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Abstract. We derive a CUR-type factorization for tensors in the Tucker format based on inter-
polatory decomposition, which we will denote as Higher Order Interpolatory Decomposition (HOID).
Given a tensor X , the algorithm provides a set of column vectors {Cn}dn=1 which are columns ex-
tracted from the mode-n tensor unfolding, along with a core tensor G and together, they satisfy
some error bounds. Compared to the Higher Order SVD (HOSVD) algorithm, the HOID provides a
decomposition that preserves certain important features of the original tensor such as sparsity, non-
negativity, integer values, etc. Error bounds along with detailed estimates of computational costs
are provided. The algorithms proposed in this paper have been validated against carefully chosen
numerical examples which highlight the favorable properties of the algorithms. Related methods for
subset selection proposed for matrix CUR decomposition, such as Discrete Empirical Interpolation
method (DEIM) and leverage score sampling, have also been extended to tensors and are compared
against our proposed algorithms.

1. Introduction and motivation. Tensors, defined to be multidimensional
arrays, are extremely useful in many applications ranging from neuroscience, facial
recognition, and uncertainty quantification. An excellent review of the properties and
applications of tensors is available in [23]. A first-order tensor is a vector, a second-
order tensor is a matrix, and tensors of order three or higher are called higher-order
tensors. This paper presents a new CUR-type tensor decomposition for higher-order
tensors based upon the interpolatory decomposition (ID) for matrices.

Recently, a CUR decomposition has been proposed for matrices such that for a
given matrix A ∈ Cm×n

A = CUR + E ‖E‖ � ‖A‖,

where C ∈ Cm×k is formed from columns of A, R ∈ Ck×n consists of rows extracted
from A. The matrix U can be computed as U ≡ C†AR† (where † refers to the
Moore-Penrose pseudo-inverse); however there are other possible choices for U as
well. It is widely known that the best rank-k approximation to the matrix (in the
spectral and Frobenius norm) is obtained by retaining only the top k singular values
and singular vectors. However, the advantage of the CUR decomposition is that the
matrices C and R are representative of the matrix A itself, i.e., they preserve sparsity,
non-negativity, integer values, etc.

A CUR-type decomposition for tensor valued data was proposed by [12], in which
a given tensor X ∈ CI1×···×Id is approximated by a rank-(r1, . . . , rd) tensor, obtained
as the product of a core tensor G ∈ Cr1×···×rd , and a list of matrices Cn ∈ CIn×rn for
n = 1, . . . d which are columns extracted from the mode-n unfolding. The necessary
background for tensors is reviewed in Section 2.1. In [12], the column vectors, collected
in the matrices Cn, were obtained by sampling from the mode-n unfolding, depending
on a probability distribution based on the column norms. Our approach is different
and extends the interpolatory decomposition, previously developed for matrices, to
produce a CUR-type decomposition based on Tucker format. We review previous
work and highlight our main contributions here.

Related Work: Previous work has considered developing matrix CUR decompo-
sitions by sampling the columns and rows of the matrix corresponding to a probability
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distribution [11, 3, 36, 25, 4, 13]. Earlier methods used a sampling strategy based on a
probability distribution that uses the column norms [11]; samples from this probabil-
ity distribution were then used to extract optimal columns C and a similar approach
was used to extract rows R. Drineas and Mahoney [12] applied this result to tensors
to produce low-rank representations based on the Tucker format. A related (2 + 1)
decomposition was also proposed in [26]. Sampling based on column norm sampling
have been largely superseded by other sampling methods, such as those based on
leverage score sampling; since they provide better relative error bounds [25, 4]. In the
leverage score approach, a singular value decomposition is computed, either exactly
or approximately, and the leverage scores (defined as the squared two norm of the
row of singular vector matrix) are used to define a probability distribution which is
then used for sampling appropriate columns and rows from A. To the best of our
knowledge, leverage score sampling has not yet been applied to tensors.

More recently, two new methods for computing matrix CUR emerged which is
relevant to our work; Sorensen and Embree [32] used the Discrete Empirical Inter-
polation Method (DEIM) previously developed in the context of model reduction,
while Voronin and Martinsson [35] employed a two-sided interpolatory decomposi-
tion. Our work proposes a new algorithm based on strong rank-revealing QR but also
provides an extension of the leverage score, DEIM and ID approach to tensors (see
Appendices A and B).

We would like to mention other relevant approaches here. Cross-approximation
and pseudo-skeleton algorithms, which are based on a greedy approach at subset
selection, have been developed to produce decompositions with interpolatory prop-
erties for the H-Tucker format [15] and the Tensor train format [28]. A review of
various low-rank techniques for higher dimensional tensors is provided in [18]. A dif-
ferent tensor interpolatory decomposition was proposed in [2] based on the CANDE-
COMP/PARAFAC decomposition (see, for example [23]); furthermore, the properties
of the interpolatory decomposition proposed here are quite different compared to that
paper and therefore, we will not discuss it further. Yet another CUR-type decompo-
sition for tensors was proposed by Friedland et al [16]; however, it is not based on the
Interpolatory Decomposition (ID).

Contributions: Our contributions are three fold: 1) We provide a new interpo-
latory decomposition for tensors in the Tucker format, of the form in (3.1), based on
strong rank revealing QR factorization (RRQR) applied to each mode unfolding; 2)
given an approximate low-rank factorization of the tensor we show how to compute
an equivalent HOID representation; 3) we provide a sequentially truncated HOID
algorithm which is cheaper to implement than the standard HOID (in point 1), and
extends the approach of [34]. A detailed analysis of computational cost and the ap-
proximation error is presented. As was previously mentioned, we also provide an
extension of the leverage score, DEIM and ID approach to tensors (see Appendices A
and B). The theoretical bounds suggest that the methods using strong RRQR is much
better; however numerical examples will demonstrate that the error incurred using our
algorithms is comparable to the methods based on DEIM and better than the lever-
age score approach. Our analysis is also relevant for the matrix CUR decomposition,
which is a special case of the tensor algorithm that we propose. The resulting codes
are implemented in Python using scipy.linalg.interpolative and scikit.tensor

packages and are available on github https://github.com/arvindks/tensorcur.

Although our main contribution is the use of strong RRQR to obtain a tensor
HOID, we improve the results of [12] in several ways: 1) We provide a tighter bound
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than the analysis of [12, Theorem 2] for sampling based on column norms. This is
because we use a sharper result of the error in Frobenius norm using the properties of
orthogonal projectors (see Lemma 2.1), rather than using the triangle inequality [12].
2) We use better sampling strategies for choosing optimal columns of the mode-n
unfolding X(n) based on leverage scores computed from the right singular vectors
of X(n). The sampling using leverage scores allows us to obtain relative error esti-
mates, which are better compared to [12]1. These contributions have been discussed
in Appendix B.

We conclude the introduction with a summary of this paper. In Section 2, we
recall the relevant mathematical preliminaries by providing a quick background on ten-
sors and interpolatory decompositions based on rank-revealing factorizations. Next,
in Section 3 we present our algorithms for computing a HOID based on Tucker fac-
torization using the matrix interpolatory decomposition. We show how to derive
this using both the explicit elements of the tensor, and ways to convert an already
available low-rank representation. Error bounds and computational costs are also pre-
sented in detail. Finally, numerical experiments validating the bounds are presented
in Section 4 which demonstrates the favorable properties of the algorithms proposed.

2. Mathematical preliminaries.

2.1. Background on tensors. Here we review the basic notations and concepts
involving tensors which will be useful in our discussions. A more detailed discussion
of the properties and applications can be found in [23]. A tensor is a d-dimensional
array of numbers denoted by script notation X ∈ CI1×···×Id with entries given by

xj1,...,jd ∀ 1 ≤ j1 ≤ I1, . . . , 1 ≤ jd ≤ Id.

We will denote by the matrix X(n) ∈ CIn×(
∏

j 6=n Ij) the n-th mode unfolding of the ten-
sor X . Since there are d dimensions, there are all together d-possibilities for unfolding
called matricization. The n−mode multiplication of a tensor X ∈ CI1×···×Id with a
matrix U ∈ Ck×In results in a tensor Y of dimensions Y ∈ CI1×···×In−1×k×In+1×···×Id

such that

Yj1,...,jn−1,j,jn+1...,jd = (X ×n U)j1,...,jn−1,j,jn+1...,jd
=

In∑
jn=1

xj1,...,jduj,jn .

Alternatively it can be expressed conveniently in terms of matrix unfolding as

Y = X ×n U ⇔ Y(n) = UX(n).

Given the definitions of mode products and matricization of tensors, we can define the
Higher Order SVD (HOSVD) algorithm for producing a rank (r1, . . . , rd) approxima-
tion to the tensor based on the Tucker format. The HOSVD algorithm [8] returns a
core tensor G ∈ Cr1×···×rd and a set of unitary matrices Uj ∈ CIj×rj for j = 1, . . . , d
such that

X ≈ G ×1 U1 . . .×d Ud. (2.1)

As mentioned earlier, (2.1) is called the Tucker representation. However, a straightfor-
ward generalization to third and higher order tensors of the matrix Eckart-Young the-
orem [9] is not possible; in fact, the best low-rank approximation is an ill-posed prob-
lem [10]. Another popular representation of tensors is called the CANDECOMP/PARAFAC

1The authors in [12] also note that since the time of initial submission, significant advances have
been made that obtain relative error guarantees, as opposed to additive guarantees.
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decomposition (henceforth, called the CP decomposition) and is based on a sum of
outer rank−1 products (similar to the SVD)

X ≈
r∑

k=1

λku
(k)
1 ◦ u

(k)
2 · · · ◦ u

(k)
d , (2.2)

where the factors un ∈ RIn for n = 1, . . . , d, the factors λn ∈ R and r is a positive
integer. However, unlike the matrix SVD, un need not be orthogonal.

Algorithm 1 Higher order SVD, see for example [23].

Require: Tensor X ∈ CI1×···×Id and desired rank (r1, . . . , rd).
1: for n=1,. . . ,d do
2: Compute rn left singular vectors Un ∈ CIn×rn of unfolding X(n) .
3: end for
4: Compute core tensor G ∈ Cr1×···×rd as

G ≡ X ×1 U∗1 ×2 . . .×d U∗d.

5: return Tucker decomposition [G; U1, . . . ,Ud].

We recall the following result stated and proved in [34, Theorem 5.1], which will
be useful for our subsequent analysis.

Lemma 2.1. Let X ∈ CI1×···×Ij be a tensor and let {Πj}dj=1 be a list of d

orthogonal projection matrices, where Πj ∈ CIj×Ij then

‖X − X ×1 Π1 . . .×d Πd‖2F ≤
d∑
j=1

‖X − X ×j Πj‖2F .

The result relies on the orthogonality of the projector in the Frobenius norm [34],
i.e., for any n = 1, . . . , d defining Π⊥n = I−Πn

‖X‖2F = ‖X ×n Πn‖2F + ‖X ×n Π⊥n ‖2F . (2.3)

2.2. Interpolatory decomposition. An interpolatory decomposition for a ma-
trix A ∈ Cm×n is the factorization

A ≈ CX,

where C contains the columns of the matrix A indexed by an index set denoted by c
of size k, and X is a matrix, a subset of whose columns make up the identity matrix
Ik, and has entries bounded by a tolerance parameter f , defined shortly. An interpo-
latory decomposition can be computed using rank-revealing QR factorizations such
as pivoted QR or strong rank-revealing QR factorization, as we will now demonstrate.
This was first proposed by Stewart [33]. Consider a rank-revealing QR factorization
for A

AΠ = QR, (2.4)
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where Π is a permutation matrix, Q ∈ Cm×m is unitary and R ∈ Cm×n is upper
triangular. The factorization is computed by using column pivoting in combination
with either Gram-Schmidt, Givens rotations or Householder reflections; see also Stew-
art [33] for more details.

Starting with the Pivoted QR factorization, we can decompose the permutation
matrix Π =

[
Π1 Π2

]
where Π1 has k columns and Π2 has n−k columns. Similarly

partition Q =
[
Q1 Q2

]
with Q1 and Q2 having k and m− k columns respectively.

We can then write the pivoted QR factorization as

A
[
Π1 Π2

]
=
[
Q1 Q2

] [R11 R12

R22

]
, (2.5)

where R11 ∈ Ck×k, R12 ∈ Ck×(n−k) and R22 ∈ C(m−k)×(n−k).

C ≡ AΠ1 = Q1R11 AΠ2 = Q1R12 + Q2R22 ≈ Q1R12. (2.6)

As long as ‖R22‖2 is small we can approximate AΠ2 ≈ Q1R12. Eliminating Q1 using
the relation Q1 = CR−111 (assuming R11 is invertible) we can rewrite the equations as

A ≈ CF∗ F∗ ≡
[
I R−111 R12

]
Π∗. (2.7)

The decomposition written down in (2.7) is known as the interpolative decomposi-
tion. The interpolative decomposition approximates the matrix A using only a few
of its columns, with the advantage that it preserves some important properties of the
underlying matrix A such as sparsity and non-negativity.

Next we discuss the error in the interpolatory decomposition. It can be readily
seen that

A = CF∗ + E E ≡
[
0 Q2R22

]
Π∗.

Since the SVD produces the optimal rank-k decomposition, it follows that σk+1(A) ≤
‖R22‖2. Several rank-revealing QR factorizations have been developed that satisfy
the property that ‖R22‖2 ≤ Cσk+1(A), where C is a constant independent of the
singular values of A. In particular, the Gu-Eisenstat algorithm [19] (with parameter
f ≥ 1) produces a QR factorization with the error bounds

σi(R11) ≥ σi(A)√
1 + f2k(n− k)

σj(R22) ≤
√

1 + f2k(n− k) · σk+j(A), (2.8)

for i = 1, . . . , k and j = 1, . . . , n− k. Furthermore

|
(
R−111 R12

)
ij
| ≤ f. (2.9)

The algorithm based on Pivoted QR can consistently achieve the above error bound
but has the possibility of failure in adversarial cases. One such example is the noto-
rious Kahan matrix (see for example [19]).

In this work, by using the strong RRQR factorization, we obtain sharp error
bounds compared to pivoted QR factorization. In practice, however, both the strong
RRQR and pivoted QR are expensive to compute since they cost O(mn2); therefore,
one would ideally like to avoid computing a QR factorization of A. Instead, the
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matrix Y = ΩA is formed, where Ω is a (k+p)×m matrix with i.i.d. entries sampled
from standard normal distribution and p is an oversampling factor. A pivoted QR
factorization is performed on Y and the first k columns of the permutation matrix
are used to extract columns from X(n). The cost is only O(mnk+mk2), which makes
it more efficient and the accuracy does not decrease appreciably. This is confirmed by
numerical experiments (see Section 4). Further details of the randomized algorithm
is provided in [20]. In our numerical experiments, we use an implementation that is
publicly available in scipy.linalg.interpolative.

3. Higher Order Interpolatory decomposition .

3.1. Algorithm and Error bounds. We now present the algorithm for repre-
senting low-rank tensors X in terms of an interpolatory decomposition

X = G ×1 C1 . . .×d Cd + E , (3.1)

where E is the error in the representation and ‖E‖F is small relative to ‖X‖F . The
tensor G is the core tensor and the matrices Cn for n = 1, . . . , d are formed by extract-
ing rn columns from the n-mode unfolding X(n). Therefore, Cn contain entries from
the original tensor X itself. The difference between the algorithm proposed here and
the work [12] is the choice of the columns Cn. While the authors choose a random-
ized selection process to choose the columns, we use the interpolatory decomposition
based on strong RRQR. The index sets of the selected columns are denoted by pn
and is obtained from the interpolatory decomposition on the unfolded matrix X(n),
as described in Section 2.2

X(n) = CnF∗n + En n = 1, . . . , d.

Given the columns {Cn}dn=1, the core tensor is computed as

G = X ×1 C†1 . . .×d C†d. (3.2)

This choice of core tensor is optimal in the Frobenius norm. To see this, consider the
rank-constrained minimization problem

Û = arg min
U∈C(p,q,k)

‖X(1) −C1U (Cd ⊗ · · · ⊗ . . .C2)
∗ ‖F ,

where ⊗ represents the Kronecker product, the indices p = r1, q =
∏
j>1 rj and

C(p, q, k) is the space of all complex p × q matrices of rank k. Here the desired rank
k = min{p, q}. Assuming all the matrices {Cj}dj=1 are full rank, we can invoke the
discussion in [33], alternatively see [17, Theorem 2.1], to obtain the optimal solution
as

Û = C†1X(1) (Cd ⊗ · · · ⊗C2)
∗,†

= C†1X(1)

(
C†d ⊗ · · · ⊗C†2

)∗
,

where we have used the properties of Kronecker products. Reshaping this matrix U
of size r1 ×

∏
j>1 rj into a tensor of dimensions (r1, r2, . . . , rd) gives us the desired

core tensor G as represented by (3.2). The procedure for computing the HOID has
been summarized in Algorithm 2. In several applications, the additional step of
computing the core tensor G, by projecting the columns onto the original tensor X ,
is not necessary and may be skipped.
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Algorithm 2 HOID: Higher order Interpolatory Decomposition

Require: Tensor X ∈ CI1×···×Id and desired rank (r1, . . . , rd).
1: for n=1,. . . ,d do
2: Compute an interpolatory decomposition of unfolding X(n) ≈ CnF∗n

{where Cn ∈ CIn×rn are columns of X(n)}
3: end for
4: Compute core tensor G ∈ Cr1×···×rd as

G ≡ X ×1 C†1 . . .×d C†d.

5: return Tucker decomposition [G; C1, . . . ,Cd].

3.1.1. Error estimate and computational cost. The following theorem quan-
tifies the error in the truncated interpolatory tensor decomposition when computed
using Algorithm 2.

Theorem 3.1. Let the matrices Cn for n = 1, . . . , d and the core tensor G be
computed according to Algorithm 2. Then we have the following error bound

‖E‖2F = ‖X − G ×1 C1 . . .×d Cd‖2F ≤
d∑

n=1

qn

(∑
k>rn

σ2
k(X(n))

)
,

where the factors qn ≡
(

1 + f2rn(
∏
k 6=n Ik − rn)

)
and f ≥ 1 is the parameter chosen

from strong RRQR algorithm [19].
Proof. First plug in the definition of the core tensor G

G ×1 C1 . . .×d Cd = X ×1 C1C
†
1 ×2 . . .×d CdC

†
d,

and observe that CnC†n is a projection matrix. We can then invoke the result from
Lemma 2.1 so that

‖X − G ×1 C1 . . .×d Cd‖2F ≤
d∑

n=1

‖X − X ×n CnC†n‖2F

=

d∑
n=1

‖(I−CnC†n)X(n)‖2F . (3.3)

To complete the proof we have

(I−CnC†n)X(n) = (I−CnC†n)(CnF∗n + En) = (I−CnC†n)En.

Plugging this back into (3.3) and using the result in (2.3) that an orthogonal projection
matrix applied to a matrix does not increase its Frobenius norm, the right hand side
of the inequality becomes

∑d
n=1 ‖En‖2F . Next, the Frobenius norm of the error can

be bounded using the result in (2.8); consequently we have the desired result.
Remark 1. If the singular values σrn+k(Xn) decay rapidly then the singular

values can be discarded and the right hand side in Theorem 3.1 is approximately

d∑
n=1

qn · σ2
rn+1(X(n)).
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If, on the other hand, the singular values σrn+k(Xn) decay very slowly, then Theo-
rem 3.1 simplifies to

‖E‖2F ≤
d∑

n=1

qn

min{In,
∏
k 6=n

Ik} − rn

 · σ2
rn+1(X(n)).

We now discuss the computational cost of Algorithm 2. As was mentioned earlier,
the cost of computing strong RRQR factorization for an m × n matrix scales as
O(mn2). Instead we use a randomized approach for column subset selection which first
multiplies each matrix unfolding as Yk = ΩkX(k) where Ωk is a (Ik + p)×

∏
k 6=n In.

The strong RRQR is then applied to the matrix Yk instead of X(k). A complete error
analysis of the randomization is out of the scope of this paper. Numerical results
indicate that the method is comparable in accuracy to the full HOID. The cost of the
resulting algorithm has been summarized in Table 3.1.

Step Description Cost

1 Randomized ID O
(∑d

n=1 rn
∏n
k=1 Ik + r2nIn

)
2 Core Tensor O

(∑d
n=1

∏
j≤n rj

∏
k≥n Ik + r2nIn

)
Table 3.1

Computational cost of the Higher Order Interpolatory Decomposition, Algorithm 2.

3.2. Converting an existing low-rank decomposition. Several algorithms
are available in the literature for approximate low-rank representation of tensors.
Examples include HOSVD [8] (summarized in Algorithm 1), Higher Order Orthogonal
Iteration (HOOI) and Alternating Least Squares algorithm (ALS). For details on these
algorithms please refer to [23]. The output of these algorithms are available either in
Tucker or CP format. However, these low-rank representations all share one deficiency,
namely, the low-rank representations do not provide an interpretation in terms of the
entries of the tensor, and do not preserve sparsity, non-negativity, etc.

We will now address the question of how to convert a low-rank representation,
available in Tucker or CP format, to an equivalent Higher Order Interpolatory Decom-
position. To be fairly general, assume that we have the following low-rank representa-
tion: The mode-n unfolding of the tensor can be written as a low-rank approximation
satisfies the following bound

‖X(n) −AnB∗n‖F ≤ εn n = 1, . . . , d. (3.4)

3.2.1. Conversion into low-rank format. Here we provide two examples of
how to treat low-rank factorizations obtained from other algorithms that are provided
to us either in Tucker format or CP format.

1. The Tucker decomposition written in short hand as [G; U1, . . . ,Ud] admits
the matrix unfolding

X(n) ≈ UnG(n)(Ud ⊗ · · · ⊗Un+1 ⊗Un−1 ⊗ · · · ⊗U1)∗, (3.5)
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where G(n) is the n-th matrix unfolding of G. Several possible choices exist:
we choose An = U(n) and B(n) ≡ G(n)(Ud⊗· · ·⊗Un+1⊗Un−1⊗· · ·⊗U1)∗.

2. The CP decomposition is a summation of rank-1 outer products and can be
expressed conveniently as

X ≈ [Λ; Z1, . . . ,Zd] =

R∑
r=1

λrz
(1)
r ◦ · · · ◦ z(d)r . (3.6)

The mode-n unfolding of the CP decomposition can be expressed in terms
of the Khatri-Rao product

X(n) ≈ ZnΛ (Zd � · · · � Zn+1 � Zn−1 � · · · � Z1)
∗
. (3.7)

As before, several choices are possible for An and Bn. We choose An = Zn
and Bn = Λ (Zd � · · · � Zn+1 � Zn � . . .Z1). An alternative approach is to
use the fact that the CP decomposition may be converted into a low-rank ap-
proximation by first expressing it as a special case of a Tucker decomposition
and then using the mode-n unfolding of the Tucker decomposition. To see
this, we can write

X ≈ [Λ; Z1, . . . ,Zd] = D ×1 Z1 . . .×d Zd,

where D is a super-diagonal tensor with diagonal entries Di,...,i = λi and
zeros otherwise.

3.2.2. Algorithm. Assuming a low-rank representation of the form (3.4) is
available, we show how to convert into an equivalent HOID.

For convenience of notation, in the subsequent discussion, we drop the subscript n.
The understanding is that the following steps are performed for each mode unfolding.
The first step involves computing the SVD of the low-rank approximation. Given a
matrix X satisfying ‖X−AB∗‖ ≤ ε, an approximate SVD of X can be obtained by
the following steps:

1. Compute thin QR factorization QARA = A and QBRB = B.
2. Form M = RAR∗B and compute its SVD M = UMΣV∗M .
3. Compute U = QAUM and V = QBVM .

Return the approximate SVD ‖X−UΣV∗‖ ≤ ε.
The next step involves extracting the relevant columns from each mode-n un-

folding. Given an orthonormal basis V for the column space of X, we seek a set of
distinct indices p that are representative of the entries of the tensor X . The indices
can then be used to define an interpolatory projector onto the range space of V. This
is defined as follows:

Πp ≡ P(V∗P)−1V∗, (3.8)

provided that (V∗P) is invertible, where the matrix P = I(:,p) contains columns of
the identity matrix. It can be readily verified that Πp is a projector, i.e., it satisfies
Π2

p = Πp; however, it is an oblique projector and not an orthogonal projector. It has
the following “interpolatory property” that for any vector x ∈ Cm, provided Πp 6= 0, I

(Π∗px)(p) = P∗Π∗px = P∗V(P∗V)−1P∗x = P∗x = x(p).
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In other words, the action of the projector Π∗p only extracts the entries of the vector at
indices given by p [7, 32]. Additionally the interpolatory projector has the following
property, provided Πp 6= 0, I

‖I−Πp‖2 = ‖Πp‖2 = ‖(V∗P)−1‖2. (3.9)

After computing the approximate right singular vectors, we can run RRQR on V∗n
to obtain the rn indices, which can be used to extract the relevant columns collected
in matrices Cn. The core tensor can then be computed using (3.2). The resulting
procedure is summarized in Algorithm 3. Alternative strategies using either DEIM
(Algorithm 5) or sampling based on leverage scores (Algorithm 6) can be used to ob-
tain the set of column indices pn for each mode-n. Section 4 discusses the performance
between the different subset selection procedures described in this paper.

Algorithm 3 Converting an existing low-rank decomposition into HOID format

Require: Tensor X ∈ CI1×···×Id in low-rank form with ranks (r1, . . . , rd).
1: for n=1,. . . ,d do
2: Compute the SVD of unfolding X(n) ≈ AnB∗n = UnΣnV∗n.
3: Compute an index set pn ∈ Nrn by applying RRQR on V∗n.
4: Extract columns indexed by pn from the unfolding X(n) denoted by Cn.
5: end for
6: If necessary, compute core tensor G ∈ Cr1×···×rd as

G ≡ X ×1 C†1 . . .×d C†d.

7: return Tucker decomposition [G; C1, . . . ,Cd].

3.2.3. Error estimate and computational cost. We now derive an estimate
for the error incurred to produce an interpolatory decomposition based on an approx-
imate SVD of the mode-n unfolding. We first present a result, related to [32, Lemma
4.2], and use it to derive Theorem 3.3.

Lemma 3.2. Assume that P∗V is invertible and let Πp = P(V∗P)−1V∗ be an
interpolatory projector. If V is orthonormal then for any A ∈ Cm×n

‖A−AΠp‖F ≤ ‖I−Πp‖2‖A(I−VV∗)‖F . (3.10)

Proof. The proof is adapted from Sorensen and Embree [32, Lemma 4.1]. Since
V∗Πp = V∗, therefore V∗(I−Πp) = 0. Therefore,

A(I−Πp) = A(I−VV∗)(I−Πp).

Taking the Frobenius norm of A(I−Πp), and applying the sub-multiplicative property
of the Frobenius norm, the result follows.

Theorem 3.3. Let the matrices Cn for n = 1, . . . , d and the core tensor G be
computed according to Algorithm 2. Then we have the following error bound

‖E‖2F = ‖X − G ×1 C1 . . .×d Cd‖2F ≤
d∑

n=1

qn · ε2n, (3.11)

where the factors qn are defined in Theorem 3.1, and εn is defined in (3.4).
Proof. The proof has three main steps.
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1. Exploiting structure. From Lemma 2.1

‖X − G ×1 C1 . . .×d Cd‖2F ≤
d∑

n=1

‖X − X ×n CnC†n‖2F ≤
d∑

n=1

‖(I−CnC†n)X(n)‖2F .

We define the interpolatory projector Πn ≡ Pn(V∗nPn)−1V∗n. We can apply the
result of [32, Lemma 4.2]; however, we provide an alternative proof which is much
shorter. Write

(I−CnC†n)X(n) = (I−CnC†n)X(n)(I−Πn) + (I−CnC†n)X(n)Πn.

Next, from X(n)Pn = Cn, follows X(n)Πn = Cn(V∗nPn)−1V∗n and therefore,

(I−CnC†n)X(n)Πn = 0.

Since (I − CnC†n) is an orthogonal projector and ‖I − CnC†n‖2 ≤ 1, using the
sub-multiplicativity of the Frobenius norm ,

‖E‖2F ≤
d∑

n=1

‖(I−CnC†n)X(n)(I−Πn)‖2F

≤
d∑

n=1

‖(I−CnC†n)‖22‖X(n)(I−Πn)‖2F

≤
d∑

n=1

‖I−Πn‖22‖X(n)(I−VnV∗n)‖2F . (3.12)

The last step follows from Lemma 3.2.

2. Bounding ‖X(n)(I−VnV∗n)‖F . Observe that UnΣV∗n(I−VnV∗n) = 0. There-
fore, from (3.4), we have

‖X(n)(I−VnV∗n)‖F = ‖(X(n) −UnΣnV∗n)(I−VnV∗n)‖F
≤ ‖X(n) −UnΣnV∗n‖F . (3.13)

The intermediate step follows since an orthogonal projection operator does not in-
crease the Frobenius norm. Recall that ‖X(n) − UnΣnV∗n‖F ≤ εn, where εn is
defined in (3.4).

3. Bounding ‖I−Πn‖22. From (3.9), provided Πp 6= 0, I

‖I−Πn‖2 = ‖Πn‖2 = ‖(V∗nPn)−1‖2.

Next, following [21] we consider the term ‖(V∗nPn)−1‖2. From the bounds in (2.8)
we have that

V∗n[Pn,P
c
n] = Q[R

(n)
11 ,R

(n)
22 ] and σi(R

(n)
11 ) ≥ σi(Vn)√

1 + f2rn(
∏
k 6=n Ik − rn)

, (3.14)

with i = 1, . . . rn. Since Vn is an orthonormal matrix σi(Vn) = 1 for i = 1, . . . , rn.
From this we can conclude that

‖(V∗nPn)−1‖2 = ‖(R(n)
11 )−1‖2 =

(
σrn(R

(n)
11 )
)−1

,

11



and combining with (3.14) we obtain

‖I−Πn‖22 = ‖(V∗nPn)−1‖22 ≤ 1 + f2rn(
∏
k 6=n

Ik − rn) ≡ qn. (3.15)

Plugging the results from (3.13) and (3.15) into (3.12), we see readily see that (3.11)
follows.

Suppose that we use the exact singular vectors Vn corresponding to the mode-
unfolding X(n); say using HOSVD Algorithm 1, then

‖X(n)(I−VnV∗n)‖F =

(∑
k>rn

σ2
k(X(n))

)1/2

,

in which case the result of Theorem 3.3 is sub-optimal over Theorem 3.1. The com-
ments in Remark 1 are also relevant here.

In this paper, we assume that the exact singular values and vectors are not avail-
able, but they are computed approximately, i.e., we assume that the low-rank decom-
position satisfies (3.4). From the result of Theorem 3.3, we can see that converting an
approximate low-rank representation into a interpolatory decomposition can worsen
the resulting representation error. The bound in Theorem 3.3 also suggests a trun-
cation strategy: to achieve an overall tolerance ε, the truncation tolerance in each
dimension εn must satisfy ε2n = ε2/dqn. However, numerical experiments in Section 4
will show that the resulting error is not significantly large and may not significantly
amplify the error of the original decomposition.

The total cost of this algorithm is summarized in Table 3.2.

Step Description Cost

1 low rank SVD O
(∑d

n=1 r
2
n(In +

∏
k 6=n Ik) + r3n

)
2 RRQR O

(∑k
n=1 r

2
n

∏
k 6=n Ik

)
3 Core Tensor O

(∑d
n=1

∏
j≤n rj

∏
k≥n Ik + r2nIn

)
Table 3.2

Computational cost of the Higher order Interpolatory Decomposition, Algorithm 3.

3.3. Sequentially Truncated Higher Order Interpolatory Decomposi-
tion. In this subsection, we present a different truncation strategy based on the
Sequentially Truncated HOSVD algorithm (ST-HOSVD) proposed in [1] and stud-
ied by [34]. As was shown by [34], this algorithm retains several of the favorable
properties of truncated HOSVD algorithm while reducing the computational cost of
computing the decomposition. As was summarized in Algorithm 1, given a tensor
X the algorithm computes the left singular vectors corresponding to the largest rn
singular values of the mode-unfolding X(n). Then the core tensor G is computed by
multiplying U∗n along each mode of X . The HOSVD computed as described above is
expensive because it involves applying the SVD algorithm on a full matrix unfolding.

The ST-HOSVD algorithm is based on the following observation: The HOSVD
algorithm can be expressed using orthogonal projectors as the following optimization

12



problem

min
π1,...,πd

‖X − X ×1 π1 ×2 · · · ×d πd‖2F = min
π1

{
‖X ×1 π

⊥
1 ‖2F + min

π2

{
‖X ×1 π1 ×2 π

⊥
2 ‖2F+

min
π3

{
+ · · ·+ min

πd

‖X ×1 π1 · · · ×d π⊥d ‖2F
}}}

.

The ST-HOSVD replaces this optimization problem above with a sub-optimal opti-
mization problem

min
π1,...,πd

‖X − X ×1 π1 ×2 · · · ×d πd‖2F ≤ ‖X ×1 π̂
⊥
1 ‖2F + ‖X ×1 π̂1 ×2 π̂

⊥
2 ‖2F + · · ·

‖X ×1 π̂1 ×2 · · · ×d−1 π̂d−1 ×d π̂⊥d ‖2F ,

where the projectors π̂n for n = 1, . . . , d are defined recursively as

π̂n = arg min
πn

‖X ×1 π̂1 ×2 · · · ×n−1 π̂n−1 ×n π⊥n ‖F .

The other important difference between ST-HOSVD compared to the truncated HOSVD
is that the former algorithm is dependent on the processing order of the modes,
whereas the latter algorithm is independent of the processing order. Here, for sim-
plicity we have presented the algorithm with the processing order of the modes
p = {1, . . . , n}; however, the results are strongly dependent on the processing or-
der and heuristic methods for deciding the mode order are discussed in [34].

One easy extension of ST-HOSVD to compute the HOID, is to directly apply
Algorithm 2 to the low-rank representation from ST-HOSVD. However, since the
errors in the low-rank approximation accumulate as the modes are processed, we adopt
a slightly different approach. The procedure to compute ST-HOID is summarized
here. The procedure follows ST-HOSVD algorithm closely; instead of computing
the left singular vectors Un from the mode-n unfolding of X , it is approximated by
the smaller tensor S(n), sequentially truncated. Our modification is the following:
During the ST-HOSVD procedure we explicitly compute a low-rank approximation
to X(n) using the pieces of information already available at step n. Then strong

RRQR algorithm is applied to the approximate singular vectors Ṽ∗n to extract the
appropriate columns from X(n). We also assume that the processing order of the
modes have been fixed to p = {1, . . . , n}. Algorithm 4 can be easily generalized to
different mode orderings and alternative truncation strategies following the heuristics
of [34]; however, we haven’t explored this in our work.

3.3.1. Error estimate and computational cost. We now quantify the error
using ST-HOID (Algorithm 4) by means of the following result.

Theorem 3.4. Let the matrices Cn for n = 1, . . . , d and the core tensor G be
computed according to Algorithm 4. Then we have the following error bound

‖E‖2F = ‖X − G ×1 C1 . . .×d Cd‖2F ≤
d∑

n=1

qn

n∑
k=1

(
‖X (k−1)‖2F − ‖X (k)‖2F

)
,

where the factor qn was defined in Theorem 3.1 and

X (n) ≡ X ×1 Û1Û
∗
1 . . .×n ÛnÛ∗n ×n+1 IIn+1

· · · ×d IId ,

with X (0) ≡ X .
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Algorithm 4 Sequentially Truncated Higher Order Interpolatory Decomposition

Require: Tensor X ∈ CI1×···×Id and desired rank (r1, . . . , rd).
1: Define tensor S(0) ← X .
2: for n=1,. . . ,d do

3: Compute the rank rn SVD of the tensor unfolding S
(n−1)
(n) ≈ ÛnΣ̂nV̂∗n.

4: Update S(n) ← Σ̂nV̂∗n.
5: Form unfolding X(n) and its low rank approximation (only if n > 1, otherwise

skip this step and use Ṽn = V̂n)

X(n) ≈ ÛnŜ
(n−1)
(n) = ŨnΣ̃nṼ∗n,

where

Ŝ(n−1) ≡ S(n) ×1 Û1 · · · ×n−1 Ûn−1.

6: Compute an index set pn ∈ Nrn by applying RRQR on Ṽ∗n.
7: Extract columns indexed by pn from the unfolding X(n) denoted by Cn.
8: end for
9: Compute core tensor G ∈ Cr1×···×rd as

G ≡ X ×1 C†1 ×2 . . .×d C†d.

10: return Tucker decomposition [G; C1, . . . ,Cd].

Proof. Following steps 1 and 2 from the proof of Theorem 3.3, the intermediate
expression for the error is (i.e., combine (3.12) and (3.13))

‖E‖2F ≤
d∑

n=1

‖I−Πn‖22‖X(n) − ŨnΣ̃nṼ∗n‖2F ,

where Ṽn are the approximate singular vectors constructed in Algorithm 4. From step
3 of the proof of Theorem 3.3, ‖I−Πn‖22 ≤ qn where qn was defined in Theorem 3.1.

Next, we have that ŨnΣ̃nṼ∗n = ÛnŜ
(n−1)
(n) which can be expressed in tensor form as

ÛnŜ
(n−1)
(n) ⇔ Ŝ(n−1) ×n Ûn = S(n) ×1 Û1 · · · ×n−1 Ûn−1 ×n Ûn.

Since the intermediate tensors S(n) = X ×1 Û1 · · ·×n−1 Ûn−1×n Ûn, X (n) as defined
in the statement of the theorem becomes X (n) = Ŝ(n−1)×n Ûn. Next, using the result
in (3.15)

‖E‖2F = ‖X − G ×1 C1 . . .×d Cd‖2F ≤
d∑

n=1

qn‖X − X (n)‖2F .

To bound ‖X − X (n)‖2F we invoke a variation of [34, Theorem 6.4] (the proof is
identical, except here the summation is restricted to mode-n instead of d).
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The cost of this algorithm is similar to Algorithm 3. In addition to the costs listed
in Table 3.2, the additional cost of applying the randomized ID approach to the set
of matrices obtained by unfolding the tensor S(n) is

O

 d∑
n=1

∏
j≤n

rj
∏
k≥n

Ik + r2nIn

 .

Note that since we are computing the approximate singular pairs arising from the
intermediate steps of Algorithm 4, the costs for producing the low-rank decomposition
is lower than the HOID applied to entire matrix (i.e., Algorithm 2).

3.4. Matrix CUR decomposition. In this section, we consider the special
case of Algorithm 2 when the dimensions of the input tensor is restricted to have
dimension 2, i.e., for matrices.

A matrix CUR factorization to an m × n matrix produces r columns and rows
of A, expressed as C ∈ Cm×r and R ∈ Cr×n, and an intersection matrix U ∈ Cr×r
such that

A ≈ CUR.

There are several methods available in the literature to obtain a CUR factorization.
Here we mention the following references [35, 32, 36, 13, 25]; however, we emphasize
that this list is, by no means, exhaustive.

The connection of the HOID with the matrix CUR decomposition is readily es-
tablished by noting the following identity

A = CUR + E ⇔ A = U×1 C×2 R + E,

in which we have used the properties of the mode product defined in Section 2.1. Here
C is a matrix which represents the columns of the matrix, while R contains sampled
rows from the matrix. A typical choice for the intersection matrix U is U = C†AR†

since this choice of U is the minimizer of ‖A−CUR‖F in the Frobenius norm (see [33]
and [17, Theorem 2.1]). With this choice of the intersection matrix, the connection
with the core tensor computation follows from

U = C†AR† ⇔ U = A×1 C† ×2 R†.

Other choice for the intersection matrices are also possible.
It can be readily seen that the results of this paper, applied to input restricted to

dimension 2, produce a matrix CUR decomposition. A special case of Theorem 3.1
for matrix CUR decompositions is summarized in the following corollary. This result
appears to be new for matrix CUR decompositions.

Corollary 3.5. Apply Algorithm 2 to matrix A ∈ Cm×n and rename [G; C1,C2]
as [U; C,R]. We have the following error bound

‖A−CUR‖2F ≤ q(m,n; r)

(∑
k>r

σ2
k

)
,

where q(m,n; r) = 2 + f2r(m + n − 2r), f ≥ 1 is the tolerance parameter in strong
RRQR [19], and σk are the singular values of A.
Similarly, Theorems 3.3 and 3.4 are applicable to matrices as well. We are exploring
these issues in a forthcoming paper.
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4. Numerical Experiments. To facilitate the comparison between different al-
gorithms we define the following acronyms. The following algorithms act on the entries
of the matrix directly to produce a low-rank approximation with rank−(r1, . . . , rd):

1. HOSVD - applies the Higher Order SVD algorithm (Algorithm 1) to the
entries of the matrix.

2. HOID - applies the Higher Order Interpolatory Decomposition algorithm (Al-
gorithm 2) and uses either the Pivoted QR labeled ‘HOID - PQR’, or strong
rank-revealing QR factorization labeled ‘HOID - RRQR’. The RRQR was
implemented from [19, Algorithm 5] with f = 1.

3. HORID also applies the Higher Order Interpolatory Decomposition algorithm
(Algorithm 2). The interpolative decomposition was computed by using the
package scipy.linalg.interpolative. Details can be found in the docu-
mentation [27].

4. ST-HOID applies the Sequentially Truncated Higher Order Interpolatory De-
composition algorithm (Algorithm 4)

The following algorithms assume that a low-rank decomposition that has already
been computed, and use this representation along with the entries of the tensor X to
produce a low-rank approximation with rank−(r1, . . . , rd):

1. RRQR - implements Algorithm 3 with column subset selection implemented
using the strong RRQR algorithm [19, Algorithm 5].

2. PQR - implements Algorithm 3 with column subset selection implemented
using Pivoted QR (see also Appendix A).

3. DEIM - implements Algorithm 3 with column subset selection implemented
using DEIM Algorithm 5 summarized in Appendix A

4. Lev - implements Simple-Leverage - the subset selection using leverage score
sampling, summarized in Appendix B.

As a way to compare the relative performance between the above algorithms, in addi-
tion to computing the overall accuracy of the HOID representation, we also compare
the error constants ‖(V∗P)−1‖2 that appear in Lemma 2.1 and Theorem 3.3. The
details of the DEIM algorithm and Leverage score based sampling have been provided
in the Appendices A and B. However, we would like to point out that the a priori
bounds obtained using RRQR are much better than DEIM, and Pivoted QR. In prac-
tice, the results of PQR and RRQR are identical; however, the bounds for RRQR are
much better and it does not experience an exponential growth for adversarial cases
like the Kahan matrix [19]. The algorithms were all implemented in Python and all
the timing results were run on an iMac desktop with 3.5 GHz i7 processor and 32 GB
in memory.

4.1. Example 1. The following example arises from the numerical solution of
integral equations. We consider a tensor X with the entries

Xi1,...,id =
1√

i21 + · · ·+ i2d
1 ≤ i1, . . . , id ≤ N. (4.1)

The above array X is obtained from a Fredholm integral equation with kernel 1/‖x−y‖
acting on a unit hypercube and is discretized by the Nyström method on a uniform
grid. The advantage of using this tensor is that an approximation in CP format exists
with low-rank, i.e. has rank r satisfying the estimate

r ≤ C logN log2 1

ε
,
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where ε is the relative error of the desired low-rank approximation [29]. In our exam-
ples, we choose the dimension d = 3.
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Figure 4.1. (left) The relative error in the computation of a rank−(r, r, r) approximation to the
tensor defined in (4.1). The definitions of the algorithms used are provided at the start of Section 4.
(right) The indices that has been selected using the HOID (with RRQR for subset selection) applied
on the tensor X defined in (4.1).
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Figure 4.2. (left) The relative error in the computation of a rank−(r, . . . , r) approximation to
tensor defined in (4.1), starting with the rank-(r, r, r) approximation using the HOSVD algorithm.
The definitions of the algorithms used are provided at the start of Section 4. (right) The error
constants maxn=1,...,d ‖(P∗

nVn)−1‖2 computed using DEIM and RRQR approaches are compared.
See also Figure 4.3 for comparison with leverage score calculations using exact singular vectors.

We perform two sets of experiments on each tensor. First, we fix N = 50. In
the first set of experiments, we compute a rank-(r, r, r) decomposition using HOSVD,
HOID (both PQR and RRQR), HORID, and ST-HOID methods. The relative error
measured as ‖X − Xr‖F /‖X‖F is plotted as a function of the individual mode rank
r. The results are visualized on the left part of Figure 4.1. As can be seen the error
from all the algorithms are comparable, with the error in the HOSVD algorithm be-
ing consistently lowest. In the case of matrices, SVD has the optimal accuracy for a
rank-r approximation; however this result is no longer the case in tensor decomposi-
tions. We also observe that the error in the HOID and HORID algorithms are similar
and only slightly higher than the HOSVD algorithm; the error is quantified by the
result of Theorem 3.1. Comparatively, HORID algorithm is much cheaper to compute
than HOID and HOSVD. The column indices selected using the HOID algorithm have
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Figure 4.3. Error constants ‖(P∗
nVn)−1‖2 for each mode computed using the leverage scores

obtained from all the exact singular vectors.

been visualized in the right part of Figure 4.1 (for visualization purpose, the indices
corresponding to N = 20 are plotted). Since all the mode−n unfoldings are identi-
cal, the HOID algorithm using RRQR is deterministic and same indices are picked
from each mode. In the second set of experiments, we assume that a rank-(r, r, r)
decomposition has been computed using the HOSVD algorithm. We then convert it
into an equivalent HOID using DEIM, PQR and RRQR. The results are visualized in
Figure 4.2. Again we observe that the three algorithms have similar performance and
the error is only slightly higher compared to the HOSVD algorithm. On the right side
of the figure, we plot the error constant maxn=1,...,d ‖(P∗nVn)−1‖2 as a function of the
rank of the individual mode unfoldings. As can be seen, as r increases, the growth
in the error constants from RRQR and PQR is lower than that of DEIM but within
an order of magnitude of each other. The result in the left part of Figure 4.2 also
shows the comparison with the Simple-Leverage method. The error in the low-rank
representation seems to worsen as the requested rank-(r, r, r) increases; this can be
seen from the growth of the error constant ‖(P∗nVn)−1‖2 which has been computed
for each mode, see Figure 4.3. Even the use of exact singular vectors to compute the
leverage scores does not to seem to yield an accurate HOID; in practice, note that the
exact leverage scores may not be available.

4.2. Example 2. Following the work in [32], we construct a tensor of dimensions
Rn×n×n in the CP format

X =

10∑
j=1

1000

j
xj ◦ yj ◦ zj +

n∑
j=11

1

j
xj ◦ yj ◦ zj , (4.2)

where xj ,yj , zj ∈ Rn are sparse vectors with nonnegative entries. Note that the
individual vectors are not orthonormal and there is no direct analogy with the matrix
SVD in terms of a jump in the singular values. We still expect that the importance
of each term in the outer product representation is decreasing with a sharp jump
between terms 10 and 11. A HOID is relevant here because the tensor is sparse and
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the entries are nonnegative and we would like to preserve this structure in the column
matrices {Ck}3k=1.
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Figure 4.4. (left) The relative error in the computation of a rank−(r, r, r) approximation to the
tensor defined in (4.2). The definitions of the algorithms used are provided at the start of Section 4.
(right) The indices have been selected using the HOID (with RRQR for subset selection) applied on
the tensor X defined in (4.1).
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Figure 4.5. (left) The relative error in the computation of a rank−(r, r, r) approximation to
tensor defined in (4.2), starting with the rank-(r, r, r) approximation using the HOSVD algorithm.
The definitions of the algorithms used are provided at the start of Section 4. (right) The amplification
factor maxn=1,...,d ‖(P∗

nVn)−1‖2 computed using DEIM and RRQR approach are compared. See
also Figure 4.6 for comparison with leverage score calculations.

We perform the same set of experiments as we did with Example 1. The results
are visualized in Figures 4.4, 4.5 and our conclusions are similar. The result in the
left part of Figure 4.5 also shows the error of the low-rank representation using the
Simple-Leverage method. As is seen from the figure, the error is quite high compared
to that obtained from DEIM, PQR and RRQR. The magnitude of the error constant
‖(P∗nVn)−1‖2, computed for each mode, is plotted in Figure 4.6. The indices were
extracted using the leverage scores method and the leverage scores were computed
using the right singular vectors (corresponding to the top 15 singular values). For
comparison, we also plot the error constants ‖(P∗nVn)−1‖2 from the leverage scores
method; all the right singular vectors (for each mode) were used in the computation
of the leverage scores. The results of the sampling depend on the sensitivity of the
leverage scores; for a detailed discussion, see [22].
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Figure 4.6. Error constants ‖(P∗
nVn)−1‖2 for each mode computed using the leverage scores

(left) using only right singular vectors corresponding to top 15 singular values, (right) retaining all
the right singular vectors.

4.3. Application: Handwriting classification. As our first application, we
consider the classification of handwritten digits using the HOSVD, which was investi-
gated by Savas and Eldén in [31]. Gray-scale images of handwritten digits from 0− 9
are available in 10 classes, as a training data set; given a new image representing a
handwritten digit, the challenge is to assign it a label from 0− 9. In [31], a HOSVD-
based algorithm is presented. Here we compare the performance of the HOID and
ST-HOID against the HOSVD algorithm.

For the training and test images, we use the MNIST database which contains
60, 000 training images and 10, 000 test images with 28× 28 pixels in 8-bit gray-scale.
The training images are unequally distributed over the ten classes; to keep the same
number over all the digits we restricted the number of training images in every class
to 5421. Another possibility is to duplicate some of the images across the digits. The
images are organized into a tensor of size 784 × 5421 × 10 with the first dimension
representing the pixels, the second dimension representing the images, and the third
dimension representing the digits.

The classification strategy in [31], relied on the HOSVD. For the classification
using the HOID representation, we develop a new strategy here. Let us denote the
tensor by X . In the training phase, we approximate it by a HOID decomposition as
X ≈ G×1 Cp×2 Ci×3 Cd where the core tensor is truncated to have size (62, 142, 10);
the sizes of Cp,Ci,Cd are determined appropriately. Next, we compute F = G ×1

C†p ×2 C†i . The columns of Fν := F(:, :, ν) represent basis vectors for some class
given by ν ranging from 1 − 10 representing the digits. Next, an orthonormal basis
is computed for each class ν by retaining the left singular vectors Uν corresponding
to the top k singular values of Fν . In the test phase, given an image D we compute
d = vec(D) by an unfolding operation. Next, the image is projected onto the column
space of the basis Cp by dp := C†pd. This low-parameter approximation of d is
projected orthogonally onto the space spanned by the basis matrix Uν and its residual
is r(dp, ν) := ‖

(
I−Uν(Uν)T

)
dp‖F . The image is then assigned a label computed

by the minimizer arg minν r(dp, ν).

We compare three different algorithms: HOSVD (which was proposed in [31]),
HOID algorithm (Algorithm 2) with Pivoted QR to compute the ID along the modes,
and ST-HOID (Algorithm 4). Here we choose to use the Pivoted QR algorithm since
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HOSVD HOID-PQR ST-HOID
Training time [s] 123.09 71.48 19.97
Relative Model error 0.41 0.56 0.54
Classification time [s] 0.67 0.99 0.99
Basis size k 15 30 30
Classification Accuracy % 95.31 92.01 91.99

Table 4.1
Comparison between various algorithms described at the beginning of Section 4 on the hand-

writing dataset. ‘Training time’ refers to the CPU time (measured in seconds) to build the respective
low-rank factorizations, ‘Classification time’ refers to projecting the image onto the column space
Cp and minimizing the residual, to find the closest digit in the database.

its performance is empirically comparable to the RRQR. Moreover, PQR has been
implemented in LAPACK (xGEPQ3) and therefore, provides fair timing comparison
against the SVD algorithm. From the results in Table 4.1, it can be readily seen that
both HOID-PQR and ST-HOID algorithms are considerably faster than the HOSVD
algorithm in terms of the training time. The core tensor is truncated to have size
(62, 142, 10), retaining only approximately 0.2% of the entries of the training data set.
The size of the basis k used to represent the column space of Fν was chosen to be 15 for
the HOSVD based on the numerical experiments in [31] and 30 for both HOID-PQR
and ST-HOID based on our numerical experiments. Since a large basis is used, this
results in higher classification time for these algorithms. Furthermore, clearly HOSVD
has the best classification accuracy; however, the classification accuracy of HOID-
PQR and ST-HOID is comparable but are much cheaper to compute. Moreover,
the advantage of HOID algorithms is that, it provides a better interpretation over
HOSVD.

4.4. Application: Time-dependent inverse problems. Motivation: Time
dependent inverse problems involve a time dependent parabolic PDE (with appropri-
ate boundary conditions) of the form

S(x; p)
∂φ

∂t
−A(x; p)φ = δ(x− xs)q(t) x ∈ Ω,

where S(x; p) and A(x; p) are time-independent operators, Ω is the imaging domain
of interest, p is a parameter of interest (possibly infinite dimensional) and xs is the
source location. The domain of interest is “excited” at several source locations de-
noted by xs and is represented by the forcing term δ(x − xs)q(t). The response
is collected at several measurement locations xr also located in the domain. The
measurements, collected at several measurement locations at multiple times due to
excitation from multiple sources, are then used to recover the spatial parameters rep-
resented by p. This formulation encompasses several well-known imaging modalities
– Diffuse Optical Tomography, Transient Hydraulic Tomography, Electromagnetic in-
version, etc. For example, in Transient Hydraulic Tomography S(x; p) is the specific
storage, and A(x; p) ≡ ∇ · (κ(x; p)∇), where κ(x; p) is hydraulic conductivity. The
inversion methodology requires discrete measurements of φ(x) in space and time to
reconstruct specific storage and hydraulic conductivity. The collected data can be
expressed as the result of the Green’s function G(xs,yr; t) where xs is the source
location, yr is the receiver location and t is the time at which the measurement is
collected.
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Figure 4.7. The relative error in the computation of a rank–(r, . . . , r) approximation to the
tensors X3 (left) and X5 (right) defined in (4.3). The results are compared for HOSVD, HORID
and HOID. As can be seen the approximation errors are comparable for all three algorithms.

The data can be viewed as a 3D tensor or a 5D tensor, with respective dimensions

X3 ∈ RNs×Nr×Nt X5 ∈ RNs,x×Ns,y×Nr,x×Nr,y×Nt , (4.3)

where Ns = Ns,x ×Ns,y is the number of sources (as a product of number of sources
in x- and y- directions, respectively), Nr = Nr,x × Nr,y is the number of receivers
and Nt of time steps at which data is collected at. When the source and receiver
locations are non-overlapping and well-separated, both tensors X3 and X5 are accu-
rately represented by (r, r, r) or (r, r, r, r, r) dimensional approximation, respectively
and the accuracy improves considerably as r increases. Collecting this large dataset
can be difficult in many applications, since it requires repeated experiments which are
tedious and time-consuming. With the knowledge that the tensor is low-rank, not all
entries need be computed and we can use tensor completion algorithms [24] to acquire
all the data. The HOID decomposition is relevant for this application, since it could
provide insight into which columns of the mode unfoldings can be sampled which are
representative of the data. The columns of the mode unfoldings have the following
interpretation - they indicate the appropriate and relevant sources, receivers, or time
points. To illustrate the compressibility of the tensor, consider the simple example of
the parameters S = 1 and A = ∆, and q(t) = 1 then the Green’s function is given by
the heat kernel,

G(xs,yr; t) =
1

(4πt)d/2
exp

(
−‖xr − yr‖2

4t

)
.

The sources are taken to be in the z = 2 plane and are evenly spaced between
[−1, 1] × [−1, 1] and Ns = 20 × 20 = 400. The receivers are co-located with the
sources on the plane z = 0. An image acquisition of the following type is relevant
in transmission type geometries, as illustrated by the application [30]. The data is
also acquired in the time interval [0.1, 1.1] with Nt = 20 time points. The data can
be considered as a 3D tensor or a 5D array both containing 3.2 million entries. As
before we apply HOSVD, HORID and HOID algorithms on both tensors. The results
are displayed in Figure 4.7; as can be seen, all three algorithms provide comparable
accuracies but HOID and HORID are useful since they provide better interpretations,
namely that they indicate which sources, receivers and time points are important.
Next, we take an approximation provided by HOSVD, to convert into an equivalent
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HOID using the DEIM and RRQR strategy for subset selection. The results are
viewed in Figure 4.8 for X3 and Figure 4.9 for X5. As can be seen the results of DEIM
and RRQR are comparable, but RRQR has the slight edge.
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Figure 4.8. (left) The relative error in the computation of a rank-(r, r, r) approximation to ten-
sor X3 defined in (4.3), starting with the rank-(r, r, r) approximation using the HOSVD algorithm.
The definitions of the algorithms used are provided at the start of Section 4. (right) The amplifi-
cation factor maxn=1,...,d ‖(P∗

nVn)−1‖F computed using DEIM, PQR and RRQR approaches are
compared.
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Figure 4.9. (left) The relative error in the computation of a rank−(r, . . . , r) approximation
to tensor X5 defined in (4.3), starting with the rank-(r, . . . , r) approximation using the HOSVD
algorithm. The definitions of the algorithms used are provided at the start of Section 4. (right) The
amplification factor maxn=1,...,d ‖(P∗

nVn)−1‖F computed using DEIM, PQR and RRQR approaches
are compared.

5. Conclusions. We presented Higher Order Interpolatory Decomposition (HOID)
- a CUR-type factorization for tensors in the Tucker format. The algorithms use the
strong RRQR to generalize the matrix interpolative decomposition to tensor valued
data. For the numerical results presented, the error in the proposed algorithms were
comparable to those obtained from HOSVD algorithm. Furthermore, we showed how
to convert approximate low-rank representations in the Tucker and CP format, into
an equivalent HOID representation. An alternate truncation strategy was also pro-
posed for the HOID decomposition, called ST-HOID. This new algorithm is cheaper
to compute and produces acceptable errors, at least for the examples we explored.
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Numerical comparisons with other algorithms, that required approximate singular
vectors, such as DEIM, Pivoted QR and leverage score sampling (Simple-Leverage)
were also provided. Although the theoretical results showed that the bounds from
RRQR were much lower, in practice, RRQR, PQR and DEIM gave comparable per-
formance and were better than the Simple-Leverage approach. We also provide an
improved analysis of sampling based methods in Appendix B. The resulting codes
have been provided on github https://github.com/arvindks/tensorcur. Future
work could also look into improving the empirical performance of the leverage score
sampling approach. Many of the results developed in this paper for tensors are also
applicable to matrix CUR factorizations (particularly, in the Frobenius norm) and
will be discussed in an upcoming paper. Other possible extensions could be to apply
the interpolatory decomposition to other factorizations such as H-Tucker and Tensor
Train formats.
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Appendix A. DEIM and improved DEIM.

Recall, in Algorithm 3, Step 3 used the RRQR to generate an index set pn which
extracts appropriate columns from X(n). We now describe alternative approaches
for subset selection. In what follows, the DEIM and improved DEIM algorithms are
applied to the (approximate) right singular vectors V (note that the subscripts have
been dropped) from each mode unfolding.
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The Discrete Empirical Interpolation method (DEIM) approach was proposed
by Chaturantabut and Sorensen [7] in the context of model reduction of nonlinear
dynamical systems. Sorensen and Embree [32] adapted this algorithm in the context
of subset selection to matrix CUR factorization.

The DEIM selection procedure is summarized in Algorithm 5. It processes the
columns of V one at a time, to produce the next index. The first index p1 corre-
sponds to the largest magnitude entry of v1, denoted by ‖v1‖∞. The DEIM selection
procedure has the following error bound from the original analysis [7]

‖(P∗V)−1‖2 ≤ (1 +
√

2n)k−1

‖v1‖∞
, (A.1)

which was significantly improved upon by Sorensen and Embree [32]

‖(P∗V)−1‖2 ≤
√
nk

3
2k.

Algorithm 5 DEIM point selection algorithm [6, 7]

Require: V an n× k matrix with orthonormal columns
1: v = V(:, 1)
2: [∼, p1] = max |v|; set p = [p1]
3: for j = 2, . . . , k do
4: v = V(:, j)
5: c = V(p, 1 : j − 1)−1v(p)
6: r = v −V(:, 1 : j − 1)c
7: [∼, pj ] = max |r|; set p = [p; pj ]
8: end for
9: return p an integer vector with distinct entries {1, . . . , n}

The DEIM procedure can be interpreted as pivoted LU factorization on V∗ [14].
Numerical experiments in [32] suggest that although the worst case bounds permits
significant growth, this bound is pessimistic for most matrices encountered in prac-
tice. Recent work by Drmač and Gugercin [14] instead uses a pivoted QR algorithm
(PQR) applied to V∗ to provide the columns from X. This has been summarized in
Algorithm 6 and has the following error bound

‖(P∗V)−1‖2 ≤
√
n− k + 1

√
4k + 6n− 1

3
, (A.2)

which is clearly better than the original bound due to DEIM in (A.1) but is com-
parable with the updated DEIM bound. In our work we provide bounds using the
strong RRQR factorization. As mentioned earlier, strong RRQR is more expensive
to compute compared to the pivoted QR (or DEIM) but provides much sharper error
bounds compared to either algorithms.

In practice, however the error incurred using PQR is comparable to strong RRQR
(except for adversarial cases) and is comparable to DEIM but better than Simple-
Leverage computation. Therefore, PQR is satisfactory in practice because of its rela-
tively low computational costs and high accuracy.
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Algorithm 6 Improved DEIM point selection algorithm [14]

Require: V an n× k matrix with orthonormal columns.
1: Compute the Pivoted QR of V∗ to obtain V∗Π = QR.
2: Extract locations of nonzero entries in first k columns of Π - call it p.
3: return p an integer vector with distinct entries {1, . . . , n}.

Appendix B. Leverage score based sampling. The approach taken by
Drineas and Mahoney [12] was to obtain the column matrices Cj for j = 1, . . . , d by
choosing columns sampled from a distribution based on the column norms. To obtain
a rank−(r1, . . . , rn) approximation, they choose as many as cj ≥ 4η2ri/βε

2 columns

from each mode, where 0 < δ < 1 and β ∈ (0, 1], and η = 1 +
√

(8/β) log(1/δ). With
probability of failure at most dδ the error incurred is

‖E‖2F = ‖X − G ×1 C1 . . .×d Cd‖2F ≤
d∑

n=1

(∑
k>rn

σ2
k(X(n))

)
+ dε‖X‖2F . (B.1)

This result assumes that the columns are sampled uniformly (without replacement)
from a discrete distribution that uses the column norms of the respective mode-n
unfoldings. This result can be improved upon by employing multiple passes through
the columns [12], but we will not explore this further. Note that the result obtained
here is sharper than that obtained in [12, Theorem 1] because we have used the
orthogonality of the projectors in Lemma 2.1, rather than the triangle inequality.

The authors of [12] also note that since the time of initial submission, significant
advances have been made that obtain relative error guarantees, as opposed to additive
guarantees as obtained from (B.1). These bounds can be improved upon, by using,
for example, the leverage scores approach. We now reproduce a result from Mahoney
et al [25]. For matrices A, it can be shown that applying Algorithm 7 to the right
singular vectors V of A, gives us an approximation of the form

‖A−ΠCA‖F ≤ (1 + ε/2)‖A−Ak‖F , (B.2)

which holds with probability at least 99%. Here ΠC is the projection operator into
the span of the columns C. Furthermore, Ak is the best rank-k approximation to the
matrix A obtained by retaining the k left and right singular vectors corresponding to
the top k singular values. The sampling strategy used here is based on the Simple-
Leverage approach described below. Better results can be obtained using a more
sophisticated sampling scheme [4] but will not be considered here.

We now extend the approach in Algorithm 7 developed for matrices to the tensor
case by following a similar strategy as [12]. Algorithm 7 is applied to each mode
unfolding Xn after computing the right singular vectors Vn (or an approximation
to it). Given an accuracy ε, the accuracy of the leverage score sampling can be
represented using the relative error

‖E‖2F = ‖X − G ×1 C1 . . .×d Cd‖2F ≤ (1 + ε/2)2
d∑

n=1

(∑
k>rn

σ2
k(X(n))

)
,

with probability of success greater than 1 − d/10. The proof is a straightforward
application of the results of Lemma 2.1 and the result in (B.2). This result is a
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Algorithm 7 Column selection using leverage scores.

Require: V ∈ Cn×k with orthonormal columns, an accuracy parameter ε > 0.
1: Compute normalized leverage scores

πj =
1

k

k∑
l=1

V2
j,l.

2: Keep the j-th column of A with probability pj = min{1, cπj} for all j ∈ {1, . . . ,m}
where c = O(k log k/ε2).

3: Return the matrix C consisting of the selected columns of A.

significant improvement over the results in [12], since the bound depends only the
singular values discarded and does not include the additive term ‖X‖F .

We now remark about the practical aspects of the algorithm. The algorithm de-
scribed above requires us to sample rn log(rn)/ε2 columns from the mode-n unfolding.
However, we need only a rank-rn approximation of each mode-n unfolding. In prac-
tice we follow a randomized-deterministic hybrid strategy based on [4]. Based on the
numerical results in the approach by [5] we take only max{4rn, rn log rn} samples for
each mode-n unfolding, sampled from a probability distribution based on the leverage
scores (see Algorithm 7). Subsequently, a strong RRQR is applied on the sampled
columns to obtain the final rn columns. We label this approach as Simple-Leverage.
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