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Abstract. We develop a computational method for extremal Steklov eigenvalue problems and
apply it to study the problem of maximizing the p-th Steklov eigenvalue as a function of the
domain with a volume constraint. In contrast to the optimal domains for several other extremal
Dirichlet- and Neumann-Laplacian eigenvalue problems, computational results suggest that the
optimal domains for this problem are very structured. We reach the conjecture that the domain
maximizing the p-th Steklov eigenvalue is unique (up to dilations and rigid transformations), has
p-fold symmetry, and an axis of symmetry. The p-th Steklov eigenvalue has multiplicity 2 if p is
even and multiplicity 3 if p ≥ 3 is odd.

1. Introduction

Dedicated to the memory of Russian mathematician Vladimir Andreevich Steklov, a recent
article in the Notices of the American Mathematical Society discuss his remarkable contributions
to the development of science [KKK+14]. One of his main contributions is on the study of the
(second-order) Steklov eigenvalue problem,

(1)

{
∆u = 0 in Ω,

∂nu = λu on ∂Ω,

named in his honor. Here, Ω ⊂ Rd is a bounded open set with Lipschitz boundary ∂Ω, ∆ is the
Laplace operator, ∂n denotes the normal derivative, and (λ, u) denotes the eigenpair. The Steklov
spectrum is of fundamental interest as it coincides with the spectrum of the Dirichlet-to-Neumann

operator Γ: H
1
2 (∂Ω)→ H−

1
2 (∂Ω), given by the formula Γu = ∂n(Hu) where Hu denotes the unique

harmonic extension of u ∈ H
1
2 (∂Ω) to Ω. It also arises in the study of sloshing liquids and heat

flow.
The Steklov spectrum is discrete and we enumerate the eigenvalues in increasing order, 0 =

λ0(Ω) ≤ λ1(Ω) ≤ λ2(Ω) ≤ . . . → ∞. Weyl’s law for Steklov eigenvalues, the asymptotic rate at

which they tend to infinity, is given by λj ∼ 2π
(

j
|Bd−1| |∂Ω|

) 1
d−1

where Bd−1 is the unit ball in Rd−1

[GP14]. The eigenvalues also have a variational characterization,

(2) λk(Ω) = min
v∈H1(Ω)

{∫
Ω |∇v|

2 dx∫
∂Ω v

2ds
:

∫
∂Ω
vuj = 0, j = 0, . . . , k − 1

}
.

where uj is the corresponding j−th eigenfunction. It follows from (2) that Steklov eigenvalues
satisfy the homothety property λj(tΩ) = t−1λj(Ω). We describe a number of previous results for
extremal Steklov problems in Section 2.
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Statement of Results. In this short paper, we develop fast and robust computational methods
for extremal Steklov eigenvalue problems. We apply these methods to the shape optimization
problem

(3) Λp? = max
Ω⊂R2

Λp(Ω) where Λp(Ω) = λp(Ω) ·
√
|Ω|.

Note that Λp is invariant to dilations, so (3) is equivalent to maximizing λp(Ω) subject to |Ω| = 1.
A computational study of this problem for values of p between 1 and 101 suggests that the optimal
domains are very structured and supports the following conjecture.

Conjecture 1.1. The maximizer, Ωp?, of Λp(Ω) in (3) is unique (up to dilations and rigid transforma-
tions), has p-fold symmetry, and an axis of symmetry. The p-th Steklov eigenvalue has multiplicity
2 if p is even and multiplicity 3 if p ≥ 3 is odd.

Furthermore, as described in Section 4, the associated eigenspaces are also very structured. This
structure stands in stark contrast with previous computational studies for extremal eigenvalue
problems involving the Dirichlet- and Neumann-Laplacian spectra [Oud04, Ost10, AF12, Ant13,
OK13, OK14, KLO14]. In particular, denoting the Dirichlet- and Neumann-Laplacian eigenvalues
of Ω ⊂ R2 by λD(Ω) and λN (Ω) respectively, computational results suggest that the optimizers for
the following shape optimization problems do not seem to have structure:

min
Ω⊂R2

λDp (Ω) · |Ω|, min
Ω⊂R2

k+∑̀
p=k

cp · λDp (Ω) · |Ω| with cp ≥ 0 and

k+∑̀
p=k

cp = 1,

max
Ω⊂R2

λDp (Ω)

λD1 (Ω)
, min

Ω⊂R2
λDp (Ω) + |∂Ω|, max

Ω⊂R2
λNp (Ω) · |Ω|.

The only exception that we are aware of is when the optimal value is attained by a ball or a sequence
of domains which degenerates into the disjoint union of balls.

For the problems listed above, we also note that the largest value of p for which these previous
studies have been able to access is p ≈ 20. Here, we compute the optimal domains for p = 100
and p = 101; our ability to compute optimal domains for such large values of p arises from (1) a
very efficient and accurate Steklov eigenvalue solver and (2) a slight reformulation of the eigenvalue
optimization problem that significantly reduces the number of eigenvalue evaluations required.

Outline. In Section 2, we review some related work. Computational methods are described in
Section 3. Numerical experiments are presented in Section 4 and we conclude in Section 5 with a
brief discussion.

2. Related Work

Here we briefly survey some related work; a more comprehensive review can be found in [GP14]
and a historical viewpoint with applications in [KKK+14].

In 1954, R. Weinstock proved that the disk maximizes the first non-trivial Steklov eigenvalue of

(4)

{
∆u = 0 in Ω,

∂nu = λρu on ∂Ω,

among simply-connected planar domains with a fixed total mass M(Ω) =
∫
∂Ω ρ(s)ds where ρ is an

L∞(∂Ω) non-negative weight function on the boundary, referred to as the “density” [Wei54, GP10b].
It remains an open question for non-simply-connected bounded planar domains [GP14]. In 1974,
J. Hersch, L. E. Payne, and M. M. Schiffer proved a general isoperimetric inequality for simply-
connected planar domains which, in a special case, can be expressed

(5) sup{λn(Ω) ·M(Ω): Ω ⊂ R2} ≤ 2πn, n ∈ N.
2



In [GP10b], A. Girouard and I. Polterovich provided an alternative proof based on complex analysis
to show that disk maximizes the first non-trivial Steklov eigenvalue. Furthermore, they proved that
the maximum of second eigenvalue is not attained in the class of simply-connected domain instead
by a sequence of simply-connected domains degenerating to a disjoint union of two identical disks.
In [GP10a], A. Girouard and I. Polterovich proved that the bound in (5) is sharp and attained by
a sequence of simply-connected domains degenerating into a disjoint union of n identical balls.

An extension of R. Weinstock’s result to arbitrary Riemannian surfaces Σ with genus γ and k
boundary components was given by A. Fraser and R. Schoen in [FS11]. The inequality

(6) λ1(Σ) · |∂Σ| ≤ 2(γ + k)π

derived therein reduces to R. Weinstock’s result for γ = 0 and k = 1 and the bound is sharp.
However, for γ = 0 and k = 2, the bound is not sharp. See [FS11] for a better upper bound on
annulus surfaces. In [CESG11], it is proven that there exists a constant C = C(d), such that for
every bounded domain Ω ⊂ Rd,

(7) λk(Ω) · |∂Ω|
1

d−1 ≤ Ck
2
d , k ≥ 1.

A generalization for Riemannian manifolds is also given.
Other objective functions depending on Steklov eigenvalues were also considered. In [HPS74],

J. Hersch, L. E. Payne, and M. M. Schiffer proved that the minimum of
∑n

k=1 λ
−1
k (Ω) is attained

when Ω is a disk for both perimeter and area constraints. This result is generalized to arbitrary
dimensions in [Bro01]. In [Dit04], it is proven that sums of squared reciprocal Steklov eigenval-
ues,

∑∞
k=1 λ

−2
k (Ω), for simply-connected domains with a fixed perimeter is minimized by a disk.

The sharp isoperimetric upper bounds were found for the sum of first k-th eigenvalues, partial
sums of the spectral zeta function, and heat trace for starlike and simply-connected domains using
quasiconformal mappings to a disk [GLS15].

There are also a few computational studies of extremal Steklov problems. The most relevant
is recent work of B. Bogosel [Bog15]. This paper is primary concerned with the development of
methods based on fundamental solutions to compute the Steklov, Wentzell, and Laplace-Beltrami
eigenvalues. This method was used to demonstrate that the ball is the minimizer for a variety
of shape optimization problems. The author also studies the problem of maximizing the first
five Wentzell eigenvalues subject to a volume constraint, for which (3) is a special case. Shape
optimization problems for Steklov eigenvalues with mixed boundary conditions have also been
studied [BGR07].

3. Computational Methods

3.1. Computation of Steklov Eigenvalues. We consider the Steklov eigenvalue problem (1)
where the domain Ω is simply-connected with smooth boundary ∂Ω. Without loss of generality we
assume that ∂Ω possesses a 2π-periodic counterclockwise parametric representation of the form

x(t) = (x1(t), x2(t)), 0 ≤ t ≤ 2π.

Use of integral equation methods for (1) leads directly upon discretization to a matrix eigenvalue
problem [HL04, CHW12]. In order to avoid the inclusion of hypersingular operators we use eigen-
function representations based on a single layer potential. The eigenfunction u(x) is represented
using a single layer potential, ϕ, with a slight modification to ensure uniqueness of the solution

(8) u(x) =

∫
∂Ω

Φ(x− y)(ϕ(y)− ϕ)ds(y) + ϕ,

where Φ(x) =
1

2π
log |x| and ϕ = 1

|∂Ω|
∫
∂Ω ϕ(y)ds(y). See [Kre99, Theorem 7.41] for the proof that

the corresponding boundary operator is bijective. Taking into account well-known expressions (see
3



Figure 1. A log-log convergence plot of the first 100 eigenvalues for the domain
on the left as the number of interpolation points increases.

e.g. [Kre99]) for the jump of the single layer potential and its normal derivative across ∂Ω, the
eigenvalue problem (1) reduces to the integral eigenvalue equation for (λ, ϕ),

(9) A[ϕ] = λB[ϕ].

Here, the boundary operators A and B are defined

A[ϕ](x) :=

∫
∂Ω

∂Φ(x− y)

∂n(x)
(ϕ(y)− ϕ)ds(y) +

1

2
(ϕ(x)− ϕ)

B[ϕ](x) := λ

(∫
∂Ω

Φ(x− y)(ϕ(y)− ϕ)ds(y) + ϕ

)
.

In the cases considered in this paper, the Steklov eigenfunctions uk and the corresponding densities
ϕk are smooth functions. These problems can thus be treated using highly effective spectrally-
accurate methods [CK98, Kre99] based on explicit resolution of logarithmic singularities and a
Fourier series approximation of the density. To construct a spectral method for approximation
of the integral operators in (9), we use a Nyström discretization of the explicitly parametrized
boundary ∂Ω. This spectral approximation of the integral equation system yields a generalized
matrix eigenvalue problem of the form

(10) AX = ΛBX,

which can be solved numerically by means of the QZ-algorithm (see [GVL12]). More details about
this method can be found in [Akh16, ABNT16].

In Figure 1, we demonstrate the spectral convergence of this boundary integral method. In the
left panel we depict a domain that was obtained as an optimizer for the 50-th Steklov eigenvalue.
In polar coordinates, this domain is given by {(r, θ) : r < R(θ)} where

R(θ) = 2.5 + 0.057475351612645 · cos(50 θ) + 0.002675998736772 · cos(100 θ) − 0.002569287572637 · cos(150 θ).

In the right panel, we display a log-log convergence plot of the first 100 Steklov eigenvalues of the
domain in the left panel, as we increase the number n of interpolation points. For ground-truth,
we used n = 1800.

3.2. Eigenvalue Perturbation Formula. The following proposition gives the Steklov eigenvalue
perturbation formula, which can also be found in [DKL14].
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Proposition 3.1. Consider the perturbation x 7→ x + τv and write c = v · n̂ where n̂ is the
outward unit normal vector. Then a simple (unit-normalized) Steklov eigenpair (λ, u) satisfies the
perturbation formula

(11) λ′ =

∫
∂Ω

(
|∇u|2 − 2λ2u2 − λκu2

)
c dx

Proof. Let primes denote the shape derivative. From the identity λ =
∫

Ω |∇u|
2 dx, we compute

λ′ = 2

∫
Ω
∇u · ∇u′ dx+

∫
∂Ω
|∇u|2c dx (shape derivative)

= −2

∫
Ω

(∆u)u′ dx+ 2

∫
∂Ω
unu

′ dx+

∫
∂Ω
|∇u|2c dx (Green’s identity)

= 2λ

∫
∂Ω
uu′ dx+

∫
∂Ω
|∇u|2c dx (Equation (1)).

Differentiating the normalization equation,
∫
∂Ω u

2 dx = 1, we have that∫
∂Ω
uu′ dx = −

∫
∂Ω

(
uun +

κ

2
u2
)
c dx = −

∫
∂Ω

(
λ+

κ

2

)
u2 c dx.

Putting these two equations together, we obtain (11). �

3.3. Shape Parameterization. We consider domains of the form

(12) Ω = {(r, θ) : 0 ≤ r < ρ(θ)}, where ρ(θ) =
m∑
k=0

ak cos(kθ) +
m∑
k=1

bk sin(kθ).

The velocities corresponding to a perturbation of the k-th cosine and sine coefficients are given by

∂x(θ)

∂ak
· n̂(θ) =

ρ(θ) cos(kθ)√
ρ2(θ) + [ρ′(θ)]2

and
∂x(θ)

∂bk
· n̂(θ) =

ρ(θ) sin(kθ)√
ρ2(θ) + [ρ′(θ)]2

.

The derivative of Steklov eigenvalues with respect to Fourier coefficients can be obtained using
Proposition 3.1.

3.4. Optimization Method. We apply gradient-based optimization methods to minimize spectral
functions of Steklov eigenvalues, such as (3). The gradient of a simple eigenvalue is provided in
Proposition 3.1. While Steklov eigenvalues are not differentiable when they have multiplicity greater
than one, in practice, eigenvalues computed numerically that approximate the Steklov eigenvalues
of a domain are always simple. This is due to discretization error and finite precision in the domain
representation. Thus, we are faced with the problem of maximizing a function that we know to be
non-smooth, but whose gradient is well-defined at points in which we sample.

To compute solutions to the eigenvalue optimization problem (3), we (trivially) reformulate the
problem as a minimax problem,

max
Ω⊂R2

min
j : p≤j≤p−1+m

Λj(Ω), m ≥ 1.

This minimax problem can be numerically solved using Matlab’s fminimax function which further
reformulates the optimization problem

max
Ω⊂R2

t

s.t. Λj(Ω) ≥ t, j = p, p+ 1, . . . , p− 1 +m.

and solves this problem using nonlinear constrained optimization methods. We choose m to be
the (expected) multiplicity of the eigenvalue at the optimal solution. For (3), we find this method
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to be more effective then using the BFGS quasi-Newton method directly, as reported in other
computational studies of extremal eigevalues [Ost10, AF12, OK13, OK14, KLO14].

4. Numerical Results

In this section, we apply the computational methods developed in Section 3 to the Steklov
eigenvalue optimization problem (3). The methods are implemented in Matlab and numerical
results are obtained on a 4-core 4 GHz Intel Core i7 computer with 32GB of RAM. Unless specified
otherwise, we initialize with randomly chosen Fourier coefficients and the number of interpolation
points used is 6 · p ·m where p is the eigenvalue considered and m is largest free Fourier coefficient
for the domain.

Initial Results. Optimal domains, Ωp?, for Λp? for p = 2 . . . 10 are plotted in Figure 2. We also define
Λp?j := Λj(Ω

p?) and tabulate Λp?j for j = 1, . . . 12. In Figures 3 and 4, we plot the eigenfunctions

corresponding to Λp?j for j = p − 1, p, p + 1 if p is even and j = p, p + 1, p + 2 if p ≥ 3 is odd.

The eigenfunctions are extended outside of Ωp? using the representation (8). The optimal domains
and their eigenpairs are very structured. Namely, for these values of p, we make the following
(numerical) observations:

(1) The optimal domains, Ωp?, are unique (up to dilations and rigid transformations).
(2) Ωp? looks like a “ruffled pie dish” with p “ruffles” where the curvature of the boundary is

positive. In particular, Ωp? has p-fold rotational symmetry and an axis of symmetry.
(3) The p-th eigenvalue has multiplicity 2 for p even and multiplicity 3 for p ≥ 3 odd, i.e.,

p even: Λp?p = Λp?p+1 < Λp?p+2

p odd: Λp?p = Λp?p+1 = Λp?p+2 < Λp?p+3.

(4) There is a very large gap between Λp?p−1 and Λp?p . For even p, Λp?p−1 is simple.

(5) For even p, the eigenfunction corresponding to Λp−1 (left) and two eigenfunctions from
the eigenspace corresponding to Λp = Λp+1 (center and right) are plotted in Figure 3.
The eigenfunctions are all nearly zero at the center of the domain and oscillatory on the
boundary. The eigenfunction corresponding to Λp−1 takes alternating maxima and minima
on the “ruffles” of the domain. Eigenfunctions from the Λp = Λp+1 eigenspace may be
chosen so that one eigenfunction is nearly zero on the “ruffles” of the domain and takes
alternating maxima and minima in-between. The other eigenfunction takes maxima on the
“ruffles” of the domain and minima in-between.

For odd p ≥ 3, in Figure 4, we plot the eigenfunctions from the three-dimensional
eigenspace corresponding to Λp = Λp+1 = Λp+2. Again, eigenfunctions from this sub-
space are nearly zero on the interior of the domain and oscillatory on the boundary. They
may be chosen so that, again, one eigenfunction takes maxima on the “ruffles” of the do-
main and minima in-between (right figures). The other two eigenfunctions are nearly zero
on the “ruffles” of the domain and take alternating maxima and minima in-between on the
boundary. These two eigenfunctions are concentrated on opposite sides of the domain.

Some of these observations are also summarized in Conjecture 1.1. For p = 2, 3, 4, 5, the domain
symmetries can also been observed in the recent numerical results of B. Bogosel [Bog15]. Prelim-
inary results indicate that the introduction of a hole in the domain decreases the p-th eigenvalue.
To consider larger values of p, we use the structure of the optimal domains for relatively small p to
reduce the search space and generate good initial domains for the optimization procedure.
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j/p 1 2 3 4 5

1 1.77245385087 0.77698864096 1.07942827817 1.17095593776 1.23886424463

2 1.77245385087 2.91496429809 1.07942827817 1.17095593776 1.23886424463

3 3.54489505800 2.91496429809 4.14395657280 1.61092851928 1.94478915686
4 3.54492034560 3.28021642525 4.14395657280 5.28230087347 1.94478915686

5 5.31736077095 4.45733853748 4.14395657280 5.28230087347 6.49379637444

6 5.31736233451 5.07531707453 4.91719025908 5.44583490769 6.49379637444

7 7.08981538184 6.12892820432 6.01189780569 5.44583490769 6.49379637444

8 7.08981542529 6.24787066243 6.01189780569 6.49483453114 6.72879743688
9 8.86226925401 7.72388611906 7.63597621842 7.32884878844 6.72879743688

10 8.86226925490 7.78555184785 7.63597621842 7.32884878844 8.13434132277

11 10.63472310534 9.20742986631 8.93164119659 8.54954592721 8.80070046267
12 10.63472310535 9.35623119578 9.13933506157 9.11731770841 8.80070046267

j/p 6 7 8 9 10

1 1.26563770224 1.29215311002 1.30399980096 1.31769945903 1.32419993715
2 1.26563770224 1.29215311002 1.30399980096 1.31769945903 1.32419993715

3 2.11876408010 2.25268514632 2.33026127056 2.39855173093 2.44116583782

4 2.11876408010 2.25268514632 2.33026127056 2.39855173093 2.44116583782
5 2.42888722971 2.78130732355 3.00533497492 3.18580541676 3.30698927275
6 7.64164323380 2.78130732355 3.00533497492 3.18580541676 3.30698927275

7 7.64164323381 8.84377279901 3.24435955530 3.60805068461 3.86493960791
8 7.76830589795 8.84377279901 9.99777577159 3.60805068461 3.86493960791

9 7.76830589795 8.84377279901 9.99777577159 11.19446201555 4.05917248381

10 7.97457881941 9.04746859718 10.09825512148 11.19446201555 12.35253261747
11 7.97457881941 9.04746859718 10.09825512148 11.19446201555 12.35253261747
12 9.73477342826 9.22062775990 10.32313009868 11.36535997845 12.43514930841

Figure 2. (top) Ωp? for p = 2 . . . 10. The optimal domain for p = 1 is a ball.
(bottom) Values Λj(Ω

p?) for p = 1, . . . , 10 and j = 1, . . . , 12. See §4.
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Figure 3. For Ωp? with even p = 2, 4, 6, 8, 10, Steklov eigenfunctions p− 1, p, and
p+ 1. Here, Λp−1 < Λp = Λp+1 < Λp+2.
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Figure 4. For Ωp? with odd p = 3, 5, 7, 9, Steklov eigenfunctions p, p+1, and p+2.
Here, Λp−1 < Λp = Λp+1 = Λp+2 < Λp+3.

Structured Coefficients. If a domain has p-fold symmetry, the only non-zero coefficients in the
Fourier expansion (12) are multiples of p. If there is an axis of symmetry, then we can assume
bk = 0 for k ≥ 1. Therefore, when minimizing the p-th eigenvalue, we only vary the coefficients
ak·p for k = 1, 2, 3. This simplification reduces the shape optimization problem to an optimization
problem with just 3 parameters.

Let {ap?j }j denote the coefficients corresponding to Ωp?. Solving (3) for p ≤ 40, we observe that,

as a function of p, the coefficients {ap?k·p}k=1,2,3 decay at a rate ap?k·p ∝
1
p . Using computed values for

9



Figure 5. (left) For p = 6, 10, 14, . . . 38, a plot of the coefficients ap?k·p for k = 1, 2, 3

and the interpolation in (13). (center) Value of Λp for a ball (black), interpolated
domains Ωp◦ (blue), and optimal domains Ωp? (red). The values for Ωp◦ and Ωp?

are indistinguishable. (right) The perimeter of Ωp◦ as a function of p.

the optimal coefficients, we obtain the following interpolations, denoted {ap◦j }j ,

(13) ap◦1·p =
1

0.1815 + 0.3444 · p
ap◦2·p =

1

−6.1198 + 7.6443 · p
ap◦3·p =

1

−4.5563− 7.6561 · p
.

A plot of these three interpolations is given in Figure 5(left). Let Ωp◦ denote the domain corre-
sponding to these coefficients, {ap◦j }j . In Figure 5(center), we plot Λp(Ω

p◦) in blue, Λp(Ω
p?) in red,

and the value of Λp for a ball in black. The values for Ωp◦ and Ωp? are indistinguishable, although
the multiplicity of the p-th eigenvalue for these two domains differs. We observe that the value of
Λp(Ω

p◦) grows linearly with p. Linear interpolation of Λp(Ω
p◦) gives

(14) Λp(Ω
p◦) ≈ 0.5801 + 1.1765 · p.

Linear interpolation of the eigenvalues of a ball gives

Λp(B) ≈ 0.4436 + 0.8862 · p.

The interpolation for a ball is in good agreement with Weyl’s law, λj(Ω)|∂Ω| ∼ jπ, since for a

ball we have |∂Ω| = 2
√
π|Ω|

1
2 and Λp(B2) = λp(B2)

√
|B2| = 1

2
√
π
λp(B2)|∂B2| ∼

√
π

2 · p. One can

view (14) in terms of the bound given in (7). In dimension two, using the isoperimetric inequality,
4π|Ω| ≤ |∂Ω|2, we have that

Λp(Ω) = λp(Ω) · |Ω|
1
2 ≤ 1

2
√
π
λp(Ω) · |∂Ω| ≤ C̃p.

We have constructed a sequence of domains with maximal value Λp(Ω), so have computed the

(optimal) value of C̃ in this inequality. For the interpolated domains, Ωp◦, we plot p vs. the

perimeter, |∂Ωp◦|/
√
|Ωp◦|, in Figure 5(right). We observe that the perimeter appears to converge

to a value near 4.53, which is greater than the value for the disc, 2
√
π ≈ 3.54.

Solution Of (3) For Large p. We extrapolate the interpolation given in (13) to p = 50, 51, 100, 101.
Using this as an initial condition for the optimization problem (3) where we restrict the admissible
set to domains with coefficients ak·p for k = 1, 2, 3, we solve the optimization problem to obtain
domains, Ωp?, plotted in Figure 6. Here, we also tabulate Λp?j for j = p − 2, . . . p + 4. In Figures

7 and 8, we plot the eigenfunctions corresponding to Λp?j for j = p − 1, p, p + 1 if p is even and
j = p, p+ 1, p+ 2 if p is odd. The observations made above for small values of p hold here as well.
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j/p 50 51 100 101
p− 2 20.30936391721 20.75355064378 40.69488836617 41.11849978908
p− 1 20.34992971509 20.75355064378 40.71526210762 41.11849978908

p 59.41361758262 60.59374478101 118.23330554334 119.41159188027
p+ 1 59.41361758262 60.59374478101 118.23330554339 119.41159188027
p+ 2 59.43099705171 60.59374478101 118.24200985153 119.41159188027
p+ 3 59.43099705171 60.62775851108 118.24200985153 119.42881860937
p+ 4 59.48272776444 60.62775851108 118.26807069001 119.42881860937

Figure 6. (top) Ωp? for p = 50, 51, 100, 101. (bottom) Values Λj(Ω
p?) for j =

p− 2, . . . , p+ 4.

5. Discussion

In this paper, we developed a computational method for extremal Steklov eigenvalue problems
and applied it to study the problem of maximizing the p-th Steklov eigenvalue as a function of
the domain with a volume constraint. The optimal domains, spectrum, and eigenfunctions are
very structured, in contrast with other extremal eigenvalue problems. There are several interesting
directions for this work. The first is to use conformal or quasiconformal maps to better understand
the optimal domains (see [GLS15]). It would be very interesting to extend these computational
results to higher dimensions and see if the optimal domains there are also structured. The com-
putational methods developed here could also be used to investigate other functions of the Steklov
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Figure 7. p − 1, p, and p + 1 Steklov eigenfunctions of Ωp? for p = 50 (top) and
p = 100 (bottom).

Figure 8. p, p + 1, and p + 2 Steklov eigenfunctions of Ωp? for p = 51 (top) and
p = 101 (bottom).

spectrum. Finally, the optimal domains in this work could potentially find application in sloshing
problems, where it is desirable to engineer a vessel to have a large spectral gap to avoid certain
exciting frequencies [Tro65].

Acknowledgements. We would like to thank Dorin Bucur for pointing us towards [DKL14] and
Oscar Bruno and Nilima Nigam for collaboration in building the eigenvalue solver.
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