SPECTRAL ANALYSIS OF A COMPLEX SCHRÖDINGER OPERATOR IN THE SEMICLASSICAL LIMIT

YANIV ALMOG AND RAPHAËL HENRY

ABSTRACT. We consider the Dirichlet realization of the operator $-h^2\Delta + iV$ in the semi-classical limit $h \to 0$, where V is a smooth real potential with no critical points. For a one dimensional setting, we obtain the complete asymptotic expansion, in powers of h , of each eigenvalue. In two dimensions we obtain the left margin of the spectrum, under some additional assumptions.

1. INTRODUCTION

We consider the operator

(1.1a)
$$
\mathcal{A}_h = -h^2 \Delta + iV,
$$

defined on

(1.1b)
$$
D(\mathcal{A}_h) = H_0^1(\Omega, \mathbb{C}) \cap H^2(\Omega, \mathbb{C}),
$$

where Ω is a bounded domain in \mathbb{R}^2 .

We seek an approximation for inf $\text{Re}\,\sigma(\mathcal{A}_h)$ in the limit $h \to 0$. The domain Ω is smooth, i.e., $\partial\Omega \subset C^3$ and the potential V is at least in $C^3(\overline{\Omega}, \mathbb{R})$. Let $\partial\Omega_{\perp}$ denote a subset of $\partial\Omega$ where $\nabla V \perp \partial\Omega$. Note that in view of the continuity of V on $\partial\Omega$, we must have $\partial\Omega_{\perp}\neq\emptyset$. Let $x_0\in\partial\Omega_{\perp}$ satisfy

$$
c_m = |\nabla V(x_0)| = \min_{x \in \partial \Omega_\perp} |\nabla V(x)|.
$$

Denote by S the set

$$
(1.2) \qquad \mathcal{S} = \{x \in \partial \Omega_{\perp} : |\nabla V(x)| = |\nabla V(x_0)|, V(x) = V(x_0)\}.
$$

(Note that in the case where x_0 is not unique, S depends on the choice of x_0 .) For every $x \in \mathcal{S}$ set

$$
c(x) = \nabla V(x) \cdot \nu(x) = \pm c_m,
$$

and

$$
\alpha(x) = t \cdot D^2 V(x) t - \kappa(x) \frac{\partial V}{\partial \nu}(x) \quad t \cdot \nu(x) = 0 \,, \ |t| = 1 \,,
$$

where ν is the outward normal and κ denotes the local curvature. (Note that $\alpha = \frac{\partial^2 V}{\partial s^2}$ where s is the arclength on $\partial \Omega$.) We now assume that

(1.3)
$$
\alpha(x)c(x) > 0 \quad \forall x \in S.
$$

Without any loss of generality we may then assume $\alpha(x) > 0$ in S, otherwise we may consider $\bar{\mathcal{A}}_h$ instead of \mathcal{A}_h .

The spectral analysis of [\(1.1\)](#page-0-0) has several applications in Mathematical Physics, among them are the Orr-Sommerfeld equations in fluid dynamics [\[12\]](#page-32-0), the Ginzburg-Landau equation in the presence of electric current (when magnetic field effects are neglected), and the null controllability of Kolomogorov type equations [\[6\]](#page-32-1). In [\[3,](#page-32-2) [10\]](#page-32-3) it has been established that

(1.4)
$$
\liminf_{h \to 0} h^{-2/3} \inf \text{Re}\,\sigma(\mathcal{A}_h) \ge \frac{|\mu_1|}{2} c_m^{2/3},
$$

where μ_1 is the rightmost zero of Airy's function [\[1\]](#page-32-4).

We note that [\(1.4\)](#page-1-0) has been obtained without the need to assume [\(1.3\)](#page-0-1). In the present contribution we seek an upper bound for inf $\text{Re}\,\sigma(\mathcal{A}_h)$. It is to this end that we make that additional assumption. Our main result is the following

Theorem 1.1. Let A_h denote the Dirichlet realization of a Schrödinger operator with a purely imaginary potential $V \in C^3(\Omega, \mathbb{R})$, satisfying $\nabla V \neq 0$ in $\overline{\Omega}$, given by [\(1.1\)](#page-0-0). Suppose that V satisfies [\(1.3\)](#page-0-1). Then, there exists $\lambda(h) \in \sigma(\mathcal{A}_h)$ satisfying

(1.5)
$$
\left|\lambda - iV(x_0) - e^{i\pi/3}|\mu_1|(c_m h)^{2/3} - \sqrt{2\alpha}e^{i\frac{\pi}{4}}h\right| \sim o(h) \quad \text{as } h \to 0,
$$

where $\alpha = \alpha(x_0)$.

An immediate corollary follows

Corollary 1.2. Under the above assumptions we have that

(1.6)
$$
\lim_{h \to 0} h^{-2/3} \inf \text{Re}\,\sigma(\mathcal{A}_h) = \frac{|\mu_1|}{2} c_m^{2/3},
$$

Remark 1.3. While we do not prove that here, it appears that (1.6) can be extended to higher dimensions. Let $D_{\parallel}^2 V$ denote the Hessian matrix of V with respect to a local curvilinear coordinate system defined on ∂Ω (including, of course, curvature effects). Suppose that $D_{\parallel}^2 V(x)$ is either positive or negative. Then, we set α in the following manner

$$
\alpha(x) = \text{sign}\left(D_{\parallel}^{2}V(x)\right) \inf_{\substack{t \cdot \nu(x) = 0 \\ |t| = 1}} |t \cdot D_{\parallel}^{2}V(x)t|,
$$

and assume [\(1.3\)](#page-0-1) once again.

Remark 1.4. Let \mathcal{A}_h^N denote the Neumann realization of \mathcal{A}_h . By using the same techniques as in the sequel, one can obtain an upper bound for $\inf \text{Re}\,\sigma(\mathcal{A}_h^N)$. In this case, μ_1 will be replaced by the rightmost critical point Airy's function.

Finally, we note that it has been established in [\[10\]](#page-32-3) that for all $\epsilon > 0$ there exist positive M_{ϵ} and h_{ϵ} such that for all $h \in (0, h_{\epsilon})$ we have the following upper bound for the semigroup assciated with $-\mathcal{A}_h$,

$$
||e^{-tA_h}|| \leq M_{\epsilon} \exp\{-(c_m^{2/3}|\mu_1|/2 - \epsilon)h^{2/3}t\}.
$$

From [\(1.5\)](#page-1-2) we can now establish that for some positive M, C and h_0 the following lower bound for the semigroup holds for all $h \in (0, h_0)$

$$
||e^{-tA_h}|| \ge M \exp \left\{ -c_m^{2/3} \frac{|\mu_1|}{2} h^{2/3} (1 + Ch^{1/3}) t \right\}.
$$

The rest of this contribution is arranged as follows: in the next section we consider a one-dimensional version of [\(1.1\)](#page-0-0). Assuming that $V \in C^{\infty}([0, a], \mathbb{R})$ we obtain the complete asymptotic expansion, as $h \to 0$, of any eigenvalue $\lambda_k \in \sigma(\mathcal{A}_h)$ (k is fixed in the limit). In Section [3](#page-11-0) we construct the quasimode associated with the eigenvalue given in [\(1.5\)](#page-1-2), and in the last section provide a rigorous proof of Theorem [1.1.](#page-1-3)

2. The one-dimensional case

2.1. Statement of the results. Let $a > 0$ and $V \in C^{\infty}([0, a]; \mathbb{R})$ such that V has no critical point in $[0, a]$. Consider then the one-dimensional Schrödinger operator \mathcal{A}_h defined on $(0, a)$ by

$$
\mathcal{A}_h = -h^2 \frac{d^2}{dx^2} + i(V - V(0)),
$$

with domain

$$
D(\mathcal{A}_h) = H_0^1([0,a],\mathbb{C}) \cap H^2([0,a],\mathbb{C}).
$$

The main result we prove in this section is the following:

Theorem 2.1. Assume that, for all $x \in [0, a]$, $V'(x) \neq 0$. Then, for all $n \geq 1$, there exists a complex sequence $(\alpha_{j,n})_{j\geq 1}$ and an eigenvalue $\lambda_n(h) \in \sigma(\mathcal{A}_h)$ such that, as $h \to 0$,

$$
(2.1) \t\t\t h^{-2/3}\lambda_n(h) \underset{h \to 0}{\sim} e^{\sigma i\pi/3} |V'(0)|^{2/3} |\mu_n| + \sum_{j=1}^{+\infty} \alpha_{j,n} h^{2j/3} + \mathcal{O}(h^{\infty}),
$$

where σ is the (constant) sign of the function V' .

Similarly, one could also prove the existence of another sequence $(\nu_n(h))_{n>1}$ of eigenvalues satisfying an asymptotic expansion of the form (2.2)

$$
\nu_n(h) \sum_{h \to 0} i \big(V(a) - V(0) - a \big) + e^{\sigma i \pi/3} |V'(a)|^{2/3} |\mu_n|h^{2/3} + \sum_{j=1}^{+\infty} \beta_{j,n} h^{2(j+1)/3} + \mathcal{O}(h^{\infty})
$$

by applying the transformation $x \to a - x$. Similar results have previously been obtained in the particular cases $V(x) = x$ and $V(x) = x^2$, see [\[12\]](#page-32-0) and [\[6\]](#page-32-1).

Remark 2.2. Theorem [2.1](#page-2-0) esablishes existence of two sequences of eigenvalues of \mathcal{A}_h , respectively obeying [\(2.1\)](#page-2-1) and [\(2.2\)](#page-2-2). The fact that these sequences constitute the entire spectrum of A_h for $\text{Re }\lambda \leq Mh^{2/3}$ for any positive M follows from [\[10,](#page-32-3) Proposition 6.1].

Let $\varepsilon = h^{2/3}$. It is more convenient to obtain the spectrum of \mathcal{A}_h by first applying the dilation operator $U: L^2(0, a) \to L^2(0, a/\varepsilon)$ defined by

$$
(Uu)(\cdot/\varepsilon)=u(\cdot).
$$

Let

$$
V_{\varepsilon}(x) = \frac{V(\varepsilon x)}{\varepsilon}.
$$

Then by applying the above dilation we obtain

(2.3)
$$
\frac{1}{\varepsilon}U^{-1}\mathcal{A}_h U = \mathcal{A}_\varepsilon = -\frac{d^2}{dx^2} + i\left(V_\varepsilon - \frac{V(0)}{\varepsilon}\right),
$$

defined on

$$
D(\mathcal{A}_{\varepsilon}) = (H_0^1 \cap H^2) ((0, a/\varepsilon), \mathbb{C}).
$$

2.2. Quasimode construction. In the following we construct quasimodes and approximate eigenvalues for $\mathcal{A}_{\varepsilon}$ in the neighborhood of the boundary point $x = 0$. In particular, we obtain the asymptotic expansion [\(2.1\)](#page-2-1) for each approximate eigenvalue.

Proposition 2.3. Assume that, for all $x \in [0, a]$, $V'(x) \neq 0$. Let $n \geq 1$ and σ denote the sign of V'. Then there exists $\psi_{\varepsilon} \in \mathcal{D}(\mathcal{A}_{\varepsilon})$ and a complex sequence $(\nu_j)_{j \geq 2}$ such that

(2.4)
$$
\|(\mathcal{A}_{\varepsilon}-\nu(\varepsilon))\psi_{\varepsilon}\|=\mathcal{O}(\varepsilon^{\infty})\|\psi_{\varepsilon}\|,
$$

where

(2.5)
$$
\nu(\varepsilon) = e^{\sigma i \pi/3} |V'(0)|^{2/3} |\mu_n| + \sum_{j=1}^{+\infty} \nu_j \varepsilon^j + \mathcal{O}(\varepsilon^{\infty})
$$

 $as \varepsilon \to 0$.

Proof. We approximate A_{ε} at any order N by the operator

$$
A_N(\varepsilon) = A_0 + \sum_{j=1}^N V_j \varepsilon^j \text{ on } (0, +\infty),
$$

where

$$
A_0 = -\frac{d^2}{dx^2} + i\beta_0 x , \quad \beta_0 = V'(0) ,
$$

$$
V_j = i\beta_j x^{j+1} , \quad \beta_j = \frac{V^{(j+1)}(0)}{(j+1)!} , \quad j \in \mathbb{N} .
$$

Then, for all $N \geq 1$, we look for a quasimode $u^N(x, \varepsilon)$ and an approximate eigenvalue $\lambda^N(\varepsilon)$ in the form

(2.6)
$$
u^N(x,\varepsilon) = \sum_{j=0}^N u_j(x)\varepsilon^j, \ \lambda^N(\varepsilon) = \sum_{j=0}^N \lambda_j \varepsilon^j,
$$

satisfying

$$
\left(A_0 + \sum_{j=1}^N V_j \varepsilon^j\right) u^N(x, \varepsilon) = \lambda^N(\varepsilon) u^N(x, \varepsilon) + \mathcal{O}(\varepsilon^{N+1}).
$$

To this end, we need to successively solve the following equations:

$$
(A_0 - \lambda_0)u_0 = 0, (A_0 - \lambda_0)u_1 = -(V_1 - \lambda_1)u_0, \vdots
$$

 (2.7)

(2.8)
$$
(A_0 - \lambda_0)u_k = -\sum_{j=1}^k (V_j - \lambda_j)u_{k-j}, \ k = 1, ..., N.
$$

Consider the first equation. If $\beta_0 > 0$, we can use the scale change $x \mapsto \beta_0^{1/3} x$ and the well-known properties of the complex Airy operator [\[3\]](#page-32-2) to obtain

$$
\sigma(A_0) = \left\{ \beta_0^{1/3} \mu_n e^{-2i\pi/3} : n \in \mathbb{N} \right\},\
$$

where μ_n denotes the *n*-th zero of the Airy function Ai . The associated eigenfunctions are

$$
x \mapsto Ai(\beta_0^{1/3} e^{i\pi/6} x + \mu_n).
$$

If $\beta_0 < 0$, then the operator A_0 is the adjoint of $-\frac{d^2}{dx^2} + i|\beta_0|x$. Hence,

$$
\sigma(A_0) = \left\{ |\beta_0|^{1/3} \mu_n e^{+2i\pi/3} : n \in \mathbb{N} \right\},\
$$

and the eigenfunctions are given by

$$
x \mapsto \overline{Ai(\beta_0^{1/3}e^{i\pi/6}x + \mu_n)}.
$$

Therefore, for any fixed $n \in \mathbb{N}$, we choose

(2.9)
$$
\lambda_0 = \lambda_{0,n} = |\beta_0|^{1/3} \mu_n e^{\sigma 2i\pi/3},
$$

and $u_0 = u_{0,n}$ to be a corresponding eigenfunction.

Next, consider the second equation. To ensure the existence of a u_1 , we first select λ_1 such that

$$
(V_1 - \lambda_1)u_0 \in \operatorname{Im}(A_0 - \lambda_0) = \ker(A_0^* - \bar{\lambda}_0)^{\perp}.
$$

Since $\ker(A_0^* - \bar{\lambda}_0) = \langle \bar{u}_0 \rangle$ we may conclude that

(2.10)
$$
\lambda_1 \int_{\mathbb{R}_+} u_0(x)^2 dx = i \beta_1 \int_{\mathbb{R}_+} x^2 u_0(x)^2 dx.
$$

Furthermore, as $u_0(x) = Ai(\beta_0^{1/3})$ $e^{i\pi/6}x+\mu_n$) (respectively $u_0(x) = Ai(\beta_0^{1/3})$ $\int_0^{1/3} e^{i\pi/6} x + \mu_n)$ for $\beta_0 > 0$ (respectively $\beta_0 < 0$), Cauchy Theorem and the decay of Ai in the sector $\{|\arg z| \leq \pi/3\}$ immediately yields

$$
\int_{\mathbb{R}_+} u_0(x)^2 dx = e^{-i\pi/6} \int_{\mathbb{R}_+} Ai^2(\beta_0^{1/3} x + \mu_n) dx \neq 0.
$$

Thus, we may select

(2.11)
$$
\lambda_1 = i\beta_1 \frac{\int_{\mathbb{R}_+} x^2 u_0(x)^2 dx}{\int_{\mathbb{R}_+} u_0(x)^2 dx} = i\beta_1 e^{-i\pi/3} \frac{\int_{\mathbb{R}_+} x^2 Ai^2(\beta_0^{1/3} x + \mu_n) dx}{\int_{\mathbb{R}_+} Ai^2(\beta_0^{1/3} x + \mu_n) dx},
$$

and there exists $u_1 \in D(A_0)$ such that

$$
(A_0 - \lambda_0)u_1 = -V_1u_0.
$$

Assuming that the first k equations are solved by $\lambda_0, \ldots, \lambda_{k-1}, u_0, \ldots, u_{k-1}$, we have to choose such λ_k so that a solution u_k to the $(k+1)$ -th equation exists. It easily follows that the solvability condition is

$$
-\sum_{j=1}^{k} (V_j - \lambda_j) u_{k-j} \in \ker(A_0^* - \bar{\lambda}_0)^{\perp},
$$

yielding

(2.12)
\n
$$
\lambda_k = \frac{1}{\int_{\mathbb{R}_+} u_0(x)^2 dx} \left(\sum_{j=1}^{k-1} \int_{\mathbb{R}_+} (i\beta_j x^{j+1} - \lambda_j) u_{k-j}(x) u_0(x) dx + i\beta_k \int_{\mathbb{R}_+} x^{k+1} u_0(x)^2 dx \right).
$$

For this value of λ_k , there exists $u_k \in \mathcal{D}(A_0)$ satisfying [\(2.8\)](#page-4-0). Invoking inductive arguments, we assume that each function u_0, \ldots, u_{k-1} is in $\mathcal{S}(\mathbb{R}_+)$. Then, it easily follows that $u_k \in \mathcal{S}(\mathbb{R}_+)$. We can then set $u(x,\varepsilon)$ and $\lambda(\varepsilon)$ to be some appropriate Borel sums of the formal series $\sum u_j(x) \varepsilon^j$ and $\sum \lambda_j \varepsilon^j$, respectively.

We now construct from $u(\cdot,\varepsilon)$ a quasimode satisfying the desired boundary conditions. Let $c_0 > 0$ and $\chi \in C_0^{\infty}((-c_0, c_0); [0, 1])$ be such that $\chi(y) = 1$ for all $y \in [-c_0/2, c_0/2]$, and such that χ', χ'' are bounded. We set

$$
\chi_{\varepsilon}(x) = \chi(\varepsilon^{1-\rho}x).
$$

Then, for $p = 1, 2$, we have

(2.13)
$$
\mathbb{R}_+ \cap \text{Supp }\chi_{\varepsilon}^{(p)} \subset [c_0 \varepsilon^{\rho-1}/2, c_0 \varepsilon^{\rho-1}],
$$

and

(2.14)
$$
\sup_{x \in \mathbb{R}} |\chi_{\varepsilon}^{(p)}(x)| = \mathcal{O}(\varepsilon^{p(1-\rho)})
$$

We next define

$$
\psi_{\varepsilon}(x) = \mathbf{1}_{\mathbb{R}_+}(x)\chi_{\varepsilon}(x)u(x,\varepsilon).
$$

.

Then, we write

$$
\mathcal{A}_{\varepsilon} = A_0 + \sum_{j=1}^N V_j(x) \varepsilon^j + \frac{1}{\varepsilon} R_{N+1}(\varepsilon, x) ,
$$

where R_{N+1} denotes the remainder term in the $(N+1)$ -th order Taylor expansion of V near $x = 0$ (so that $\varepsilon^{-1} R_{N+1}(\varepsilon x)$ is of order $\mathcal{O}(\varepsilon^{N+1})$). Then, we have

(2.15)
$$
(\mathcal{A}_{\varepsilon} - \lambda(\varepsilon))\psi_{\varepsilon} = \chi_{\varepsilon}(\mathcal{A}_{\varepsilon} - \lambda(\varepsilon))u(\cdot,\varepsilon) + [\mathcal{A}_{\varepsilon},\chi_{\varepsilon}]u(\cdot,\varepsilon).
$$

We seek an estimate for both terms on the right-hand side. Consider the first term, for which we have

(2.16)

$$
\left\|\chi_{\varepsilon}\big(\mathcal{A}_{\varepsilon}-\lambda(\varepsilon)\big)u(\cdot,\varepsilon)\right\|\leq\left\|\left(A_0+\sum_{j=1}^NV_j\varepsilon^j-\lambda(\varepsilon)\right)u(\cdot,\varepsilon)\right\|+\left\|\varepsilon^{-1}R_{N+1}(\varepsilon,\cdot)u(\cdot,\varepsilon)\right\|.
$$

By the construction of u and λ , the first term on the right-hand side is of order $\mathcal{O}(\varepsilon^{N+1})$. Furthermore, there exists $c_N > 0$ such that

(2.17)
$$
\left\|\varepsilon^{-1}R_{N+1}(\varepsilon \cdot)u(\cdot,\varepsilon)\right\| \leq c_N \varepsilon^{N+1} \|x^{N+2}u(\cdot,\varepsilon)\| = \mathcal{O}(\varepsilon^{N+1}),
$$

where we made use of the fact that $u(\cdot,\varepsilon) \in \mathcal{S}(\mathbb{R})$. Therefore, there exists $K_N > 0$ such that

(2.18)
$$
\|\chi_{\varepsilon}(\mathcal{A}_{\varepsilon}-\lambda(\varepsilon))u(\cdot,\varepsilon)\| \leq K_N \varepsilon^{N+1}.
$$

Consider, next, the commutator term in [\(2.15\)](#page-6-0). Since $u(\cdot,\varepsilon) \in \mathcal{S}(\mathbb{R})$, [\(2.13\)](#page-5-0) and [\(2.14\)](#page-5-1) yield

(2.19)
$$
\|[\mathcal{A}_{\varepsilon}, \chi_{\varepsilon}]u(\cdot, \varepsilon)\| \leq 2\|\chi_{\varepsilon}'\partial_x u(\cdot, \varepsilon)\| + \|\chi_{\varepsilon}''u(\cdot, x)\| = \mathcal{O}(\varepsilon^{\infty})\|\psi_{\varepsilon}\|.
$$

Finally, by (2.15) , (2.18) and (2.19) , we have

$$
\left\|\left(\mathcal{A}_{\varepsilon}-\lambda(\varepsilon)\right)\psi_{\varepsilon}\right\|=\mathcal{O}(\varepsilon^{\infty})\|\psi_{\varepsilon}\|.
$$

П

2.3. Proof of Theorem [2.1.](#page-2-0) Once the quasimodes associated with the approximate eigenvalues [\(2.1\)](#page-2-1) have been found, it remains necessary to prove that such eigenvalues indeed exist in $\sigma(\mathcal{A}_h)$.

Lemma 2.4. Let $n \in \mathbb{N}$ and λ_n be given by the expansion [\(2.1\)](#page-2-1). Let $\lambda = \lambda_n + re^{i\theta}$ where $\theta \in [0, 2\pi)$. Then for $\alpha \in (1, 4/3)$, there exist $\delta > 0$, $\varepsilon_0 > 0$ and $C > 0$ such that for any $\varepsilon \in (0, \varepsilon_0)$ and r satisfying $\varepsilon^{\alpha} < r < \delta$, we have

(2.20)
$$
\|(\mathcal{A}_{\varepsilon}-\lambda)^{-1}\| \leq \frac{C}{r}.
$$

Proof. Let $f \in L^2(0, a/\varepsilon)$ and $u \in D(\mathcal{A}_{\varepsilon})$ satisfy

(2.21) (A^ε − λ)u = f .

Let $\tilde{\chi}_{\varepsilon}$ satisfy

$$
\chi^2_{\varepsilon} + \tilde{\chi}^2_{\varepsilon} = 1
$$

and

(2.22)
$$
\sup_{x \in \mathbb{R}} |\nabla \tilde{\chi}_{\varepsilon}(x)| = \mathcal{O}(\varepsilon^{(1-\rho)}).
$$

Taking the inner product in $L^2(0, a/\varepsilon)$ of (2.21) with $\tilde{\chi}^2_{\varepsilon}u$ we obtain from the real part

$$
\|\nabla(\tilde{\chi}_{\varepsilon} u)\|_2^2 = \text{Re}\left\langle \tilde{\chi}_{\varepsilon} u, \tilde{\chi}_{\varepsilon} f \right\rangle + \|u\nabla \tilde{\chi}_{\varepsilon}\|_2^2 + \text{Re}\,\lambda \|\tilde{\chi}_{\varepsilon} u\|_2^2.
$$

Hence,

(2.23)
$$
\|\nabla(\tilde{\chi}_{\varepsilon} u)\|_2 \leq C \big(\varepsilon^{-(1-\rho)} \|\tilde{\chi}_{\varepsilon} f\|_2 + \|\tilde{\chi}_{\varepsilon} u\|_2 + \varepsilon^{1-\rho} \|u\|_2 \big).
$$

From the imaginary part of the above inner product we obtain that

$$
\langle \tilde{\chi}_{\varepsilon}(V_{\varepsilon}-\varepsilon^{-1}V(0))u, \tilde{\chi}_{\varepsilon}u \rangle = \text{Im}\,\langle \tilde{\chi}_{\varepsilon}u, \tilde{\chi}_{\varepsilon}f \rangle + \text{Im}\,\langle \nabla(\tilde{\chi}_{\varepsilon}u), u\nabla \tilde{\chi}_{\varepsilon} \rangle + \text{Im}\,\lambda \|\tilde{\chi}_{\varepsilon}u\|_{2}^{2}.
$$

Since

$$
\min_{x \in (0, a/\varepsilon)} |\tilde{\chi}_{\varepsilon}(V_{\varepsilon} - \varepsilon^{-1} V(0))| \ge C \varepsilon^{\rho - 1},
$$

We obtain that

$$
\|\tilde{\chi}_{\varepsilon}u\|_{2}^{2} \leq C\varepsilon^{1-\rho}\big[\|\tilde{\chi}_{\varepsilon}u\|_{2}^{2} + \|\tilde{\chi}_{\varepsilon}f\|_{2}^{2} + \varepsilon^{2(1-\rho)}\|\nabla(\tilde{\chi}_{\varepsilon}u)\|_{2}^{2} + \|u\|_{2}^{2}\big]
$$

.

With the aid of [\(2.23\)](#page-7-0) we then obtain

(2.24)
$$
\|\tilde{\chi}_{\varepsilon} u\|_2 \leq C \varepsilon^{(1-\rho)/2} (\|u\|_2 + \|f\|_2).
$$

We next seek an estimate for $\|\chi_{\varepsilon} u\|_2$. To this end we write

(2.25)
$$
(A_0 - \lambda)(\chi_{\varepsilon} u) = \chi_{\varepsilon} f - i \Big(V_{\varepsilon} - \frac{V(0)}{\varepsilon} - \beta_0 x \Big) \chi_{\varepsilon} u + [\mathcal{A}_{\varepsilon}, \chi_{\varepsilon}] u.
$$

Denote by v_n the eigenfunction of A_0 associated with the eigenvalue $e^{i\pi/3} \beta_0^{1/3} \mu_n$. For any $g \in L^2(0, a/\varepsilon)$ let

$$
\Pi_n g = \langle \bar{v}_n, g \rangle v_n .
$$

Let further

$$
w_n=(I-\Pi_n)(\chi_{\varepsilon} u).
$$

By [\(2.25\)](#page-7-1) we easily obtain that

$$
(A_0 - \lambda)w_n = (I - \Pi_n)\left(\chi_{\varepsilon}f - i\left(V_{\varepsilon} - \frac{V(0)}{\varepsilon} - \beta_0x\right)\chi_{\varepsilon}u + [\mathcal{A}_{\varepsilon}, \chi_{\varepsilon}]u\right).
$$

By the Riesz-Schauder theory for compact operators (cf. [\[2\]](#page-32-5) for instance) we have that

$$
(A_0 - \lambda)^{-1} = \frac{\Pi_n}{\lambda - \lambda_{0,n}} + T_n(\lambda) ,
$$

where $T_n(\lambda)$ is holomorphic, and hence bounded, in some fixed neighborhood of $\lambda_{0,n}$. Consequently, there exists $C(n, \beta_0)$ such that $||(A_0 - \lambda)^{-1}(I - \Pi_n)|| \leq C$, and therefore,

$$
||w_n||_2 \le C \left\| \left(\chi_{\varepsilon} f - i \left(V_{\varepsilon} - \frac{V(0)}{\varepsilon} - \beta_0 x \right) \chi_{\varepsilon} u + [\mathcal{A}_{\varepsilon}, \chi_{\varepsilon}] u \right) \right\|_2
$$

$$
\le C \left(||f||_2 + \left\| \left(V_{\varepsilon} - \frac{V(0)}{\varepsilon} - \beta_0 x \right) \chi_{\varepsilon} u \right\|_2 + \| [\mathcal{A}_{\varepsilon}, \chi_{\varepsilon}] u \|_2 \right).
$$

Hence,

$$
||w_n||_2 \leq C(||f||_2 + [\varepsilon^{2\rho-1} + \varepsilon^{2(1-\rho)}]||u||_2 + \varepsilon^{1-\rho}||\nabla u||_2),
$$

and since

(2.26)
$$
\|\nabla u\|_2^2 = \text{Re}\,\langle u, f \rangle + \text{Re}\,\lambda \|u\|_2^2,
$$

we obtain that

(2.27)
$$
||w_n||_2 \leq C(||f||_2 + [\varepsilon^{2\rho-1} + \varepsilon^{1-\rho}]||u||_2).
$$

To complete the proof, we seek an estimate for $\Pi_n(\chi_\varepsilon u)$. Taking the inner product of [\(2.25\)](#page-7-1) with $\chi_{\varepsilon} \bar{v}_n$ yields

$$
(2.28) \quad (e^{i\pi/3}\beta_0^{1/3}\mu_n - \lambda)\gamma_n = \langle \bar{v}_n, f \rangle + \langle [A_0, \chi_{\varepsilon}] \bar{v}_n, \chi_{\varepsilon} u \rangle - \langle \tilde{\chi}_{\varepsilon} \bar{v}_n, \tilde{\chi}_{\varepsilon} f \rangle + \n i \langle \bar{v}_n, \left(V_{\varepsilon} - \frac{V(0)}{\varepsilon} - \beta_0 x \right) \chi_{\varepsilon} u \rangle + \langle \chi_{\varepsilon} \bar{v}_n, [A_0, \chi_{\varepsilon}] u \rangle + \n (e^{i\pi/3}\beta_0^{1/3}\mu_n - \lambda) \langle \tilde{\chi}_{\varepsilon} v_n, \tilde{\chi}_{\varepsilon} u \rangle - i \langle (1 - \chi_{\varepsilon}) \bar{v}_n, \left(V_{\varepsilon} - \frac{V(0)}{\varepsilon} - \beta_0 x \right) \chi_{\varepsilon} u \rangle,
$$

where

$$
\gamma_n=\langle \bar{v}_n,\chi_\varepsilon u\rangle.
$$

By the exponential decay of v_n and (2.26) we have that

$$
(2.29) \quad \left| \langle [A_0, \chi_{\varepsilon}] \bar{v}_n, \chi_{\varepsilon} u \rangle - \langle \tilde{\chi}_{\varepsilon} \bar{v}_n, \tilde{\chi}_{\varepsilon} f \rangle + (e^{i\pi/3} \beta_0^{1/3} \mu_n - \lambda) \langle \tilde{\chi}_{\varepsilon} v_n, \tilde{\chi}_{\varepsilon} u \rangle - i \langle (1 - \chi_{\varepsilon}) \bar{v}_n, \left(V_{\varepsilon} - \frac{V(0)}{\varepsilon} - \beta_0 x \right) \chi_{\varepsilon} u \rangle \right| \leq C e^{-\varepsilon^{-3(1-\rho)/2}} (\|u\|_2 + \|f\|_2).
$$

We next write

$$
\left\langle \bar{v}_n, \left(V_{\varepsilon} - \frac{V(0)}{\varepsilon} - \beta_0 x \right) \chi_{\varepsilon} u \right\rangle = \varepsilon \gamma_n \langle \bar{v}_n, \beta_1 x^2 v_n \rangle + \left\langle \bar{v}_n, \left(V_{\varepsilon} - \frac{V(0)}{\varepsilon} - \beta_0 x \right) w_n \right\rangle + \gamma_n \left\langle \bar{v}_n, \left(V_{\varepsilon} - \frac{V(0)}{\varepsilon} - \beta_0 x - \varepsilon \beta_1 x^2 \right) v_n \right\rangle.
$$

We now observe that

$$
\left\|\bar{v}_n\Big(V_{\varepsilon}-\frac{V(0)}{\varepsilon}-\beta_0x\Big)\right\|_2\leq C\varepsilon\,,
$$

and that

$$
\left| \left\langle \bar{v}_n, \left(V_{\varepsilon} - \frac{V(0)}{\varepsilon} - \beta_0 x - \varepsilon \beta_1 x^2 \right) v_n \rangle \right| \le C \varepsilon^2
$$

.

As $|\gamma_n| \leq ||u||_2$, we obtain with the aid of [\(2.27\)](#page-8-1) that $\left|\left\langle \bar{v}_x \right\rangle \left(V_x - \frac{V(0)}{2} - \beta_0 x \right) \chi_x u \right\rangle$ $2, \sqrt{}$

$$
\left| \left\langle \bar{v}_n, \left(V_{\varepsilon} - \frac{V(0)}{\varepsilon} - \beta_0 x \right) \chi_{\varepsilon} u \right\rangle - \varepsilon \gamma_n \langle \bar{v}_n, \beta_1 x^2 v_n \rangle \right| \le C \varepsilon (\|f\|_2 + \left[\varepsilon^{2\rho - 1} + \varepsilon^{1-\rho} \right] \|u\|_2).
$$

Substituting the above, together with (2.29) into (2.28) yields

$$
|(e^{i\pi/3}\beta_0^{1/3}\mu_n + i\varepsilon\gamma_n\langle\bar{v}_n, \beta_1 x^2 v_n \rangle - \lambda)\gamma_n| \le C(\|f\|_2 + \varepsilon^{2\rho} + \varepsilon^{2-\rho}\|u\|_2)
$$

Consequently, we must have

(2.30)
$$
|\gamma_n| \leq \frac{C}{r} (\|f\|_2 + [\varepsilon^{2\rho} + \varepsilon^{2-\rho}]\|u\|_2).
$$

We now choose $\rho = 2/3$. Since

$$
||u||_2 \leq C(|\gamma_n| + ||w_n||_2 + ||\tilde{\chi}_{\varepsilon} u||_2),
$$

 (2.20) easily follows from (2.24) , (2.27) , and (2.30) .

Lemma 2.5. Let $1 < \alpha < 4/3$. Let further

(2.31)
$$
\Lambda_{n,N}(\varepsilon) = e^{\sigma i \pi/3} |\beta_0|^{2/3} |\mu_n| + \sum_{j=1}^N \alpha_{j,n} \varepsilon^j.
$$

Then, for sufficiently small ε there exists $\lambda_n(\varepsilon)$ such that

(2.32)
$$
\sigma(\mathcal{A}_{\varepsilon}) \cap B(\Lambda_{n,1}, 2\varepsilon^{\alpha}) = \{\lambda_n(\varepsilon)\}.
$$

Furthermore, the eigenspace associated with $\lambda_n(\varepsilon)$ is of dimension 1.

Proof. We follow the same procedure used in [\[5,](#page-32-6) [4\]](#page-32-7) to prove existence of eigenvalues. Let $u_{n,N}$ be given by [\(2.6\)](#page-3-0) and set $\psi_{n,N} = \chi_{\varepsilon} u_{n,N}$. Let $\varepsilon^{\alpha} < r < 2\varepsilon^{\alpha}$ be such that $\partial B(\Lambda_{n,N},r) \in \rho(\mathcal{A}_{\varepsilon})$. Let further $\lambda \in \partial B(\Lambda_{n,N},r)$. Then, by [\(2.4\)](#page-3-1) we have

$$
(\mathcal{A}_{\varepsilon} - \lambda)\psi_{n,N} = (\Lambda_{n,N} - \lambda)\psi_{n,N} + \varepsilon^{N+1}f,
$$

where $||f||_2 \leq C$, for some $C > 0$ which is independent of ε . Applying $(\mathcal{A}_{\varepsilon} - \lambda)^{-1}$ to both sides of the above equation yields

$$
(\mathcal{A}_{\varepsilon}-\lambda)^{-1}\psi_{n,N}=\frac{1}{\Lambda_{n,N}-\lambda}\big[\psi_{n,N}-\varepsilon^{N+1}(\mathcal{A}_{\varepsilon}-\lambda)^{-1}f\big].
$$

Integrating the above identity with respect to λ along $\partial B(\Lambda_{n,N}, r)$ yields

$$
P_n \psi_{n,N} = \psi_{n,N} - \oint_{\partial B(\Lambda_{n,N},r)} \frac{\varepsilon^{N+1} (\mathcal{A}_{\varepsilon} - \lambda)^{-1} f}{2\pi i (\Lambda_{n,N} - \lambda)} d\lambda,
$$

where P_n is the spectral projection

(2.33)
$$
P_n = \frac{1}{2\pi i} \oint_{\partial B(\Lambda_{n,N},r)} (\mathcal{A}_{\varepsilon} - \lambda)^{-1} d\lambda.
$$

With the aid of [\(2.20\)](#page-6-4) we then obtain that

(2.34)
$$
\|(I - P_n)\psi_{n,N}\|_2 \leq C\varepsilon^{N+1-\alpha}.
$$

By Cauchy Theorem we now readily obtain that

$$
\sigma(\mathcal{A}_{\varepsilon}) \cap B(\Lambda_{n,1}, 2\varepsilon^{\alpha}) \neq \emptyset.
$$

We now prove that $P_nL^2(0, a/\varepsilon)$ is one dimensional. To this end suppose that for some $\nu_1, \nu_2 \in B(\Lambda_{n,1}, 2\varepsilon^{\alpha})$ (which can be equal or not) and $w_1, w_2 \in D(\mathcal{A}_{\varepsilon})$ we have

$$
(2.35) \qquad \qquad (\mathcal{A}_{\varepsilon} - \nu_j)w_j = 0 \quad j = 1, 2
$$

such that $||w_1||_2 = ||w_2||_2 = 1$ and

$$
\langle \bar{w}_1, w_2 \rangle = 0.
$$

Let further

(2.37)
$$
f_j = (A_0 - \Lambda_{n,0})(\chi_{\varepsilon} w_j) \quad j = 1, 2.
$$

A simple calculation yields

$$
(2.38) \t f_j = \chi_{\varepsilon}(\nu_j - \Lambda_{n,0})w_j - i(V_{\varepsilon} - \varepsilon^{-1}V(0) - \beta_0x)\chi_{\varepsilon}w_j + [A_0, \chi_{\varepsilon}]w_j \t j = 1,2.
$$

We now turn to estimate the various terms on the right-hand-side of [\(2.38\)](#page-10-0). Let $j \in \{1, 2\}$. For the first term we easily obtain, since $\nu_j \in B(\Lambda_{n,1}, 2\varepsilon^{\alpha})$ that

(2.39)
$$
\|\chi_{\varepsilon}(\nu_j-\Lambda_{n,0})w_j\|_2\leq C\varepsilon.
$$

For the second term we have that

(2.40)
$$
\| (V_{\varepsilon} - \varepsilon^{-1} V(0) - \beta_0 x) \chi_{\varepsilon} w_j \|_2 \leq C \varepsilon^{1-2\rho}.
$$

To estimate the last term we take the inner product of (2.35) with w_i to obtain from the real part that

$$
\|\nabla w_j\|_2 \leq C.
$$

Consequently, we have that

$$
\|[A_0, \chi_{\varepsilon}]w_j\|_2 \leq \|\Delta \chi_{\varepsilon}w_j\|_2 + 2\|\nabla \chi_{\varepsilon} \cdot \nabla w_j\|_2 \leq C \varepsilon^{1-\rho}.
$$

Substituting the above, together with [\(2.39\)](#page-10-1) and [\(2.40\)](#page-10-2) into [\(2.38\)](#page-10-0) then yields

(2.41) ^kfjk² [≤] Cε¹−2^ρ .

We now write

$$
\chi_{\varepsilon}w_j=(\chi_{\varepsilon}w_j)_{\parallel}+(\chi_{\varepsilon}w_j)_{\perp},
$$

where

$$
(\chi_{\varepsilon}w_j)_{\parallel}=\langle \bar{u}_0,\chi_{\varepsilon}w_j\rangle u_0.
$$

Applying Riesz-Schauder theory to A_0 yields, by (2.37) and (2.38) ,

$$
\|(\chi_{\varepsilon}w_j)_{\perp}\| \leq C\varepsilon^{1-2\rho}.
$$

Consequently,

$$
|\langle \chi_{\varepsilon} \bar{w}_1, \chi_{\varepsilon} w_2 \rangle| \geq 1 - C \varepsilon^{1-2\rho}.
$$

Hence, by [\(2.36\)](#page-9-1) we have that

(2.42)
$$
|\langle \tilde{\chi}_{\varepsilon} \bar{w}_1, \tilde{\chi}_{\varepsilon} w_2 \rangle| \geq 1 - C \varepsilon^{1-2\rho}.
$$

To complete the proof we take again the inner product of (2.35) with w_i to obtain, this time from the imaginary part, that

$$
||(V_{\varepsilon}-\varepsilon^{-1}V(0))w_j||_2 \leq C.
$$

Hence,

$$
||w_j||_{L^2(\varepsilon^{\rho-1},a/\varepsilon)} \leq C\varepsilon^{1-\rho},
$$

from which we easily conclude that

$$
|\langle \tilde{\chi}_{\varepsilon} \bar{w}_1, \tilde{\chi}_{\varepsilon} w_2 \rangle| \leq ||w_1||_{L^2(\varepsilon^{\rho-1}, a/\varepsilon)} ||w_2||_{L^2(\varepsilon^{\rho-1}, a/\varepsilon)} \leq C \varepsilon^{2(1-\rho)},
$$

contradicting (2.42) and therefore (2.36) .

Proof of Theorem [2.1](#page-2-0). Recall that by (2.4) we have

$$
(\mathcal{A}_{\varepsilon}-\Lambda_{n,N})\psi_{n,N}=\varepsilon^{N+1}f\,,
$$

where $||f||_2$ is uniformly bounded as $\varepsilon \to 0$. We now apply the spectral projection P_n , defined in [\(2.33\)](#page-9-2) to both side of the above equations. It can be easily verified that $[P_n, \mathcal{A}_{\varepsilon}] = 0$. Consequently

(2.43)
$$
(\mathcal{A}_{\varepsilon} - \Lambda_{n,N}) P_n \psi_{n,N} = \varepsilon^{N+1} P_n f.
$$

By [\(2.32\)](#page-9-3) we have that

(2.44)
$$
(\mathcal{A}_{\varepsilon} - \Lambda_{n,N}) P_n \psi_{n,N} = (\lambda_n - \Lambda_{n,N}) P_n \psi_{n,N}.
$$

By [\(2.34\)](#page-9-4) we have that

$$
||P_n\psi_{n,N}||_2 \geq 1 - C\varepsilon^{N+1}.
$$

Substituting the above, together with [\(2.44\)](#page-11-1) into [\(2.43\)](#page-11-2) then yields

$$
|\lambda_n - \Lambda_{n,N}| \le C\varepsilon^{N+1}
$$

Theorem [2.1](#page-2-0) now easily follows from (2.3)

3. Two dimensions: Quasimode construction

Let $\Omega \subset \mathbb{R}^2$ be a C^3 domain and $V \in C^3(\overline{\Omega})$. Let $\partial \Omega_{\perp}$ denote the portion of the boundary $\partial\Omega$ where ∇V is orthogonal to $\partial\Omega$. (Note that $\partial\Omega_+$ may be finite, but is never empty by the continuity of V on $\partial\Omega$.) Let $x_0 \in \partial\Omega$ _⊥ such that

$$
|\nabla V(x_0)| = \min_{x \in \partial \Omega_\perp} |\nabla V(x)|,
$$

and let $V_0 = V(x_0)$. We look for an approximation of the principal eigenvalue and the corresponding eigenfunction of the operator

(3.1)
$$
\mathcal{A}_h = -h^2 \Delta + i(V - V_0),
$$

defined over

$$
D(\mathcal{A}_h)=H_0^1(\Omega,\mathbb{C})\cap H^2(\Omega,\mathbb{C}).
$$

Define in a vicinity of $\partial\Omega$ a curvilinear coordinate system (t, s) such that $t =$ $d(x, \partial\Omega)$ and $s(x)$ denotes the distance (or arclength) along $\partial\Omega$ connecting x_0 and the projection of x on $\partial\Omega$. We have

(3.2)
$$
\Delta = \left(\frac{1}{g}\frac{\partial}{\partial s}\right)^2 + \frac{1}{g}\frac{\partial}{\partial t}\left(g\frac{\partial}{\partial t}\right),
$$

where

$$
(3.3) \t\t g = 1 - t\kappa(s),
$$

and $\kappa(s)$ is the curvature at s on $\partial\Omega$. Expanding Δ near x_0 ($t^2 + s^2 \ll 1$) yields for some $u \in D(\mathcal{A}_h)$

(3.4) ∆u = utt + uss + Υu ,

where

(3.5)
$$
\Upsilon u = \left(\frac{1}{g^2} - 1\right) u_{ss} + \frac{t\kappa'}{g^3} u_s - \frac{\kappa}{g} u_t.
$$

We next expand V near x_0

(3.6)
$$
V(s,t) - V_0 = ct + \frac{1}{2}(\alpha s^2 + \beta t^2 + 2\sigma st) + \mathcal{O}((s^2 + t^2)^{3/2}),
$$

where

$$
c = V_t(x_0)
$$
 ; $\alpha = V_{ss}(x_0)$; $\beta = V_{tt}(x_0)$; $\sigma = V_{st}(x_0)$.

We note that $V_s(x_0) = 0$ since $x_0 \in \partial \Omega_{\perp}$. We confine the discussion, in view of [\(1.3\)](#page-0-1) to the case where $\alpha c > 0$. Without any loss of generality we may assume $c > 0$ (and hence $\alpha > 0$ as well), otherwise we can consider the spectrum of the complex conjugate of \mathcal{A}_h .

We search for an approximate eigenpair (u, λ) of \mathcal{A}_h . Previous works [\[3,](#page-32-2) [10\]](#page-32-3) suggest that one should look for such u which is localized near x_0 . Applying the transformation

(3.7)
$$
\tau = \left(\frac{c}{h^2}\right)^{1/3} t \quad ; \quad \xi = \left(\frac{\alpha}{h^2}\right)^{1/4} s
$$

to [\(3.6\)](#page-12-0) and [\(3.4\)](#page-12-1) leads to the following approximation for every $u \in D(\mathcal{A}_h)$

(3.8)
$$
\frac{\alpha}{\varepsilon c^2} \mathcal{A}_h u = -u_{\tau\tau} + i\tau u + \varepsilon^{1/2} \left(-u_{\xi\xi} + \frac{i}{2} \xi^2 u \right) + \left(\frac{\varepsilon}{\alpha} \right)^{3/4} i\sigma \xi \tau u + R u,
$$

where

$$
(3.9) \qquad \qquad \varepsilon = \alpha (h^2/c^4)^{1/3},
$$

 $||u||_2 = 1$, and the operator R satisfies, for all $u \in D(\mathcal{A}_h)$

$$
(3.10) \quad Ru = c^{2/3} \left(\frac{\varepsilon}{\alpha}\right)^{1/2} \left(\frac{1}{g^2} - 1\right) u_{\xi\xi} + c^{2/3} \left(\frac{\varepsilon}{\alpha}\right)^{9/4} \frac{\tau c^{1/3} \kappa'}{g^3} u_{\xi} - \left(\frac{\varepsilon}{\alpha}\right) \frac{c^{1/3} \kappa}{g} u_{\tau} + i \frac{\alpha}{\varepsilon c^2} \left(V(\xi, \tau) - V_0 - \frac{\varepsilon}{\alpha} c^2 \tau - \frac{c^2 \varepsilon^{3/2}}{\alpha} \frac{1}{2} \xi^2 - \left(\frac{\varepsilon}{\alpha}\right)^{7/4} c^2 \sigma \xi \tau\right).
$$

It can be easily verified that for any $0 < \gamma < 1$ we have

$$
(3.11) \quad ||Ru||_{L^{2}(B_{+}(0,\varepsilon^{-\gamma}))} \leq C\varepsilon \Big[||\varepsilon^{1/2}|\tau u_{\xi\xi}| + \varepsilon^{5/4}|\tau u_{\xi}| + |u_{\tau}|\|_{L^{2}(B_{+}(0,\varepsilon^{-\gamma}))} + C\varepsilon \Big[||\tau^{2}u||_{L^{2}(B_{+}(0,\varepsilon^{-\gamma}))} + \varepsilon^{1/4}||\xi^{3}u||_{L^{2}(B_{+}(0,\varepsilon^{-\gamma}))}\Big].
$$

We seek an approximate solution for $A_h u = \lambda u$. To this end, we introduce the expansion

$$
u \cong u_0 + \varepsilon^{1/4} u_1 + \varepsilon^{1/2} u_2 + \varepsilon^{3/4} u_3 + \mathcal{O}(\varepsilon) \quad ; \quad \frac{\alpha}{\varepsilon c^2} \lambda = \lambda_0 + \varepsilon^{1/4} \lambda_1 + \varepsilon^{1/2} \lambda_2 + \varepsilon^{3/4} \lambda_3 + \mathcal{O}(\varepsilon) \, .
$$

Substituting into [\(3.8\)](#page-12-2) leads to the following $\mathcal{O}(1)$ balance

(3.12a)
$$
\mathcal{L}_{\tau}u_0 \stackrel{def}{=} -\frac{\partial^2 u_0}{\partial \tau^2} + i\tau u_0 = \lambda_0 u_0 \quad ; \quad u_0(0,\xi) = 0,
$$

where the operator \mathcal{L}_{τ} is defined over

(3.12b)
$$
D(\mathcal{L}_{\tau}) = \{u \in H^2(\mathbb{R}_+,\mathbb{C}) \cap H_0^1(\mathbb{R}_+,\mathbb{C}) \mid \tau u \in L^2(\mathbb{R},\mathbb{C})\}.
$$

The solution to [\(3.12\)](#page-13-0) associated with the energy λ_0 having the smallest real part is given by

(3.13)
$$
u_0(\tau,\xi) = v_0(\tau)w_0(\xi) \text{ where } v_0(\tau) = A_i(e^{i\pi/6}\tau + \mu_1),
$$

and

(3.14)
$$
\lambda_0 = e^{-i2\pi/3}\mu_1,
$$

where A_i is Airy's function and $\mu_1 < 0$ is its rightmost zero. The function $w_0(\xi)$ will be determined from the $\mathcal{O}(\varepsilon^{1/2})$ balance.

The next order, or $\mathcal{O}(\varepsilon^{1/4})$, balance in [\(3.8\)](#page-12-2) assumes the form

(3.15)
$$
(\mathcal{L}_{\tau} - \lambda_0)u_1 = \lambda_1 u_0 \quad ; \quad u_1(0,\xi) = 0,
$$

Taking the inner product of [\(3.15\)](#page-13-1) with \bar{v}_0 yields $\lambda_1 = 0$. Hence, $u_1 = v_0(\tau)w_1(\xi)$.

The next order, or $\mathcal{O}(\varepsilon^{1/2})$, balance in [\(3.8\)](#page-12-2) assumes the form

(3.16)
$$
(\mathcal{L}_{\tau} - \lambda_0)u_2 = -(\mathcal{L}_{\xi} - \lambda_2)u_0 \quad ; \quad u_2(0,\xi) = 0,
$$

where

(3.17)
$$
\mathcal{L}_{\xi} = -\frac{\partial^2}{\partial \xi^2} + \frac{i}{2} \xi^2,
$$

is defined over

$$
D(\mathcal{L}_{\xi}) = \{ u \in H^2(\mathbb{R}, \mathbb{C}) \mid \xi^2 u \in L^2(\mathbb{R}, \mathbb{C}) \}
$$

For fixed ξ we now take the inner product of the above equation with \bar{v}_0 , in $L^2(\mathbb{R}_+)$. After noticing that by Cauchy's Theorem

(3.18)
$$
\int_0^\infty v_0^2(\tau) d\tau = e^{-i\pi/6} \int_0^\infty A_i^2(x + \mu_1) dx \neq 0,
$$

we obtain

$$
(\mathcal{L}_{\xi}-\lambda_2)w_0=0.
$$

The solution of the above problem corresponding to the λ_2 with smallest real part is given by

(3.19)
$$
w_0(\xi) = C_0 \exp\left\{-\frac{1}{\sqrt{2}}e^{i\frac{\pi}{4}}\xi^2\right\} \; ; \; \lambda_2 = \sqrt{2}e^{i\frac{\pi}{4}}.
$$

The constant C_0 should be obtain, up to a product by -1 , from the normalization condition $||u||_2 = 1$. We allow dependence of C_0 on ε (see below). Substituting into (3.16) yields

$$
u_2(\tau,\xi)=v_0(\tau)w_2(\xi).
$$

For the $\mathcal{O}(\varepsilon^{3/4})$ balance in [\(3.8\)](#page-12-2) we have

$$
(\mathcal{L}_{\tau}-\lambda_0)u_3=-v_0(\mathcal{L}_{\xi}-\lambda_2)w_1-\left(i\sigma\xi\tau-\lambda_3\right)v_0w_0\quad;\quad u_2(0,\xi)=0\,.
$$

We take once again the inner product of the above balance with \bar{v}_0 to obtain

(3.20)
$$
(\mathcal{L}_{\xi} - \lambda_2)w_1 + (i\gamma\xi - \lambda_3)w_0 = 0,
$$

where

$$
\gamma = \sigma \frac{\int_0^\infty \tau v_0^2(\tau) d\tau}{\int_0^\infty v_0^2(\tau) d\tau}.
$$

Note that this expression is well-defined due to [\(3.18\)](#page-13-3). Taking the inner product, this time in $L^2(\mathbb{R}, \mathbb{C})$, of [\(3.20\)](#page-14-0) with w_0 , which is even, yields

$$
\lambda_3=0\,.
$$

Furthermore, w_1 is the unique solution of

$$
(\mathcal{L}_{\xi}-\lambda_2)w_1=-i\gamma\xi w_0 \quad ; \quad \int_{\mathbb{R}}w_1(\xi)w_0(\xi)\,d\xi=0\,,
$$

and

$$
u_3 = v_3(\xi, \tau) + v_0(\tau) w_3(\xi) ,
$$

where v_3 is the unique solution of the problem

(3.21)
$$
\begin{cases} (\mathcal{L}_{\tau} - \lambda_0) v_3 = -i\xi(\tau - \gamma)v_0w_0 & \tau > 0\\ v_3(0,\xi) = 0\\ \int_0^\infty v_2(\tau,\xi)v_0(\tau)d\tau = 0. \end{cases}
$$

Notice that, if $\mathcal{S}(\mathbb{R}^2_+)$ denotes the Schwartz space of rapidly decaying functions along with all their derivatives, then the right-hand side in [\(3.21\)](#page-14-1) belongs to $\mathcal{S}(\mathbb{R}^2_+)$. As the operator $-\partial^2/\partial \tau^2 + i\tau - \lambda_0$ is globally elliptic with respect to τ , in the sense of [\[8,](#page-32-8) Definition 1.5.6], we have that

$$
(3.22) \t v_3 \in \mathcal{S}(\mathbb{R}^2_+),
$$

(see [\[8,](#page-32-8) Theorem 1.6.4]). For the same reason, the $\mathcal{O}(\varepsilon)$ balance would yield $w_3 \in$ $\mathcal{S}(\mathbb{R}).$

We have thus obtained the quasimode

(3.23)
$$
U = \left(C_0(\varepsilon) \exp\left\{-\frac{1}{\sqrt{2}}e^{i\frac{\pi}{4}}\xi^2\right\} + \varepsilon^{1/2}w_1(\xi)\right)A_i(e^{i\pi/6}\tau + \mu_1) + \varepsilon^{3/4}v_3(\xi,\tau) + \varepsilon^{3/4}w_3(\xi)A_i(e^{i\pi/6}\tau + \mu_1).
$$

We obtain the various constants by requiring that

$$
||U||_2=1.
$$

We now conclude this section by the following proposition

Proposition 3.1. Let \mathcal{A}_h be given by [\(3.1\)](#page-11-3) and U by [\(3.23\)](#page-14-2). Let further

(3.24)
$$
\Lambda = \lambda_0 + \varepsilon^{1/2} \lambda_2.
$$

Let $\eta_r = \eta_r^0(\tau) \eta_r^1(\xi)$, where $\eta_r^0 \in C^\infty(\mathbb{R}_+, [0, 1])$ and $\eta_r^1 \in C^\infty(\mathbb{R}, [0, 1])$ are chosen so that

(3.25)
$$
\eta_r = \begin{cases} 1 & |x - x_0| < r \\ 0 & |x - x_0| > 2r \end{cases}, |\nabla \eta_r| \leq \frac{C}{r}.
$$

Then,

(3.26)
$$
\left\| \left(\frac{\alpha}{\varepsilon c^2} A_h - \Lambda \right) (\eta_{\varepsilon^{-1/2}} U) \right\|_2 \leq C \varepsilon \| \eta_{\varepsilon^{-1/2}} U \|_2.
$$

Proof. We first write

$$
\frac{\alpha}{\varepsilon c^2} \mathcal{A}_h(\eta_{\varepsilon^{-1/2}} U) = \left(\mathcal{L}_{\tau} + \varepsilon^{1/2} \mathcal{L}_{\xi} + \varepsilon^{3/4} i \sigma \xi \tau \right) (\eta_{\varepsilon^{-1/2}} U) + R \eta_{\varepsilon^{-1/2}} U
$$
\n
$$
(3.27) \qquad = \Lambda \eta_{\varepsilon^{-1/2}} U + \left[\mathcal{L}_{\tau} + \varepsilon^{1/2} \mathcal{L}_{\xi}, \eta_{\varepsilon^{-1/2}} \right] U + R \eta_{\varepsilon^{-1/2}} U,
$$

where the operator R is defined by (3.10) . We next seek an estimate for the commutator term in [\(3.27\)](#page-15-0), given by

(3.28)
$$
[\mathcal{L}_{\tau}, \eta_{\varepsilon^{-1/2}}]U = -\partial_{\tau}^{2}(\eta_{\varepsilon^{-1/2}})U - 2\partial_{\tau}\eta_{\varepsilon^{-1/2}}\partial_{\tau}U.
$$

In order to estimate the norm of U and $\partial_{\tau}U$ on the support of $\partial_{\tau}^2 \eta_{\varepsilon^{-1/2}}$ and $\partial_{\tau} \eta_{\varepsilon^{-1/2}}$, we recall the well-known asymptotic behavior of the Airy function [\[1\]](#page-32-4):

(3.29)
$$
Ai(z) = \frac{1}{2\sqrt{\pi}z^{1/4}}e^{-\frac{2}{3}z^{3/2}}\left(1 + \mathcal{O}(z^{-3/2})\right)
$$

as $|z| \to +\infty$ in any sector of the form $|\arg z| \leq \pi - \delta$, $\delta > 0$. By [\(3.23\)](#page-14-2), and since for all $(\tau, \xi) \in \text{Supp } \partial_{\tau} \eta_{\varepsilon^{-1/2}}$ we have $\varepsilon^{-1/2} \le \tau \le 2\varepsilon^{-1/2}$, (3.22) and (3.29) yield

$$
\|(\partial_{\tau}^2 \eta_{\varepsilon^{-1/2}})U\|_2 \leq C_1 \varepsilon,
$$

for some positive constant C_1 .

Since the asymptotic behaviour of Ai' , as $|z| \to \infty$ is not substantially different from (3.29) (cf. [\[1\]](#page-32-4)), we easily obtain that

$$
\|\partial_{\tau}\eta_{\varepsilon^{-1/2}}\partial_{\tau}U\|_2\leq C_2\varepsilon,\ C_2>0.
$$

Thus (3.28) yields, for some $C > 0$,

(3.30)
$$
\|[\mathcal{L}_{\tau}, \eta_{\varepsilon^{-1/2}}]U\|_2 \leq C\varepsilon.
$$

Due to the decay of the U and $\partial_{\xi}U$ as $|\xi| \to +\infty$ (recall that $w_3 \in \mathcal{S}(\mathbb{R})$), we similarly obtain

(3.31)
$$
\|[\varepsilon^{1/2}\mathcal{L}_{\xi}, \eta_{\varepsilon^{-1/2}}]U\|_2 \leq K\varepsilon,
$$

for some $K > 0$ can be estimated as follows. Using

To estimate the remaining term $R_{\eta_{\varepsilon^{-1/2}}U}$ we use [\(3.11\)](#page-12-4) to obtain, for $\alpha \in (1/2, 1)$,

$$
(3.32) \t\t\t ||R\eta_{\varepsilon^{-1/2}}U||_2 \leq ||RU||_{L^2(B_+(0,\varepsilon^{-\alpha}))} \leq C'\varepsilon
$$

for some $C' > 0$. Finally [\(3.27\)](#page-15-0), [\(3.30\)](#page-15-3), [\(3.31\)](#page-15-4) and [\(3.32\)](#page-15-5) yield, for some positive \tilde{C} and C,

$$
\left\| \left(\frac{\alpha}{\varepsilon c^2} A_h - \Lambda \right) (\eta_{\varepsilon^{-1/2}} U) \right\|_2 \leq C' \varepsilon
$$

$$
\leq C \varepsilon \| \eta_{\varepsilon^{-1/2}} U \|_2 ,
$$

where we have used the that for some $C'' > 0$, $\|\eta_{\varepsilon^{-1/2}}U\|_2 \geq 1/C''$.

4. Eigenvalue existence

Let \mathcal{L}_{τ} and \mathcal{L}_{ξ} be respectively defined by [\(3.12\)](#page-13-0) and [\(3.17\)](#page-13-4). Then let

$$
(4.1) \t\t\t\t\t\mathcal{B}_{\varepsilon} = \mathcal{L}_{\tau} + \varepsilon^{1/2} \mathcal{L}_{\xi}
$$

be the closed operator associated with the quadratic form

$$
\langle \nabla u, \nabla v \rangle + i \langle u, (\tau + \varepsilon^{1/2} \xi^2) v \rangle
$$

whose domain is given by $\tilde{V} \times \tilde{V}$ where

$$
\tilde{V} = \{ u \in H_0^1(\mathbb{R}^2_+,\mathbb{C}) \mid |(\tau^{1/2} + |\xi|)u \in L^2(\mathbb{R}^2_+,\mathbb{C}) \}.
$$

It can be easily verified that

$$
D(\mathcal{B}_{\varepsilon}) = \{ u \in H^2(\mathbb{R}^2_+,\mathbb{C}) \cap H_0^1(\mathbb{R}^2_+) \, | \, (\tau + \xi^2)u \in L^2(\mathbb{R}^2_+), \}.
$$

We begin by the following straightforward observation

Lemma 4.1. We have

(4.2)
$$
\sigma(\mathcal{B}_{\varepsilon}) = \{c^{2/3}\mu_n e^{-i2\pi/3} + (2k-1)\varepsilon^{1/2}\sqrt{2}e^{i\frac{\pi}{4}}\}_{n,k=1}^{\infty}.
$$

Proof. After the scale changes $\tau \mapsto c^{1/3}\tau$ and $\xi \mapsto (|\alpha|/2)^{1/4}\xi$, we obtain from [\[3\]](#page-32-2) and [\[7,](#page-32-9) Section 14.5] the following expressions for the eigenvalues of the complex Airy operator \mathcal{L}_{τ} and the complex harmonic oscillator \mathcal{L}_{ξ} :

$$
\sigma(\mathcal{L}_{\tau}) = \left\{ c^{2/3} \mu_n e^{-i2\pi/3} : n \ge 1 \right\},\,
$$

 μ_n being the *n*-th (negative) zero of the Airy function Ai , and

$$
\sigma(\mathcal{L}_{\xi}) = \left\{ (2k-1)\sqrt{2} e^{i\frac{\pi}{4}} : k \ge 1 \right\}.
$$

Denote by \mathcal{L}_{τ} + $\varepsilon^{1/2}\mathcal{L}_{\xi}$ the closure of the operator $\mathcal{L}_{\tau}\otimes I + I \otimes (\varepsilon^{1/2}\mathcal{L}_{\xi})$ whose domain is $D(\mathcal{L}_{\tau}) \otimes D(\mathcal{L}_{\xi})$. We first need to verify that the domains of $\mathcal{B}_{\varepsilon}$ and $\mathcal{L}_{\tau} \dotplus \varepsilon^{1/2} \mathcal{L}_{\xi}$ coincide. Let $e^{-t\mathcal{B}_{\varepsilon}}$ denote the contraction semigroup generated by $\mathcal{B}_{\varepsilon}$, and let $\varphi \in D(\mathcal{L}_{\tau}), \psi \in D(\mathcal{L}_{\xi}).$ Clearly,

$$
e^{-t\mathcal{B}_{\varepsilon}}(\varphi\otimes\psi)=e^{-t\mathcal{L}_{\tau}}\varphi\otimes e^{-t(\varepsilon^{1/2}\mathcal{L}_{\xi})}\psi\,,
$$

where $e^{-t\mathcal{L}\tau}$ and $e^{-t(\varepsilon^{1/2}\mathcal{L}_{\xi})}$ denote respectively the contraction semigroups generated by \mathcal{L}_{τ} and $\varepsilon^{1/2} \mathcal{L}_{\xi}$. Thus,

$$
e^{-t\mathcal{B}_{\varepsilon}}\big(D(\mathcal{L}_{\tau})\otimes D(\mathcal{L}_{\xi})\big)\subset D(\mathcal{L}_{\tau})\otimes D(\mathcal{L}_{\xi}).
$$

Consequently, due to [\[11,](#page-32-10) Theorem X.49] we have $\mathcal{B}_{\varepsilon} = (\mathcal{B}_{\varepsilon})_{|D(\mathcal{L}_{\tau})\otimes D(\mathcal{L}_{\xi})}$, and $\mathcal{B}_{\varepsilon}$ clearly coincides with $\mathcal{L}_{\tau} \otimes I + I \otimes (\varepsilon^{1/2} \mathcal{L}_{\xi})$ on $D(\mathcal{L}_{\tau}) \otimes D(\mathcal{L}_{\xi})$, and hence $\mathcal{B}_{\varepsilon} =$ $\mathcal{L}_{\tau} \dotplus \varepsilon^{1/2} \mathcal{L}_{\xi}$.

Noticing that \mathcal{L}_{τ} and \mathcal{L}_{ξ} are both sectorial with respect to the same sector $\mathcal{S} =$ ${z \in \mathbb{C} : 0 \leq \arg z \leq \pi/2}$, we can then apply the so-called Ichinose Lemma (see [\[11,](#page-32-10) Theorem XIII.35, Corollary 2]) which yields

$$
\sigma\big(\mathcal{L}_{\tau}+\varepsilon^{1/2}\mathcal{L}_{\xi}\big)=\sigma(\mathcal{L}_{\tau})+\sigma(\varepsilon^{1/2}\mathcal{L}_{\xi})\,,
$$

and (4.2) follows.

The following auxiliary lemma will be necessary in the sequel

Lemma 4.2. Let v_n denote the (unique up to multiplication by a complex number of modulus 1) unity norm eigenfunction associated with the eigenvalue

(4.3)
$$
\nu_{n-1} = \mu_n e^{-i2\pi/3} \quad n \in \mathbb{N}
$$

of \mathcal{L}_{τ} . Let further V denote the form domain of \mathcal{L}_{τ} , i.e,

$$
\mathcal{V} = \{ u \in H_0^1(\mathbb{R}_+,\mathbb{C}) \, | \, \tau^{1/2}u \in L^2(\mathbb{R}_+,\mathbb{C}) \, \},
$$

and $\mathcal{V}_n = \text{span}\{v_n\}_{n=k+1}^{\infty} \cap \mathcal{V}$. Set

(4.4a)
$$
\beta_k = \inf_{\substack{u \in \mathcal{V}_n \\ ||u|| = 1}} ||u_\tau||_2^2 + ||\tau^{1/2}u||_2^2.
$$

Then,

$$
\beta_k \to \infty \, .
$$

Proof. Let us assume by contradiction that there exists a subsequence (k_n) and a positive constant C such that

$$
\sup_{n\in\mathbb{N}}\beta_{k_n}\leq C\,.
$$

Then there exists a sequence (u_n) of functions in $H_0^1(\mathbb{R}_+,\mathbb{C}), \tau^{1/2}u_n \in L^2(\mathbb{R}_+,\mathbb{C})$ such that, for all $n \in \mathbb{N}$, $u_n \in \text{span}\{v_j\}_{j=k_n+1}^{\infty}$, $||u_n||_2 = 1$ and

(4.5)
$$
\sup_{n \in \mathbb{N}} \left(\|\partial_\tau u_n\|_2^2 + \|\tau^{1/2} u_n\|_2^2 \right) \leq 2C.
$$

Since for any $r > 0$ we have

$$
\int_r^{\infty} |u_n|^2 \leq \frac{1}{r} \int_r^{\infty} \tau |u_n|^2 \leq \frac{2C}{r},
$$

we can choose such r for which

$$
\int_0^r |u_n|^2 \ge \frac{1}{2} \, .
$$

Since by [\(4.5\)](#page-17-0) the $H^1(\mathbb{R}_+, \mathbb{C})$ norms of $\{u_n\}_{n=1}^\infty$ are bounded, we can extract a subsequence $(u_{\varphi(n)})$ such that $u_{\varphi(n)} \to u_{\infty}$ in $L^2(\mathbb{R}_+, \mathbb{C})$ weakly, and in $L^2([0, r], \mathbb{C})$ strongly, for some limit function $u_{\infty} \in L^2(\mathbb{R}_+, \mathbb{C})$. We note that

(4.6)
$$
\int_0^r |u_\infty|^2 \geq \frac{1}{2}.
$$

Now let $k \in \mathbb{N}$ be fixed. Then for all n such that $k_{\varphi(n)} \geq k$ we have

$$
u_{\varphi(n)} \in \text{span}\{v_j\}_{j \ge k+1} = \left(\text{span}\{\overline{v}_n\}_{n=1}^k\right)_{\perp},
$$

hence, by the weak convergence in $L^2(\mathbb{R}_+, \mathbb{C})$.

$$
0 = \langle u_{\varphi(n)}, \bar{v}_k \rangle \longrightarrow \langle u_{\infty}, \bar{v}_k \rangle = 0.
$$

Consequently $u_{\infty} \in (\text{span}\{\bar{v}_j\}_{j=1}^{+\infty})_{\perp}$, thus $u_{\infty} = 0$ since the eigenfunctions $\{\bar{v}_j\}_{j\geq 1}$ of \mathcal{L}_{τ}^{*} form a complete family of $L^{2}(\overline{\mathbb{R}_{+}}, \mathbb{C})$ (see [\[3\]](#page-32-2)). A contradiction, in view of [\(4.6\)](#page-18-0).

We next claim the following

Lemma 4.3. There exist $r_0 > 0$, $\varepsilon_0 > 0$ and $C > 0$, such that if $r \in (0, r_0)$, then

(4.7)
$$
|\lambda - \lambda_0 - \varepsilon^{1/2} \lambda_2| = r \varepsilon^{1/2} \Rightarrow ||(\mathcal{B}_{\varepsilon} - \lambda)^{-1}|| \leq \frac{C}{r} \varepsilon^{-1/2} \quad \forall 0 < \varepsilon < \varepsilon_0.
$$

Proof. Suppose that r is so chosen such that $\partial B(\lambda_0 + \varepsilon^{1/2}\lambda_2, r\varepsilon^{1/2}) \in \rho(\mathcal{B}_{\varepsilon})$. Let $g \in \text{span}\{v_n w_m\}_{n,m=0}^{\infty}$ and w denote the solution of

(4.8) (B^ε − λ)w = g .

Let further

$$
\lambda - \lambda_0 - \varepsilon^{1/2} \lambda_2 = \varepsilon^{1/2} r e^{i\alpha},
$$

where $\alpha \in [0, 2\pi)$. By the Riesz-Schauder Theory (cf. [\[2,](#page-32-5) Eq. (16.4)] for instance) we have that

(4.9)
$$
(\mathcal{L}_{\tau} - \lambda)^{-1} = \frac{\Pi_0}{\lambda - \nu_0} + \sum_{k=1}^{K} \frac{\Pi_k}{\lambda - \nu_k} + T_k(\lambda),
$$

where $\{\nu_n\}_{n=0}^{\infty}$ are given by [\(4.3\)](#page-17-1), and $||T_K|| \leq C_K$ in $B(\nu_0, \tilde{r})$ for some fixed $\tilde{r} > 0$. In the above Π_k is the projection operator on span $\{v_k\}$, which is explicitly given, for any $u \in \text{span}\{v_n\}_{n=0}^{\infty}$, by

$$
\Pi_k(u) = \langle \bar{v}_k, u \rangle_\tau v_k(\tau) ,
$$

where $\langle \cdot, \cdot \rangle_{\tau}$ denotes the standard $L^2(\mathbb{R}_+, \mathbb{C})$ inner product.

Let $u_k = \Pi_k(w)$. It can be easily verified that

$$
u_k = \varepsilon^{-1/2} (\mathcal{L}_{\xi} - \lambda_2 - r e^{i\alpha} + \varepsilon^{-1/2} (\nu_k - \nu_0))^{-1} \Pi_k(g) .
$$

It easily follows from here that

(4.10)
$$
||u_0||_2 \leq \frac{C}{r\varepsilon^{1/2}} ||\Pi_0(g)||_2 \leq \frac{C}{r\varepsilon^{1/2}} ||g||_2,
$$

whereas

(4.11)
$$
||u_k||_2 \leq C_k ||g||_2,
$$

where C_k is independent of r and ε . For every $K \geq 1$ we have

(4.12)
$$
||w||_2 \leq \left(\frac{C}{r\varepsilon^{1/2}} + \sum_{k=1}^K C_k\right) ||g||_2 + ||P_K(w)||_2,
$$

where

(4.13)
$$
P_K = I - \sum_{k=0}^{K} \Pi_k.
$$

To complete the proof we need an estimate for $||P_K(w)||_2$. Let then $u_K = P_K(w)$. Clearly,

$$
(\mathcal{B}_{\varepsilon}-\lambda)u_K=P_K(g)\,.
$$

Taking the inner product of the above equation by u_K yields

$$
\left\|\frac{\partial u_K}{\partial \tau}\right\|_2^2 + \varepsilon^{1/2} \left\|\frac{\partial u_K}{\partial \xi}\right\|_2^2 - \text{Re}\,\lambda \|u_K\|_2^2 = \text{Re}\,\langle u_K, P_K(g) \rangle
$$

$$
\|\tau^{1/2} u_K\|_2^2 + \varepsilon^{1/2} \|\xi u_K\|_2^2 - \text{Im}\,\lambda \|u_K\|_2^2 = \text{Im}\,\langle u_K, P_K(g) \rangle.
$$

Combining the above equations yields

(4.14)
$$
\left\|\frac{\partial u_K}{\partial \tau}\right\|_2^2 + \|\tau^{1/2} u_K\|_2^2 - (\text{Im }\lambda + \text{Re }\lambda) \|u_K\|_2^2 \leq 2\|u_K\|_2 \|P_K(g)\|_2.
$$

As

(4.15)
$$
||P_K(g)||_2 \leq C_K ||g||_2,
$$

we obtain by [\(4.4\)](#page-17-2) and [\(4.14\)](#page-19-0) that for sufficiently large K (but independent of ε)

$$
||u_K||_2 \leq C_K ||g||_2.
$$

The lemma is now proved by the above and [\(4.12\)](#page-19-1) for any $g \in \text{span}\{v_n w_m\}_{n,m=0}^{\infty}$, and hence for any $g \in L^2(\mathbb{R}^2_+, \mathbb{C})$ via a density argument.

Note that r may depend on ε . As a matter of fact [\(4.7\)](#page-18-1) remains valid independently of the pace at which $r \to 0$ as $\varepsilon \to 0$.

Corollary 4.4. Under the conditions of $\angle 4.3$ $\angle 4.3$ we have that

(4.16)
$$
\|(\mathcal{B}_{\varepsilon}-\lambda)^{-1}P_1\| \leq C,
$$

where C is independent of ε .

The corollary follows immediately from [\(4.11\)](#page-19-2) and [\(4.15\)](#page-19-3).

Recall now the definition of S from the introduction

$$
\mathcal{S} = \{x \in \partial \Omega_{\perp} : |\nabla V(x)| = |\nabla V(x_0)|, V(x) = V(x_0)\}.
$$

By [\(1.3\)](#page-0-1), S is a finite set of isolated points $\{x_j\}_{j\in J_{\mathcal{S}}}$. Recall the definition of the curvilinear coordinate system (s, t) from the previous section, and then let $x_i =$ (s_j,0). Let further $f \in L^{\infty}(\Omega, \mathbb{C})$ be supported on $\Omega \cap \bigcup_{\alpha \in \mathcal{A}} B(x_{j}, \delta)$ and satisfy $j\in J_{\mathcal{S}}$

$$
(4.17) \t |f| \le C \|f\|_2 \varepsilon^{7/8} e^{-\gamma_1 \varepsilon^{-3/2} [(s-s_j)^2 + t^{3/2}]} \t in B(x_j, \delta) \cap \Omega \quad \forall j \in J_{\mathcal{S}},
$$

for some fixed and positive γ_1 and C.

We seek an estimate for the resolvent of A_h . To this end a few auxiliary estimates, beyond [\(4.7\)](#page-18-1), are necessary. Set then

$$
\Omega_+ = \{ x \in \Omega \mid V(x) > V(x_0) \} \quad ; \quad \Omega_- = \{ x \in \Omega \mid V(x) < V(x_0) \} \, ,
$$

and

$$
\Gamma = \{x \in \Omega \mid V(x) = V(x_0)\}.
$$

Define then the cutoff function $\chi_{\varepsilon,n}^+\in C^\infty(\Omega,[0,1])$, where $n\in\mathbb{N}$, in the following manner

$$
(4.18) \qquad \chi_{\varepsilon,n}^+(x) = \begin{cases} 1 & x \in \Omega_- \\ 1 & x \in \Omega_+ \cap \{V(x) - V(x_0) \le 2^{n-1}\varepsilon^\rho\} \\ 0 & x \in \Omega_+ \cap \{V(x) - V(x_0) \ge 2^n\varepsilon^\rho\}, \end{cases} \qquad \|\nabla \chi_{\varepsilon,n}^+\|_{\infty} \le \frac{C_n}{\varepsilon^\rho}
$$

where $0 < \rho < 1$. We further set

(4.19)
$$
(\tilde{\chi}_{\varepsilon,n}^+)^2 + (\chi_{\varepsilon,n}^+)^2 = 1.
$$

In a similar manner we then define $\chi_{\Gamma,\varepsilon,n}^{-}$:

$$
\chi_{\varepsilon,n}^-(x) = \begin{cases} 1 & x \in \Omega_+ \\ 1 & x \in \Omega_- \cap \{V(x_0) - V(x) \le 2^{n-1}\varepsilon^\rho\} \\ 0 & x \in \Omega_- \cap \{V(x_0) - V(x) \ge 2^n\varepsilon^\rho\} \end{cases}.
$$

The complementary cutoff function $\tilde{\chi}_{\varepsilon,n}^-$ is then given by

$$
(\tilde{\chi}_{\varepsilon,n}^{-})^2 = 1 - (\chi_{\varepsilon,n}^{-})^2
$$

We begin with the following estimate

Lemma 4.5. Let f satisfy (4.17) and

(4.20) $({\cal A}_h - \lambda^*)w = f,$

where

$$
|\lambda^*| \leq C \varepsilon
$$

Then, for any $n \in \mathbb{N}$ there exists $C_n > 0$ and $\gamma_2 > 0$ such that for sufficiently small ε we have

(4.21a)
$$
\|\tilde{\chi}_{\varepsilon,n}^{-}w\|_2 + \|\tilde{\chi}_{\varepsilon,n}^{+}w\|_2 \leq C_n(\varepsilon^{n\rho-1} \|w\|_2 + e^{-\gamma_2 \varepsilon^{-\frac{3}{2}(1-\rho)}} \|f\|_2).
$$

Furthermore, we have that (4.21b)

$$
\|\nabla(\tilde{\chi}_{\varepsilon,n}^+w)\|_2+\|\nabla(\tilde{\chi}_{\varepsilon,n}^-w)\|_2+\varepsilon^2(\|D^2(\tilde{\chi}_{\varepsilon,n}^+w)\|_2+\|D^2(\tilde{\chi}_{\varepsilon,n}^-w)\|_2)\leq C_n\varepsilon^{n\rho-1}(\|w\|_2+\|f\|_2).
$$

Proof. In the following the constants C and γ_2 depend on n. Taking the inner product of [\(4.20\)](#page-20-1) with $(\tilde{\chi}_{\varepsilon,n}^+)^2 w$ yields

(4.22a)
$$
\begin{cases}\n\|\nabla(\tilde{\chi}_{\varepsilon,n}^+w)\|_2^2 - \|w\nabla\tilde{\chi}_{\varepsilon,n}^+\|_2^2 = \frac{\alpha}{\varepsilon^3 c^4} \left(\text{Re}\,\lambda^* \|\tilde{\chi}_{\varepsilon,n}^+w\|_2^2 + \text{Re}\,\langle\tilde{\chi}_{\varepsilon,n}^+w,\tilde{\chi}_{\varepsilon,n}^+f\rangle\right) \\
\frac{\alpha}{\varepsilon^3 c^4} \|\tilde{\chi}_{\varepsilon,n}^+ |V - V(x_0)|^{1/2} w\|_2^2 + \text{Im}\,\langle w\nabla\tilde{\chi}_{\varepsilon,n}^+, \nabla(\tilde{\chi}_{\varepsilon,n}^+w)\rangle \\
= \frac{\alpha}{\varepsilon^3 c^4} \left(\text{Im}\,\lambda^* \|\tilde{\chi}_{\varepsilon,n}^+w\|_2^2 + \text{Im}\,\langle\tilde{\chi}_{\varepsilon,n}^+w,\tilde{\chi}_{\varepsilon,n}^+f\rangle\right).\n\end{cases}
$$

From the definition of $\tilde{\chi}_{\varepsilon,n}^+$ and [\(4.22b](#page-21-0)) we get

$$
(4.23)\ \|\tilde{\chi}_{\varepsilon,n}^+w\|_2^2 \leq C\varepsilon^{3-\rho}\Big(\|\nabla(\tilde{\chi}_{\varepsilon,n}^+w)\|_2^2 + \|w\nabla\tilde{\chi}_{\varepsilon,n}^+\|_2^2 + \varepsilon^{-4}\|\tilde{\chi}_{\varepsilon,n}^+f\|_2^2 + \varepsilon^{-2}\|\tilde{\chi}_{\varepsilon,n}^+w\|_2^2\Big).
$$

By $(4.22a)$ we have

(4.24)
$$
\|\nabla(\tilde{\chi}_{\varepsilon,n}^+w)\|_2^2 \leq C\Big(\|w\nabla\tilde{\chi}_{\varepsilon,n}^+\|_2^2 + \varepsilon^{-4}\|\tilde{\chi}_{\varepsilon,n}^+f\|_2^2 + \varepsilon^{-2}\|\tilde{\chi}_{\varepsilon,n}^+w\|_2^2\Big).
$$

Substituting the above into [\(4.23\)](#page-21-1) then yields

$$
\|\tilde{\chi}_{\varepsilon,n}^+ w\|_2^2 \leq C\varepsilon^{3-\rho} \Big(\|w\nabla\tilde{\chi}_{\varepsilon,n}^+\|_2^2 + \varepsilon^{-4} \|\tilde{\chi}_{\varepsilon,n}^+ f\|_2^2 + \varepsilon^{-2} \|\tilde{\chi}_{\varepsilon,n}^+ w\|_2^2 \Big),
$$

from which we easily obtain, for sufficiently small ε ,

(4.25)
$$
\|\tilde{\chi}_{\varepsilon,n}^+w\|_2^2 \leq C\varepsilon^{3-\rho} \left(\|w\nabla \tilde{\chi}_{\varepsilon,n}^+\|_2^2 + \varepsilon^{-4} \|\tilde{\chi}_{\varepsilon,n}^+f\|_2^2 \right).
$$

By [\(4.17\)](#page-20-0) we have that for sufficiently small γ_2 and ε ,

(4.26)
$$
\|\tilde{\chi}_{\varepsilon,n}^+ f\|_2 \leq C e^{-\gamma_2 \varepsilon^{-\frac{3}{2}(1-\rho)}} \|f\|_2.
$$

Furthermore, by [\(4.18\)](#page-20-2) and [\(4.19\)](#page-20-3) we have that

$$
||w\nabla\tilde{\chi}_{\varepsilon,n}^+||_2\leq \frac{C}{\varepsilon^\rho}||\tilde{\chi}_{\varepsilon,n-1}^+w||_2\,.
$$

Combining the above, [\(4.26\)](#page-21-2), and [\(4.25\)](#page-21-3) then yields

$$
\|\tilde{\chi}_{\varepsilon,n}^+w\|_2 \leq C \big(\varepsilon^{\rho} \|\tilde{\chi}_{\varepsilon,n-1}^+w\|_2 + e^{-\gamma_2 \varepsilon^{-\frac{3}{2}(1-\rho)}} \|f\|_2 \big).
$$

Similarly we obtain that

$$
\|\tilde{\chi}_{\varepsilon,n}^{-}w\|_2 \leq C \big(\varepsilon^{\rho} \|\tilde{\chi}_{\varepsilon,n-1}^{+}w\|_2 + e^{-\gamma_2 \varepsilon^{-\frac{3}{2}(1-\rho)}} \|f\|_2 \big).
$$

The above pair of inequalities, when recursively applied, readily yield [\(4.21a](#page-20-4)).

We begin the proof of [\(4.21b](#page-20-4)) by combining [\(4.24\)](#page-21-4) and [\(4.21a](#page-20-4)) to obtain

(4.27)
$$
\|\nabla(\tilde{\chi}_{\varepsilon,n}^+w)\|_2 \leq C_n(\varepsilon^{n\rho-1} \|w\|_2 + e^{-\gamma_2 \varepsilon^{-\frac{3}{2}(1-\rho)}} \|f\|_2).
$$

Furthermore, we have that

$$
\begin{split} \|\tilde{\chi}_{\varepsilon,n}^{+} \Delta w\|_{2} &\leq \frac{C}{\varepsilon^{3}} \|(V - V(x_{0}))\tilde{\chi}_{\varepsilon,n}^{+} w\|_{2} \\ &+ \frac{C}{\varepsilon^{2}} \|\tilde{\chi}_{\varepsilon,n}^{+} w\|_{2} + \frac{C}{\varepsilon^{3}} \|\tilde{\chi}_{\varepsilon,n}^{+} f\|_{2} \leq C_{n} (\varepsilon^{n\rho - 3} \|w\|_{2} + e^{-\gamma_{2}\varepsilon^{-\frac{3}{2}(1-\rho)}} \|f\|_{2}) \, . \end{split}
$$

As,

$$
\|\Delta(\tilde{\chi}_{\varepsilon,n}^+w)\|_2 \leq \frac{C}{\varepsilon^{\rho}} \|\nabla(\tilde{\chi}_{\varepsilon,n-1}^+w)\|_2 + \frac{C}{\varepsilon^{2\rho}} \|\tilde{\chi}_{\varepsilon,n-1}^+w\|_2 + \|\tilde{\chi}_{\varepsilon,n}^+\Delta w\|_2,
$$

we readily conclude that

$$
\|\Delta(\tilde{\chi}_{\varepsilon,n}^+w)\|_2 \leq C_n(\varepsilon^{n\rho-3} \|w\|_2 + e^{-\gamma_2 \varepsilon^{-\frac{3}{2}(1-\rho)}} \|f\|_2).
$$

Standard elliptic estimates, together with [\(4.27\)](#page-21-5) then yield [\(4.21b](#page-20-4)), after repeating the same argument for $\tilde{\chi}_{\varepsilon,n}^{-}w$.

Before we attempt to estimate $(\mathcal{A}_h - \lambda^*)^{-1} f$ we need yet the following auxiliary estimate.

Lemma 4.6. Under the same conditions of Lemma [4.5](#page-20-5) we have that

(4.28a)
$$
\qquad \qquad \left\{ \|\nabla w\|_2 \leq \frac{C}{\varepsilon} \|w\|_2 + \frac{C}{\varepsilon^2} \|f\|_2,
$$

 $\overline{}$

(4.28b)
$$
\qquad \qquad \left| \|D^2 w\|_2 \leq \frac{C}{\varepsilon^{3-\rho}} \|w\|_2 + \frac{C}{\varepsilon^3} \|f\|_2,
$$

where $w = (\mathcal{A}_h - \lambda^*)^{-1} f$ and $0 < \rho < 1$.

Proof. As

$$
\|\nabla w\|_2^2 = \frac{\alpha}{\varepsilon^3 c^4} (\lambda^* \|w\|_2^2 + \text{Re}\,\langle w, f \rangle),
$$

we readily obtain [\(4.28a](#page-22-0)). To prove [\(4.28b](#page-22-0)) we first note that

(4.29)
$$
\|\Delta w\|_2 \leq \frac{C}{\varepsilon^3} (\|(V - V(x_0))w\|_2 + \lambda^* \|w\|_2 + \|f\|_2)
$$

Let

$$
\zeta^{2} = 1 - (\tilde{\chi}_{\varepsilon,n}^{-})^{2} - (\tilde{\chi}_{\varepsilon,n}^{+})^{2}.
$$

By (4.21) we have, for sufficiently large n,

$$
\begin{aligned} &\|(V - V(x_0))w\|_2 \le C(\|\tilde{\chi}_{\varepsilon,n}^{-}w\|_2 + \|\tilde{\chi}_{\varepsilon,n}^{+}w\|_2) + \|\zeta(V - V(x_0))w\|_2 \\ &\le C(\varepsilon^{n\rho-1} \|w\|_2 + e^{-\gamma_2 \varepsilon^{-\frac{3}{2}(1-\rho)}} \|f\|_2 + \varepsilon^{\rho} \|w\|_2) \le C(\varepsilon^{\rho} \|w\|_2 + e^{-\gamma_2 \varepsilon^{-\frac{3}{2}(1-\rho)}} \|f\|_2), \end{aligned}
$$

which, when substituted into [\(4.29\)](#page-22-1), yields [\(4.28\)](#page-22-0) with the aid of standard elliptic estimates.

Lemmas [4.3](#page-18-2) and [4.5](#page-20-5) can now be used to estimate $(\mathcal{A}_h - \lambda^*)^{-1}f$ in the close vicinity of x_0 where $\lambda^* \in \partial B(\Lambda_0, (c^2r\varepsilon^{3/2}/\alpha))$, $r \in (0,1)$ being chosen so that $\partial B(\Lambda_0, (c^2r\varepsilon^{3/2}/\alpha)) \subset \rho(\mathcal{A}_h)$, where

(4.30)
$$
\Lambda_0 = \frac{\varepsilon c^2}{\alpha} (\lambda_0 + \varepsilon^{1/2} \lambda_2).
$$

Lemma 4.7. Let $f \in L^{\infty}(\Omega, \mathbb{C})$ satisfy [\(4.17\)](#page-20-0), and $7/8 < \rho < 1$. Let $w = (\mathcal{A}_h - \mathcal{A}_h)^T$ $(\lambda^*)^{-1} f^*$ and ζ_0 be given by

(4.31)
$$
\zeta_0^*(\varepsilon,\rho) = [1 - (\tilde{\chi}_{\varepsilon,n}^-)^2 - (\tilde{\chi}_{\varepsilon,n}^+)^2] \mathbf{1}_{B(x_0,\delta)\cap\Omega},
$$

where $\delta > 0$ is so chosen so that $B(x_0, \delta) \cap \Gamma = \{x_0\}$. Then,

(4.32)
$$
\|\zeta_0^* w^*\|_2 \leq \frac{C}{r} (\varepsilon^{-3/2} \|f\|_2 + \varepsilon^{1/8} \|w^*\|_2).
$$

Proof. Clearly,

$$
(\mathcal{A}_h - \lambda^*)(\zeta_0^* w^*) = \zeta_0^* f^* + [\mathcal{A}_h, \zeta_0^*] w^*
$$

We next write

$$
\mathcal{A}_h=\mathcal{A}_0+\mathcal{D}^*,
$$

where A_0 is given by

$$
\mathcal{A}_0 = -\frac{\varepsilon^3 c^4}{\alpha^3} (\partial_{tt} + \partial_{ss}) + i(ct + \alpha s^2) ,
$$

and

$$
\mathcal{D}^* = -\frac{\varepsilon^3 c^4}{\alpha^3} \Upsilon + i(V - V(x_0) - ct - \frac{1}{2} \alpha s^2),
$$

where Υ is given by [\(3.5\)](#page-12-5). Then,

$$
(\mathcal{A}_0 - \lambda^*)(\zeta_0^* w^*) = \zeta_0 f^* - \mathcal{D}^*(\zeta_0^* w^*) + [\mathcal{A}_h, \zeta_0^*] w^*.
$$

Applying the transformation [\(3.7\)](#page-12-6) yields

(4.33)
$$
(\mathcal{B}_{\varepsilon} - \lambda)(\zeta_0 w) = \frac{\alpha}{\varepsilon c^2} \zeta_0 f + [\mathcal{B}_{\varepsilon}, \zeta_0] w - R(\zeta_0 w).
$$

where f, ζ_0 , and w are respectively obtained from f^* , ζ_0^* , and w^{*} via the dilation $\cdot(\xi,\tau) = \cdot^*(s,t)$, in which (ξ,τ) are given by [\(3.7\)](#page-12-6), R is given by [\(3.10\)](#page-12-3) and $\lambda = \frac{\alpha}{\varepsilon c^2} \lambda^*$.

We next apply to [\(4.33\)](#page-23-0) the operator P_1 defined in [\(4.13\)](#page-19-4). Since $\mathcal{B}_{\varepsilon}$ and P_1 commute, we easily obtain from [\(4.16\)](#page-19-5) that

(4.34)
$$
||P_1(\zeta_0 w)||_2 \leq C(\varepsilon^{-1}||f||_2 + ||[\mathcal{B}_{\varepsilon}, \zeta_0]w||_2 + ||R(\zeta_0 w)||_2).
$$

We now attempt to estimate $||R(\zeta_0w)||_2$. We first note that R is given by [\(3.10\)](#page-12-3). We then observe that

$$
(4.35)\left|\frac{\alpha}{\varepsilon c^2}[V - V(x_0)] - \tau - \varepsilon^{1/2}\frac{1}{2}\xi^2\right| \le C(\varepsilon^{5/4}\xi^3 + \varepsilon^{3/4}\tau\xi + \varepsilon\tau^2) \quad \forall x \in B(x_0, \delta),
$$

Since

$$
\frac{1}{2}\left(\tau + \frac{\varepsilon^{1/2}}{2}\xi^2\right) \le \frac{\alpha}{\varepsilon c^2}|V(x) - V(x_0)| \le 2\varepsilon^{-(1-\rho)} \quad \forall x \in \operatorname{supp}(\zeta_0),
$$

we obtain that for some ${\cal C}>0$

(4.36)
$$
\operatorname{supp} \zeta_0 \subset \{(\xi, \tau) \mid |\xi| \leq C \varepsilon^{-3/4 + \rho/2}, 0 \leq \tau < C \varepsilon^{-(1-\rho)}\}.
$$

Consequently, by [\(4.35\)](#page-23-1) we have that

$$
\zeta_0 \left| \frac{\alpha}{\varepsilon c^2} [V - V(x_0)] - \tau - \varepsilon^{1/2} \frac{1}{2} \xi^2 \right| \leq C \varepsilon^{\frac{3\rho}{2} - 1}.
$$

Hence,

(4.37)
$$
\left\| \left(\frac{\alpha}{\varepsilon c^2} [V - V(x_0)] - \tau - \varepsilon^{1/2} \frac{1}{2} \xi^2 \right) \zeta_0 w \right\|_2 \leq C \varepsilon^{\frac{3\rho}{2} - 1} \|\zeta_0 w\|_2.
$$

To complete the estimation of $R(\zeta_0w)$, it is necessary to bound

(4.38)
$$
\tilde{R}(\zeta_0 w) = \varepsilon^{3/2} \left\| \tau(\zeta_0 w)_{\xi\xi} \right\|_2 + \varepsilon^{9/4} \|\tau(\zeta_0 w)_{\xi}\|_2 + \varepsilon \|(\zeta_0 w)_{\tau}\|_2.
$$

Since by [\(4.36\)](#page-24-0) we have that

$$
\|\zeta_0\|_{C^{2,0}} \leq C\,,
$$

we have by [\(3.7\)](#page-12-6), [\(4.28\)](#page-22-0), and [\(4.36\)](#page-24-0) that

(4.39)
$$
\left\| \tau(\zeta_0 w)_{\xi\xi} \right\|_2 \leq C \left(\frac{1}{\varepsilon^{3/2-\rho}} \|w\|_2 + \frac{1}{\varepsilon^{5/2-\rho}} \|f\|_2 \right).
$$

Furthermore,

(4.40)
$$
\|\tau(\zeta_0 w)_{\xi}\|_2 \le C \Big(\frac{1}{\varepsilon^{1/4}} \|w\|_2 + \frac{1}{\varepsilon^{9/4-\rho}} \|f\|_2\Big),
$$

and

$$
\|(\zeta_0 w)_\tau\|_2 \leq C(\|w\|_2 + \varepsilon^{-1} \|f\|_2).
$$

Substituting the above together with [\(4.40\)](#page-24-1) and [\(4.39\)](#page-24-2) into [\(4.38\)](#page-24-3) then yields

(4.41)
$$
\tilde{R}(\zeta_0 w) \le C(\varepsilon^{\rho} ||w||_2 + ||f||_2).
$$

Combining the above with [\(4.37\)](#page-24-4) yields

(4.42)
$$
||R(\zeta_0 w)||_2 \leq C(\varepsilon^{\frac{3\rho}{2}-1}||w||_2 + ||f||_2).
$$

We now turn to estimate $[\mathcal{B}_{\varepsilon}, \zeta_0]w$. From [\(4.21\)](#page-20-4) we learn that, for any $n \in \mathbb{N}$, there exists some $\varepsilon_0(n)$, such that for all $\varepsilon < \varepsilon_0(n)$ we have

$$
(4.43) \quad ||[\mathcal{B}_{\varepsilon}, \zeta_{0}]w||_{2} = \frac{\alpha}{c} \varepsilon^{-7/8} \Big\| \frac{\alpha}{\varepsilon c^{2}} [\mathcal{A}_{h}, \zeta_{0}^{*}]w^{*} \Big\|_{2} \le
$$

$$
C \varepsilon^{9/8} [\varepsilon^{-2\rho} (||\tilde{\chi}_{\varepsilon,n-1}^{-}w^{*}||_{2} + ||\tilde{\chi}_{\varepsilon,n-1}^{+}w^{*}||_{2}) + \varepsilon^{-\tilde{\rho}} (||\nabla(\tilde{\chi}_{\varepsilon,n-1}^{-}w^{*})||_{2} + ||\nabla(\tilde{\chi}_{\varepsilon,n-1}^{+}w^{*})||_{2})] \le C_{n} (\varepsilon^{n\rho-15/8} ||w^{*}||_{2} + e^{-\gamma_{2}\varepsilon^{-\frac{3}{2}(1-\rho)}} ||f^{*}||_{2})
$$

$$
\le C_{n} (\varepsilon^{n\rho-1} ||w||_{2} + e^{-\gamma_{2}\varepsilon^{-\frac{3}{2}(1-\rho)}} ||f||_{2}).
$$

Substituting the above together with [\(4.42\)](#page-24-5) into [\(4.34\)](#page-23-2) yields

(4.44)
$$
||P_1(\zeta_0 w)||_2 \leq C(\varepsilon^{\frac{3\rho}{2}-1}||w||_2 + ||f||_2).
$$

We now turn to estimate $\Pi_0(w)$. Taking the inner product of [\(4.33\)](#page-23-0) in $L^2(\mathbb{R}_+, \mathbb{C})$ with \bar{v}_0 yields

(4.45)
$$
(\mathcal{L}_{\xi} - \tilde{\lambda})w_0 = \varepsilon^{-1/2} \Big\langle \bar{v}_0, \frac{\alpha}{\varepsilon c^2} \zeta_0 f - R(\zeta_0 w) + [\mathcal{B}_{\varepsilon}, \zeta_0] w \Big\rangle_{\mathbb{R}_+},
$$

where $w_0 = \langle \bar{v}_0, \zeta_0 w \rangle$, and $\tilde{\lambda} = \varepsilon^{-1/2} (\lambda - \lambda_0)$. (Note that $\Pi_0(\zeta_0 w) = w_0(\xi) v_0(\tau)$.) Multiplying [\(4.45\)](#page-25-0) by \bar{w}_0 and integrating by parts yields, from the imaginary part

$$
\|\xi w_0\|_{L^2(\mathbb{R})}^2 \leq C \big(\|w_0\|_{L^2(\mathbb{R})}^2 + \varepsilon^{-1/2} |\langle \bar{v}_0 w_0, \varepsilon^{-1} \zeta_0 f - R(\zeta_0 w) + [\mathcal{B}_{\varepsilon}, \zeta_0] w \rangle |\big).
$$

We now use (4.41) , (4.43) , and (4.35) to obtain that

$$
\|\xi w_0\|_{L^2(\mathbb{R})} \le C(\|w_0\|_{L^2(\mathbb{R})} + \varepsilon^{-3/2} \|f\|_2 + \varepsilon^{\rho-1/2} \|w\|_2 + \varepsilon^{1/4} \|\tau \xi \zeta_0 w\|_2 + \varepsilon^{1/2} \|\tau^2 \zeta_0 w\|_2)
$$

In view of [\(4.36\)](#page-24-0) we then have

$$
(4.46) \qquad \|\xi w_0\|_{L^2(\mathbb{R})} \le C(\|w_0\|_{L^2(\mathbb{R})} + \varepsilon^{-3/2} \|f\|_2 + \varepsilon^{\rho-1/2} \|w\|_2 + \varepsilon^{1/4} \|\xi \zeta_0 w\|_2).
$$

We now use [\(4.44\)](#page-24-8) to obtain

 $\|\xi\zeta_0w\|_2 \le \|\xi P_1(\zeta_0w)\|_2 + \|\xi w_0\|_{L^2(\mathbb{R})} \le C(\varepsilon^{2\rho-7/4} \|w\|_2 + \varepsilon^{-3/2} \|f\|_2) + \|\xi w_0\|_{L^2(\mathbb{R})}.$ Substituting the above into [\(4.46\)](#page-25-1) then yields

$$
\|\xi w_0\|_{L^2(\mathbb{R})} \leq C(\|w_0\|_{L^2(\mathbb{R})} + \varepsilon^{2\rho - \frac{3}{2}} \|w\|_2 + \varepsilon^{-3/2} \|f\|_2),
$$

and hence,

$$
\|\xi\zeta_0 w\|_2 \leq C(\|w_0\|_{L^2(\mathbb{R})} + \varepsilon^{2\rho - \frac{7}{4}} \|w\|_2 + \varepsilon^{-3/2} \|f\|_2).
$$

From the above and [\(4.44\)](#page-24-8) once again we can conclude that (4.47)

$$
\|\xi^3 \zeta_0 w\|_2 \leq C \varepsilon^{-3/2+\rho} \|\xi \zeta_0 w\|_2 \leq C \varepsilon^{-3/2+\rho} (\|w_0\|_{L^2(\mathbb{R})} + \varepsilon^{2\rho - \frac{7}{4}} \|w\|_2 + \varepsilon^{-3/2} \|f\|_2).
$$

Similarly, we obtain

$$
\|\xi\tau\zeta_0w\|_2 \leq C\varepsilon^{-(1-\rho)}(\|w_0\|_{L^2(\mathbb{R})} + \varepsilon^{2\rho-\frac{7}{4}}\|w\|_2 + \varepsilon^{3/2}\|f\|_2).
$$

The above, together with [\(4.47\)](#page-25-2), [\(4.35\)](#page-23-1), and [\(4.36\)](#page-24-0) yield the following improvement of [\(4.37\)](#page-24-4) (recall that $\|\Pi_0(w)\|_2 \leq C \|w\|_2$)

$$
\left\| \left[\frac{\alpha}{\varepsilon c^2} [V - V(x_0)] - \tau - \varepsilon^{1/2} \frac{1}{2} \xi^2 \right] \zeta_0 w \right\|_2 \leq C \varepsilon^{\rho - 1/4} (\|w\|_2 + \varepsilon^{-3/2} \|f\|_2).
$$

We now combine the above inequality with [\(4.41\)](#page-24-6) to obtain an improved version of [\(4.42\)](#page-24-5)

(4.48)
$$
||R(\zeta_0 w)||_2 \leq C\varepsilon^{\rho-1/4} (\varepsilon^{\tilde{\rho}} ||w||_2 + \varepsilon^{3/2} ||f||_2).
$$

Returning to [\(4.33\)](#page-23-0) we obtain from [\(4.7\)](#page-18-1) that

$$
\|\zeta_0 w\|_2 \leq \frac{C}{r\varepsilon^{1/2}}(\varepsilon^2 \|f\|_2 + \|[\mathcal{B}_{\varepsilon}, \zeta_0]w\|_2 + \|R(\zeta_0 w)\|_2).
$$

With the aid of [\(4.43\)](#page-24-7) and [\(4.48\)](#page-25-3) we then obtain

$$
\|\zeta_0 w\|_2 \le \frac{C}{r\varepsilon^{1/2}} (\varepsilon^{-1} \|f\|_2 + \varepsilon^{5/8} \|w\|_2),
$$

from which (4.32) easily follows.

Remark 4.8. Clearly, [\(4.32\)](#page-23-3) can be extended to the neighborhood of each point in S. Thus, if we set for any $x_i \in \mathcal{S}$

(4.49)
$$
\zeta_j^*(\varepsilon,\rho) = [1 - (\tilde{\chi}_{\varepsilon,n}^-)^2 - (\tilde{\chi}_{\varepsilon,n}^+)^2] \mathbf{1}_{B(x_j,\delta)\cap\Omega},
$$

where $\delta > 0$ is so chosen so that $B(x_j, \delta) \cap \Gamma = \{x_j\}$ for all $j \in J_{\mathcal{S}}$. Then,

(4.50)
$$
\|\zeta_j^* w^*\|_2 \leq \frac{C}{r} (\varepsilon^{3/2} \|f\|_2 + \varepsilon^{1/8} \|w^*\|_2).
$$

We can now estimate $\|(\mathcal{A}_h - \lambda^*)^{-1} f\|$ in the simplest possible case where $\Gamma = \{x_0\}.$

Corollary 4.9. Let $f \in L^{\infty}(\Omega, \mathbb{C})$ satisfy (4.17) . Let $\lambda^* \in \partial B(\Lambda_0, r\varepsilon^{-1/2}) \subset \rho(\mathcal{A}_h)$, where Λ_0 is given by [\(4.30\)](#page-23-4), for some $\varepsilon^{1/8} \ll r < 1$. Then, there exists $C > 0$ such that for sufficiently small ε we have

(4.51)
$$
\|(\mathcal{A}_h - \lambda^*)^{-1} f\|_2 \leq \frac{C}{\varepsilon^{3/2} r} \|f\|_2.
$$

Proof. Since $\Gamma = \{x_0\}$ we may set with any loss of generality $\Omega = \Omega_+$. Hence, we have that $\chi_{\varepsilon,n}^+ = \zeta_0^*$, where ζ_0^* is defined by [\(4.31\)](#page-23-5). Let $w = (\mathcal{A}_h - \lambda)^{-1} f$. Then,

$$
||w||_2^2 = ||\chi_{\varepsilon,n}^+ w||_2^2 + ||\tilde{\chi}_{\varepsilon,n}^+ w||_2^2 = ||\zeta_0^* w||_2^2 + ||\tilde{\chi}_{\varepsilon,n}^+ w||_2^2.
$$

The corollary now easily follows from $(4.21a)$ and (4.32) .

Consider next the general case where $\Gamma \setminus \{x_0\} \neq \emptyset$. We begin by defining some local approximations of the operator \tilde{A}_h . Let $\rho \in (7/8, 1)$, and then define two sets of indices $J_{\partial\Omega} = J_{\partial\Omega}(\varepsilon)$ and $J_{\Omega} = J_{\Omega}(\varepsilon)$. Set then $J = J_{\partial\Omega} \cup J_{\Omega}$ and let $\delta > 0$ be the same as in [\(4.31\)](#page-23-5). Next, choose a sequence of points $(x_j)_{j\in J} = (x_j(\varepsilon))_{j\in J} \subset$ $\overline{\Omega} \setminus \bigcup_{j} B(x_j, \delta)$, where $x_j \in \partial \Omega$ (respectively $x_j \in \Omega$) if $j \in J_{\partial \Omega}$ (respectively $j \in \Omega$), $j\in J_{\mathcal{S}}$ such that

$$
\bar{\Omega} \setminus \bigcup_{j \in J_{\mathcal{S}}} B(x_j, \delta) \subset \bigcup_{j \in J} B(x_j, \varepsilon^{\rho}).
$$

Let $(\eta_j)_{j\in J}$ be a family of cutoff functions associated with the partition above, namely $\eta_j(x) = 1$ if $x \in B(x_j, \varepsilon^{\rho}/2)$, Supp $\eta_j \subset B(x_j, \varepsilon^{\rho})$, and

$$
\forall x \in \bar{\Omega} \setminus \bigcup_{j \in J_{\mathcal{S}}} B(x_j, \delta), \ \sum_{j \in J} \eta_j(x)^2 = 1.
$$

We further assume that for all $j \in J$, $\|\nabla \eta_j\|_{\infty} = \mathcal{O}(\varepsilon^{-\rho})$ and $\|\Delta \eta_j\|_{\infty} = \mathcal{O}(\varepsilon^{-2\rho})$. Finally we set, for all $j \in J$,

$$
\chi_j=\eta_j\mathbf{1}_{\bar{\Omega}}\,.
$$

In the neighborhood of each point x_j , $j \in J_\Omega$, we shall approximate \mathcal{A}_h by the following operator:

(4.52a)
$$
\mathcal{A}_{j,h} := -\frac{\varepsilon^3 c^4}{\alpha^3} \Delta + i(\mathbf{c}_j \cdot x + V(x_j) - V(x_0)), \ \mathbf{c}_j = (c_j^1, c_j^2) = \nabla V(x_j),
$$

whose domain is given by

(4.52b)
$$
D(\mathcal{A}_{j,h}) = H^2(\mathbb{R}^2; \mathbb{C}) \cap L^2(\mathbb{R}^2, |x|^2 dx; \mathbb{C}).
$$

In the neighborhood of the boundary points x_j , $j \in J_{\partial\Omega}$, we use different approximate operators, depending on the local behaviour of V . To this end, denote by $J_{\partial\Omega}^1 \subset J_{\partial\Omega}$ the set of indices j such that $x_j \in \partial\Omega_\perp$ and

$$
|\nabla V(x_j)| = |\nabla V(x_0)| = \min_{x \in \partial \Omega_{\perp}} |\nabla V(x)|.
$$

Notice that $J_{\partial\Omega}^1$ may be an empty set, since $x_0 \notin \overline{\Omega} \setminus B(x_0, \delta)$. We then let $J_{\partial\Omega}^2 =$ $J_{\partial\Omega} \setminus J_{\partial\Omega}^1$ and $J_{\partial\Omega}^3 = J_{\partial\Omega}^1 \setminus J_{\mathcal{S}}$. In the neighborhood of the boundary points x_j for $j \in J_{\partial\Omega}^2$, we use the following approximation of \mathcal{A}_h . Let (t, s) be the same curvilinear coordinate system as defined in Section [3,](#page-11-0) centered at x_j . In these coordinates the leading order approximation of \mathcal{A}_h reads

(4.53a)
$$
\mathcal{A}_{j,h} = -\frac{\varepsilon^3 c^4}{\alpha^3} \Delta + i(\mathbf{c}_j.(t,s) + V(x_j) - V(x_0)), \ \mathbf{c}_j = (c_j^1, c_j^2) = \nabla V(x_j),
$$

with the following domain

$$
(4.53b) \tD(\mathcal{A}_{j,h}) = H_0^1(\mathbb{R}^2_+;\mathbb{C}) \cap H^2(\mathbb{R}^2_+;\mathbb{C}) \cap L^2(\mathbb{R}^2_+,(t^2+s^2)dtds;\mathbb{C}).
$$

In the following we provide resolvent estimates on the approximate operators $A_{i,h}$ introduced above. These estimates are stated in the following lemma

Lemma 4.10. There exists $r_0 > 0$ such that, for all $r \in (0, r_0)$ and $j \in J$, $\partial B(\Lambda_0, r\varepsilon^{-1/2}) \subset \rho(\mathcal{A}_{j,h})$, where Λ_0 is given by [\(4.30\)](#page-23-4). Moreover, there exists $C > 0$ such that for all $\lambda^* \in \partial B(\Lambda_0, r\varepsilon^{-1/2})$ and for all $j \in J_\Omega \cup J_{\partial\Omega}^2$,

$$
||(A_{j,h}-\lambda^*)^{-1}||_2\leq \frac{C}{\varepsilon}.
$$

Proof. Let $j \in J_{\Omega}$. Recall that the operator $A_{j,h}$ is given in this case by [\(4.53\)](#page-27-0). It has been established in [\[3,](#page-32-2) [9\]](#page-32-11) that $\mathcal{A}_{j,h}$ has empty spectrum, and for all $\omega \in \mathbb{R}$ there exists $C_{\omega} > 0$ such that

(4.55)
$$
\sup_{\text{Re } z \le \omega} \left\|(-\Delta + i\mathbf{c}_j \cdot x - z)^{-1}\right\| \le C_{\omega}.
$$

Since the scale change $x \mapsto \alpha/(\varepsilon c^{4/3})x$ gives (4.56)

$$
\|(\mathcal{A}_{j,h}-\lambda^*)^{-1}\|=\frac{\alpha}{\varepsilon c^{4/3}}\left\|\left(-\Delta+i\left[\frac{\alpha}{\varepsilon c^{4/3}}\big(V(x_j)-V(x_0)\big)+\mathbf{c}_j.x\right]-\frac{\alpha}{\varepsilon c^{4/3}}\lambda^*\right)^{-1}\right\|.
$$

and since $\alpha/(\varepsilon c^{4/3})\lambda^*$ remains bounded as $\varepsilon \to 0$, [\(4.55\)](#page-27-1) and [\(4.56\)](#page-27-2) easily yield [\(4.54\)](#page-27-3) for any $j \in J_{\Omega}$.

The same argument can be used in the case where $j \in J_{\partial\Omega}^2$ with $x_j \notin \partial\Omega_\perp$, since the operator $-\Delta + ic_j^1t + ic_j^2s$ on \mathbb{R}^2_+ has empty spectrum and satisfies [\(4.55\)](#page-27-1) as well as soon as $c_j^2 \neq 0$, see Theorem [A.3.](#page-31-0)

We next consider the case where $j \in J_{\partial\Omega}^2$ and $x_j \in \partial\Omega_{\perp}$. Then,

$$
\mathcal{A}_{j,h} = -\frac{\varepsilon^3 c^4}{\alpha^3} \Delta + i \big(c_j t + V(x_j) - V(x_0) \big)
$$

where $c_j := c_j^1$. The domain $D(\mathcal{A}_{j,h})$ is given by ([\(4.53\)](#page-27-0)b). Suppose that $c_j > 0$ (otherwise apply the same argument to the operator $\mathcal{A}_{j,h}^*$). Denote by \mathcal{A}_0^{\perp} the Dirichlet realization on \mathbb{R}^2_+ of the operator $-\Delta + it$. Then, the scale change

$$
(t,s)\longmapsto \frac{\alpha c_j^{1/3}}{\varepsilon c^{4/3}}(t,s)
$$

gives

$$
(4.57) \quad ||(\mathcal{A}_{j,h} - \lambda^*)^{-1}|| = \frac{\alpha c_j^{1/3}}{\varepsilon c^{4/3}} \left\| \left(\mathcal{A}_0^{\perp} + i \frac{\alpha c_j^{1/3}}{\varepsilon c^{4/3}} (V(x_j) - V(x_0)) - \frac{\alpha c_j^{1/3}}{\varepsilon c^{4/3}} \lambda^* \right)^{-1} \right\|.
$$

By the definition of $J_{\partial\Omega}^2$, we have $c_j < c$. Hence for any fixed $\delta_0 \in (0,1)$ we have

$$
\frac{\alpha c_j^{1/3}}{\varepsilon c^{4/3}} \lambda^* = \left(\frac{c}{c_j}\right)^{2/3} \lambda_0 + \mathcal{O}(\varepsilon^{1/2}) \le (1 - \delta_0) \lambda_0
$$

for all sufficiently small ε . It has been established in [\[9\]](#page-32-11) that

$$
\sup_{\text{Re }z\leq(1-\delta_0)\lambda_0}\|(\mathcal{A}_0^{\perp}-z)^{-1}\|<+\infty.
$$

Consequently, (4.54) follows from (4.57) and the above estimate.

We now extend [\(4.51\)](#page-26-0) to the general case

Proposition 4.11. Let $\varepsilon^{1/8} \ll r < 1$. Under the assumptions of Theorem [1.1,](#page-1-3) [\(4.51\)](#page-26-0) holds for any $f \in L^{\infty}(\Omega, \mathbb{C})$ satisfying [\(4.17\)](#page-20-0), and $\lambda^* \in \partial B(\Lambda_0, r\varepsilon^{-1/2})$.

Proof. Let $w = (\mathcal{A}_h - \lambda^*)^{-1} f$. Let $j \in J_{\partial \Omega}^2 \cup J_{\Omega}$. Clearly

(4.58)
$$
(\mathcal{A}_{j,h} - \lambda^*)(\chi_j w) = [\mathcal{A}_h, \chi_j]w - (\mathcal{A}_h - \mathcal{A}_{j,h})(\chi_j w).
$$

We now attempt to estimate the right-hand-side of [\(4.58\)](#page-28-1). Clearly,

(4.59)
$$
\|[\mathcal{A}_h, \chi_j]w\|_2 \leq C\varepsilon^{-2\rho} \|w\|_{L^2(B(x_j, \varepsilon^{\rho}))} + C\varepsilon^{-\rho} \|\nabla(\chi_j w)\|_2.
$$

As

Re
$$
\langle \chi_j^2 w, (\mathcal{A}_h - \lambda^*) w \rangle = ||\nabla(\chi_j w)||_2^2 - \lambda^* ||\chi_j w||_2^2 - ||w\nabla\chi_j||_2^2 = 0
$$
,

we obtain that

(4.60)
$$
\|\nabla(\chi_j w)\|_2 \leq C \varepsilon^{-1} \|w\|_{L^2(B(x_j, \varepsilon^{\rho}))},
$$

which, when substituted into [\(4.59\)](#page-28-2) yields

(4.61) k[Ah, χ^j]wk² [≤] Cε[−](1+ρ) kwkL2(B(x^j ,ερ)) .

We now attempt to estimate $(\mathcal{A}_h - \mathcal{A}_{j,h})(\chi_j w)$. By [\(4.53\)](#page-27-0) and [\(4.52\)](#page-26-1) we have that

$$
\mathcal{A}_h - \mathcal{A}_{j,h} = i \frac{\alpha^3}{\varepsilon^3 c^4} \big(V(x) - V(x_j) - \mathbf{c}_j \cdot (x - x_j) \big) .
$$

Consequently,

$$
\|(\mathcal{A}_h - \mathcal{A}_{j,h})(\chi_j w)\|_2 \leq C \varepsilon^{-3+2\rho} \|w\|_{L^2(B(x_j,\varepsilon_\rho))}.
$$

Combining the above with (4.61) , (4.58) , and (4.54) yields

(4.62)
$$
\| \chi_j w \|_2 \leq C \varepsilon^{2\rho - 1} \| w \|_{L^2(B(x_j, \varepsilon^\rho))}.
$$

Consider next the case where $j \in J_{\partial\Omega}^3$. Here we have

$$
\operatorname{Im}\left\langle \chi_j^2 w, (\mathcal{A}_h - \lambda^*) w \right\rangle = \frac{\alpha^3 c_j}{\varepsilon^3 c^4} ||V(\cdot) - V(x_0)|^{1/2} \chi_j w||_2^2 - \operatorname{Im} \lambda^* ||\chi_j w||_2^2 + 2 \operatorname{Im} \langle w \nabla \chi_j, \chi_j \nabla w \rangle = 0.
$$

By [\(1.3\)](#page-0-1), there exists $\delta_1 > 0$ such that $|V(x_j) - V(x_0)| > \delta_1$. Consequently,

$$
\|\chi_j w\|_2^2 \leq C[\varepsilon \|\chi_j w\|_2^2 + \varepsilon^3 \|w\nabla \chi_j\|_2 \|\chi_j \nabla w\|_2].
$$

With the aid of [\(4.60\)](#page-28-4), which is valid for every $j \in J$, we then obtain

(4.63)
$$
\| \chi_j w \|_2 \leq C \varepsilon^{1 - \rho/2} \| w \|_{L^2(B(x_j, \varepsilon^{\rho}))}.
$$

Combining [\(4.63\)](#page-29-0) and [\(4.62\)](#page-29-1) then yields

$$
(4.64) \qquad ||w||_{L^2\left(\Omega\setminus\bigcup_{j\in J_{\mathcal{S}}}B(x_j,\delta)\right)} \leq C\varepsilon^{1-\rho/2}\sum_{j\in J_{\Omega}\cup J_{\partial\Omega}^2}||w||_{L^2(B(x_j,\varepsilon_\rho))} \leq C\varepsilon^{1-\rho/2}||w||_2.
$$

We conclude the proof by recalling that for all $j \in J_{\mathcal{S}}$ we have, by [\(4.50\)](#page-26-2)

(4.65)
$$
\|\zeta_j^* w\|_2 \leq \frac{C}{r} (\varepsilon^{3/2} \|f\|_2 + \varepsilon^{1/8} \|w\|_2).
$$

Furthermore, let

$$
\tilde{\zeta}_j^{*^2} + (\zeta_j^*)^2 = \mathbf{1}_{B(x_j,\delta)}.
$$

Then, by [\(4.21a](#page-20-4))

$$
\|\tilde{\zeta}_j^* w\|_2^2 \le \|\tilde{\chi}_{\varepsilon,n}^+ w\|_2^2 + \|\tilde{\chi}_{\varepsilon,n}^- w\|_2^2 \le C_n (\varepsilon^{n\rho-1} \|w\|_2 + e^{-c\varepsilon^{-\frac{3}{2}(1-\rho)}} \|f\|_2).
$$

which, together with (4.65) and (4.64) yields (4.17) .

Proof of Theorem [1.1.](#page-1-3) Let U be given by [\(3.23\)](#page-14-2) and Λ_0 be given by [\(4.30\)](#page-23-4). Let $f = (\mathcal{A}_h - \Lambda_0)(\eta_{\varepsilon^{1/2}} U)$. Then, for $\lambda^* \in \partial B(\Lambda_0, r\varepsilon^{-1/2}) \subset \rho(\mathcal{A}_h)$ where $\varepsilon^{1/8} \ll r < 1$,

$$
(\mathcal{A}_h - \lambda^*)(\eta_{\varepsilon^{1/2}}U) = f + (\Lambda_0 - \lambda)\eta_{\varepsilon^{1/2}}U.
$$

Hence

$$
\langle \eta_{\varepsilon^{1/2}} U, (\mathcal{A}_h - \lambda^*)^{-1} (\eta_{\varepsilon^{1/2}} U) \rangle = -\frac{1}{\lambda - \Lambda_0} [1 - \langle \eta_{\varepsilon^{1/2}} U, (\mathcal{A}_h - \lambda)^{-1} f \rangle]
$$

By (4.51) and (3.26) we then obtain that

$$
\|({\mathcal A}_h - \lambda)^{-1} f\|_2 \le C \frac{\varepsilon^{-3/2}}{r} \|f\|_2 \le C \frac{\varepsilon^{1/2}}{r} \le C \varepsilon^{1/4}.
$$

Consequently

$$
\frac{1}{2\pi i} \oint_{\partial B(\Lambda_0,r\varepsilon^{-3/2})} \langle \eta_{\varepsilon^{1/2}} U, (\mathcal{A}_h - \lambda)^{-1} (\eta_{\varepsilon^{1/2}} U) \rangle \leq -1 + C \varepsilon^{1/4}.
$$

Hence $(\mathcal{A}_h - \lambda)^{-1}$ is not holomorphic in $B(\Lambda_0, r\varepsilon^{-3/2})$ and the Theorem is proved via (3.9) .

Appendix A. Spectral analysis of [\(4.53\)](#page-27-0))

In the following we provide the spectrum, semigroup estimates, and resolvent estimates for the operator $A_{i,h}$ given by [\(4.53\)](#page-27-0). This operator has already been investigated in [\[3,](#page-32-2) [9\]](#page-32-11), but since resolvent estimates have not been obtained there we derive them here.

Let $\mathbf{c} = (c^1, c^2) \in \mathbb{R}^2$ such that $c^2 \neq 0$. We study here the spectrum and the resolvent of the Dirichlet realization in $\mathbb{R}^2_+ = \{(t, s) \in \mathbb{R}^2 : t > 0\}$ of $-\Delta + i(c^1t + c^2s)$, whose domain is given by [\(4.53b](#page-27-0)). The imaginary part of the potential

$$
\ell(t,s) = \mathbf{c} \cdot (t,s)
$$

does not have a constant sign, hence we are unable to use the variational approach to define the operator. We shall instead define the operator by separation of variables. Let

$$
(A.1) \t\t\t As = -\partials2 + ic2s,
$$

and let \mathcal{A}_t^+ be the Dirichlet realization in \mathbb{R}_+ of the complex Airy operator

(A.2)
$$
-\frac{d^2}{dt^2} + ic^1t.
$$

Both \mathcal{A}_s and \mathcal{A}_t^+ are maximally accretive and hence they serve as generators of contraction semigroups $(e^{-t\mathcal{A}_s})_{t>0}$ and $(e^{-t\mathcal{A}_t^+})_{t>0}$ respectively. One can easily verify that the family $(e^{-tA_s} \otimes e^{-tA_t^+})_{t>0}$ is a contraction semigroup on $L^2(\mathbb{R}^2_+)$. Thus, we can define the desired operator as follows:

Definition A.1. A_+ is the generator of the semigroup $(e^{-tA_s} \otimes e^{-tA_t^+})_{t>0}$.

Let $D = D(\mathcal{A}_s) \otimes D(\mathcal{A}_t^+)$ be the set of all finite linear combinations of functions of the form $f \otimes g = f(s)g(t)$, where $f \in D(\mathcal{A}_s)$ and $g \in D(\mathcal{A}_t^+)$. Then it is clear that D satisfies the conditions of [\[11,](#page-32-10) Theorem X.49], hence $\mathcal{A}_+ = \overline{\mathcal{A}_{+|D}}$. Consequently, we may chacterize $D(\mathcal{A}_{+})$ as follows:

$$
D(\mathcal{A}_{+}) = \{ u \in L^{2}(\mathbb{R}_{+}^{2}) : \exists (u_{j})_{j \geq 1} \subset D, u_{j} \xrightarrow[j \to +\infty]{L^{2}} u,
$$

(A.3)
$$
(\mathcal{A}_{+}u_{j})_{j \geq 1} \text{ is a Cauchy sequence } \}.
$$

In the following lemma we give a more constructive description of $D(\mathcal{A}_{+})$.

Lemma A.2. We have

(A.4)
$$
D(\mathcal{A}_+) = H_0^1(\mathbb{R}^2_+) \cap H^2(\mathbb{R}^2_+) \cap L^2(\mathbb{R}^2_+; |\ell(t, s)|^2 dt ds),
$$

and there exists $C > 0$ such that, for all $u \in D(\mathcal{A}_{+})$,

(A.5)
$$
\|\Delta u\|_{L^2(\mathbb{R}^2_+)}^2 + \|\ell u\|_{L^2(\mathbb{R}^2_+)}^2 \le \|\mathcal{A}_+ u\|_{L^2(\mathbb{R}^2_+)}^2 + C \|\nabla u\|_{L^2(\mathbb{R}^2_+)} \|u\|_{L^2(\mathbb{R}^2_+)}.
$$

Proof: Let $u \in D(\mathcal{A}_{+})$ and $(u_j)_{j\geq 1} \subset D$ such that $u_j \underset{i\to +}{\xrightarrow{L^2}}$ $\overrightarrow{j\rightarrow+\infty} u$ and $(\mathcal{A}_{+}u_j)_{j\geq 1}$ is a Cauchy sequence. Then, using the identity

$$
\operatorname{Re}\left\langle \mathcal{A}_{+}u_{j},u_{j}\right\rangle =\|\nabla u_{j}\|_{L^{2}(\mathbb{R}^{2}_{+})}^{2},
$$

which holds for every $j \in \mathbb{N}$, we obtain that $(\nabla u_j)_{j\geq 1}$ is a Cauchy sequence in $L^2(\mathbb{R}^2_+)$ and hence

 $,$

$$
(A.6) \t u_j \underset{j \to +\infty}{\xrightarrow{H^1}} u
$$

and $u \in H_0^1(\mathbb{R}^2_+)$.

To prove [\(A.5\)](#page-30-0), we write (hereafter $\|\cdot\|$ denotes the $L^2(\mathbb{R}^2_+,\mathbb{C})$ norm)

$$
\begin{aligned}\n\|\mathcal{A}_{+}u_{j}\|^{2} &= \langle (-\Delta + i\ell)u_{j}, (-\Delta + i\ell)u_{j} \rangle \\
&= \|\Delta u_{j}\|^{2} + \|\ell u_{j}\|^{2} + 2\mathrm{Im}\,\langle -\Delta u_{j}, \ell u_{j} \rangle.\n\end{aligned}
$$

As

$$
\begin{array}{rcl}\n\text{Im}\left\langle-\Delta u_j,\ell u_j\right\rangle &=& \text{Im}\int_{\mathbb{R}_+^2} \nabla u_j(t,s)\cdot\overline{\nabla(\ell u_j)(t,s)}dtds \\
&=& \text{Im}\left(\int_{\mathbb{R}_+^2} \ell(t,s)|\nabla u_j(t,s)|^2dtds + \int_{\mathbb{R}_+^2} \nabla u_j(t,s)\cdot\overline{\nabla\ell(t,s)u_j(t,s)}dtds\right) \\
&=& \text{Im}\int_{\mathbb{R}_+^2} \mathbf{c}\cdot\nabla u_j(t,s)\overline{u_j(t,s)}dtds\,,\n\end{array}
$$

it follows that for some $C > 0$,

$$
|\text{Im}\left\langle -\Delta u_j, \ell u_j \right\rangle| \leq C \left\| \nabla u_j \right\| \left\| u_j \right\|.
$$

Thus, by [\(A.7\)](#page-31-1), [\(A.5\)](#page-30-0) holds for u_j for all $j \in \mathbb{N}$. Consequently, $(u_j)_{j\geq 1}$ is a Cauchy sequence in $H^2(\mathbb{R}^2_+)$ and in $L^2(\mathbb{R}^2_+; |\ell(t, s)|^2 dt ds)$. Hence, [\(A.4\)](#page-30-1) follows, and so does $(A.5)$ for every $u \in D(\mathcal{A}_+)$.

We now obtain the spectrum of \mathcal{A}_+ . Since \mathcal{A}_s has an empty spectrum (see [\[3,](#page-32-2) [9\]](#page-32-11)), we expect $\sigma(\mathcal{A}_+)$ to be empty as well [\[3\]](#page-32-2). To establish this fact we employ semigroup estimates.

Theorem A.3. We have $\sigma(\mathcal{A}_+) = \emptyset$. Moreover, for every $\omega \in \mathbb{R}$, there exists $C_{\omega} > 0$ such that

(A.8)
$$
\sup_{\text{Re }z\leq\omega}\|(\mathcal{A}_{+}-z)^{-1}\|\leq C_{\omega}.
$$

Finally, the semigroup generated by A_+ satisfies

(A.9) $\forall t > 0, ||e^{-t\mathcal{A}_+}|| \leq e^{-t^3/12}.$

Proof: Recall that $e^{-tA_+} = e^{-tA_s} \otimes e^{-tA_t^+}$, where A_s and A_t^+ are respectively defined by $(A.1)$ and $(A.2)$. Recall further the following estimates (see [\[9\]](#page-32-11)):

(A.10)
$$
\forall t > 0, \|e^{-t\mathcal{A}_s}\| = e^{-t^3/12}
$$

and for all $\omega < |\mu_1|/2$ (μ_1 being the rightmost zero of Airy's function), there exists $M_{\omega} > 0$ such that

,

(A.11) ∀t > 0 , ke −tA + ^t k ≤ M^ω e −ωt .

Thus, [\(A.9\)](#page-31-2) follows, and the formula

(A.12)
$$
(\mathcal{A}_{+}-z)^{-1} = \int_{0}^{+\infty} e^{-t(\mathcal{A}_{+}-z)}dt,
$$

which holds a priori for $\text{Re } z < 0$, can be extended to the entire complex plane. Hence the resolvent of \mathcal{A}_+ is an entire function, and we must have $\sigma(\mathcal{A}_+) = \emptyset$ together with $(A.8)$.

Acknowledgements. The authors are grateful to Bernard Helffer for his valuable comments. Y. Almog was partially supported by NSF grant DMS-1109030. R. Henry acknowledges the support of the ANR project NOSEVOL.

REFERENCES

- [1] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical Functions*, Dover, 1972.
- [2] S. Agmon, *Lectures on elliptic boundary value problems*, Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965.
- [3] Y. Almog, *The Stability of the Normal State of Superconductors in the Presence of Electric Currents*, SIAM Journal on Mathematical Analysis, 40 (2008), pp. 824–850.
- [4] Y. Almog, B. Helffer, and X.-B. Pan, *Superconductivity near the normal state in a half-plane under the action of a perpendicular electric current and an induced magnetic field, Part II: The large conductivity limit*, SIAM J. Math. Anal., 44 (2012), pp. 3671–3733.
- [5] \longrightarrow , *Superconductivity near the normal state in a half-plane under the action of a perpendicular electric current and an induced magnetic field*, Trans. Amer. Math. Soc., 365 (2013), pp. 1183–1217.
- [6] K. Beauchard, B. Helffer, R. Henry, and L. Robbiano, *Degenerate parabolic operators of Kolmogorov type with a geometric control condition*, To appear in ESAIM: COCV, (2014).
- [7] E. B. DAVIES, *Linear operators and their spectra*, vol. 106 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2007.
- [8] B. Helffer, *Thorie spectrale pour des oprateurs globalement elliptiques*, Astrisque, 1984.
- [9] B. Helffer, *On spectral problems related to a time dependent model in superconductivity with electric current*, in Proceedings of Evian conference., June 2009.
- [10] R. Henry, *On the semiclassical analysis of Schrdinger operators with purely imaginary electric potentials in a bounded domain*, arXiv preprint arXiv:1405.6183.
- [11] M. REED AND B. SIMON, *Methods of modern mathematical physics. IV. Analysis of operators*, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978.
- [12] A. A. Shkalikov, *Spectral portraits of the Orr-Sommerfeld operator at large Reynolds numbers*, Sovrem. Mat. Fundam. Napravl., 3 (2003), pp. 89–112.

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803

E-mail address, Y. Almog: almog@math.lsu.edu

LABORATOIRE DE MATHÉMATIQUES D'ORSAY, UNIV. PARIS-SUD, CNRS, UNIVERSITÉ PARIS-Saclay, 91405 Orsay, France.

E-mail address, R. Henry: raphael.henry@math.u-psud.fr