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SPECTRAL ANALYSIS OF A COMPLEX SCHRÖDINGER

OPERATOR IN THE SEMICLASSICAL LIMIT

YANIV ALMOG AND RAPHAËL HENRY

Abstract. We consider the Dirichlet realization of the operator −h
2∆ + iV in

the semi-classical limit h → 0, where V is a smooth real potential with no critical

points. For a one dimensional setting, we obtain the complete asymptotic expan-

sion, in powers of h, of each eigenvalue. In two dimensions we obtain the left

margin of the spectrum, under some additional assumptions.

1. Introduction

We consider the operator

(1.1a) Ah = −h2∆+ iV ,

defined on

(1.1b) D(Ah) = H1
0 (Ω,C) ∩H2(Ω,C) ,

where Ω is a bounded domain in R2.

We seek an approximation for inf Re σ(Ah) in the limit h → 0. The domain Ω is

smooth, i.e., ∂Ω ⊂ C3 and the potential V is at least in C3(Ω̄,R). Let ∂Ω⊥ denote

a subset of ∂Ω where ∇V ⊥ ∂Ω. Note that in view of the continuity of V on ∂Ω,

we must have ∂Ω⊥ 6= ∅. Let x0 ∈ ∂Ω⊥ satisfy

cm = |∇V (x0)| = min
x∈∂Ω⊥

|∇V (x)| .

Denote by S the set

(1.2) S = {x ∈ ∂Ω⊥ : |∇V (x)| = |∇V (x0)| , V (x) = V (x0)} .
(Note that in the case where x0 is not unique, S depends on the choice of x0.) For

every x ∈ S set

c(x) = ∇V (x) · ν(x) = ±cm ,
and

α(x) = t ·D2V (x)t− κ(x)
∂V

∂ν
(x) t · ν(x) = 0 , |t| = 1 ,

where ν is the outward normal and κ denotes the local curvature. (Note that

α = ∂2V/∂s2 where s is the arclength on ∂Ω.) We now assume that

(1.3) α(x)c(x) > 0 ∀x ∈ S .
Without any loss of generality we may then assume α(x) > 0 in S, otherwise we

may consider Āh instead of Ah.
1

http://arxiv.org/abs/1510.06806v2


2 YANIV ALMOG AND RAPHAËL HENRY

The spectral analysis of (1.1) has several applications in Mathematical Physics,

among them are the Orr-Sommerfeld equations in fluid dynamics [12], the Ginzburg-

Landau equation in the presence of electric current (when magnetic field effects are

neglected), and the null controllability of Kolomogorov type equations [6]. In [3, 10]

it has been established that

(1.4) lim inf
h→0

h−2/3 inf Reσ(Ah) ≥
|µ1|
2
c2/3m ,

where µ1 is the rightmost zero of Airy’s function [1].

We note that (1.4) has been obtained without the need to assume (1.3). In the

present contribution we seek an upper bound for inf Reσ(Ah). It is to this end that

we make that additional assumption. Our main result is the following

Theorem 1.1. Let Ah denote the Dirichlet realization of a Schrödinger operator

with a purely imaginary potential V ∈ C3(Ω,R), satisfying ∇V 6= 0 in Ω̄, given by

(1.1). Suppose that V satisfies (1.3). Then, there exists λ(h) ∈ σ(Ah) satisfying

(1.5)
∣

∣

∣
λ− iV (x0)− eiπ/3|µ1|(cmh)2/3 −

√
2αei

π
4 h
∣

∣

∣
∼ o(h) as h→ 0 ,

where α = α(x0) .

An immediate corollary follows

Corollary 1.2. Under the above assumptions we have that

(1.6) lim
h→0

h−2/3 inf Reσ(Ah) =
|µ1|
2
c2/3m ,

Remark 1.3. While we do not prove that here, it appears that (1.6) can be extended

to higher dimensions. Let D2
‖V denote the Hessian matrix of V with respect to a

local curvilinear coordinate system defined on ∂Ω (including, of course, curvature

effects). Suppose that D2
‖V (x) is either positive or negative. Then, we set α in the

following manner

α(x) = sign
(

D2
‖V (x)

)

inf
t·ν(x)=0
|t|=1

|t ·D2
‖V (x)t| ,

and assume (1.3) once again.

Remark 1.4. Let AN
h denote the Neumann realization of Ah. By using the same

techniques as in the sequel, one can obtain an upper bound for inf Reσ(AN
h ). In this

case, µ1 will be replaced by the rightmost critical point Airy’s function.

Finally, we note that it has been established in [10] that for all ǫ > 0 there exist

positive Mǫ and hǫ such that for all h ∈ (0, hǫ) we have the following upper bound

for the semigroup assciated with −Ah,

‖e−tAh‖ ≤Mǫ exp{−(c2/3m |µ1|/2− ǫ)h2/3t} .
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From (1.5) we can now establish that for some positive M , C and h0 the following

lower bound for the semigroup holds for all h ∈ (0, h0)

‖e−tAh‖ ≥M exp
{

− c2/3m

|µ1|
2
h2/3(1 + Ch1/3)t

}

.

The rest of this contribution is arranged as follows: in the next section we consider

a one-dimensional version of (1.1). Assuming that V ∈ C∞([0, a],R) we obtain the

complete asymptotic expansion, as h→ 0, of any eigenvalue λk ∈ σ(Ah) (k is fixed

in the limit). In Section 3 we construct the quasimode associated with the eigenvalue

given in (1.5), and in the last section provide a rigorous proof of Theorem 1.1.

2. The one-dimensional case

2.1. Statement of the results. Let a > 0 and V ∈ C∞
(

[0, a];R
)

such that V has

no critical point in [0, a] . Consider then the one-dimensional Schrödinger operator

Ah defined on (0, a) by

Ah = −h2 d
2

dx2
+ i
(

V − V (0)
)

,

with domain

D(Ah) = H1
0 ([0, a],C) ∩H2([0, a],C) .

The main result we prove in this section is the following:

Theorem 2.1. Assume that, for all x ∈ [0, a] , V ′(x) 6= 0 . Then, for all n ≥ 1 ,

there exists a complex sequence (αj,n)j≥1 and an eigenvalue λn(h) ∈ σ(Ah) such that,

as h→ 0 ,

(2.1) h−2/3λn(h) ∼
h→0

eσiπ/3|V ′(0)|2/3|µn|+
+∞
∑

j=1

αj,nh
2j/3 +O(h∞) ,

where σ is the (constant) sign of the function V ′ .

Similarly, one could also prove the existence of another sequence (νn(h))n≥1 of

eigenvalues satisfying an asymptotic expansion of the form

(2.2)

νn(h) ∼
h→0

i
(

V (a)− V (0)− a
)

+ eσiπ/3|V ′(a)|2/3|µn|h2/3 +
+∞
∑

j=1

βj,nh
2(j+1)/3 +O(h∞)

by applying the transformation x → a − x. Similar results have previously been

obtained in the particular cases V (x) = x and V (x) = x2, see [12] and [6].

Remark 2.2. Theorem 2.1 esablishes existence of two sequences of eigenvalues of

Ah, respectively obeying (2.1) and (2.2). The fact that these sequences constitute

the entire spectrum of Ah for Reλ ≤ Mh2/3 for any positive M follows from [10,

Proposition 6.1].
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Let ε = h2/3. It is more convenient to obtain the spectrum of Ah by first applying

the dilation operator U : L2(0, a) → L2(0, a/ε) defined by

(Uu)(·/ε) = u(·) .

Let

Vε(x) =
V (εx)

ε
.

Then by applying the above dilation we obtain

(2.3)
1

ε
U−1AhU = Aε = − d2

dx2
+ i

(

Vε −
V (0)

ε

)

,

defined on

D(Aε) = (H1
0 ∩H2)

(

(0, a/ε),C
)

.

2.2. Quasimode construction. In the following we construct quasimodes and ap-

proximate eigenvalues for Aε in the neighborhood of the boundary point x = 0 . In

particular, we obtain the asymptotic expansion (2.1) for each approximate eigen-

value.

Proposition 2.3. Assume that, for all x ∈ [0, a] , V ′(x) 6= 0 . Let n ≥ 1 and σ

denote the sign of V ′ . Then there exists ψε ∈ D(Aε) and a complex sequence (νj)j≥2

such that

(2.4)
∥

∥(Aε − ν(ε))ψε

∥

∥ = O(ε∞)‖ψε‖ ,

where

(2.5) ν(ε) = eσiπ/3|V ′(0)|2/3|µn|+
+∞
∑

j=1

νjε
j +O(ε∞)

as ε → 0 .

Proof. We approximate Aε at any order N by the operator

AN(ε) = A0 +
N
∑

j=1

Vjε
j on (0,+∞) ,

where

A0 = − d2

dx2
+ iβ0x , β0 = V ′(0) ,

Vj = iβjx
j+1 , βj =

V (j+1)(0)
(j+1)!

, j ∈ N .

Then, for allN ≥ 1 , we look for a quasimode uN(x, ε) and an approximate eigenvalue

λN(ε) in the form

(2.6) uN(x, ε) =
N
∑

j=0

uj(x)ε
j , λN(ε) =

N
∑

j=0

λjε
j ,
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satisfying
(

A0 +
N
∑

j=1

Vjε
j
)

uN(x, ε) = λN(ε)uN(x, ε) +O(εN+1) .

To this end, we need to successively solve the following equations:

(A0 − λ0)u0 = 0 ,

(A0 − λ0)u1 = −(V1 − λ1)u0 ,

...(2.7)

(A0 − λ0)uk = −
k
∑

j=1

(Vj − λj)uk−j , k = 1, . . . , N .(2.8)

Consider the first equation. If β0 > 0 , we can use the scale change x 7→ β
1/3
0 x and

the well-known properties of the complex Airy operator [3] to obtain

σ(A0) =
{

β
1/3
0 µne

−2iπ/3 : n ∈ N
}

,

where µn denotes the n-th zero of the Airy function Ai . The associated eigenfunc-

tions are

x 7→ Ai(β
1/3
0 eiπ/6x+ µn) .

If β0 < 0 , then the operator A0 is the adjoint of − d2

dx2 + i|β0|x . Hence,

σ(A0) =
{

|β0|1/3µne
+2iπ/3 : n ∈ N

}

,

and the eigenfunctions are given by

x 7→ Ai(β
1/3
0 eiπ/6x+ µn) .

Therefore, for any fixed n ∈ N , we choose

(2.9) λ0 = λ0,n = |β0|1/3µne
σ2iπ/3 ,

and u0 = u0,n to be a corresponding eigenfunction.

Next, consider the second equation. To ensure the existence of a u1 , we first select

λ1 such that

(V1 − λ1)u0 ∈ Im (A0 − λ0) = ker(A∗
0 − λ̄0)

⊥ .

Since ker(A∗
0 − λ̄0) = 〈ū0〉 we may conclude that

(2.10) λ1

∫

R+

u0(x)
2dx = iβ1

∫

R+

x2u0(x)
2dx .

Furthermore, as u0(x) = Ai(β
1/3
0 eiπ/6x+µn) (respectively u0(x) = Ai(β

1/3
0 eiπ/6x+ µn))

for β0 > 0 (respectively β0 < 0), Cauchy Theorem and the decay of Ai in the sector

{| arg z| ≤ π/3} immediately yields
∫

R+

u0(x)
2dx = e−iπ/6

∫

R+

Ai2(β
1/3
0 x+ µn)dx 6= 0 .
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Thus, we may select

(2.11) λ1 = iβ1

∫

R+
x2u0(x)

2dx
∫

R+
u0(x)2dx

= iβ1e
−iπ/3

∫

R+
x2Ai2(β

1/3
0 x+ µn)dx

∫

R+
Ai2(β

1/3
0 x+ µn)dx

,

and there exists u1 ∈ D(A0) such that

(A0 − λ0)u1 = −V1u0 .

Assuming that the first k equations are solved by λ0, . . . , λk−1 , u0, . . . , uk−1 , we

have to choose such λk so that a solution uk to the (k + 1)-th equation exists. It

easily follows that the solvability condition is

−
k
∑

j=1

(Vj − λj)uk−j ∈ ker(A∗
0 − λ̄0)

⊥ ,

yielding

(2.12)

λk =
1

∫

R+
u0(x)2dx

(

k−1
∑

j=1

∫

R+

(

iβjx
j+1 − λj)uk−j(x)u0(x)dx+ iβk

∫

R+

xk+1u0(x)
2dx

)

.

For this value of λk , there exists uk ∈ D(A0) satisfying (2.8). Invoking inductive

arguments, we assume that each function u0, . . . , uk−1 is in S(R+) . Then, it easily

follows that uk ∈ S(R+) . We can then set u(x, ε) and λ(ε) to be some appropriate

Borel sums of the formal series
∑

uj(x)ε
j and

∑

λjε
j , respectively.

We now construct from u(·, ε) a quasimode satisfying the desired boundary con-

ditions. Let c0 > 0 and χ ∈ C∞
0

(

(−c0, c0); [0, 1]
)

be such that χ(y) = 1 for all

y ∈ [−c0/2, c0/2], and such that χ′, χ′′ are bounded. We set

χε(x) = χ(ε1−ρx) .

Then, for p = 1, 2 , we have

(2.13) R+ ∩ Supp χ(p)
ε ⊂ [c0ε

ρ−1/2, c0ε
ρ−1] ,

and

(2.14) sup
x∈R

∣

∣χ(p)
ε (x)

∣

∣ = O
(

εp(1−ρ)
)

.

We next define

ψε(x) = 1R+(x)χε(x)u(x, ε) .

Then, we write

Aε = A0 +
N
∑

j=1

Vj(x)ε
j +

1

ε
RN+1(ε, x) ,
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where RN+1 denotes the remainder term in the (N + 1)-th order Taylor expansion

of V near x = 0 (so that ε−1RN+1(εx) is of order O(εN+1) ).

Then, we have

(2.15)
(

Aε − λ(ε)
)

ψε = χε

(

Aε − λ(ε)
)

u(·, ε) + [Aε, χε]u(·, ε) .

We seek an estimate for both terms on the right-hand side. Consider the first term,

for which we have

(2.16)

∥

∥χε

(

Aε − λ(ε)
)

u(·, ε)
∥

∥ ≤
∥

∥

∥

∥

∥

(

A0 +

N
∑

j=1

Vjε
j − λ(ε)

)

u(·, ε)
∥

∥

∥

∥

∥

+
∥

∥ε−1RN+1(ε, ·)u(·, ε)
∥

∥ .

By the construction of u and λ, the first term on the right-hand side is of order

O(εN+1). Furthermore, there exists cN > 0 such that

(2.17)
∥

∥ε−1RN+1(ε·)u(·, ε)
∥

∥ ≤ cNε
N+1‖xN+2u(·, ε)‖ = O(εN+1) ,

where we made use of the fact that u(·, ε) ∈ S(R) . Therefore, there exists KN > 0

such that

(2.18)
∥

∥χε

(

Aε − λ(ε)
)

u(·, ε)
∥

∥ ≤ KNε
N+1 .

Consider, next, the commutator term in (2.15). Since u(·, ε) ∈ S(R) , (2.13) and

(2.14) yield

(2.19) ‖[Aε, χε]u(·, ε)‖ ≤ 2‖χ′
ε∂xu(·, ε)‖+ ‖χ′′

εu(·, x)‖ = O(ε∞)‖ψε‖ .

Finally, by (2.15), (2.18) and (2.19), we have
∥

∥

(

Aε − λ(ε)
)

ψε

∥

∥ = O(ε∞)‖ψε‖ .

2.3. Proof of Theorem 2.1. Once the quasimodes associated with the approx-

imate eigenvalues (2.1) have been found, it remains necessary to prove that such

eigenvalues indeed exist in σ(Ah).

Lemma 2.4. Let n ∈ N and λn be given by the expansion (2.1). Let λ = λn + reiθ

where θ ∈ [0, 2π). Then for α ∈ (1, 4/3), there exist δ > 0, ε0 > 0 and C > 0 such

that for any ε ∈ (0, ε0) and r satisfying εα < r < δ, we have

(2.20) ‖(Aε − λ)−1‖ ≤ C

r
.

Proof. Let f ∈ L2(0, a/ε) and u ∈ D(Aε) satisfy

(2.21) (Aε − λ)u = f .

Let χ̃ε satisfy

χ2
ε + χ̃2

ε = 1
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and

(2.22) sup
x∈R

∣

∣∇χ̃ε(x)
∣

∣ = O
(

ε(1−ρ)
)

.

Taking the inner product in L2(0, a/ε) of (2.21) with χ̃2
εu we obtain from the real

part

‖∇(χ̃εu)‖22 = Re 〈χ̃εu, χ̃εf〉+ ‖u∇χ̃ε‖22 + Reλ‖χ̃εu‖22 .
Hence,

(2.23) ‖∇(χ̃εu)‖2 ≤ C
(

ε−(1−ρ)‖χ̃εf‖2 + ‖χ̃εu‖2 + ε1−ρ‖u‖2
)

.

From the imaginary part of the above inner product we obtain that

〈χ̃ε(Vε − ε−1V (0))u, χ̃εu〉 = Im 〈χ̃εu, χ̃εf〉+ Im 〈∇(χ̃εu), u∇χ̃ε〉+ Imλ‖χ̃εu‖22 .
Since

min
x∈(0,a/ε)

|χ̃ε(Vε − ε−1V (0))| ≥ Cερ−1 ,

We obtain that

‖χ̃εu‖22 ≤ Cε1−ρ
[

‖χ̃εu‖22 + ‖χ̃εf‖22 + ε2(1−ρ)‖∇(χ̃εu)‖22 + ‖u‖22
]

.

With the aid of (2.23) we then obtain

(2.24) ‖χ̃εu‖2 ≤ Cε(1−ρ)/2(‖u‖2 + ‖f‖2) .
We next seek an estimate for ‖χεu‖2. To this end we write

(2.25) (A0 − λ)(χεu) = χεf − i
(

Vε −
V (0)

ε
− β0x

)

χεu+ [Aε, χε]u .

Denote by vn the eigenfunction of A0 associated with the eigenvalue eiπ/3β
1/3
0 µn. For

any g ∈ L2(0, a/ε) let

Πng = 〈v̄n, g〉vn .
Let further

wn = (I − Πn)(χεu) .

By (2.25) we easily obtain that

(A0 − λ)wn = (I − Πn)
(

χεf − i
(

Vε −
V (0)

ε
− β0x

)

χεu+ [Aε, χε]u
)

.

By the Riesz-Schauder theory for compact operators (cf. [2] for instance) we have

that

(A0 − λ)−1 =
Πn

λ− λ0,n
+ Tn(λ) ,

where Tn(λ) is holomorphic, and hence bounded, in some fixed neighborhood of

λ0,n. Consequently, there exists C(n, β0) such that ‖(A0 − λ)−1(I − Πn)‖ ≤ C, and

therefore,

‖wn‖2 ≤ C
∥

∥

∥

(

χεf − i
(

Vε −
V (0)

ε
− β0x

)

χεu+ [Aε, χε]u
)
∥

∥

∥

2

≤ C
(

‖f‖2 +
∥

∥

∥

(

Vε −
V (0)

ε
− β0x

)

χεu
∥

∥

∥

2
+ ‖[Aε, χε]u‖2

)

.
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Hence,

‖wn‖2 ≤ C
(

‖f‖2 + [ε2ρ−1 + ε2(1−ρ)]‖u‖2 + ε1−ρ‖∇u‖2
)

,

and since

(2.26) ‖∇u‖22 = Re 〈u, f〉+ Reλ‖u‖22 ,
we obtain that

(2.27) ‖wn‖2 ≤ C
(

‖f‖2 + [ε2ρ−1 + ε1−ρ]‖u‖2) .
To complete the proof, we seek an estimate for Πn(χεu). Taking the inner product

of (2.25) with χεv̄n yields

(2.28) (eiπ/3β
1/3
0 µn − λ)γn = 〈v̄n, f〉+ 〈[A0, χε]v̄n, χεu〉 − 〈χ̃εv̄n, χ̃εf〉+

i
〈

v̄n,
(

Vε −
V (0)

ε
− β0x

)

χεu
〉

+ 〈χεv̄n, [A0, χε]u〉+

(eiπ/3β
1/3
0 µn − λ)〈χ̃εvn, χ̃εu〉 − i

〈

(1− χε)v̄n,
(

Vε −
V (0)

ε
− β0x

)

χεu
〉

,

where

γn = 〈v̄n, χεu〉 .
By the exponential decay of vn and (2.26) we have that

(2.29)
∣

∣

∣
〈[A0, χε]v̄n, χεu〉 − 〈χ̃εv̄n, χ̃εf〉+ (eiπ/3β

1/3
0 µn − λ)〈χ̃εvn, χ̃εu〉−

i
〈

(1− χε)v̄n,
(

Vε −
V (0)

ε
− β0x

)

χεu
〉
∣

∣

∣
≤ Ce−ε−3(1−ρ)/2

(‖u‖2 + ‖f‖2) .

We next write

〈

v̄n,
(

Vε −
V (0)

ε
− β0x

)

χεu
〉

= εγn〈v̄n, β1x2vn〉

+
〈

v̄n,
(

Vε −
V (0)

ε
− β0x

)

wn

〉

+ γn

〈

v̄n,
(

Vε −
V (0)

ε
− β0x− εβ1x

2
)

vn〉 .

We now observe that
∥

∥

∥
v̄n

(

Vε −
V (0)

ε
− β0x

)
∥

∥

∥

2
≤ Cε ,

and that
∣

∣

∣

〈

v̄n,
(

Vε −
V (0)

ε
− β0x− εβ1x

2
)

vn〉
∣

∣

∣
≤ Cε2 .

As |γn| ≤ ‖u‖2, we obtain with the aid of (2.27) that
∣

∣

∣

〈

v̄n,
(

Vε −
V (0)

ε
− β0x

)

χεu
〉

− εγn〈v̄n, β1x2vn〉
∣

∣

∣
≤ Cε(‖f‖2 + [ε2ρ−1 + ε1−ρ]‖u‖2) .

Substituting the above, together with (2.29) into (2.28) yields

|(eiπ/3β1/3
0 µn + iεγn〈v̄n, β1x2vn〉 − λ)γn| ≤ C(‖f‖2 + [ε2ρ + ε2−ρ]‖u‖2)

Consequently, we must have

(2.30) |γn| ≤
C

r
(‖f‖2 + [ε2ρ + ε2−ρ]‖u‖2) .
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We now choose ρ = 2/3. Since

‖u‖2 ≤ C(|γn|+ ‖wn‖2 + ‖χ̃εu‖2) ,
(2.20) easily follows from (2.24), (2.27), and (2.30).

Lemma 2.5. Let 1 < α < 4/3. Let further

(2.31) Λn,N(ε) = eσiπ/3|β0|2/3|µn|+
N
∑

j=1

αj,nε
j .

Then, for sufficiently small ε there exists λn(ε) such that

(2.32) σ(Aε) ∩B(Λn,1, 2ε
α) = {λn(ε)} .

Furthermore, the eigenspace associated with λn(ε) is of dimension 1.

Proof. We follow the same procedure used in [5, 4] to prove existence of eigenvalues.

Let un,N be given by (2.6) and set ψn,N = χεun,N . Let εα < r < 2εα be such that

∂B(Λn,N , r) ∈ ρ(Aε). Let further λ ∈ ∂B(Λn,N , r). Then, by (2.4) we have

(Aε − λ)ψn,N = (Λn,N − λ)ψn,N + εN+1f ,

where ‖f‖2 ≤ C, for some C > 0 which is independent of ε. Applying (Aε − λ)−1

to both sides of the above equation yields

(Aε − λ)−1ψn,N =
1

Λn,N − λ

[

ψn,N − εN+1(Aε − λ)−1f
]

.

Integrating the above identity with respect to λ along ∂B(Λn,N , r) yields

Pnψn,N = ψn,N −
∮

∂B(Λn,N ,r)

εN+1(Aε − λ)−1f

2πi(Λn,N − λ)
dλ ,

where Pn is the spectral projection

(2.33) Pn =
1

2πi

∮

∂B(Λn,N ,r)

(Aε − λ)−1 dλ .

With the aid of (2.20) we then obtain that

(2.34) ‖(I − Pn)ψn,N‖2 ≤ CεN+1−α .

By Cauchy Theorem we now readily obtain that

σ(Aε) ∩ B(Λn,1, 2ε
α) 6= ∅ .

We now prove that PnL
2(0, a/ε) is one dimensional. To this end suppose that for

some ν1, ν2 ∈ B(Λn,1, 2ε
α) (which can be equal or not) and w1, w2 ∈ D(Aε) we have

(2.35) (Aε − νj)wj = 0 j = 1, 2

such that ‖w1‖2 = ‖w2‖2 = 1 and

(2.36) 〈w̄1, w2〉 = 0 .
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Let further

(2.37) fj = (A0 − Λn,0)(χεwj) j = 1, 2 .

A simple calculation yields

(2.38) fj = χε(νj − Λn,0)wj − i(Vε − ε−1V (0)− β0x)χεwj + [A0, χε]wj j = 1, 2 .

We now turn to estimate the various terms on the right-hand-side of (2.38). Let

j ∈ {1, 2}. For the first term we easily obtain, since νj ∈ B(Λn,1, 2ε
α) that

(2.39) ‖χε(νj − Λn,0)wj‖2 ≤ Cε .

For the second term we have that

(2.40) ‖(Vε − ε−1V (0)− β0x)χεwj‖2 ≤ Cε1−2ρ .

To estimate the last term we take the inner product of (2.35) with wj to obtain from

the real part that

‖∇wj‖2 ≤ C .

Consequently, we have that

‖[A0, χε]wj‖2 ≤ ‖∆χεwj‖2 + 2‖∇χε · ∇wj‖2 ≤ Cε1−ρ .

Substituting the above, together with (2.39) and (2.40) into (2.38) then yields

(2.41) ‖fj‖2 ≤ Cε1−2ρ .

We now write

χεwj = (χεwj)‖ + (χεwj)⊥ ,

where

(χεwj)‖ = 〈ū0, χεwj〉u0 .
Applying Riesz-Schauder theory to A0 yields, by (2.37) and (2.38),

‖(χεwj)⊥‖ ≤ Cε1−2ρ .

Consequently,

|〈χεw̄1, χεw2〉| ≥ 1− Cε1−2ρ .

Hence, by (2.36) we have that

(2.42) |〈χ̃εw̄1, χ̃εw2〉| ≥ 1− Cε1−2ρ .

To complete the proof we take again the inner product of (2.35) with wj to obtain,

this time from the imaginary part, that

‖(Vε − ε−1V (0))wj‖2 ≤ C .

Hence,

‖wj‖L2(ερ−1,a/ε) ≤ Cε1−ρ ,

from which we easily conclude that

|〈χ̃εw̄1, χ̃εw2〉| ≤ ‖w1‖L2(ερ−1,a/ε)‖w2‖L2(ερ−1,a/ε) ≤ Cε2(1−ρ) ,
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contradicting (2.42) and therefore (2.36).

Proof of Theorem 2.1 . Recall that by (2.4) we have

(Aε − Λn,N)ψn,N = εN+1f ,

where ‖f‖2 is uniformly bounded as ε → 0. We now apply the spectral projection

Pn, defined in (2.33) to both side of the above equations. It can be easily verified

that [Pn,Aε] = 0. Consequently

(2.43) (Aε − Λn,N)Pnψn,N = εN+1Pnf .

By (2.32) we have that

(2.44) (Aε − Λn,N)Pnψn,N = (λn − Λn,N)Pnψn,N .

By (2.34) we have that

‖Pnψn,N‖2 ≥ 1− CεN+1 .

Substituting the above, together with (2.44) into (2.43) then yields

|λn − Λn,N | ≤ CεN+1

Theorem 2.1 now easily follows from (2.3)

3. Two dimensions: Quasimode construction

Let Ω ⊂⊂ R2 be a C3 domain and V ∈ C3(Ω̄). Let ∂Ω⊥ denote the portion of the

boundary ∂Ω where ∇V is orthogonal to ∂Ω. (Note that ∂Ω⊥ may be finite, but is

never empty by the continuity of V on ∂Ω.) Let x0 ∈ ∂Ω⊥ such that

|∇V (x0)| = min
x∈∂Ω⊥

|∇V (x)| ,

and let V0 = V (x0) . We look for an approximation of the principal eigenvalue and

the corresponding eigenfunction of the operator

(3.1) Ah = −h2∆+ i(V − V0) ,

defined over

D(Ah) = H1
0 (Ω,C) ∩H2(Ω,C) .

Define in a vicinity of ∂Ω a curvilinear coordinate system (t, s) such that t =

d(x, ∂Ω) and s(x) denotes the distance (or arclength) along ∂Ω connecting x0 and

the projection of x on ∂Ω. We have

(3.2) ∆ =
(1

g

∂

∂s

)2

+
1

g

∂

∂t

(

g
∂

∂t

)

,

where

(3.3) g = 1− tκ(s) ,
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and κ(s) is the curvature at s on ∂Ω. Expanding ∆ near x0 (t2 + s2 ≪ 1) yields for

some u ∈ D(Ah)

(3.4) ∆u = utt + uss +Υu ,

where

(3.5) Υu =
( 1

g2
− 1
)

uss +
tκ′

g3
us −

κ

g
ut .

We next expand V near x0

(3.6) V (s, t)− V0 = ct +
1

2
(αs2 + βt2 + 2σst) +O((s2 + t2)3/2) ,

where

c = Vt(x0) ; α = Vss(x0) ; β = Vtt(x0) ; σ = Vst(x0) .

We note that Vs(x0) = 0 since x0 ∈ ∂Ω⊥. We confine the discussion, in view of (1.3)

to the case where αc > 0. Without any loss of generality we may assume c > 0

(and hence α > 0 as well), otherwise we can consider the spectrum of the complex

conjugate of Ah.

We search for an approximate eigenpair (u, λ) of Ah. Previous works [3, 10]

suggest that one should look for such u which is localized near x0. Applying the

transformation

(3.7) τ =
( c

h2

)1/3

t ; ξ =
( α

h2

)1/4

s

to (3.6) and (3.4) leads to the following approximation for every u ∈ D(Ah)

(3.8)
α

εc2
Ahu = −uττ + iτu + ε1/2

(

− uξξ +
i

2
ξ2u
)

+
( ε

α

)3/4

iσξτu+Ru ,

where

(3.9) ε = α(h2/c4)1/3 ,

‖u‖2 = 1, and the operator R satisfies, for all u ∈ D(Ah)

(3.10) Ru = c2/3
( ε

α

)1/2( 1

g2
− 1
)

uξξ + c2/3
( ε

α

)9/4 τc1/3κ′

g3
uξ −

( ε

α

)c1/3κ

g
uτ+

i
α

εc2

(

V (ξ, τ)− V0 −
ε

α
c2τ − c2ε3/2

α

1

2
ξ2 −

( ε

α

)7/4

c2σξτ
)

.

It can be easily verified that for any 0 < γ < 1 we have

(3.11) ‖Ru‖L2(B+(0,ε−γ)) ≤ Cε
[

‖ε1/2|τuξξ|+ ε5/4|τuξ|+ |uτ |‖L2(B+(0,ε−γ))+

Cε
[

‖τ 2u‖L2(B+(0,ε−γ)) + ε1/4‖ξ3u‖L2(B+(0,ε−γ))

]

.

We seek an approximate solution for Ahu = λu. To this end, we introduce the

expansion

u ∼= u0+ε
1/4u1+ε

1/2u2+ε
3/4u3+O(ε) ;

α

εc2
λ = λ0+ε

1/4λ1+ε
1/2λ2+ε

3/4λ3+O(ε) .
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Substituting into (3.8) leads to the following O(1) balance

(3.12a) Lτu0
def
= −∂

2u0
∂τ 2

+ iτu0 = λ0u0 ; u0(0, ξ) = 0 ,

where the operator Lτ is defined over

(3.12b) D(Lτ ) = {u ∈ H2(R+,C) ∩H1
0 (R+,C) | τu ∈ L2(R,C)} .

The solution to (3.12) associated with the energy λ0 having the smallest real part

is given by

(3.13) u0(τ, ξ) = v0(τ)w0(ξ) where v0(τ) = Ai(e
iπ/6τ + µ1) ,

and

(3.14) λ0 = e−i2π/3µ1 ,

where Ai is Airy’s function and µ1 < 0 is its rightmost zero. The function w0(ξ) will

be determined from the O(ε1/2) balance.

The next order, or O(ε1/4), balance in (3.8) assumes the form

(3.15) (Lτ − λ0)u1 = λ1u0 ; u1(0, ξ) = 0 ,

Taking the inner product of (3.15) with v̄0 yields λ1 = 0. Hence, u1 = v0(τ)w1(ξ).

The next order, or O(ε1/2), balance in (3.8) assumes the form

(3.16) (Lτ − λ0)u2 = −
(

Lξ − λ2

)

u0 ; u2(0, ξ) = 0 ,

where

(3.17) Lξ = − ∂2

∂ξ2
+
i

2
ξ2 ,

is defined over

D(Lξ) = {u ∈ H2(R,C) | ξ2u ∈ L2(R,C)}
For fixed ξ we now take the inner product of the above equation with v̄0, in L

2(R+).

After noticing that by Cauchy’s Theorem

(3.18)

∫ ∞

0

v20(τ) dτ = e−iπ/6

∫ ∞

0

A2
i (x+ µ1) dx 6= 0 ,

we obtain

(Lξ − λ2)w0 = 0 .

The solution of the above problem corresponding to the λ2 with smallest real part

is given by

(3.19) w0(ξ) = C0 exp
{

− 1√
2
ei

π
4 ξ2
}

; λ2 =
√
2ei

π
4 .

The constant C0 should be obtain, up to a product by −1, from the normalization

condition ‖u‖2 = 1. We allow dependence of C0 on ε (see below). Substituting into

(3.16) yields

u2(τ, ξ) = v0(τ)w2(ξ) .
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For the O(ε3/4) balance in (3.8) we have

(Lτ − λ0)u3 = −v0(Lξ − λ2)w1 −
(

iσξτ − λ3

)

v0w0 ; u2(0, ξ) = 0 .

We take once again the inner product of the above balance with v̄0 to obtain

(3.20) (Lξ − λ2)w1 +
(

iγξ − λ3

)

w0 = 0 ,

where

γ = σ

∫∞

0
τv20(τ) dτ

∫∞

0
v20(τ) dτ

.

Note that this expression is well-defined due to (3.18). Taking the inner product,

this time in L2(R,C), of (3.20) with w0, which is even, yields

λ3 = 0 .

Furthermore, w1 is the unique solution of

(Lξ − λ2)w1 = −iγξw0 ;

∫

R

w1(ξ)w0(ξ) dξ = 0 ,

and

u3 = v3(ξ, τ) + v0(τ)w3(ξ) ,

where v3 is the unique solution of the problem

(3.21)















(Lτ − λ0)v3 = −iξ(τ − γ)v0w0 τ > 0

v3(0, ξ) = 0
∫∞

0
v2(τ, ξ)v0(τ)dτ = 0 .

Notice that, if S(R2
+) denotes the Schwartz space of rapidly decaying functions along

with all their derivatives, then the right-hand side in (3.21) belongs to S(R2
+). As

the operator −∂2/∂τ 2 + iτ − λ0 is globally elliptic with respect to τ , in the sense of

[8, Definition 1.5.6], we have that

(3.22) v3 ∈ S(R2
+) ,

(see [8, Theorem 1.6.4]). For the same reason, the O(ε) balance would yield w3 ∈
S(R).
We have thus obtained the quasimode

(3.23) U =
(

C0(ε) exp
{

− 1√
2
ei

π
4 ξ2
}

+ ε1/2w1(ξ)
)

Ai(e
iπ/6τ + µ1)

+ ε3/4v3(ξ, τ) + ε3/4w3(ξ)Ai(e
iπ/6τ + µ1) .

We obtain the various constants by requiring that

‖U‖2 = 1 .

We now conclude this section by the following proposition
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Proposition 3.1. Let Ah be given by (3.1) and U by (3.23). Let further

(3.24) Λ = λ0 + ε1/2λ2 .

Let ηr = η0r(τ)η
1
r(ξ), where η

0
r ∈ C∞(R+, [0, 1]) and η

1
r ∈ C∞(R, [0, 1]) are chosen so

that

(3.25) ηr =

{

1 |x− x0| < r

0 |x− x0| > 2r ,
|∇ηr| ≤

C

r
.

Then,

(3.26)
∥

∥

∥

( α

εc2
Ah − Λ

)

(ηε−1/2U)
∥

∥

∥

2
≤ Cε‖ηε−1/2U‖2 .

Proof. We first write

α

εc2
Ah(ηε−1/2U) =

(

Lτ + ε1/2Lξ + ε3/4iσξτ
)

(ηε−1/2U) +Rηε−1/2U

= Ληε−1/2U +
[

Lτ + ε1/2Lξ, ηε−1/2

]

U +Rηε−1/2U ,(3.27)

where the operator R is defined by (3.10). We next seek an estimate for the com-

mutator term in (3.27), given by

(3.28) [Lτ , ηε−1/2]U = −∂2τ (ηε−1/2)U − 2∂τηε−1/2∂τU .

In order to estimate the norm of U and ∂τU on the support of ∂2τηε−1/2 and ∂τηε−1/2 ,

we recall the well-known asymptotic behavior of the Airy function [1]:

(3.29) Ai(z) =
1

2
√
πz1/4

e−
2
3
z3/2
(

1 +O(z−3/2)
)

as |z| → +∞ in any sector of the form | arg z| ≤ π− δ , δ > 0 . By (3.23), and since

for all (τ, ξ) ∈ Supp ∂τηε−1/2 we have ε−1/2 ≤ τ ≤ 2ε−1/2 , (3.22) and (3.29) yield

‖(∂2τηε−1/2)U‖2 ≤ C1ε ,

for some positive constant C1 .

Since the asymptotic behaviour of Ai′, as |z| → ∞ is not substantially different

from (3.29) (cf. [1]), we easily obtain that

‖∂τηε−1/2∂τU‖2 ≤ C2ε , C2 > 0 .

Thus (3.28) yields, for some C > 0 ,

(3.30) ‖[Lτ , ηε−1/2]U‖2 ≤ Cε .

Due to the decay of the U and ∂ξU as |ξ| → +∞ (recall that w3 ∈ S(R)), we

similarly obtain

(3.31) ‖[ε1/2Lξ, ηε−1/2 ]U‖2 ≤ Kε ,

for some K > 0 .can be estimated as follows. Using

To estimate the remaining term Rηε−1/2U we use (3.11) to obtain, for α ∈ (1/2, 1),

(3.32) ‖Rηε−1/2U‖2 ≤ ‖RU‖L2(B+(0,ε−α)) ≤ C ′ε
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for some C ′ > 0. Finally (3.27), (3.30), (3.31) and (3.32) yield, for some positive C̃

and C,
∥

∥

∥

( α

εc2
Ah − Λ

)

(ηε−1/2U)
∥

∥

∥

2
≤ C ′ε

≤ Cε‖ηε−1/2U‖2 ,
where we have used the that for some C ′′ > 0, ‖ηε−1/2U‖2 ≥ 1/C ′′.

4. Eigenvalue existence

Let Lτ and Lξ be respectively defined by (3.12) and (3.17). Then let

(4.1) Bε = Lτ + ε1/2Lξ

be the closed operator associated with the quadratic form

〈∇u,∇v〉+ i〈u, (τ + ε1/2ξ2)v〉
whose domain is given by Ṽ × Ṽ where

Ṽ = {u ∈ H1
0(R

2
+,C) | |(τ 1/2 + |ξ|)u ∈ L2(R2

+,C)} .
It can be easily verified that

D(Bε) = {u ∈ H2(R2
+,C) ∩H1

0 (R
2
+) | (τ + ξ2)u ∈ L2(R2

+), } .
We begin by the following straightforward observation

Lemma 4.1. We have

(4.2) σ(Bε) = {c2/3µne
−i2π/3 + (2k − 1)ε1/2

√
2ei

π
4 }∞n,k=1 .

Proof. After the scale changes τ 7→ c1/3τ and ξ 7→
(

|α|/2
)1/4

ξ, we obtain from [3]

and [7, Section 14.5] the following expressions for the eigenvalues of the complex

Airy operator Lτ and the complex harmonic oscillator Lξ:

σ(Lτ) =
{

c2/3µne
−i2π/3 : n ≥ 1

}

,

µn being the n-th (negative) zero of the Airy function Ai , and

σ(Lξ) =
{

(2k − 1)
√
2 ei

π
4 : k ≥ 1

}

.

Denote by Lτ ∔ ε1/2Lξ the closure of the operator Lτ ⊗ I + I ⊗ (ε1/2Lξ) whose

domain is D(Lτ) ⊗ D(Lξ). We first need to verify that the domains of Bε and

Lτ ∔ ε1/2Lξ coincide. Let e−tBε denote the contraction semigroup generated by Bε,

and let ϕ ∈ D(Lτ), ψ ∈ D(Lξ). Clearly,

e−tBε(ϕ⊗ ψ) = e−tLτϕ⊗ e−t(ε1/2Lξ)ψ ,

where e−tLτ and e−t(ε1/2Lξ) denote respectively the contraction semigroups generated

by Lτ and ε1/2Lξ.Thus,

e−tBε
(

D(Lτ )⊗D(Lξ)
)

⊂ D(Lτ )⊗D(Lξ) .
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Consequently, due to [11, Theorem X.49] we have Bε = (Bε)|D(Lτ )⊗D(Lξ)
, and Bε

clearly coincides with Lτ ⊗ I + I ⊗ (ε1/2Lξ) on D(Lτ ) ⊗ D(Lξ) , and hence Bε =

Lτ ∔ ε1/2Lξ .

Noticing that Lτ and Lξ are both sectorial with respect to the same sector S =

{z ∈ C : 0 ≤ arg z ≤ π/2} , we can then apply the so-called Ichinose Lemma (see

[11, Theorem XIII.35, Corollary 2]) which yields

σ
(

Lτ ∔ ε1/2Lξ

)

= σ(Lτ ) + σ(ε1/2Lξ) ,

and (4.2) follows.

The following auxiliary lemma will be necessary in the sequel

Lemma 4.2. Let vn denote the (unique up to multiplication by a complex number

of modulus 1) unity norm eigenfunction associated with the eigenvalue

(4.3) νn−1 = µne
−i2π/3 n ∈ N

of Lτ . Let further V denote the form domain of Lτ , i.e,

V = {u ∈ H1
0 (R+,C) | τ 1/2u ∈ L2(R+,C) } ,

and Vn = span{vn}∞n=k+1 ∩ V. Set

(4.4a) βk = inf
u∈Vn
‖u‖=1

‖uτ‖22 + ‖τ 1/2u‖22 .

Then,

(4.4b) βk → ∞ .

Proof. Let us assume by contradiction that there exists a subsequence (kn) and a

positive constant C such that

sup
n∈N

βkn ≤ C .

Then there exists a sequence (un) of functions in H1
0 (R+,C), τ

1/2un ∈ L2(R+,C)

such that, for all n ∈ N, un ∈ span{vj}∞j=kn+1, ‖un‖2 = 1 and

(4.5) sup
n∈N

(

‖∂τun‖22 + ‖τ 1/2un‖22
)

≤ 2C .

Since for any r > 0 we have
∫ ∞

r

|un|2 ≤
1

r

∫ ∞

r

τ |un|2 ≤
2C

r
,

we can choose such r for which
∫ r

0

|un|2 ≥
1

2
.
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Since by (4.5) the H1(R+,C) norms of {un}∞n=1 are bounded, we can extract a

subsequence (uϕ(n)) such that uϕ(n) → u∞ in L2(R+,C) weakly, and in L2([0, r],C)

strongly, for some limit function u∞ ∈ L2(R+,C). We note that

(4.6)

∫ r

0

|u∞|2 ≥ 1

2
.

Now let k ∈ N be fixed. Then for all n such that kϕ(n) ≥ k we have

uϕ(n) ∈ span{vj}j≥k+1 =
(

span{v̄n}kn=1

)

⊥
,

hence, by the weak convergence in L2(R+,C).

0 = 〈uϕ(n), v̄k〉 −→ 〈u∞, v̄k〉 = 0 .

Consequently u∞ ∈
(

span{v̄j}+∞
j=1

)

⊥
, thus u∞ = 0 since the eigenfunctions {v̄j}j≥1 of

L∗
τ form a complete family of L2(R+,C) (see [3]). A contradiction, in view of (4.6).

We next claim the following

Lemma 4.3. There exist r0 > 0, ε0 > 0 and C > 0, such that if r ∈ (0, r0), then

(4.7) |λ− λ0 − ε1/2λ2| = rε1/2 ⇒ ‖(Bε − λ)−1‖ ≤ C

r
ε−1/2 ∀0 < ε < ε0 .

Proof. Suppose that r is so chosen such that ∂B(λ0 + ε1/2λ2, rε
1/2) ∈ ρ(Bε). Let

g ∈ span{vnwm}∞n,m=0 and w denote the solution of

(4.8) (Bε − λ)w = g .

Let further

λ− λ0 − ε1/2λ2 = ε1/2reiα ,

where α ∈ [0, 2π). By the Riesz-Schauder Theory (cf. [2, Eq. (16.4)] for instance)

we have that

(4.9) (Lτ − λ)−1 =
Π0

λ− ν0
+

K
∑

k=1

Πk

λ− νk
+ Tk(λ) ,

where {νn}∞n=0 are given by (4.3), and ‖TK‖ ≤ CK in B(ν0, r̃) for some fixed r̃ > 0.

In the above Πk is the projection operator on span{vk}, which is explicitly given,

for any u ∈ span{vn}∞n=0, by

Πk(u) = 〈v̄k, u〉τvk(τ) ,
where 〈·, ·〉τ denotes the standard L2(R+,C) inner product.

Let uk = Πk(w). It can be easily verified that

uk = ε−1/2(Lξ − λ2 − reiα + ε−1/2(νk − ν0))
−1Πk(g) .

It easily follows from here that

(4.10) ‖u0‖2 ≤
C

rε1/2
‖Π0(g)‖2 ≤

C

rε1/2
‖g‖2 ,
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whereas

(4.11) ‖uk‖2 ≤ Ck‖g‖2 ,
where Ck is independent of r and ε. For every K ≥ 1 we have

(4.12) ‖w‖2 ≤
( C

rε1/2
+

K
∑

k=1

Ck

)

‖g‖2 + ‖PK(w)‖2 ,

where

(4.13) PK = I −
K
∑

k=0

Πk .

To complete the proof we need an estimate for ‖PK(w)‖2. Let then uK = PK(w).

Clearly,

(Bε − λ)uK = PK(g) .

Taking the inner product of the above equation by uK yields
∥

∥

∥

∂uK
∂τ

∥

∥

∥

2

2
+ ε1/2

∥

∥

∥

∂uK
∂ξ

∥

∥

∥

2

2
− Reλ‖uK‖22 = Re 〈uK , PK(g)〉

‖τ 1/2uK‖22 + ε1/2‖ξuK‖22 − Imλ‖uK‖22 = Im 〈uK , PK(g)〉 .
Combining the above equations yields

(4.14)
∥

∥

∥

∂uK
∂τ

∥

∥

∥

2

2
+ ‖τ 1/2uK‖22 − (Imλ+ Reλ)‖uK‖22 ≤ 2‖uK‖2‖PK(g)‖2 .

As

(4.15) ‖PK(g)‖2 ≤ CK‖g‖2 ,
we obtain by (4.4) and (4.14) that for sufficiently large K (but independent of ε)

‖uK‖2 ≤ CK‖g‖2 .
The lemma is now proved by the above and (4.12) for any g ∈ span{vnwm}∞n,m=0,

and hence for any g ∈ L2(R2
+,C) via a density argument.

Note that r may depend on ε. As a matter of fact (4.7) remains valid indepen-

dently of the pace at which r → 0 as ε→ 0.

Corollary 4.4. Under the conditions of 4.3 we have that

(4.16) ‖(Bε − λ)−1P1‖ ≤ C ,

where C is independent of ε.

The corollary follows immediately from (4.11) and (4.15).

Recall now the definition of S from the introduction

S = {x ∈ ∂Ω⊥ : |∇V (x)| = |∇V (x0)| , V (x) = V (x0)} .
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By (1.3), S is a finite set of isolated points {xj}j∈JS . Recall the definition of the

curvilinear coordinate system (s, t) from the previous section, and then let xj =

(sj, 0). Let further f ∈ L∞(Ω,C) be supported on Ω ∩ ⋃

j∈JS

B(xj , δ) and satisfy

(4.17) |f | ≤ C‖f‖2ε7/8e−γ1ε−3/2[(s−sj)
2+t3/2] in B(xj , δ) ∩ Ω ∀j ∈ JS ,

for some fixed and positive γ1 and C.

We seek an estimate for the resolvent of Ah. To this end a few auxiliary estimates,

beyond (4.7), are necessary. Set then

Ω+ = {x ∈ Ω | V (x) > V (x0) } ; Ω− = {x ∈ Ω | V (x) < V (x0) } ,

and

Γ = {x ∈ Ω | V (x) = V (x0) } .
Define then the cutoff function χ+

ε,n ∈ C∞(Ω, [0, 1]), where n ∈ N, in the following

manner

(4.18) χ+
ε,n(x) =















1 x ∈ Ω−

1 x ∈ Ω+ ∩ {V (x)− V (x0) ≤ 2n−1ερ}
0 x ∈ Ω+ ∩ {V (x)− V (x0) ≥ 2nερ} ,

‖∇χ+
ε,n‖∞ ≤ Cn

ερ

where 0 < ρ < 1. We further set

(4.19) (χ̃+
ε,n)

2 + (χ+
ε,n)

2 = 1 .

In a similar manner we then define χ−
Γ,ε,n:

χ−
ε,n(x) =















1 x ∈ Ω+

1 x ∈ Ω− ∩ {V (x0)− V (x) ≤ 2n−1ερ}
0 x ∈ Ω− ∩ {V (x0)− V (x) ≥ 2nερ} .

The complementary cutoff function χ̃−
ε,n is then given by

(χ̃−
ε,n)

2 = 1− (χ−
ε,n)

2

We begin with the following estimate

Lemma 4.5. Let f satisfy (4.17) and

(4.20) (Ah − λ∗)w = f ,

where

|λ∗| ≤ Cε

Then, for any n ∈ N there exists Cn > 0 and γ2 > 0 such that for sufficiently small

ε we have

(4.21a) ‖χ̃−
ε,nw‖2 + ‖χ̃+

ε,nw‖2 ≤ Cn(ε
nρ−1‖w‖2 + e−γ2ε

− 3
2 (1−ρ)‖f‖2) .
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Furthermore, we have that

(4.21b)

‖∇(χ̃+
ε,nw)‖2+‖∇(χ̃−

ε,nw)‖2+ε2(‖D2(χ̃+
ε,nw)‖2+‖D2(χ̃−

ε,nw)‖2) ≤ Cnε
nρ−1(‖w‖2+‖f‖2) .

Proof. In the following the constants C and γ2 depend on n. Taking the inner

product of (4.20) with (χ̃+
ε,n)

2w yields

(4.22a)

(4.22b)































‖∇(χ̃+
ε,nw)‖22 − ‖w∇χ̃+

ε,n‖22 =
α

ε3c4
(

Reλ∗‖χ̃+
ε,nw‖22 + Re 〈χ̃+

ε,nw, χ̃
+
ε,nf〉

)

α

ε3c4
‖χ̃+

ε,n|V − V (x0)|1/2w‖22 + Im 〈w∇χ̃+
ε,n,∇(χ̃+

ε,nw)〉

=
α

ε3c4
(

Im λ∗‖χ̃+
ε,nw‖22 + Im 〈χ̃+

ε,nw, χ̃
+
ε,nf〉

)

.

From the definition of χ̃+
ε,n and (4.22b) we get

(4.23) ‖χ̃+
ε,nw‖22 ≤ Cε3−ρ

(

‖∇(χ̃+
ε,nw)‖22+‖w∇χ̃+

ε,n‖22+ε−4‖χ̃+
ε,nf‖22+ε−2‖χ̃+

ε,nw‖22
)

.

By (4.22a) we have

(4.24) ‖∇(χ̃+
ε,nw)‖22 ≤ C

(

‖w∇χ̃+
ε,n‖22 + ε−4‖χ̃+

ε,nf‖22 + ε−2‖χ̃+
ε,nw‖22

)

.

Substituting the above into (4.23) then yields

‖χ̃+
ε,nw‖22 ≤ Cε3−ρ

(

‖w∇χ̃+
ε,n‖22 + ε−4‖χ̃+

ε,nf‖22 + ε−2‖χ̃+
ε,nw‖22

)

,

from which we easily obtain, for sufficiently small ε,

(4.25) ‖χ̃+
ε,nw‖22 ≤ Cε3−ρ

(

‖w∇χ̃+
ε,n‖22 + ε−4‖χ̃+

ε,nf‖22
)

.

By (4.17) we have that for sufficiently small γ2 and ε,

(4.26) ‖χ̃+
ε,nf‖2 ≤ Ce−γ2ε

− 3
2 (1−ρ)‖f‖2 .

Furthermore, by (4.18) and (4.19) we have that

‖w∇χ̃+
ε,n‖2 ≤

C

ερ
‖χ̃+

ε,n−1w‖2 .

Combining the above, (4.26), and (4.25) then yields

‖χ̃+
ε,nw‖2 ≤ C

(

ερ‖χ̃+
ε,n−1w‖2 + e−γ2ε

−
3
2 (1−ρ)‖f‖2

)

.

Similarly we obtain that

‖χ̃−
ε,nw‖2 ≤ C

(

ερ‖χ̃+
ε,n−1w‖2 + e−γ2ε

− 3
2 (1−ρ)‖f‖2

)

.

The above pair of inequalities, when recursively applied, readily yield (4.21a).

We begin the proof of (4.21b) by combining (4.24) and (4.21a) to obtain

(4.27) ‖∇(χ̃+
ε,nw)‖2 ≤ Cn(ε

nρ−1‖w‖2 + e−γ2ε
−3

2 (1−ρ)‖f‖2) .
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Furthermore, we have that

‖χ̃+
ε,n∆w‖2 ≤

C

ε3
‖(V − V (x0))χ̃

+
ε,nw‖2

+
C

ε2
‖χ̃+

ε,nw‖2 +
C

ε3
‖χ̃+

ε,nf‖2 ≤ Cn(ε
nρ−3‖w‖2 + e−γ2ε

− 3
2 (1−ρ)‖f‖2) .

As,

‖∆(χ̃+
ε,nw)‖2 ≤

C

ερ
‖∇(χ̃+

ε,n−1w)‖2 +
C

ε2ρ
‖χ̃+

ε,n−1w‖2 + ‖χ̃+
ε,n∆w‖2 ,

we readily conclude that

‖∆(χ̃+
ε,nw)‖2 ≤ Cn(ε

nρ−3‖w‖2 + e−γ2ε
−

3
2 (1−ρ)‖f‖2) .

Standard elliptic estimates, together with (4.27) then yield (4.21b), after repeating

the same argument for χ̃−
ε,nw.

Before we attempt to estimate (Ah − λ∗)−1f we need yet the following auxiliary

estimate.

Lemma 4.6. Under the same conditions of Lemma 4.5 we have that

(4.28a)

(4.28b)



















‖∇w‖2 ≤
C

ε
‖w‖2 +

C

ε2
‖f‖2 ,

‖D2w‖2 ≤
C

ε3−ρ
‖w‖2 +

C

ε3
‖f‖2 ,

where w = (Ah − λ∗)−1f and 0 < ρ < 1.

Proof. As

‖∇w‖22 =
α

ε3c4
(λ∗‖w‖22 + Re 〈w, f〉) ,

we readily obtain (4.28a). To prove (4.28b) we first note that

(4.29) ‖∆w‖2 ≤
C

ε3
(‖(V − V (x0))w‖2 + λ∗‖w‖2 + ‖f‖2)

Let

ζ2 = 1− (χ̃−
ε,n)

2 − (χ̃+
ε,n)

2 .

By (4.21) we have, for sufficiently large n,

‖(V − V (x0))w‖2 ≤ C(‖χ̃−
ε,nw‖2 + ‖χ̃+

ε,nw‖2) + ‖ζ(V − V (x0))w‖2

≤ C(εnρ−1‖w‖2 + e−γ2ε
−

3
2 (1−ρ)‖f‖2 + ερ‖w‖2) ≤ C(ερ‖w‖2 + e−γ2ε

−
3
2 (1−ρ)‖f‖2) ,

which, when substituted into (4.29), yields (4.28) with the aid of standard elliptic

estimates.



24 YANIV ALMOG AND RAPHAËL HENRY

Lemmas 4.3 and 4.5 can now be used to estimate (Ah − λ∗)−1f in the close

vicinity of x0 where λ∗ ∈ ∂B(Λ0, (c
2rε3/2/α)), r ∈ (0, 1) being chosen so that

∂B(Λ0, (c
2rε3/2/α)) ⊂ ρ(Ah), where

(4.30) Λ0 =
εc2

α
(λ0 + ε1/2λ2) .

Lemma 4.7. Let f ∈ L∞(Ω,C) satisfy (4.17), and 7/8 < ρ < 1. Let w = (Ah −
λ∗)−1f ∗ and ζ0 be given by

(4.31) ζ∗0(ε, ρ) = [1− (χ̃−
ε,n)

2 − (χ̃+
ε,n)

2]1B(x0,δ)∩Ω ,

where δ > 0 is so chosen so that B(x0, δ) ∩ Γ = {x0}. Then,

(4.32) ‖ζ∗0w∗‖2 ≤
C

r
(ε−3/2‖f‖2 + ε1/8‖w∗‖2) .

Proof. Clearly,

(Ah − λ∗)(ζ∗0w
∗) = ζ∗0f

∗ + [Ah, ζ
∗
0 ]w

∗

We next write

Ah = A0 +D∗ ,

where A0 is given by

A0 = −ε
3c4

α3
(∂tt + ∂ss) + i(ct + αs2) ,

and

D∗ = −ε
3c4

α3
Υ+ i(V − V (x0)− ct− 1

2
αs2) ,

where Υ is given by (3.5). Then,

(A0 − λ∗)(ζ∗0w
∗) = ζ0f

∗ −D∗(ζ∗0w
∗) + [Ah, ζ

∗
0 ]w

∗ .

Applying the transformation (3.7) yields

(4.33) (Bε − λ)(ζ0w) =
α

εc2
ζ0f + [Bε, ζ0]w − R(ζ0w) .

where f , ζ0, and w are respectively obtained from f ∗, ζ∗0 , and w∗ via the dilation

·(ξ, τ) = ·∗(s, t), in which (ξ, τ) are given by (3.7), R is given by (3.10) and λ = α
εc2
λ∗.

We next apply to (4.33) the operator P1 defined in (4.13). Since Bε and P1

commute, we easily obtain from (4.16) that

(4.34) ‖P1(ζ0w)‖2 ≤ C(ε−1‖f‖2 + ‖[Bε, ζ0]w‖2 + ‖R(ζ0w)‖2) .

We now attempt to estimate ‖R(ζ0w)‖2. We first note that R is given by (3.10).

We then observe that

(4.35)
∣

∣

∣

α

εc2
[V − V (x0)]− τ − ε1/2

1

2
ξ2
∣

∣

∣
≤ C(ε5/4ξ3 + ε3/4τξ + ετ 2) ∀x ∈ B(x0, δ) ,

Since

1

2

(

τ +
ε1/2

2
ξ2
)

≤ α

εc2
|V (x)− V (x0)| ≤ 2ε−(1−ρ) ∀x ∈ supp(ζ0) ,
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we obtain that for some C > 0

(4.36) supp ζ0 ⊂ {(ξ, τ) | |ξ| ≤ Cε−3/4+ρ/2 , 0 ≤ τ < Cε−(1−ρ)} .

Consequently, by (4.35) we have that

ζ0

∣

∣

∣

α

εc2
[V − V (x0)]− τ − ε1/2

1

2
ξ2
∣

∣

∣
≤ Cε

3ρ
2
−1 .

Hence,

(4.37)
∥

∥

∥

( α

εc2
[V − V (x0)]− τ − ε1/2

1

2
ξ2
)

ζ0w
∥

∥

∥

2
≤ Cε

3ρ
2
−1‖ζ0w‖2 .

To complete the estimation of R(ζ0w), it is necessary to bound

(4.38) R̃(ζ0w) = ε3/2
∥

∥

∥
τ(ζ0w)ξξ

∥

∥

∥

2
+ ε9/4‖τ(ζ0w)ξ‖2 + ε‖(ζ0w)τ‖2 .

Since by (4.36) we have that

‖ζ0‖C2,0 ≤ C ,

we have by (3.7), (4.28), and (4.36) that

(4.39)
∥

∥

∥
τ(ζ0w)ξξ

∥

∥

∥

2
≤ C

( 1

ε3/2−ρ
‖w‖2 +

1

ε5/2−ρ
‖f‖2

)

.

Furthermore,

(4.40) ‖τ(ζ0w)ξ‖2 ≤ C
( 1

ε1/4
‖w‖2 +

1

ε9/4−ρ
‖f‖2

)

,

and

‖(ζ0w)τ‖2 ≤ C(‖w‖2 + ε−1‖f‖2) .
Substituting the above together with (4.40) and (4.39) into (4.38) then yields

(4.41) R̃(ζ0w) ≤ C(ερ‖w‖2 + ‖f‖2) .

Combining the above with (4.37) yields

(4.42) ‖R(ζ0w)‖2 ≤ C(ε
3ρ
2
−1‖w‖2 + ‖f‖2) .

We now turn to estimate [Bε, ζ0]w. From (4.21) we learn that, for any n ∈ N,

there exists some ε0(n), such that for all ε < ε0(n) we have

(4.43) ‖[Bε, ζ0]w‖2 =
α

c
ε−7/8

∥

∥

∥

α

εc2
[Ah, ζ

∗
0 ]w

∗
∥

∥

∥

2
≤

Cε9/8[ε−2ρ(‖χ̃−
ε,n−1w

∗‖2 + ‖χ̃+
ε,n−1w

∗‖2) + ε−ρ̃(‖∇(χ̃−
ε,n−1w

∗)‖2

+ ‖∇(χ̃+
ε,n−1w

∗)‖2)] ≤ Cn(ε
nρ−15/8‖w∗‖2 + e−γ2ε

−
3
2 (1−ρ)‖f ∗‖2)

≤ Cn(ε
nρ−1‖w‖2 + e−γ2ε

−
3
2 (1−ρ)‖f‖2) .

Substituting the above together with (4.42) into (4.34) yields

(4.44) ‖P1(ζ0w)‖2 ≤ C(ε
3ρ
2
−1‖w‖2 + ‖f‖2) .
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We now turn to estimate Π0(w). Taking the inner product of (4.33) in L2(R+,C)

with v̄0 yields

(4.45) (Lξ − λ̃)w0 = ε−1/2
〈

v̄0,
α

εc2
ζ0f − R(ζ0w) + [Bε, ζ0]w

〉

R+

,

where w0 = 〈v̄0, ζ0w〉, and λ̃ = ε−1/2(λ − λ0). (Note that Π0(ζ0w) = w0(ξ)v0(τ).)

Multiplying (4.45) by w̄0 and integrating by parts yields, from the imaginary part

‖ξw0‖2L2(R) ≤ C
(

‖w0‖2L2(R) + ε−1/2|〈v̄0w0, ε
−1ζ0f − R(ζ0w) + [Bε, ζ0]w〉|

)

.

We now use (4.41), (4.43), and (4.35) to obtain that

‖ξw0‖L2(R) ≤ C(‖w0‖L2(R) + ε−3/2‖f‖2 + ερ−1/2‖w‖2+
ε3/4‖ξ3ζ0w‖2 + ε1/4‖τξζ0w‖2 + ε1/2‖τ 2ζ0w‖2)

In view of (4.36) we then have

(4.46) ‖ξw0‖L2(R) ≤ C(‖w0‖L2(R) + ε−3/2‖f‖2 + ερ−1/2‖w‖2 + ε1/4‖ξζ0w‖2) .
We now use (4.44) to obtain

‖ξζ0w‖2 ≤ ‖ξP1(ζ0w)‖2 + ‖ξw0‖L2(R) ≤ C(ε2ρ−7/4‖w‖2 + ε−3/2‖f‖2) + ‖ξw0‖L2(R) .

Substituting the above into (4.46) then yields

‖ξw0‖L2(R) ≤ C(‖w0‖L2(R) + ε2ρ−
3
2‖w‖2 + ε−3/2‖f‖2) ,

and hence,

‖ξζ0w‖2 ≤ C(‖w0‖L2(R) + ε2ρ−
7
4‖w‖2 + ε−3/2‖f‖2) .

From the above and (4.44) once again we can conclude that

(4.47)

‖ξ3ζ0w‖2 ≤ Cε−3/2+ρ‖ξζ0w‖2 ≤ Cε−3/2+ρ(‖w0‖L2(R) + ε2ρ−
7
4‖w‖2 + ε−3/2‖f‖2) .

Similarly, we obtain

‖ξτζ0w‖2 ≤ Cε−(1−ρ)(‖w0‖L2(R) + ε2ρ−
7
4‖w‖2 + ε3/2‖f‖2) .

The above, together with (4.47), (4.35), and (4.36) yield the following improvement

of (4.37) (recall that ‖Π0(w)‖2 ≤ C‖w‖2)
∥

∥

∥

[ α

εc2
[V − V (x0)]− τ − ε1/2

1

2
ξ2
]

ζ0w
∥

∥

∥

2
≤ Cερ−1/4(‖w‖2 + ε−3/2‖f‖2) .

We now combine the above inequality with (4.41) to obtain an improved version of

(4.42)

(4.48) ‖R(ζ0w)‖2 ≤ Cερ−1/4(ερ̃‖w‖2 + ε3/2‖f‖2) .
Returning to (4.33) we obtain from (4.7) that

‖ζ0w‖2 ≤
C

rε1/2
(ε2‖f‖2 + ‖[Bε, ζ0]w‖2 + ‖R(ζ0w)‖2) .

With the aid of (4.43) and (4.48) we then obtain

‖ζ0w‖2 ≤
C

rε1/2
(ε−1‖f‖2 + ε5/8‖w‖2) ,
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from which (4.32) easily follows.

Remark 4.8. Clearly, (4.32) can be extended to the neighborhood of each point in

S. Thus, if we set for any xj ∈ S
(4.49) ζ∗j (ε, ρ) = [1− (χ̃−

ε,n)
2 − (χ̃+

ε,n)
2]1B(xj ,δ)∩Ω ,

where δ > 0 is so chosen so that B(xj , δ) ∩ Γ = {xj} for all j ∈ JS . Then,

(4.50) ‖ζ∗jw∗‖2 ≤
C

r
(ε3/2‖f‖2 + ε1/8‖w∗‖2) .

We can now estimate ‖(Ah−λ∗)−1f‖ in the simplest possible case where Γ = {x0}.

Corollary 4.9. Let f ∈ L∞(Ω,C) satisfy (4.17). Let λ∗ ∈ ∂B(Λ0, rε
−1/2) ⊂ ρ(Ah),

where Λ0 is given by (4.30), for some ε1/8 ≪ r < 1. Then, there exists C > 0 such

that for sufficiently small ε we have

(4.51) ‖(Ah − λ∗)−1f‖2 ≤
C

ε3/2r
‖f‖2 .

Proof. Since Γ = {x0} we may set with any loss of generality Ω = Ω+. Hence, we

have that χ+
ε,n = ζ∗0 , where ζ

∗
0 is defined by (4.31). Let w = (Ah − λ)−1f . Then,

‖w‖22 = ‖χ+
ε,nw‖22 + ‖χ̃+

ε,nw‖22 = ‖ζ∗0w‖22 + ‖χ̃+
ε,nw‖22 .

The corollary now easily follows from (4.21a) and (4.32).

Consider next the general case where Γ \ {x0} 6= ∅. We begin by defining some

local approximations of the operator Ãh. Let ρ ∈ (7/8, 1), and then define two sets

of indices J∂Ω = J∂Ω(ε) and JΩ = JΩ(ε). Set then J = J∂Ω ∪ JΩ and let δ > 0

be the same as in (4.31). Next, choose a sequence of points (xj)j∈J = (xj(ε))j∈J ⊂
Ω̄\ ⋃

j∈JS

B(xj , δ), where xj ∈ ∂Ω (respectively xj ∈ Ω) if j ∈ J∂Ω (respectively j ∈ Ω),

such that

Ω̄ \
⋃

j∈JS

B(xj , δ) ⊂
⋃

j∈J

B(xj , ε
ρ) .

Let (ηj)j∈J be a family of cutoff functions associated with the partition above,

namely ηj(x) = 1 if x ∈ B(xj , ε
ρ/2), Supp ηj ⊂ B(xj , ε

ρ), and

∀x ∈ Ω̄ \
⋃

j∈JS

B(xj , δ) ,
∑

j∈J

ηj(x)
2 = 1 .

We further assume that for all j ∈ J , ‖∇ηj‖∞ = O(ε−ρ) and ‖∆ηj‖∞ = O(ε−2ρ).

Finally we set, for all j ∈ J ,

χj = ηj1Ω̄ .

In the neighborhood of each point xj , j ∈ JΩ, we shall approximate Ah by the

following operator:

(4.52a) Aj,h := −ε
3c4

α3
∆+ i(cj .x+ V (xj)− V (x0)) , cj = (c1j , c

2
j) = ∇V (xj) ,
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whose domain is given by

(4.52b) D(Aj,h) = H2(R2;C) ∩ L2(R2, |x|2dx;C) .
In the neighborhood of the boundary points xj , j ∈ J∂Ω, we use different approx-

imate operators, depending on the local behaviour of V . To this end, denote by

J1
∂Ω ⊂ J∂Ω the set of indices j such that xj ∈ ∂Ω⊥ and

|∇V (xj)| = |∇V (x0)| = min
x∈∂Ω⊥

|∇V (x)| .

Notice that J1
∂Ω may be an empty set, since x0 6∈ Ω̄ \ B(x0, δ). We then let J2

∂Ω =

J∂Ω \ J1
∂Ω and J3

∂Ω = J1
∂Ω \ JS . In the neighborhood of the boundary points xj for

j ∈ J2
∂Ω, we use the following approximation of Ah. Let (t, s) be the same curvilinear

coordinate system as defined in Section 3, centered at xj . In these coordinates the

leading order approximation of Ah reads

(4.53a) Aj,h = −ε
3c4

α3
∆+ i(cj.(t, s) + V (xj)− V (x0)) , cj = (c1j , c

2
j ) = ∇V (xj) ,

with the following domain

(4.53b) D(Aj,h) = H1
0 (R

2
+;C) ∩H2(R2

+;C) ∩ L2(R2
+, (t

2 + s2)dtds;C) .

In the following we provide resolvent estimates on the approximate operators Aj,h

introduced above. These estimates are stated in the following lemma

Lemma 4.10. There exists r0 > 0 such that, for all r ∈ (0, r0) and j ∈ J ,

∂B(Λ0, rε
−1/2) ⊂ ρ(Aj,h), where Λ0 is given by (4.30). Moreover, there exists C > 0

such that for all λ∗ ∈ ∂B(Λ0, rε
−1/2) and for all j ∈ JΩ ∪ J2

∂Ω,

(4.54) ‖(Aj,h − λ∗)−1‖2 ≤
C

ε
.

Proof. Let j ∈ JΩ. Recall that the operator Aj,h is given in this case by (4.53). It

has been established in [3, 9] that Aj,h has empty spectrum, and for all ω ∈ R there

exists Cω > 0 such that

(4.55) sup
Re z≤ω

∥

∥(−∆+ icj .x− z)−1
∥

∥ ≤ Cω .

Since the scale change x 7→ α/(εc4/3)x gives

(4.56)

‖(Aj,h − λ∗)−1‖ =
α

εc4/3

∥

∥

∥

∥

(

−∆+ i
[ α

εc4/3
(

V (xj)− V (x0)
)

+ cj.x
]

− α

εc4/3
λ∗
)−1
∥

∥

∥

∥

.

and since α/(εc4/3)λ∗ remains bounded as ε→ 0, (4.55) and (4.56) easily yield (4.54)

for any j ∈ JΩ.

The same argument can be used in the case where j ∈ J2
∂Ω with xj /∈ ∂Ω⊥, since

the operator −∆+ ic1j t+ ic
2
js on R2

+ has empty spectrum and satisfies (4.55) as well

as soon as c2j 6= 0, see Theorem A.3.

We next consider the case where j ∈ J2
∂Ω and xj ∈ ∂Ω⊥. Then,

Aj,h = −ε
3c4

α3
∆+ i

(

cjt + V (xj)− V (x0)
)
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where cj := c1j . The domain D(Aj,h) is given by ((4.53)b). Suppose that cj > 0

(otherwise apply the same argument to the operator A∗
j,h). Denote by A⊥

0 the

Dirichlet realization on R2
+ of the operator −∆+ it. Then, the scale change

(t, s) 7−→
αc

1/3
j

εc4/3
(t, s)

gives

(4.57) ‖(Aj,h − λ∗)−1‖ =
αc

1/3
j

εc4/3

∥

∥

∥

∥

∥

(

A⊥
0 + i

αc
1/3
j

εc4/3
(

V (xj)− V (x0)
)

−
αc

1/3
j

εc4/3
λ∗
)−1

∥

∥

∥

∥

∥

.

By the definition of J2
∂Ω, we have cj < c. Hence for any fixed δ0 ∈ (0, 1) we have

αc
1/3
j

εc4/3
λ∗ =

(

c

cj

)2/3

λ0 +O(ε1/2) ≤ (1− δ0)λ0

for all sufficiently small ε. It has been established in [9] that

sup
Re z≤(1−δ0)λ0

‖(A⊥
0 − z)−1‖ < +∞ .

Consequently, (4.54) follows from (4.57) and the above estimate.

We now extend (4.51) to the general case

Proposition 4.11. Let ε1/8 ≪ r < 1. Under the assumptions of Theorem 1.1,

(4.51) holds for any f ∈ L∞(Ω,C) satisfying (4.17), and λ∗ ∈ ∂B(Λ0, rε
−1/2).

Proof. Let w = (Ah − λ∗)−1f . Let j ∈ J2
∂Ω ∪ JΩ. Clearly

(4.58) (Aj,h − λ∗)(χjw) = [Ah, χj ]w − (Ah −Aj,h)(χjw) .

We now attempt to estimate the right-hand-side of (4.58). Clearly,

(4.59) ‖[Ah, χj ]w‖2 ≤ Cε−2ρ‖w‖L2(B(xj ,ερ)) + Cε−ρ‖∇(χjw)‖2 .
As

Re 〈χ2
jw, (Ah − λ∗)w〉 = ‖∇(χjw)‖22 − λ∗‖χjw‖22 − ‖w∇χj‖22 = 0 ,

we obtain that

(4.60) ‖∇(χjw)‖2 ≤ Cε−1‖w‖L2(B(xj ,ερ)) ,

which, when substituted into (4.59) yields

(4.61) ‖[Ah, χj ]w‖2 ≤ Cε−(1+ρ)‖w‖L2(B(xj ,ερ)) .

We now attempt to estimate (Ah −Aj,h)(χjw). By (4.53) and (4.52) we have that

Ah −Aj,h = i
α3

ε3c4
(

V (x)− V (xj)− cj.(x− xj)
)

.

Consequently,

‖(Ah −Aj,h)(χjw)‖2 ≤ Cε−3+2ρ‖w‖L2(B(xj ,ερ)) .
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Combining the above with (4.61), (4.58), and (4.54) yields

(4.62) ‖χjw‖2 ≤ Cε2ρ−1‖w‖L2(B(xj ,ερ)) .

Consider next the case where j ∈ J3
∂Ω. Here we have

Im 〈χ2
jw, (Ah−λ∗)w〉 =

α3cj
ε3c4

‖|V (·)−V (x0)|1/2χjw‖22−Im λ∗‖χjw‖22+2Im 〈w∇χj, χj∇w〉 = 0 .

By (1.3), there exists δ1 > 0 such that |V (xj)− V (x0)| > δ1. Consequently,

‖χjw‖22 ≤ C[ε‖χjw‖22 + ε3‖w∇χj‖2‖χj∇w‖2] .
With the aid of (4.60), which is valid for every j ∈ J , we then obtain

(4.63) ‖χjw‖2 ≤ Cε1−ρ/2‖w‖L2(B(xj ,ερ)) .

Combining (4.63) and (4.62) then yields

(4.64) ‖w‖
L2
(

Ω\
⋃

j∈JS

B(xj ,δ)
) ≤ Cε1−ρ/2

∑

j∈JΩ∪J
2
∂Ω

‖w‖L2(B(xj ,ερ)) ≤ Cε1−ρ/2‖w‖2 .

We conclude the proof by recalling that for all j ∈ JS we have, by (4.50)

(4.65) ‖ζ∗jw‖2 ≤
C

r
(ε3/2‖f‖2 + ε1/8‖w‖2) .

Furthermore, let

ζ̃∗j
2
+ (ζ∗j )

2 = 1B(xj ,δ) .

Then, by (4.21a)

‖ζ̃∗jw‖22 ≤ ‖χ̃+
ε,nw‖22 + ‖χ̃−

ε,nw‖22 ≤ Cn(ε
nρ−1‖w‖2 + e−cε−

3
2 (1−ρ)‖f‖2) .

which, together with (4.65) and (4.64) yields (4.17).

Proof of Theorem 1.1. Let U be given by (3.23) and Λ0 be given by (4.30). Let

f = (Ah −Λ0)(ηε1/2U). Then, for λ
∗ ∈ ∂B(Λ0, rε

−1/2) ⊂ ρ(Ah) where ε
1/8 ≪ r < 1,

(Ah − λ∗)(ηε1/2U) = f + (Λ0 − λ)ηε1/2U .

Hence

〈ηε1/2U, (Ah − λ∗)−1(ηε1/2U)〉 = − 1

λ− Λ0
[1− 〈ηε1/2U, (Ah − λ)−1f〉]

By (4.51) and (3.26) we then obtain that

‖(Ah − λ)−1f‖2 ≤ C
ε−3/2

r
‖f‖2 ≤ C

ε1/2

r
≤ Cε1/4 .

Consequently

1

2πi

∮

∂B(Λ0,rε−3/2)

〈ηε1/2U, (Ah − λ)−1(ηε1/2U)〉 ≤ −1 + Cε1/4 .

Hence (Ah − λ)−1 is not holomorphic in B(Λ0, rε
−3/2) and the Theorem is proved

via (3.9).
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Appendix A. Spectral analysis of (4.53))

In the following we provide the spectrum, semigroup estimates, and resolvent

estimates for the operator Aj,h given by (4.53). This operator has already been

investigated in [3, 9], but since resolvent estimates have not been obtained there we

derive them here.

Let c = (c1, c2) ∈ R2 such that c2 6= 0. We study here the spectrum and the

resolvent of the Dirichlet realization in R2
+ = {(t, s) ∈ R2 : t > 0} of−∆+i(c1t+c2s) ,

whose domain is given by (4.53b). The imaginary part of the potential

ℓ(t, s) = c · (t, s)
does not have a constant sign, hence we are unable to use the variational approach to

define the operator. We shall instead define the operator by separation of variables.

Let

(A.1) As = −∂2s + ic2s ,

and let A+
t be the Dirichlet realization in R+ of the complex Airy operator

(A.2) − d2

dt2
+ ic1t .

Both As and A+
t are maximally accretive and hence they serve as generators of

contraction semigroups (e−tAs)t>0 and (e−tA+
t )t>0 respectively. One can easily verify

that the family (e−tAs ⊗ e−tA+
t )t>0 is a contraction semigroup on L2(R2

+) . Thus, we

can define the desired operator as follows:

Definition A.1. A+ is the generator of the semigroup (e−tAs ⊗ e−tA+
t )t>0 .

Let D = D(As)⊗D(A+
t ) be the set of all finite linear combinations of functions

of the form f⊗g = f(s)g(t), where f ∈ D(As) and g ∈ D(A+
t ). Then it is clear that

D satisfies the conditions of [11, Theorem X.49], hence A+ = A+|D . Consequently,

we may chacterize D(A+) as follows:

D(A+) = {u ∈ L2(R2
+) : ∃(uj)j≥1 ⊂ D , uj

L2

−→
j→+∞

u ,

(A+uj)j≥1 is a Cauchy sequence } .(A.3)

In the following lemma we give a more constructive description of D(A+).

Lemma A.2. We have

(A.4) D(A+) = H1
0 (R

2
+) ∩H2(R2

+) ∩ L2(R2
+; |ℓ(t, s)|2dtds) ,

and there exists C > 0 such that, for all u ∈ D(A+) ,

(A.5) ‖∆u‖2L2(R2
+) + ‖ℓu‖2L2(R2

+) ≤ ‖A+u‖2L2(R2
+) + C‖∇u‖L2(R2

+)‖u‖L2(R2
+) .

Proof: Let u ∈ D(A+) and (uj)j≥1 ⊂ D such that uj
L2

−→
j→+∞

u and (A+uj)j≥1 is

a Cauchy sequence. Then, using the identity

Re 〈A+uj, uj〉 = ‖∇uj‖2L2(R2
+) ,
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which holds for every j ∈ N, we obtain that (∇uj)j≥1 is a Cauchy sequence in

L2(R2
+) and hence

(A.6) uj
H1

−→
j→+∞

u ,

and u ∈ H1
0 (R

2
+) .

To prove (A.5), we write (hereafter ‖ · ‖ denotes the L2(R2
+,C) norm)

‖A+uj‖2 = 〈(−∆+ iℓ)uj, (−∆+ iℓ)uj〉
= ‖∆uj‖2 + ‖ℓuj‖2 + 2Im 〈−∆uj , ℓuj〉 .(A.7)

As

Im 〈−∆uj, ℓuj〉 = Im

∫

R2
+

∇uj(t, s) · ∇(ℓuj)(t, s)dtds

= Im

(

∫

R2
+

ℓ(t, s)|∇uj(t, s)|2dtds+
∫

R2
+

∇uj(t, s) · ∇ℓ(t, s)uj(t, s)dtds
)

= Im

∫

R2
+

c · ∇uj(t, s)uj(t, s)dtds ,

it follows that for some C > 0 ,

|Im 〈−∆uj, ℓuj〉| ≤ C ‖∇uj‖ ‖uj‖ .
Thus, by (A.7), (A.5) holds for uj for all j ∈ N. Consequently, (uj)j≥1 is a Cauchy

sequence in H2(R2
+) and in L2(R2

+; |ℓ(t, s)|2dtds). Hence, (A.4) follows, and so does

(A.5) for every u ∈ D(A+) . ⊟

We now obtain the spectrum of A+ . Since As has an empty spectrum (see [3, 9]),

we expect σ(A+) to be empty as well [3]. To establish this fact we employ semigroup

estimates.

Theorem A.3. We have σ(A+) = ∅ . Moreover, for every ω ∈ R , there exists

Cω > 0 such that

(A.8) sup
Re z≤ω

‖(A+ − z)−1‖ ≤ Cω .

Finally, the semigroup generated by A+ satisfies

(A.9) ∀t > 0, ‖e−tA+‖ ≤ e−t3/12 .

Proof: Recall that e−tA+ = e−tAs ⊗ e−tA+
t , where As and A+

t are respectively

defined by (A.1) and (A.2). Recall further the following estimates (see [9]):

(A.10) ∀t > 0 , ‖e−tAs‖ = e−t3/12 ,

and for all ω < |µ1|/2 (µ1 being the rightmost zero of Airy’s function), there exists

Mω > 0 such that

(A.11) ∀t > 0 , ‖e−tA+
t ‖ ≤Mω e

−ωt .
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Thus, (A.9) follows, and the formula

(A.12) (A+ − z)−1 =

∫ +∞

0

e−t(A+−z)dt ,

which holds a priori for Re z < 0 , can be extended to the entire complex plane.

Hence the resolvent of A+ is an entire function, and we must have σ(A+) = ∅
together with (A.8) . �
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