ∈ [0, T ]× R
d

Val+(t0, x0) ≤ c+(t0, x0) +R · C
√
Θ.

Corollary 2. If c− is v-stable with respect to L2 then for any (t0, x0) ∈ [0, T ]× R
d

c−(t0, x0)−R · C
√
Θ ≤ Val−(t0, x0).

The proof of Theorem 1 is given in the next section. Corollary 1 directly follows
from Theorem 1. To prove the Corollary 2 it suffices to consider the game with payoff
function given by −g and interchange the players.

4 Properties of the model of the game

Let a 5-tuple (ΩX ,FX, {FX
s }s∈[t0,T ], X(·), P ) be a realization of the motion for the

strategy of the first player û∆ and some strategy of the second player v, partition ∆ =
{tl}rl=1 and the initial position (t0, x0). Recall (see Section 3) that the construction
of the strategy û∆ relies on model at time tr = T (see Definition 5). Further, the
elements of Ω = ΩX × ΩU × ΩV are the triples (ωX , ωU , ωV ). Recall that

u(t, ωX, ωU , ωV ) = uX(·,ωX ,ωU ,ωV )(t, ω
U), v(t, ωX, ωU , ωV ) = vX(·,ωX ,ωU ,ωV )(t, ω

V ).

Let (Γr,Gr, {Gr
s}s∈[t0,tl], P r

x(·), u
r
x(·), µ̂

r
x(·), v̂

l+1
x(·), Y

r
x(·)) be the model of the game used in

the definition of the strategy û∆ (see (5), (6)). For t ∈ [0, tr], A ⊂ U put

µ̂(t, A, ωX, ωU , ωV ) , µ̂r
X(·,ωX ,ωU ,ωV )(t, A, ω

U), (11)

v̂(t, ωX, ωU , ωV ) , v̂rX(·,ωX ,ωU ,ωV )(t, ω
U), (12)

Y (t, ωX, ωU , ωV ) , Y r
X(·,ωX ,ωU ,ωV )(t, ω

U). (13)

10



Lemma 1. We have that

1. Y (t0) = x0 P -a.s.;

2. for any ϕ ∈ D2

ϕ(Y (s))−
∫ s

t0

∫

U

L2
τ [w, v̂(τ)]ϕ(Y (τ))µ̂(τ, dw)dτ

is a martingale;

3. Ec+(tl, Y (tl)) ≥ Ec+(tl+1, Y (tl+1)).

4. for τ ∈ [t,tl+1)

max
v∈V

̟(tl, x(tl), Y (tl), u(τ), v) = max
v∈V

min
u∈U

̟(tl, x(tl), Y (tl), u, v)

= min
u∈U

̟(tl, x(tl), Y (tl), u, v̂(τ)).

The proof of the Lemma directly follows from (6)–(13), the properties of the model
of the game for the number r and the construction the strategy û∆.

Lemma 2. There exist a function α2(·) ∈ A such that for t ≥ s

E‖X(t)−X(s)‖2 ≤M1
0 (t− s) + α2(t− s) · (t− s).

Proof. Since (2) is a martingale, taking into account (1) we have that

E‖X(t)−X(s)‖2 = E

(
E

(
‖X(t)−X(s)‖2

∣∣∣Fs

))

= E

(
E

(∫ t

s

L1
τ [u(τ), v(τ)]‖X(τ)−X(s)‖2dτ

∣∣∣Fs

))

= E

(∫ t

s

L1
τ [u(τ), v(τ)]‖X(τ)−X(s)‖2dτ

)

= E

∫ t

s

[
Σ1(τ,X(τ), u(τ), v(τ)) + 2〈b(τ,X(τ), u(τ), v(τ)), X(τ)−X(s)〉. (14)

Using condition (L5) we obtain that

E‖X(t)−X(s)‖2 ≤ (M1
0 + (M1

1 )
2)(t− s) +

∫ t

s

E‖X(τ)−X(s)‖2dτ.

Gronwall’s inequality yields the estimate

E‖X(t)−X(s)‖2 ≤ (M1
0 + (M1

1 )
2)e(t−s)(t− s).

Put M ′ , (M1
0 + (M1

1 )
2)eT . Since

E‖X(τ)−X(s)‖ ≤
√

E‖X(τ)−X(s)‖2,

11



we get from (14) the following estimate

E‖X(t)−X(s)‖2 ≤M1
0 (t− s) +

∫ s

t

M1
1M

′
√
τ − sdτ.

Finally, put

α2(δ) ,
2

3
M1

1M
′δ1/2.

Lemma 3. There exist a function α3(·) ∈ A such that for t ≥ s

E‖Y (t)− Y (s)‖2 ≤M2
0 (t− s) + α3(t− s) · (t− s).

The proof of this Lemma is analogous to the proof of the previous Lemma and
relies on Lemma 1 and conditions (L1)–(L7).

Lemma 4. There exists a function ǫ(·) ∈ A such that

E‖X(tl+1)− Y (tl+1)‖2 ≤ ‖X(tl)− Y (tl)‖2(1 + β(tl+1 − tl))

+ Θ(tl+1 − tl) + ǫ(tl+1 − tl) · (tl+1 − tl). (15)

Proof. We have that

‖X(tl+1)− Y (tl+1)‖2 = ‖(X(tl+1)−X(tl))− (Y (tl+1)− Y (tl)) + (X(tl)− Y (tl))‖2
= ‖X(tl+1)−X(tl)‖2 + ‖X(tl)− Y (tl)‖2 + ‖Y (tl+1)− Y (tl‖2

− 2〈X(tl+1)−X(tl), Y (tl+1)− Y (tl)〉+ 2〈X(tl+1)−X(tl), X(tl)− Y (tl)〉
− 2〈Y (tl+1)− Y (tl), X(tl)− Y (tl)〉

≤ ‖X(tl)− Y (tl)‖2 + 2‖X(tl+1)−X(tl)‖2 + 2‖Y (tl+1)− Y (tl)‖2

+ 2〈X(tl+1)−X(tl), X(tl)− Y (tl)〉 − 2〈Y (tl+1)− Y (tl), X(tl)− Y (tl)〉.
Thus, by Lemmas 2 and 3

E‖X(tl+1)− Y (tl+1)‖2
≤ 2E‖X(tl+1)−X(tl)‖2 + 2E‖Y (tl+1)− Y (tl)‖2 + E‖X(tl)− Y (tl)‖2

+ 2E〈X(tl+1)−X(tl), X(tl)− Y (tl)〉 − 2E〈Y (tl+1)− Y (tl), X(tl)− Y (tl)〉
≤ E‖X(tl)− Y (tl)‖2 + 2(M1

0 +M2
0 + α2(tl+1 − tl) + α3(tl+1 − tl))(tl+1 − tl)

+ 2E〈X(tl+1)−X(tl), X(tl)− Y (tl)〉 − 2E〈Y (tl+1)− Y (tl), X(tl)− Y (tl)〉. (16)

Further, let us estimate E〈X(tl+1)−X(tl), X(tl)−Y (tl)〉 and E〈Y (tl+1)−Y (tl), X(tl)−
Y (tl)〉. Since (2) is a martingale, using formula L1

t [u, v]〈a, x〉 = 〈a, b1(t, x, u, v)〉 we
obtain that

E〈X(tl+1)−X(tl), X(tl)− Y (tl)〉 = E(E(〈X(tl+1)−X(tl), X(tl)− Y (tl)〉|Ftl))

= E

(
E

(∫ tl+1

tl

L1
τ [u(τ), v(τ)] 〈X(tl)− Y (tl), X(τ)−X(tl)〉 dτ

∣∣∣Ftl

))

= E

∫ tl+1

tl

L1
τ [u(τ), v(τ)] 〈X(tl)− Y (tl), X(τ)−X(tl)〉 dτ

= E

∫ tl+1

tl

〈X(tl)− Y (tl), b
1(τ,X(τ), u(τ), v(τ))〉. (17)

12



It follows from conditions (L4) and (L6) that for τ ∈ [tl, tl+1]

〈
X(tl)− Y (tl), b

1(τ,X(τ), u(τ), v(τ))
〉

≤
〈
X(tl)− Y (tl), b

1(tl, X(tl), u(τ), v(τ))
〉

+
1

2
‖X(tl)− Y (tl)‖2 +K1‖X(τ)−X(tl)‖2 + α1

1(τ − tl).

Thus, (17) and Lemma 2 yield the inequality

E〈X(tl+1)−X(tl), X(tl)− Y (tl)〉

≤ E

∫ tl+1

tl

〈X(tl)− Y (tl), b
1(tl, X(tl), u(τ), v(τ))〉dτ

+
1

2
E‖X(tl)− Y (tl)‖2(tl+1 − tl) + α4(tl+1 − tl)(tl+1 − tl). (18)

Here we denote α4(δ) , K1[M1
0 δ + α2(δ) · δ] + α1

1(δ). Note that α4(·) ∈ A.
Analogously, using Lemma 3 we obtain that

− E〈Y (tl+1)− Y (tl), X(tl)− Y (tl)〉

≤ −E

∫ tl+1

tl

∫

U

〈X(tl)− Y (tl), b
2(tl, Y (tl), w, v̂(τ))〉µ̂(τ, dw)dτ

+
1

2
E‖X(tl)− Y (tl)‖2(tl+1 − tl) + α5(tl+1 − tl)](tl+1 − tl). (19)

Here α5(·) is a function from the set A given by the rule

α5(δ) = K2[M2
0 δ + α3(δ) · δ] + α2

1(δ).

Combining (16), (18), (19) and Lemmas 2, 3 we obtain that

E‖X(tl+1)− Y (tl+1)‖2 ≤ E‖X(tl)− Y (tl)‖2(1 + (tl+1 − tl))

+ (M1
0 +M2

0 + ǫ(tl+1 − tl))(tl+1 − tl)

+ E

∫ tl+1

tl

∫

U

[〈X(tl)− Y (tl), b
1(tl, X(tl), u(τ), v(τ))〉

− 〈X(tl)− Y (tl), b
2(tl, Y (tl), w, v̂(τ))〉]µ̂(τ, dw)dτ. (20)

Here
ǫ(δ) , α2(δ) + α3(δ) + α4(δ) + α5(δ).

Now assume that condition (L8)–(1) is fulfilled. Taking into account condition (L6)
and definition of κ (see (7)) we obtain that for all w ∈ U

〈X(tl)− Y (tl), b
1(tl, X(tl), u(τ), v(τ))− b2(tl, Y (tl), w, v̂(τ))〉

≤ 〈X(tl)− Y (tl), b
1(tl, X(tl), u(τ), v(τ))− b1(tl, X(tl), w, v̂(τ))〉]

+ (1/2 +K1)‖X(tl)− Y (tl)‖2 + κ/2

= ̟(tl, X(tl), Y (tl), u(τ), v(τ))−̟(tl, X(tl), Y (tl), w, v̂(τ)

+ (1/2 +K1)‖X(tl)− Y (tl)‖2 + κ/2. (21)
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If condition (L8)–(2) holds true the inequality (21) takes the form

〈X(tl)− Y (tl), b
1(tl, X(tl), u(τ), v(τ))− b2(tl, Y (tl), w, v̂(τ))〉

≤ ̟(tl, X(tl), Y (tl), u(τ), v(τ))−̟(tl, X(tl), Y (tl), w, v̂(τ))

+ (1/2 +K2)‖X(tl)− Y (tl)‖2 + κ/2. (22)

The statement 4 of Lemma 1 yields that for any τ ∈ [tl, tl+1), and any w ∈ U

̟(tl, X(tl), Y (tl), u(τ), v(τ))−̟(tl, X(tl), Y (tl), w, v̂(τ)) ≤ 0.

This, (8), (20), the definition of β (see (9)) and inequalities (21), (22) imply inequal-
ity (15).

Proof of Theorem 1. By Lemma 4 we have

E‖X(tl+1)− Y (tl+1)‖2 ≤ eβ(tl+1−tl)E‖X(tl)− Y (tl)‖2 + [Θ + ǫ(d(∆))](tl+1 − tl).

Therefore,

E‖X(tr)− Y (tr)‖2 ≤ eβTE‖X(t0)− Y (t0)‖2 + eβT [Θ + ǫ(d(∆))]T.

Taking into account statement 1 of Lemma 1 we obtain that

E‖X(tr)− Y (tr)‖2 ≤ C2[Θ + ǫ(d(∆))]

where the constant C is defined by (10).
Jensen’s inequality yields the estimate

E‖X(tr)− Y (tr)‖ ≤ C
√
[Θ + ǫ(d(∆))]. (23)

We have that

g(X(tr)) = g(Y (tr)) + (g(X(tr))− g(Y (tr))) ≤ g(Y (tr)) +R‖X(tr)− Y (tr)‖.

Further, taking into account (23) we get the inequality

J(t0, x0, û∆, v) = Eg(X(tr) ≤ Eg(Y (tr)) +RE‖X(tr)− Y (tr)‖
≤ Eg(Y (tr)) +RC

√
[Θ + ǫ(d(∆))].

Statement 3 of Lemma 1 yields the inequality

Eg(Y (tr)) = Ec+(tr, Y (tr)) ≤ Ec+(t0, Y (t0)).

Since Y (t0) = X(t0) P -a.s., we obtain that

J(t0, x0, û∆, v) ≤ c+(t0, Y (t0)) +RC
√

[Θ + ǫ(d(∆))].

Since ǫ(δ) → 0 as δ → 0, we get the conclusion of the Theorem.
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5 Value function of differential game

In this section we consider differential game with the dynamics given by

d

dt
x(t) = f 1(t, x(t), u(t), v(t)), t ∈ [0, T ], x ∈ R

d, u(t) ∈ U, v(t) ∈ V. (24)

This equation corresponds to the generator

L1
t [u, v]ϕ(x) = 〈f 1(t, x, u, v),∇ϕ(x)〉. (25)

As above the variable u (respectively, v) stands for the control of the first (respec-
tively, second) player. The aim of first (respectively, second) player is to minimize
(respectively, maximize) the payoff function g(x(T )).

Let

U [t0] , {u : [t0, T ] → U measurable}, V[t0] , {v : [t0, T ] → V measurable}.

The set U [t0] (respectively, V[t0]) is a set of open-loop strategies of the first (respec-
tively, second) player.

We assume that the function f 1 is continuous, bounded by M1
1 , Lipschitz con-

tinuous with respect to x with the constant K1. Additionally, we suppose that the
Isaacs condition is fulfilled, i.e. for any t ∈ [0, T ], x, ξ ∈ R

d

min
u∈U

max
v∈V

〈ξ, f 1(t, x, u, v)〉 = max
v∈V

min
u∈U

〈ξ, f 1(t, x, u, v)〉. (26)

We use the feedback formalization of differential games proposed by Krasovskii
and Subbotin. Let p : [0, T ]× R

d → U be a function, (t0, x0) be an initial position,
and let ∆ = {tl}rl=1 be a partition of the interval [t0, T ]. We say that the strategy
u = (ΩU ,FU , {FU

s }s∈[t0,T ], ux(·), P
U
x(·)) belongs to the set Ut0,x0,∆[p] if for any x(·) ∈ Dt0

satisfying x(t0) = x0 and ωU ∈ ΩU , τ ∈ [tl, tl+1)

ux(·)(τ, ω
U) = p(tl, x(tl)).

Note that the elements of the set Ut0,x0,∆ are stepwise deterministic strategies. Ad-
ditionally, if (t0, x0) ∈ [0, T ]× R

d, u ∈ Ut0,x0,∆[p], v ∈ V then the outcome

J(t0, x0, u, v) = J∗(t0, x0, u, v) = J∗(t0, x0, u, v)

is well-defined.
Analogously, we say that the strategy v = (ΩV ,FV , {FV

s }s∈[t0,T ], vx(·), V
U
x(·)) is an

element of the set Vt0,x0,∆[q] if for any x(·) ∈ Dt0 , such that x(t0) = x0 and ω
V ∈ ΩV ,

τ ∈ [tl, tl+1)
vx(·)(τ, ω

V ) = q(tl, x(tl)).

As above, for any (t0, x0) ∈ [0, T ]× R
d, v ∈ Vt0,∆[q], u ∈ U the outcome

J(t0, x0, u, v) = J∗(t0, x0, u, v) = J∗(t0, x0, u, v)
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is well-defined.
Krasovskii and Subbotin proved that there exist functions p∗ : [0, T ]× R

d → U ,
q∗ : [0, T ]× R

d → V such that

lim
δ↓0

sup{J(t0, x0, u, v) : u ∈ Ut0,x0,∆[p
∗], d(∆) ≤ δ, v ∈ V}

= lim
δ↓0

sup{J(t0, x0, u, v) : u ∈ Ut0,x0,∆[p], d(∆) ≤ δ, v ∈ V, p ∈ U [0,T ]×R
d}

= lim
δ↓0

sup{J(t0, x0, u, v) : v ∈ Vt0,x0,∆[q
∗], d(∆) ≤ δ, u ∈ U}

= lim
δ↓0

sup{J(t0, x0, u, v) : v ∈ Vt0,x0,∆[q], d(∆) ≤ δ, u ∈ U , q ∈ V [0,T ]×R
d}

= Val(t0, x0).

Here BA stands for the set of functions from A to B.
Note that the value function Val can be defined using nonanticipating strate-

gies [2]. This formalization is equivalent to Krasovskii–Subbotin approach [28].
The function c+ : [0, T ] × R

d → R
d is Krasovskii–Subbotin u-stable (see [25]) if

c+(T, x) = g(x) and for any t, θ ∈ [0, T ], t < θ, ξ ∈ R
d, v ∈ V there exists a weakly

measurable function τ 7→ µt,θ
ξ,v(τ) ∈ rpm(U) such that for yt,θξ,v(·) satisfying

d

dτ
yt,θξ,v(τ) =

∫

U

f 1(τ, yt,θξ,v(τ), w, v)µ
t,θ
ξ,v(τ, dw), yt,θξ,v(t) = ξ (27)

the following inequality holds true

c+(t, ξ) ≥ c+(θ, y
t,θ
ξ,v(θ)). (28)

Recall [25] that if c+ is Krasovskii–Subbotin u-stable then there exists a function
p : [0, T ]× R

d → U such that

lim
δ↓0

sup{J(t0, x0, u, v) : u ∈ Ut0,x0,∆[p], d(∆) ≤ δ, v ∈ V} ≤ c+(t0, x0).

In addition, [28, Theorem 6.4] states that c+ is Krasovskii–Subbotin u-stable function
if and only if c+ is a minimax (viscosity) supersolution of the Hamilton-Jacobi PDE

∂c

∂t
+min

u∈U
max
v∈V

〈∇c, f 1(t, x, u, v)〉 = 0, c(T, x) = g(x).

The link between Krasovskii–Subbotin u-stability and the notion of u-stability
with respect to the generator introduced in Definition 3 is given in the following.

Proposition 2. If c+ is Krasovskii–Subbotin u-stable then c+ is u-stable with respect
to the generator L2 = 〈f 1(t, x, u, v),∇ϕ(x)〉.

Proof. Let t, θ ∈ [0, T ]. Put Ω̃t,θ , D([t, θ], U). Let F̃ t,θ
s , B(D([t, s], U)) be a

filtration on Ω̃t,θ, and let F̃ t,θ , F̃ t,θ
θ . Put Y t,θ

ξ,v , yt,θξ,v. Note that Y
t,θ
ξ,v is a deterministic

process. Finally, let P̃ t,θ
ξ,v be an arbitrary probability on Ω̃t,θ. Formula (27) yields that

the process (3) for L2
τ [u, v]ϕ(x) = 〈f 1(t, x, u, v),∇ϕ(x)〉 is a martingale, and the

equlity Y t,θ
ξ,v (t) = ξ. Finally, inequality (28) implies (4).
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The notion of Krasovskii–Subbotin v-stability is defined in the same way as u-
stability. For v-stable functions an analog of Proposition 2 is also fulfilled.

Now we consider the case when the model system is given by a stochastic differ-
ential equation.

Proposition 3. If ψσ is a solution of

∂ψ

∂t
+min

u∈U
max
v∈V

〈∇ψ, f 1(t, x, u, v)〉+ σ2

2
△ψ = 0, ψ(T, x) = g(x).

then ψσ is u- and v-stable with respect to

L2
τ [u, v]ϕ(x) = 〈∇ϕ(x), f 1(t, x, u, v)〉+ σ2

2
· △ϕ(x).

Proof. Put Ω̃t,θ , C([t, θ],Rd), F̃ t,θ
s = B(C([t, θ],Rd)), F̃ t,θ , F̃ t,θ

θ . Let P̃ t,θ
ξ,v be a

Wiener measure on Ω̃t,θ.
Further, for the constant second player’s control v ∈ V consider the control prob-

lem for the stochastic differential equation

dY (τ) = f 1(τ, Y (τ), u(τ), v)dτ + σdW (τ), Y (t) = ξ (29)

on time interval [t, θ] with the payoff functional given by Ẽ
t,θ
ξ,vψσ(θ, Y (θ)).

By [17] there exist a control ut,θξ,v and a function ρ : [0, T ]× R
d → R such that

∂ρ

∂t
+min

u∈U
〈∇ρ, f 1(t, x, u, v)〉+ σ2

2
△ρ = 0, ρ(θ, x) = ψσ(θ, x).

and for Y t,θ
ξ,v (·) satisfying (29) with u = ut,θξ,v the inequality

ρ(t, ξ) ≥ Ẽ
t,θ
ξ,vρ(θ, Y

t,θ
ξ,v (θ)).

Using the comparison principle for parabolic equations (see, for example [13, The-
orem I.16]) we obtain that

ψσ(t, ξ) ≥ ρ(t, ξ) ≥ Ẽ
t,θ
ξ ρ(θ, Y (θ)) = Ẽ

t,θ
ξ,vψσ(θ, Y

t,θ
ξ,v (θ)).

To prove the u-stability of the function ψσ with respect to L2
t it suffices to put

µ̂t,θ
ξ,v , δut,θ

ξ,v

where δz denotes the Dirac measure concentrated at z.
The v-stability of ψσ is proved in the same way.

Theorem 1, Corollaries 1, 2 and Propositions 2, 3 imply the following for C1 ,

C
√
d.

Corollary 3. Let û∆ be a stepwise strategy constructed by (5) and (6) for c+ = ψσ.
Then

lim
δ↓0

sup{J(t0, x0, û∆, v) : d(∆) ≤ δ, v ∈ V} ≤ ψσ(t0, x0) +RC1σ.

Corollary 4. |Val(t0, x0)− ψσ(t0, x0)| ≤ RC1σ.

Remark 2. Corollary 4 provides the rate of convergence for the vanishing viscosity
approximations of Hamilton–Jacobi PDE. This result corresponds to [6, Proposi-
tion 3.2].
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6 Approximation of differential game by Markov

games

Given a differential game with dynamics (24) define the Markov game in the
following way.

Let h be a positive number, f 1(t, x, u, v) = (f 1
1 (t, x, u, v), . . . , f

1
d (t, x, u, v)) and let

ei denote the i-th coordinate vector. Put

χi(t, x, u, v) =





ei, f 1
i (t, x, u, v) > 0,

−ei, f 1
i (t, x, u, v) < 0,

0, f 1
i (t, x, u, v) = 0.

For A ⊂ R
d

ν2(t, x, u, v, A) ,
1

h

n∑

i=1

|fi(t, x, u, v)|δhχi(t,x,u,v)(A).

Recall that δz denotes the Dirac measure concentrated at z.
Further, define

L2
t [u, v]ϕ(x) ,

∫

Rd

[ϕ(x+ y)− ϕ(x)]ν2(t, x, u, v, dy)

=

n∑

i=1

|fi(t, x, u, v)|
ϕ(x+ hχi(t, x, u, v))− ϕ(x)

h
. (30)

This generator corresponds to the continuous-time Markov chain on hZd with the
Kolmogorov matrix

Qh
xy(t, u, v) =





1
h
|fi(t, x, u, v)|, y = x+ hχi(t, x, u, v),

− 1
h

∑d
i=1 |fi(t, x, u, v)|, x = y,

0, y 6= x, y 6= x+ hχi(t, x, u, v),

(31)

The value function for the game with the generator L2 defined by (30) provides the
upper and lower bounds for the value function of the differential game.

The following system of ODEs is the Isaacs–Bellman equation for the Markov
game.

d

dt
η+h (t, x) + min

u∈U
max
v∈V

d∑

i=1

|fi(t, x, u, v)|
η+h (t, x+ hχi(t, x, u, v))− η+h (t, x)

h
= 0,

η+h (T, x) = g(x) (32)

where x ∈ hZd is a parameter.

Proposition 4. There exists an unique solution of (32).

Proof. We consider system (32) as a differential equation in the Banach space

M =
{
̺ : hZd → R with ‖̺‖M <∞

}
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where

‖̺‖M = sup
x∈hZd

|̺(x)|
h+ ‖x‖ .

First let us show that if η+h solves (32) then η+h (t, ·) belongs toM for any t ∈ [0, T ].
We have that

|η+h (t, x)|
h+ ‖x‖ ≤ |g(x)|

h+ ‖x‖ + dM1
1

∫ T

t

[ |η+h (τ, x)|
h + ‖x‖ +

|η+h (τ, x+ hχi(t, x, u, v))|
h + ‖x‖

]
dτ.

Since 2(h+ ‖x‖) ≥ 2h+ ‖x‖ ≥ h + ‖x+ hχi(t, x, u, v))‖, we get the inequality

‖η+h (t, ·)‖M ≤ ‖g(·)‖M + 3dM1
1

∫ T

t

‖η+h (τ, ·)‖Mdτ.

From Lipschitz continuity of the function g and Gronwall’s inequality it follows that
for t ∈ [0, T ]

‖η+h (t, ·)‖M <∞.

Thus, if η+h solves (32) then η+h (t, ·) ∈ M.
Define the mapping H : [0, T ]×M → M by the rule

H[t, ̺](x) = min
u∈U

max
v∈V

d∑

i=1

|fi(t, x, u, v)|
̺(x+ hχi(t, x, u, v))− ̺(x)

h
.

Consider the boundary value problem

d

dt
̺[t] = −H[t, ̺[t]], ̺[T ](x) = g(x). (33)

We have that the function H is continuous and Lipschitz continuous w.r.t. ̺. Indeed,
for t, s ∈ [0, T ], ̺, ̺′, ̺′′ ∈ M

‖H[t, ̺]−H[s, ̺]‖M ≤ 3α1
1(t− s)‖̺‖M, ‖H[t, ̺′]−H[t, ̺′′]‖ ≤ 3M1

1‖̺′ − ̺′′‖M.

Hence, by [7, §1] problem (33) has an unique solution ̺∗[·].
Put η+h (t, x) , ̺∗[t](x). The function η+h is an unique solution of (32).

Theorem 2. There exists a constant C2 determined by the function f 1 such that if
η+h is a solution of (32) then for t0 ∈ [0, T ], x0 ∈ hZd

|Val(t0, x0)− η+h (t0, x0)| ≤ RC2

√
h. (34)

Proof. First, let us show that η+h is an upper value of the Markov game with the
Kolmogorov matrix defined by (31). If u and v are strategies of the first and second
players respectively then denote the upper outcome in the game with the generator
L2 given by (30) by I∗(t0, x0, u, v).

Let u = (ΩU ,FU , {FU
s }s∈[t0,T ], ux(·), P

U
x(·)) be a strategy of the first

player. Consider the following counter-strategy of the second player v̄[u] =
(ΩV ,FV , {FV

s }s∈[t0,T ], vx(·), P
V
x(·)), where

ΩV , ΩU , FV , FU FV
s , FU

s P V
x(·) , PU

x(·),
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vx(·)(t, ω
U) , v̄x(t, ux(·)(t, ω

U)),

v̄x(t, u) ∈ Argmax

{
d∑

i=1

f 1
i (t, x(t), u, v)η

+
h (t, x(t)) : v ∈ V

}
.

Note that the Markov chain generated by the pair of strategies u, v̄[u] corresponds
to the controlled Markov chain with the Kolmogorov matrix Qh

xy(t, u, v̄x(t, u)).
Using dynamical programming arguments [11, Theorem 8.1] we obtain that

min
u

max
v

I∗(t0, x0, u, v) = min
u

I∗(t0, x0, u, v̄[u])

≤ I∗(t0, x0, u
∗, v̄[u∗]) = η+h (t0, x0), (35)

where u
∗ = (Ω∗,U ,F∗,U , {F∗,U

s }s∈[t0,T ], u
∗
x(·), P

∗,U
x(·) ) is such that

u∗x(·)(t) = u∗(t, x(t)) ∈ Argmin

{
max
v∈V

d∑

i=1

f i(t, x, u, v)η+h (t, x) : u ∈ U

}
.

Further, consider the controlled Markov chain with the Kolmogorov matrix
Qh

xy(t, u
∗(t, x), v). This system corresponds to the case when the first player uses

the strategy u
∗. Using dynamical programming arguments once more time we obtain

that

min
u

max
v

I∗(t0, x0, u, v) = max
v

I∗(t0, x0, u
∗, v)

≥ I∗(t0, x0, u
∗, v̄[u∗]) = η+h (t0, x0). (36)

Combining (35) and (36) we obtain that η+h is an upper value function for the game
with the generator defined by (30).

Now let us show that η+h is u-stable with respect to L2 given by (30). Let t, θ ∈
[0, T ], t < θ. We have that if the initial position of the Markov chain with Kolmogorov
matrix (31) belongs to hZd then the state of this Markov chain belongs to hZd. Put

Ω̃t,θ , D([t, θ], hZd), F̃ t,θ
s , B(D([t, s], hZd)), F̃ t,θ , F̃ t,θ

s .

For a given v ∈ V , ξ ∈ hZd, ω ∈ Ω̃t,θ put

ut,θξ,v(τ, ω) , u∗(τ, ω(τ)).

Further, let P̃ t,θ
ξ,v be a probability of the Markov chain with the Kolmogorov matrix

Qh
xy(τ, u

∗(τ, x), v). Let Y t,θ
ξ,v (τ) be a state at time τ of the Markov chain starting at

(t, ξ). This means that for any ϕ ∈ D2

ϕ(Y t,θ
ξ,v (s))−

∫ s

t

L2
τ [u

t,θ
ξ,v(τ), v]ϕ(Y

t,θ
ξ,v (τ))dτ

is a martingale. The dynamic programming principle yields that

η+h (t, ξ) ≥ Ẽ
t,θ
ξ,vη

+(θ, Y t,θ
ξ,v (θ)).
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Setting
µ̂t,θ
ξ,v , δut,θ

ξ,v

we obtain that the function η+h is u-stable with respect to the generator L2 given
by (30).

Using (7) and (L5) we conclude that for the generators L1 and L2 given by (25)
and (30) respectively

κ = 0, M1
0 = 0,

M2
0 = sup

t∈[0,T ],x∈Rd,u∈U,v∈V

∫

Rd

y2ν2(t, x, u, v, dy)

= sup
t∈[0,T ],x∈Rd,u∈U,v∈V

d∑

i=1

h|fi(t, x, u, v)| ≤ d3/2M1
1h.

Hence, Corollary 1 yields the inequality

Val(t0, x0) ≤ η+h (t0, x0) +RC2

√
h (37)

for any (t0, x0) ∈ [0, T ]×hZ, and the constant C2 , d3/4(M1
1 )

1/2C, where C is defined
by (10).

Now we shall prove the following inequality

η+h (t0, x0) ≤ Val(t0, x0) +RC2

√
h. (38)

Consider the generators L̂1
t [u, v] = L2

t [u, v] and L̂
2
t [u, v] = L1

t [u, v] where L
1 and L2

are determined by (25) and (30) respectively. We have that the pair of generators

L̂1 and L̂2 satisfies conditions (L1)–(L8). Note that in this case condition (L8)–(2)

is fulfilled (see (26)). The function Val is u-stable with respect to the generator L̂2

(see Proposition 2)). Since η+h is an upper value function for the Markov game, using
Corollary 1 we get inequality (38).

Combining (37) and (38) we get inequality (34).

Corollary 5. For t0 ∈ [0, T ], x0 ∈ hZd

|Val(t0, x0)− η−h (t0, x0)| ≤ RC2

√
h.

Proof. To prove this Corollary it suffices to interchange the players and replace the
payoff function with −σ in Theorem 2.
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