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POINTWISE SECOND-ORDER NECESSARY CONDITIONS FOR
STOCHASTIC OPTIMAL CONTROLS, PART II: THE GENERAL
CASE*

HAISEN ZHANG! AND XU ZHANGH

Abstract. This paper is the second part of our series of work to establish pointwise second-order
necessary conditions for stochastic optimal controls. In this part, we consider the general cases, i.e.,
the control region is allowed to be nonconvex, and the control variable enters into both the drift and
the diffusion terms of the control systems. By introducing four variational equations and four adjoint
equations, we obtain the desired necessary conditions for stochastic singular optimal controls in the
sense of Pontryagin-type maximum principle.
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1. Introduction. Let 7' > 0 and (2, 7,F, P) be a complete filtered probability
space (satisfying the usual conditions), on which a 1-dimensional standard Wiener
process W(-) is defined such that F = {F;}o<;<7 is the natural filtration generated
by W(-) (augmented by all of the P-null sets).

We consider the following controlled stochastic differential equation

{ dx(t) = b(t,z(t), u(t))dt + o(t,z(t), u(t))dW(t), te€l0,T],

(L) £(0) = o,

with a cost functional

(1.2) Ju() = E /O £t (), u(t))dt + h(z(T))| .

Here u(-) is the control variable valued in a set U C R™ (for some m € N), z(:) is
the state variable with values in R, and b,0 : Q x [0,T] x R™ x U — R"™ (for some
neN), f:Ox[0,T]xR*"xU — Rand h : Q x R” — R are given functions
(satisfying some conditions to be given later). As usual, for maps ¢ = b, o, f, denote
by vz (w,t,x,u), Yez(w,t,z, 1), Cree(w,t,x,u) and Qupe.(w,t, z,u) its first, second,
third and forth order partial derivatives with respect to the variable z at (w,t,z,u),
respectively. And, when the context is clear, we omit the w(€ ) argument in the
defined functions.

Denote by B(X) the Borel o-field of a metric space X, and by U,q the set of
F @ B([0, T])-measurable and F-adapted stochastic processes valued in U. Any u(-) €
U,q is called an admissible control. The stochastic optimal control problem considered
in this paper is to find a control @(-) € U,q such that

(13) Ja() = inf ().
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Any u(-) € U,q satisfying (1.3) is called an optimal control. The corresponding state
Z(-)(= z(-;mo,u(+))) to (1.1) is called an optimal state, and (Z(-),u(:)) is called an
optimal pair.

One of the central problems in stochastic control theory is to derive necessary con-
ditions for the optimal pair (Z(-), @(-)). Before analyzing this issue in detail, we recall
first some elementary facts from the classical calculus. Let us consider a minimizer
zo(€ G) of a smooth function f(-) defined on a set G C R™, i.e., zo satisfies

(1.4) f(zg) = inf f(z).

zeCG

If a nonzero vector ¢ € R™ is admissible (i.e., there is a § > 0 so that z¢ + sf € G for
any s € [0, d]), then one has the following first-order necessary condition:

(1.5) 0< lim f(zo + st) — f(zo)

s—0+ S

When (f.(x0),¢) = 0 holds, i.e., (1.5) degenerates, then one can obtain further a
second-order necessary condition as follows:

(1.6) 0 <2 lim JFots0 - f(xo)

s—0+ S

= (fra(x0)t, 0).
In the particular case that G is convex, by (1.5), one has

(1.7) 0 < {(fs(x0),x — ), Vzedq.

When f,(x¢) = 0, then it follows from (1.6) that

(1.8) 0 < (faz(wo)(z — 20),2 — 20), Vz€G.

Clearly, compared to the first-order necessary condition (1.5)/(1.7), the second-order
necessary condition (1.6)/(1.8) can be used to single out the possible minimizer xg
from a smaller subset of G. From the above analysis on the minimization problem
(1.4), it is easy to see the following:
1) Usually, one has to impose more regularity on the data (say C? for f(-)) for
the second-order necessary condition than that for the first-order (for which
C! for f() is enough);
2) The derivation of the second-order necessary condition is probably more com-
plicated than that of the first-order situation;
3) Usually, in order to establish the second-order necessary condition, one needs
to assume that the first-order condition degenerates in some sense.
Very similar phenomenons happen when one establishes the optimality conditions for
optimal control problems, though generally it turns out to be much more difficult
than that for the above minimization problem.

For the moment, let us return to the deterministic optimal control problem, i.e.,
the functions o(-) = 0, b(-), f(-), h(-), z(-) and u(-) in (1.1)—(1.2) are independent
of the sample point w. Let t(-) be the solution to the following ordinary differential
equation,

a9 { U= BTV L0, 0T
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Define the Hamiltonian
H(t7 x? u, /l/}) = </(/)7 b(t, I, u)> - f(t, I, u)7 v (t7 x? u, 1/}) 6 [07 T] x Rn >< U >< Rn'
Then the following Pontryagin maximum principle ([23]) holds

(L10)  H( (), (), (1) = max H(t 2(8),0,9(8), ae. te[0,7].

The maximum condition (1.10) is a first-order necessary condition for optimal controls.
Suppose that, for a.e. ¢ € [0,7] the maximization problem (1.10) admits a unique
solution and the optimal control @(-) can be represented as a function Y(-,-,) of ¢,
Z(t) and ¥(t), i.e., a(t) = Y(t,Z(t),(t)) satisfies

(L.11)  H(t,z(t), Y(t,z(t),¥(t)),¥(t)) = %agH(t,f(t),v,dj(t)), a.e. t€0,T].

Then, substituting YT into the control system (1.1) (with ¢ = 0) and the adjoint
equation (1.9), we obtain the following two-point boundary-value problem:

2(t) = Hy(t, 2(t), Y(t, 2(t),(1)),9 (), t€[0,T],
(1.12) G(t) = —Ha(t,2(8), T(t,2(1), (1)), (1)), t € [0,T],
2(0) = zo, Y(T) = —ha(T(T)).

If both the original optimal control problem and the two-point boundary-value prob-
lem (1.12) admit unique solutions, then @(-) = Y(-,Z(-),¢(-)) is the solution to the
original optimal control problem (1.3) where (Z(+),4(-)) is the solution to (1.12). It is
easy to see that, the uniqueness of the solution to the maximization problem (1.10) (in
the first-order necessary condition) plays an important role to reformulate the origi-
nal optimal control problem into the two-point boundary-value problem (1.12). When
this maximization problem admits multi-solutions, the first-order necessary condition
is not enough to determine the optimal controls. Indeed, in this cases, the solution
map for the maximization problem becomes a set-valued map. When substituting this
set-valued map into the control system and the adjoint equation, one obtains a differ-
ential inclusion problem, which is usually very hard to solve. When this happens, as
in the classical calculus, it is quite useful to analyze further the second-order (or even
higher-order) necessary conditions for optimal controls. In the case of deterministic
control problems (even in finite dimensions), there are many works devoted to this
topic (See [4, 9, 10, 12, 14, 17, 21, 25] and the rich references therein), especially one
can find several interesting monographs ([1, 6, 11, 15]) in this direction.

Naturally, one expects to establish the stochastic maximum principle for the op-
timal control problem (1.3). We refer to [2, 3, 13, 16] and references cited therein for
some early works in this respect. Since in this case the It6 integral appears in the
control system (1.1), things became much complicated. First, quite different from the
equation (1.9), the adjoint equations in the stochastic cases (called backward stochas-
tic differential equations, BSDEs for short) have two unknowns. Second, when the
control region is nonconvex, the needle variation, which is essential a perturbation
of the optimal control on a measurable set with small measure, is used to derive the
optimality conditions. When the diffusion term o contains the control variable wu, the
state increment is an infinitesimal of order 1/2 with respect to € (¢ — 01) (when the
optimal control is perturbed with respect to the time variable on a measurable set
with Lebesgue measure ). Therefore, to obtain the first-order necessary condition



4 H. Zhang and X. Zhang

for optimal controls for the general case, the cost functional needs to be expanded up
to the second order, and two variational equations and two adjoint equations need to
be introduced (See [22]). More precisely, define the Hamiltonian #H by

H(%t%%m%ﬂ = <y1,b(w,t,x,u)> + <21,U(w,t,x,u)> - f(wvtaxau)v

1.13
( ) YV (w, t,z,u,y1,21) € QA x[0,T] x R™ x U x R™ x R™.

Let (p1(-),q1(+)) and (p2(+), g2(+)) be respectively solutions to the following first- and
second-order adjoint equations,

{@ﬁ) [T + 0O T (1) - £a0)]dt + au(@dW (D), ¢ € [0,T],

o (t
p1(T) = —h(2(1))
(1.14)
and

dpa(t) = = [ba(0) pa(t) + p2(E)ba(t) + 02 (1) P2(t) (8) + 02 (D) T g (t)

(1.15) £02(000(6) + HaaD)] b + (AW (1), 1 € [0,7),
p2(T) = —he (2(T)),

where ba (1) =be (b (1), 5(1), 2 (1) = (0, 3(0) 1), f(0) = F(t,2(0), 1), Hae(t)=

(
Hauo(t, Z(t), u(t), p1(t),q1(t)). The following first-order necessary condition for the
optimal pair (Z(-),a(-)) is established in [22]:

(1.16) H(t, z(t),v) <0, Vovel, ae. (w,t) € Qx]0,T].
where
H(w,t,z,u)
=H(w, t,z,u,p1(t), 1 (1)) — H(w,t, 2, a(t), p1(t), ¢1(t))
+% <p2(t) (U(w,t, x,u) — o(w,t, x, ﬁ(t))),a(w, t,x,u) —o(w,t,z, ﬁ(t))> ,
(w,t,z,u) € Qx[0,T] x R™ x U.

Similar to the above, if the optimal control @(-) can be represented as a function
U(ey ooy, )of (w, t, Z,p1, q1, p2) using the condition (1.16) (i.e., @(w,t) = ¥(w,t, Z(t),
p1(t), q1(t), p2(t))) (Note that ¢o does not appear explicitly in the definition of H),
then the optimal control problem can be closely related to the following fully coupled
forward backward stochastic differential equation (FBSDE, in short):

dz(t) = b(t)dt + &(t)dW (t), t € [0, T,

dp1 () = = [ba () pr(8) + 2(6) Ta(£) — fult)] dt + @ (AW (1), t € 0,7,

dpa(t) = = |ba() pa(t) + P2(t)ba(t) + 62 (8) Tp2(D)3 (1) + 5a(t) T a2(0)
+aa(0)0 () + ﬁﬂﬂt+@UﬂW)t€Mﬂ

2(0) = @0, po(T) = —ha(#(T)), po(T) = —hua((T)):

(1.17)
where b(t) = b(t, 2(), U(t, 2(1), pr(t), q1(£), p2(1))), 6(1) = olt, 2(t), W(t, 2(), pr(t),

01(t);p2(1))), Haa(t) =Haa (1, 2(1), ¥ (L, 2(1), p1(1), q1.(1), p2(t)), similar for by (1), 5.(1),
and f2(t). For some more discussions about FBSDEs, we refer to [18].
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However, exactly as the deterministic case, the first-order necessary condition is
not always effectively to find the stochastic optimal controls. In the preceding dis-
cussion, the uniqueness of the solution to (1.16) plays an important role to reduce
the original optimal control problem to the FBSDE (1.17). When the problem (1.16)
admits multi-solutions, one needs to establish suitable second-order necessary condi-
tion for optimal controls as an effective supplement to the first-order condition. As
we mentioned before, there exist many works addressing to the corresponding deter-
ministic problems. However, in the stochastic setting, there are only two articles [5]
and [24] available before our work [28]. When the diffusion terms do not contain the
control variable, Tang [24] derived a pointwise second-order maximum principle for
stochastic optimal controls, for which the control regions are allowed to be nonconvex.
When the diffusion terms contain the control variable, Bonnans and Silva [5] estab-
lished some integral-type (rather than pointwise) second-order necessary conditions
for stochastic optimal controls with convex control constrains. In [28], we found that,
quite different from the deterministic setting, there exist some essential difficulties
in deriving the pointwise second-order necessary condition from an integral-type one
whenever the diffusion terms contain the control variable, even for the special case
of convex control constraints, and obtained a positive result for this case under some
assumptions in terms of the Malliavin calculus.

The main purpose of this paper is to establish some pointwise second-order nec-
essary conditions for stochastic optimal controls in the general cases, i.e., the control
regions are allowed to be nonconvex and both the drift and diffusion terms contain
the control variable. Stimulated by [22], it is easy to see that, in order to obtain
the second-order optimality condition for the general case, one needs to expand the
cost functional up to the forth order, and introduce four variational equations and
four adjoint equations. This is the main difference between the present paper and the
previous related works (i.e., [5, 24, 28]). On the other hand, the solutions of the vari-
ational equations appear in the second-order terms (in the sense of the perturbation
measure) of the variational formulation with respect to the optimal controls, and it
seems to us that, they cannot be eliminated by introducing new adjoint equations.
When the diffusion terms of the control systems contain the control variables, similar
to the convex control constraint cases, the Lebesgue differentiation theorem cannot
be used directly to derive the pointwise second-order necessary condition from the
variational formulation (See [28, Subsection 3.2] for a detailed explanation). This is
another difference between this paper and [24] addressing to the case of the diffusion
term independent of the control variable. In this paper, first we establish a variational
formulation of (1.3) with respect to the optimal controls. Then, using this variational
formulation and the martingale representation theorem, we derive a second-order nec-
essary condition for stochastic optimal controls. Further, under some conditions, we
refine this result and obtain a pointwise second-order necessary condition. Note that
the analysis in this paper is much complicated than that in [28] though some of the
ideas and techniques are the same in these two papers.

The rest of this paper is organized as follows. In Section 2, we collect some
notation and concepts. In Section 3, we introduce the related variational equations
and adjoint equations. In Section 4, we state the main results of this paper and present
some remarks and examples. Section 5 is devoted to proving our main results. Finally,
the proofs of two technical results are given in Appendixes A and B, respectively.

Partial results in this paper have been announced in [27] without proofs.
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2. Preliminaries. Let m, n, d, h, | € N. Denote by (-,-) and | - | respectively
the inner product and norm in R™ or R™, which can be identified from the con-
texts. For any a,f € [1,400), denote by L?_-T (Q;R™) the space of Fr-measurable

random variables ¢ such that E |(|® < +oo, by L?(Q x [0,T];R"™) the space of
1
F ® B([0, T])-measurable processes ¢ such that [|¢[|z := [E fOT lo(t)]Pdt]? < +oo,
by Lg (Q; L*(0,T;R™)) the space of F ® B([0,T])-measurable, F-adapted processes ¢
5.1
such that [¢]la,s :== [E (fOT lp(t)|*dt) ~]? < 400, by Lg(Q;C([O,T];R")) the space
of F ® B([0,T])-measurable, F-adapted continuous processes ¢ such that ||¢|ec.g :=
1
[E (Supte[O,T] l()[P)]7 < +oo, by L>(Q x [0,T];R") the space of F @ B([0,T])-
measurable processes ¢ such that [ := ess sup(, yyeqaxo,mle(w, )] < +oo, and
by LP(0,T; L]?(Q x [0, T];R™)) the F @ B([0,T] x [0, T]) measurable maps ¢ such that
1
for any t € (0,7, ¢(-,¢) is F-adapted and ||[|s == [E f; [ [o(s,t)|Pdsdt] ? < +oc.
Let DV2(R™) C L% (©Q;R™) be the space of Malliavin differentiable random vari-
ables, and for any ¢ € DV2(R") denote by D.¢ its Malliavin derivative. Denote by
L12(R™) the subspace of L(€2 x [0, T]; R™)) whose elements satisfy the following con-
ditions.
(i) For almost every ¢ € [0,T], ¢(t,-) € DV(R"),
(ii) (w,t,8) = Dsp(t,w) admits an F @ B([0,T] x [0, T])-measurable version, and
T T (T 3
(i) [llelll1.e == [Efo |ga(t)|2dt—|—Efo fo |Ds<p(t)|2dsdt] 2 < +oo,
where D.p(t,-) is the Malliavin derivative of the random variable ¢(t,-). Denote by
L5%(R™) the subspace of L2(€2x[0, T]; R™)) whose elements are Malliavin differentiable

almost everywhere and their Malliavin derivatives have suitable continuity. More
precisely, write

LL2(R™):= {cp(-) e LI2(R") ‘ 3 V*e() € L2(Q x [0, T); R") such that

fe(s) == sup  E |[Dyp(t) — V+ga(s)|2 < +00, a.e. s €1[0,T],
s<t<(s+e)AT
T
f=() is measurable on [0,T] for any € > 0, and lim fe(s)ds = 0},
e—=0t Jo

LL?(R"):= {(p(~) e L12(R") ’ 3V p(-) € L2(Q x [0, T); R") such that

ge(s) := sup  E |Dyp(t) — Vfcp(s)‘2 < 400, a.e. s € (0,7,
(s—e)Vo<t<s
T
ge(+) is measurable on [0,T] for any € > 0, and lim ge(s)ds = 0}.
e—0t 0

Denote Ly*(R") = L;E(Rn) N Lé?(R") For any ¢(-) € Ly*(R™), denote Vi(-) =
V() + V(). When ¢ is F-adapted, Dsp(t) = 0 for any ¢t < s. In this case,
V=p() = 0, and V() = V*ty(-). Denote by L;:;(R") the set of all F-adapted
processes in Ly (R™). We refer to [20] for more materials on this topic.
Denote by L(ITR™; R™) the d-linear maps from R" x ... x R" to R™. Let {eq,...,
d —_—

d
en} be the standard basis of R™, {e1,..., ¢} be the standard basis of R™. Any A in
L(TIR™;R™) is uniquely determined by the numbers
d

Nvedd = (Nej, ..o yej))se), d=1,...om, jr=1,...,n, k=1,...,d.
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We define the norm of A by

2

[A] =

5 ey

i jr,k=1,...,d
Let I' € L(IR™;R™) and © € L(IIR™; R™). We denote by A oI the composition of A
h l i
with T at the ith position (i = 1,---,d), i.e.,
A?F(xlu e 7xd+h—1) = A(x].? tee 7r($i7 R xi+h—l)7 tee 7xd+h—1)7
o, €R™ k=1,...,d+h—1,
and we denote by A o (I', ©) the composition of A with I" and © at the ith and the
i,j
jth positions (i # j, 4,7 =1,---,d), i.e.,
Aioj(l—‘, @)(l‘l, ey xd+h+l—2)
=A@, D@y Tigh1)y o O(T 1y o Tjphgi—2)s - o Tdrhl—2),s
[ J
xr €R" k=1,...,d+h+1-2.
In a similar way, if y, 2 € R™, we denote
ANey(zy,...,xq-1) =Ax1,....Y,...,2q-1), zxr €R", k=1,...,d—1,

ANeo(y,2)(x1,...,xq-2) =Ma1,...,¥,...,2,...,0q-2), vp €R", k=1,...,d-2.
,] J

3

Denote by L2(Q; L*(0,T; L(ITR™; R)) the space of F @ B([0,71)/B(L(IIR"; R))-
d d

measurable processes ¢ such that [[¢|[12 = [E (fOT |<p(t)|dt)2}% < 400 and by
L2(Q; L2(0, T L(l;[ R™;R)) the space of F @ B([0, T])/B(L(EIR"; R))-measurable pro-
cesses ¢ such that [¢]|z := [E fOT |g0(t)|2dt}% < +00. We give below an It6 formula
for multi-linear function-valued stochastic processes, which is an easy extension of the
classical It6 formula (Hence we omit its proof).

LEMMA 2.1. Let P(-) be an L(l;[ R™; R)-valued process of the form

P(t)= P+ /Ot A(s)ds + /Ot B(s)dW (s), te[0,7]

where A(-) € L2(; LY (0,T; LAIR™;R)), B(-) € L&(; L*(0,T; L(IIR™; R)), and let
d d
x(+) be an R™-valued process such that
t t
x(t) = xo +/ f(s)ds —|—/ g(s)dW (s), te0,T],
0 0

where f(-) € L2(Q; LY (0, T;R™), g(-) € L&(; L*(0,T;R™). Then the following Ito
formula holds.

P(T)(z(T),...,2(T)) — Po(zo, ..., 0)
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:/0 [ POEO. f1).. a(®) + AD) (w(1).... a(®)
+Y B(t)(x(t), 90,2 (1))
z;1 ]
303 PO, g0, g(0), () |t
i=1 j=i+1 i j
T d
(21) + /0 [BO)((0),. . 2(0)) + D2 PO (alt)s- (0, 2(0) |aw (1)

3. Variational formulations. In this section, we establish a second-order (with
respect to the perturbation measure) Taylor expansion of the cost function at the
optimal control @(+). Firstly, we recall some known estimates for stochastic differential
equations.

LEMMA 3.1. ([19, Proposition 2.1]) Suppose that there exists a constant L > 0
such that for ¢ =b, o and any x, T € R, u e U,

(3.1) lp(t, z,u) — p(t, z,u)| < Llx — %|, a.s. a.e. t € [0,T],
' lp(t,0,u)| < L, a.s. a.e. t €[0,T].

Then for any 8 > 1, u(:) € Usq and initial datum xo € R™, the state equation
(1.1) admits a unique solution x(-) € Lg(Q;C([O;T];R")), and for some constant
C=C(B,L,T) > 0 the following estimate holds:

]EL?[lopt] Iw(S)Iﬂ

lzo|® + /|b50u |ds /|U$Ou |ds) 1

Further, if Z(-) is the unique solution corresponding to (Zo,u(-)) € R™ X Uyq, then

(3.2) < CE

E[ sup la(s) - #(s))’

s€[0,t]

< CE ||zo — Zo|® + (/0 |b(s, 2(s), u(s)) — b(s,a‘:(s),ﬂ(s))‘ds)

(3.3) +(/Ot |0 (s, 2(s), u(s)) — U(s,a‘:(s),ﬂ(s))‘zds) 5] .

In what follows, we assume that
(C1) The control region U C R™ is nonempty and bounded.
(C2) Functions b, o, f, and h satisfy
(i) For any (x,u) € R™ x U, the stochastic processes b(-,z,u) : [0,T] x
Q=R o(,z,u): Qx[0,T] - R” and f(-,z,u) : @ x[0,T] - R
are F ® B([0,T])-measurable and F-adapted. h(z,-) : Q@ — R is Fp-
measurable.
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(ii) For almost all (w,t) € 2 x [0,7] and any v € U, the map = —
(b(w,t,z,u),0(w,t,z,u), f(w,t,z,u)) is continuously differentiable up
to the forth order, and there exist a constant L > 0 and a modulus
of continuity @ : [0,00) — [0, 00) such that for a.e. (w,t) € Q x [0,T],
andall z, € R", u, uc U, p=0b, o, f,

|90(t7070)| <L, |g0(t,x,u) - (p(t,,f,ﬂ,ﬂ < L|$ - ‘i" +(D(|u - ﬂl)v
|@I(t7$7u) - </796(ta jvﬂ” < L|I - j| + d}(|u - ﬁ|)7
|@Iz(t7x7u) - <P9696(ta ia ﬁ)| < L|I - :ﬂ + ‘:}(|u - ﬂ|)7
|Paa(t, T, u) — 0u20(t, 2, 0)| < Lz — & + @(|lu — af),
|rza(t, T, 0) — Qupre(t,3,4)| < Lz — 2| + o(|Ju — a)).
(iii) h(-) is continuously differentiable up to the forth order (a.s.), and there
exists a constant L > 0 such that for any z € R",

()] < L1+ J2*),  |he(@)] < L1+ [af),
|hm(x)| < L(l + |$|2)7 |hmw(x)| < L(1+ |$|)7 |hmm(x)| <L, as.

Obviously, for ¢ = b, o, f, when (C1)—(C2) are satisfied, for a.e. (w,t) € Q x [0,T],

for all (x,u) € R" x U, and the controlled stochastic differential equation (1.1) admits
a unique solution for any u(-) € U,q and the cost functional is well-defined.

Let (Z(-), u(-)) be an optimal pair, u(-) € Uaq be an admissible control, E. C [0, 7]
be a measurable set with measure |E.| = ¢ for a given ¢ € (0,7). Define

. u(t), te FE.,
us(t) = { a(t), te[0,7T]\ E-.

Let 2°(-) be the state with respect to the control u¢(-) and let dz(-) = 2°(-) — Z(-).
For ¢ =b, o, f, write v, (t) = @ (t, Z(t), u(t)), Yuu(t) = @uu(t, T(t), u(t)), Prea(t) =

690(t) = @(tvi’(t)v u(t)) - Sp(tv‘i'(t)v ﬂ(t))

8ipu(t) = g, (1), u(t)) — pa(t, 3(t), a(t)),
8Pz (t) = P (t, Z(t), u(t)) — Paa(t, ig )

Now, we introduce the following four variational equations:

3.4 { dyi (1) = ba (DY ()t + [ (DY (1) + 60 (E)xm, ()| dW (1), t € [0,T],
yi(0) = 0;

dy3(t) = [ba (Y5 () + Sbua (8) (4 (8), w5 (1)) + b(E) s, (1))
S OIHORS LM OIPHORHO)

30, (05 (t)x. (8)| aW (1), ¢ € 10,7,
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dyi (1) = {ba(OUE(0) + & [baa () (w5 () + w5(0), 5(1))
b () (45 (£), y1 ()] + §baaa () (47 (1), 45 (1), 47 (1))
+3b, ()7 (D)X, ()
o (Ous(6) + ot (5 (0) + v5(0), 95(0)
+oua () (45 (8), ¥7 ()] + §0waa(t) (45 (), 45 (1), ¥5 (1))

+60. (15 (E)xB. (1) + 56022(8) (47 (1), ¥1 (1)) X . (t)}dW(t),
€ (0,77,

+ —
Q
g )—‘
8
~
S~—"
—
<

yi(0) = 0.

Denote

§C) =y5() + 5
_|_
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From (3.4)—(3.7) and Lemma 3.1, we obtain the following result.
LEMMA 3.2. Let (C1) and (C2) hold. Then, for any 8 > 1, € (0,T), e — 0T,
the following estimates hold:

55112, 5 < Ce%, Il 5 < Ce?,
ly5112, 5 < C&, Irall?, 5 < Ce7,
5012, 5 < C=%, Irs]|%, 5 < C=28,
Hyzn%,ﬁ <ce”, Ira)l2, 5 < Ce%
[6z[5 5 < €=

Proof. See Appendix A. 0O

Further, we obtain the following Taylor expansion for the cost functional with
respect to the control perturbation.

LEMMA 3.3. Let (C1) and (C2) hold. Then,

J(w) - J(a)
r 1 1
—E [ [L060) + 5 ®0(0).1(0) +  Faasl®) (22, 7(0) (1)
0
g e ) (95 1), (0, 560,05 0) + 6 (1), ()

O£ (1) + 50 (1) (050, 5 () . (1)

1

E [ha (2(T)E(T) + S haa (@) (0(T), 0(T)

+%hmmm(j(T)) (’y(T), (1), 'Y(T))

(3.8) +ihzzzz(j(T))(y§(T)v yi(T), yi(T), yi(T))} +o(e?) (e —07).

Proof. Similar to the proof of Lemma 3.2, we only consider the 1-dimensional
case. By Taylor’s formulation,

ft = (8),us (1)) — f(t 2(t), ul
t), a(t

)
= F(t,27(0),8(0) ~ F (6 7(0),8(0)) + F(1,3(0) w7 (6) ~ S, 7(0),a(0)
10,070 E(0) = (000 1°0) = F00°(0, (0) + 10,300, 5(0)
= Fu()52(0) + 3 Far (D20 + ¢ fran ()52

5 [ Feaaat,07(0) + (1~ 0% (0, 5(0)52(0) a0 + 67 (0. 1)
Ll 20), ()62 (1) + 5 Fert, 2(0), ()0 (1)
/ 0% o (1, 0F(1) + (1 — 0)a(8), u” (1))0(t)?d8 — f(1)5(1)
g a0 (1) % / 02 (1, 05(2) + (1 — )27 (1), (1)) 3 (1) dB
= Fo(0)52(t) + 5 fral00 ()2+%fmm(t)5w(t)3
/ 0% Fazan (. 02(8) + (1 — 0)a% (1), (1)) da(t) a0
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(. (1) + S ()5e(0)xm, (1) + 50 e (062(1) x5 (1)

/0 0 (farat, 02(1) + (1 = 0)27(1), (1))

~Faaa (1, 02(8) + (1= 0)a° (1), (1)) ) 2(t)° B,

N~

+

and
h(z®(T)) — h(z(T))
= h.(Z(T))ox(T) + %hm(:f(T))éaz(T)2 + %hmm(f(T))&r(T)g

+% /0 1 03 Ny (0Z(T) + (1 — 0)2=(T))62(T)*db.

By Lemma 3.2,
J(u€) — J(a)
= /OT {fm(t)é (t) + %fm(lt)n(zt)2 + %fmm(t)v(t)?’ + 2_14 Frmaa ()5 (1)
(). (0) + DL (OO () + 50 a5 (1) (1)

+E [hz(i:(T))ﬁ(T) + 5 haw (2(T))0(T)?
Fhaaa (BT (1) + 5

+ 21

Razaa (#(T))Yi (1))

T 1 1
+E / [fm(t)m(t) + §fm(t) (5z(t)* — n(t)®) + gfzzz(t) (52(t)* —4(1)*)
0

1

+5 /0 03 frwwa(t, 0Z(t) + (1 — 0)2°(t), a(t))dx(t) db — 2—14 N OTHOR

0 (s, () + 50 FeaB)(B0(2)” — 95 (62, (1)
1 ! 2 = £ €
by [0 (Feaalts0(0) + (1 = 02" (0),0%(0)

 Fua(t, 05(t) + (1 — 0)a= (1), a(t)))sx(tﬁde] dt

+E [hz(i:(T))m(T) + %hm(/i:(T))(53;(T)2 —n(T)?)

$ 2 (1) (52(T)? —(T)?)

+% /0 1 0> hwwe (0Z(T) + (1 — 0)2°(T))62(T)*do —

T
= E‘/O {fw (t)g(t) + %fmz(t)n(t)2 -+ %fmmgg(t)’)/(t)s + ?memmm(t)y‘i(t)‘l
HOf (Oxe. (1) + 8L (D (D)xe. (1) + %5fm(t>yi‘ (t)2x. ()] at

+E [hz(i:(T))ﬁ(T) - %hm(f(T))n(TV
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1

+ghaa DT + o

hmm@(T))yT(T)4 + 0(52) (5 — 0+)'

This completes the proof of Lemma 3.3. O

To establish the variational formulation for the optimal control @(-), in addition
to the adjoint equations (1.14)—(1.15), the following two adjoint equations are also
needed:

+3(P2(0) 0, (00(8), 02a(8)) +P2(t) 0, (002 (8),00(1)))

1,2 1,2

+Hopre(t) | dt + qz()dW (L), t€[0,T],

and

3 4

el
Il
—
>
Il
—
1
>
+
R

(3.10)

+Hrzzz (t)
D4 (T) = _hILELIJLE (i' (T))7

where the Hamiltonian H is defined by (1.13), and

Hmmm (t) - szz (w7 t; f(t); ﬁ(t)7p1 (t); q1 (t))v
Hmmwm (t) = Hmmwm (Wu t7 i'(t)u ﬂ/(t)upl (t)a q1 (t))

By the existence and regularity results for BSDEs (see [7]), for any 8 > 1, the
adjoint equations (3.9)—(3.10) admit unique solutions, respectively, and

(p3();a5()) € LE(©: (0, T); LUTR™; R)) x Lg (2 L2(0, T; L(ITR™; R))),

(pa().aa() € Lg(Q: C((0, T); LIIR™ R))) x LE (D L(0, T; L(ITR™R))).
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Using the Taylor expansion of the cost functional established in Lemma 3.3 and
the duality relationship between the variational equations (3.4)—(3.7) and the adjoint
equations (1.14)—(1.15) and (3.9)—(3.10), we obtain a variational formulation for the
cost functional. In order to short the expression of this formulation, we introduce

some more notations.
Let the Hamiltonian be defined by (1.13). Write

2
1
S(wi byt ya, 22) = 5 3 [y 9w, b2, u) + 22 9 0(w, bz, w)|,
S

(wyt,,u,y2,22) € QX [0,T] x R" x U x L(HIR™;R) x L(TR™; R);
2 2
Z |:y3 z b(wvta xz, ’U,) + ZgZU(W, tvxvu):|7

k=1
(w,t,x,u,ys3,23) € QX [0,T] x R" x U x L(TIR™;R) x L(TR™; R),
3 3

w| =

T(wvta Z,u,ys, 23) =

and denote
S(w, t, 2, u)
= Hm(wa t,z, u) + S(wv t,x, u7p2(t)a q2(t)) - S(wa t,z, ﬂ(t)7p2(t)a q2(t))

—I—l [pg(t)tfaz(w,t, T, ﬁ(t))] s (J(w, t,x,u) —o(w,t, z, ﬁ(t)))

2
-I—% [pg(t)gaz(w,t, x, ﬁ(t))] . (J(w, t,x,u) —o(w,t,z, ﬁ(t)))
2 3
-I—% Z Z ps(t) N (o(w,t,z,u) — o(w, t,z,u(t),o(w,t,z,u) — o(w,t,z,u(t))),
k=11=k+1 ’
T(w, t, z,u)

= Sp(w, t,x,u) + Su(w, t, z,u, pa(t), g2(t)) — Sz (w, t, x, u(t), p2(t), g2(t))
+T(w7 ta xz, u,pg(t), q3(t>) - T(wv t5 €T, ﬁ(t),pg(t), q3 (t))

2 2
+% S 1) 8 (aleos by 1(0), 00t ,0) — i 1, (1)
k=11=1, I#k
1 3 3
+6 [pg(t)z (Ux(w,t, x,u) — oz (w, t,x,ﬁ(t)))}
k=11=1, I#k

. (o(w,t,z,u) — o(w,t,z,u(t)))

-
NE

+ [Ps(t)zam(w,t,:v,ﬂ(t))] . (U(W,t,x,u) _ U(w,t,x,ﬂ(t)))
k=11=1, l#k
4
+11_2 2 2 ml) e (o(w,t,z,u) — o(w, t,z,u(t)),
k=11=k+1 ’

o(w,t,z,u) —o(w,t,z, ﬁ(t))),
(w,t,z,u) € QA x[0,T] x R" x U,

where, (p1(+),q1(+)) and (pa(-), g2(+)) are respectively the solutions to (1.14) and (1.15),
(p3(+),q3(+)) and (pa(-), qa(+)) are respectively the solutions to (3.9) and (3.10).
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We have the following variational formulation for the cost functional.
PROPOSITION 3.4. Let (C1) and (C2) hold. Then,

(3.11) +

Proof. See Appendix B. O

4. Second-order necessary conditions. In this section, we establish some
second-order necessary conditions for stochastic singular optimal controls in the sense
of Pontryagin-type maximum principle. Firstly, we introduce the concept of the sin-
gular control (The corresponding concept for deterministic control systems can be
found in [10] and the references cited therein).

DEFINITION 4.1. An admissible control u(-) is called a singular control in the
sense of Pontryagin-type mazximum principle on a control region V', if V' is a nonempty
subset of U and

t)v U) - U(tv i'(t)v ﬂ(t)))v U(tv j(t)v U) - U(tv j(t)v ﬁ(t)» ’
VoveV, as., ae. t€[0,T)

NN
—~

=

N —~
~ ~ —
S~—

—~

Q

—~

~

IS

—~

where Z(-) is the state with respect to u(-), and (p1(-),q1(+)), (P2(:),q2(+)) are the
adjoint processes given respectively by (1.14) and (1.15) with (z(-),u(-)) replaced by
(), a(-)). If the singular control u(-) is also optimal, we call it a singular optimal
control.

In the sequel, we shall fix the control subset V' C U appeared in Definition 4.1.

Remark 4.1. In [28], we introduced the concept of singular control in the classical
sense. Let us recall that, an admissible control u(-) is called a singular control in the
classical sense if u(-) satisfies

Ho(t, 2(t),a(t),p1(t), 1 (t)) =0, a.s., a.e. t € 0,77,
(4.2) Hou(t, T(t), U t),ﬁl(t),([jé(gp ou(t, 2(t),a(t)) T pa(t)ou (t, &(t),a(t)) = 0,
a.s., a.e. t € (0,1.

If (Z(-),a(-)) s an optimal pair, the first-order necessary condition (1.16) says that
the map

v H(w, t, 2(t),v), velU

admits its mazimum at u(t) for a.e. (w,t) € Q x [0,T]. A singular control in the
classical sense is the one that satisfies trivially the first- and second-order mecessary
conditions ( for a.e. (w,t) € Q x [0,T]) for the mazimization problem

H(t, #(t), v).
max (t,z(t),v)
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Obviously, when the set V' is open and u(t) € V, a.e. (w,t) € Q x [0,T], any singular
control in the sense of Pontryagin-type mazimum principle satisfies (4.2), that is, @
is also a singular control in the classical sense, but not vice versa.

Remark 4.2. Since in this paper we consider the case of diffusion term containing
the control variable, in (4.1) there exists the second order term

% (P2(t) (o (t, (1), v) — ot (1), u(t))), o(t, 2(t), v) — o(t, 2(t), u(t))) -

When the diffusion term independent of the control variable this term is equal to 0.

In this case, Definition 4.1 reduces to Definition 2.1. in [24].

We need the following simple result.
LEMMA 4.2. Let (C1) and (C2) hold. Then S(-, (), u(-)) € L#(Q; L*([0, T]; R™))
and T(-, ("), u()) € LE( L2((0, T); LAIR™; R))) for any u(-) € Uaa-

Proof. Tt is sufficient to prove that

r 2
E[/O (6, 2(0), u(t) Pat] < o
and
T
]E/O (¢, 2(t), u(t))2dt < oo.

By (C1)—(C2), there exists a constant C' such that, for ¢ = b, J, f,
lp(t)] < C, [0p(t)] < C, and |dp. ()] < C, a.e. (w,t) € Qx[0,T].

Therefore,

&

/OT (1, 2(0), u(t)) ] ’

Il
e
O\
N
=
S

(1) #p1(0) + S0 (1) 0 1 (1) = 51.(0)

2
Pa(t) 2 80(0) + 5 " ax(t) #5() + 5 pa(t) 0 7 1] 850 1)

hE

_|_

— N~ N
ES
Il
—
B
Il

_|_

[p2(6) 90 ()] 080 (1) +

2 3
(t) b0 (1)) ® Sor(t) + % > > mbe (5a(t),5a(t))|2dt]2

_|_
N |

S

I\

T 2
<C+CE[ [ (ImOF + @) + (O + o) + pa(0)) ]

<C+ C(||p1||io,4 + ||q1||§74 + HP2||§0,4 + ||q2||§74 + Hp?)HioA)
< Q.

In a similar way, we can prove that

T
. 2
]E/O IT(t, 2(8), u(t)) Pt < oc.
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a
By Lemma 4.2, it follows that S(-, Z(-),v) € L2(€; L2([0, T]; R™)) for any v € V C
U. By [28, Lemma 3.8], there exists a ¢, € L*(0,T; L2(22 x [0, T]; R™)) such that

(4.3)  S(t,z(t),v) =E S(t, z( / Gu(s,t)dW (s), a.s., a.e. t € [0,T].

Denote by ®(-) the solution to the following stochastic differential equation

dD(t) = by (t)B(t)dt + o0 (£)D(L)AW (1), te0,7],
0 { a7

where [ is the identity matrix in R™*".

Using the martingale representation formula (4.3), we obtain the following second-
order necessary condition:

THEOREM 4.3. Let (C1) and (C2) hold. If u(-) is a singular optimal control in
the sense of Pontryagin-type mazimum principle on the control subset V. C U, then,
for any v € V, it holds that

E (S(r,2(r),v), b(r, 2(7), v) - b(r, &(r), &(7)) )
+07 (S(T, z(7),v);0(r,(1),v) — o(r, T(7), ﬁ(T)))

(4.6) _a+( (r,2(7),0)s (7, 3(7), v) = o (7, 2(7), (7)) )

T+60
= heni%lip 19QIE/ / ¢U s, t),
)@(s) " (o(s,2(s),v) — a(s,f(s),a(s)))>dsdt,

o (-, +) is determined by (4.5).

The proof of Theorem 4.3 will be given in Subsection 5.1.

Note that the second-order necessary condition (4.5) is only a pointwise type
condition with respect to the time variable ¢ (€ [0,7]). To obtain the pointwise
second-order necessary conditions with respect to both the time ¢ and the sample
point w (€ ), similar to the first part of our work (see [28]), we need the following
regularity condition.

(C3) For any v € V, S(-,Z(-),v) € LY2(R™), and the map v +— VS(t,Z(t),v) is
continuous on V a.s., a.e. ¢t € [0, ]

We have the following result.
THEOREM 4.4. Let (C1)-(C3) hold. If u(-) is a singular optimal control in the
sense of Pontryagin-type mazimum principle on the control subset V. C U, then, for
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a.e. T €1[0,T], it holds that

+{(VS(,Z(7),v),0(1,Z(7),v) — (1, Z(7),u(T)))
+%<T(T, Z(7),v) (U(T, Z(1),v) — U(T,CE(T),@(T))),
(4.7) o(r,2(7),v) —o(r,Z(7),u(r))) <0, V v eV, as.

The proof of Theorem 4.4 will be given in Subsection 5.2.

As an easy consequence of Theorem 4.4, the following pointwise second-order
condition immediately holds.

COROLLARY 4.5. Let (C1)-(C2) hold. If u(-) is a singular optimal control in the
sense of Pontryagin-type mazimum principle on the control subset V-C U and

(4.8) S(t, z(t),v) =0, VoveV, as., ae. te(0,T]
then, for a.e. T € [0,T], it holds that

(4.9) <'I['(7',3_:(7'),v) (J(T, z(1),v) — o(r, (1) ﬁ(T))),

o(r,2(1),v) — o(r,2(7),u(7))) <0, ¥V veEV, as.

Remark 4.3. When the diffusion term is independent of the control variable,
o(t,z(t),v) — o(r,z(t),u(t)) = 0 for any (w,t) € Q x [0,T]. Therefore,

(VS(r,Z(7),v),0(,Z(7),v) — o(1,Z(7),u(T))) =0,

<']T(T, Z(7),v) (O'(T,.’Z'(T),’U) — O'(T,{Z'(T),’U,(T))),O'(T,.’Z'(T),’U) —o(7,Z(1), ﬂ(T))>

and the condition (4.7) is reduced to

0,

(S(r,z(1),v),b(1,Z(7),v) — b(r,&(7),u(r))) <0, VveV, as., ae 7€]0,T]
where, in this case,
S(w, t,z,u) = Ho(w, t, 2,0, p1(t), q1 (1) — Hao(w, t, 2, a@(t), pr(t), 1 (2)),
+%p2(t)(b(w, t,x,u) — blw, t, z, u(t)))

(bl 0) — bl 1y, 5(1)) ),
(w,t,z,u) € Qx[0,T] x R" x U.

The corresponding result coincides with [24, Theorem 2.1]. In addition, since the
diffusion term is independent of the control variable, y5(t) =0, and hence

e—0+ g2

T
lim LK / S(t, 7(8), 0)E (). (£)dt = 0.
0

In this case, it is unnecessary to introduce the regularity assumption (C3) to prove
the desired condition (4.7).

Remark 4.4. In Theorem 4.4, we obtain a pointwise second-order necessary con-
dition for stochastic optimal controls under relatively weak assumptions on the control
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set U through the perturbation technique of needle variation. However, this approach
needs considerably high smoothness assumptions on the coefficients b, o, f, and h
with respect to the state variable x (differentiable with respect x up to the forth order).
Furthermore, four adjoint equations are introduced to represent this condition. When
the set U has good structure such that the first- and second-order adjacent sets of U
on the boundary point of U is nonempty (but U is still allowed to be nonconvex), some
perturbation technique from the classical variational analysis can be used to establish
the second-order necessary conditions for stochastic optimal controls under lower reg-
ularity assumption on the coefficients b, o, f, and h (with respect to the state variable
x) and only two adjoint equations are introduced to derive the second-order necessary
conditions. We refer the reader to [8] for a detailed discussion in this respect.

Two illustrative examples are as follows.

Ezxample 4.1. Let

{ dz(t) = b(z(t))u(t)dt + u(t)dW (t), te[0,1],
x(0) =0,

U:{—l, 0, 1},and1et

) =38 [ o - 3B (0,

Assume that b(-) : R — R is bounded and continuously differentiable up to order
5 with bounded derivatives, b, (0) > 0. Then, the conditions (C1)—(C2) hold.
For the above optimal control problem, the Hamiltonian is defined by

1
H(ta €T, U, p1, ih) = p1b($)u +qu — 5’[1,2,

(t,x,u,p1,q1) € [0,1] x Rx U xR x R.
Let (Z(t), @(t))=(0,0). The four adjoint equations with respect to (Z(-),a(-)) are
given below:
{ dpl(t) = {1 (t)dW(t), t e [O, 1], { dpg(t) = QQ(t)dW(t), t e [O, 1],
pi(1) = 0; p2(1) = 1;
{ dps(t) = q3(t)dW (t), t € [0,1], { dpa(t) = qa(t)dW (t), t € [0,1],
ps(1) = 0; pa(1) = 0.

It is easy to check that

(p3(t)7QS(t)) = (070)7 (p4(t)7Q4(t)) = (070)7 v (th) €Qx [07 1];

H(t, Z(t),v) =0, S(t,Z(t),v) =b(0)v, T(t,Z(t),v) = 2b,(0)v,
Vo eU, YV (w,t)eQx]0,1].

Thus, @(t) = 0 is a singular control in the sense of Pontryagin-type maximum principle
on U.
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Let v = 1, we have

= b(0)* + b,(0)
>0, Y(w,t)e€Qx][0,1].

Therefore, by Theorem 4.4, u(t) = 0 is not an optimal control.
Ezxample 4.2. Let

{ dz(t) = (u(t) — 1)dt + (x(t) — u(t))dW(t), te€[0,1],
z(0) =1,

U:{—l, 0, 1}, and let

T(u()) = 53 la(1) 1%

Obviously, (z(-),a(:)) = (1,1) is the optimal pair. The four adjoint equations
with respect to (Z(-),ua(-)) are as follows:
(
1

{ i ;) o+ a AW, te 1)

{ dpa(t) = = [pa(t) + 26 ()| dt + 2(H)AW (1), ¢ € [0,1],

{ dps(t) = — {3173(0 + 31]3(0} dt + q3(t)dW (1), t€[0,1],
p3(1) =0;

and
{ dpa(t) = — [6p4(t) + 4q4(t)} dt + OdW(t),  tel01],
P4(1) =-1
An easy computation shows that
(pl(t)7Q1 (t)) = (an)v (pQ(t)aLh(t)) = (an)v
(pB(t)7Q3(t)) = (an)v (p4(t),q4(t)) (_667620)7 v (wat) € x [07 1]

Then, we have

H(t, 5(t),0) =0, S(LE(),0) =0, T(t5(t),v) = —%eﬁfﬁt(v Sy,

VoeU, V (w,t) e x]0,1],
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and
<1r(t,gz(t), V) (o(r,2(7),v) — o(r, (1), (7)),
o(r,z(1),v) — U(T,f(T),ﬁ(T))>
= —%eﬁfﬁt(v — 1)4 <0, YveU, V(wt)ex]0,1].

Therefore, u(t) = 1 is a singular optimal control on U, and the second-order necessary
condition (4.9) holds.

5. Proofs of the main results. This section is devoted to proving the main
results of this paper, i.e., Theorems 4.3 and 4.4. We need a known result.

LEMMA 5.1. (28, Lemma 4.1]) Let ®(-), ¥(-) € L&(Q; L*(0,T;R™)). Then, for
a.e. T €10,T), it holds that

(5.1) lim E%]E/THE <<I>(7—),/Tt\11(s)ds>dt_ %IE (®(7), ¥(r)),
(5.2) Jim, 5_121@/:+€ <<I>(t),/:\11(s)ds>dt_ %E (®(r), U(r)) .

5.1. Proof of Theorem 4.3. Since u(t) = v, v € U is an admissible con-
trol, in this subsection, we shall still denote by d¢(t) the increment (¢, Z(t),v) —
o(t, Z(t),u(t)) and by dp,(t) the increment ¢, (¢, Z(t),v) — @, (¢, Z(t), u(t)) for ¢ =
b,o, f. We only need to prove the condition (4.5) holds for a.e. 7 € [0,T). Let
7€[0,T),e€ (0,7 —7)and E. = [r,7+¢) C[0,T). For any fixed v € V, define

. v, te L.,
us(t) = { a(t), t €07\ E..

Clearly, u®(-) € Ugq. Since u(-) is a singular control on V in the sense of Pontryagin-
type maximum principle,

H(¢, Z(t),v) =0, a.e. (w,t) € Qx[0,T].

Then, by Proposition 3.4, we have

0> —
- E%E/OT [H(t,i(t),v) + <S(t,i(t)=v),7(t)>
+%<’H‘(t, 2(1), 0y (0,5 () | xm. (Dt +0(1) (e > 07)
= & [ [(56.50.0.50) + 50 x5. 0
5 (T 20, 00, 550 ). ()] de + o), (2 07).

Now, we divide the proof of (4.5) into 4 steps.
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Step 1: In this step, we prove that

lim sup lE/OT <S(t, :E(t),v),yf(t)>XE5 (t)dt

e—0t g2

(5.3) = %(ﬁ (S(T,.’Z‘(T),’U);(SO’(T)), a.e. 7 €1[0,T).

By [26, Theorem 1.6.14, p. 47)], ¥5(-) has the following explicit representation:

B(s) ™ 0w (s)d0(s)x . (s)ds

(5.4) +®(t) [ ®(s) oo (s)xm. (s)dW (s).
Consequently,
T
52 [ (80,0510 xr ()
T+e t
- _5_121@/7 <S(t (1), v) @(t)/T B(s) 1ax(s)5a(s)ds>dt

T+e t

(5.5) —1—8—121[-3/ <S(t,:ﬁ(t),v),<1>(t)/ @(s) 3o (s)dW (s) ).

By Lemma 5.1, it follows that

t

lim [— 6—12IE/:Jrs <S(t,:i(t),v),(1>(t)/ @(s)flaw(s)éa(s)ds>dt}

e—=07t 7.
(5.6) = —%E <S(T,f(7'),’U),UI(T)éd(T)>, a.e. T€[0,7T).

Next, by (4.4), we deduce that

lim sup %E/:ﬁ <S(t, Z(t),v), ®(t) /t @(3)—150(s)dW(s)>dt

e—0t € -

= lim sup %E/:ﬁ <S(t, Z(t),v), ®(7) /t @(3)—150(s)dW(s)>dt

e—0t € T

+ lim sup E%IE/TT—Ira <S(t,5c(t),v), /t by (8)P(s)ds -

e—0t T

/: @(s)—laa(s)dW(s)>dt

+ lim sup E%IE/TTJFE <S(t,5c(t),v), /Tt o2 (8)P(s)dW (s) -

e—0t
/t @(s)—laa(s)dW(s)>dt.
(5.7)
By (4.3) and (4.6), it holds that

lim sup %E / o <S(t,it(t),v),<1>(7-) / t@(s)*15a(s)dW(s)>dt

e—0t €
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= limsup — IE/ E S(t, z(t /¢ s, t)dW (s

e—0t g2

/ B(7)®(s) Lo (s )dW(s)>dt

T+e
= limsup — IE/ / s) " too(s )>d8dt

e—0t

(5.8) :§aj( (r,&(7),v); o (T )) ae.T€[0,T].

On the other hand,

/tcp( )10 (s)dW (s >dt‘

1 [Tt
<11m—2/ [E’Stw }/
—0t €

(IE / B(s)" 50 (s)dW (s )ﬁﬂdt

T

. O [TtE 2\ 3
31;‘&5_2/ (t—r) (]E\Stx )|)dt
(5.9) =0 a.e. T € [t;,T).
Also,
1 T+e t
Jim | 5B [ (sta.0). [ aetave -

/Tt @(s)_léo(s)dW(s)>dt - %E <S(T,.’Z’(T),’U), o (7)50(7)>’

T+e
< lim %E/ <S(t,3’:(t),v)—S(T,J‘:(T),v),

e—0t €

/Ttam(s)q)(s)dW(s) /th)(s)_l(SU( )AW (s >dt’
T+e

SB[ (srat.o), [ aae(ans):

+ lim =

e—0t

/t @(s)*léa(s)dW(s)>dt - %IE <S(7’,3‘:(7’),v), O (T)5a(f)>]
Lol

T

< lim %/W [E [S(t, 3(t),v) = S(r,3(7 v)ﬂ

e—0t € r

/t]a @s\ds2 E /‘q) )~ Ldo(s \ds)}dt
2 /T+/ S(r, 2(7),v) bo(s) — (7)o (T >dsdt‘

< lim g/ [IE IS(t, 2(t),v) — S(7,2(1), v)ﬂ%dt

e—0t €

+ lim

e—0t

23
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+ lim

csot 2 / / ox(s)oo(s) — Um(7)60(7)>d8dt‘
(5.10) =0, ae. T€0,7T).

Then, by (5.7)-(5.10), it follows that, for a.e. 7€ [0,T),

lim sup —E / o <S(t,i;(t),v),<1>(t) / t@(s)*15a(s)dW(s)>dt

sﬂOJr g2
(5.11) = 5(9;" (S(T,$(T),U);50(T)) + %E <S(T,f(7'),’U),U;E(T)éo'(T)>.

Combining (5.6) with (5.11), we obtain (5.3).
Step 2: In this step, we prove that, for a.e. 7 €[0,T),

(5.12)  lim i]E/OT <S(t (1), v), y(t )> . (H)dt = %E <S(7’,3‘:(7’),v),5b(7’)>.

e—0+ g2
Similar to (5.4), the explicit representation of y5(-) is given as follows:

1

950 = (1) [ 96 b)) 97() + b5}z (5
1

—502(5)022(5) (41 (), ¥i(5)) = 00 (5)002(5)y1 (5) xE. (S)} ds

603) 00 [ 05)7 [Foun (o) (61, (5) + (9 () (o) W 3),

Then,

lim —IE/OT <S(t,5c(t),v),y§(t)>xEs (t)dt

e—0+ &2
T+€ t
= Jim 5B [ (80.70.0.90) [ ()7 [ber(s) (1 (5).5i(5)
~02(5)00a () (45 (), 05 (5)) | ds )t

+ lim iE/Tm <S(t,3‘c(t),v),<1>(t) /OtCIJ(s)leb(s)XEE(s)ds>dt

es0+ €2

~ lim LAE /T o <S(t,3‘c(t),v),<1>(t) /0 tfb(s)_laz(s)éam(s)yi(s)XEa(s)ds>dt

0+ g2

#aim 5 [ (50,200,0.00) [ 060 [Jous ) 4106159

e—0+ g2
004 (5)y5 (5 . ()] AW (5) .
(5.14)

By (5.4), y;(t) =0 for any t € [0, 7). Therefore, by Lemmas 3.2 and 4.2,

lim
e—0t

it [ (sa0.0.00) [ 06)7 o) 0.0506)
—0,(8)042(8) (yf (s),y5 (s))} ds>dt‘
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lim
e—0t

B [ (80,300,000 [ 06) ero) ). 3506)
~02()720(5) (41 (), i (5)) | ds )|
s el [ eisesofal { s oo flor

[bm<s>(yf<s>,yi<s>> 9000 (5) (E(3). i () st}

IN

C Tte 2 13
<t 5{[ Epesfa)
1
{/ t—T2E[ sup [®(1)®(s)"!| - sup ’yi:(s)’zrdt}2
se[o T] s€[0,T]
. C Tre 81 1
< S{ [ Beesfe) (s L;;;pﬂ\yl )
=0, ae. T€0,T)
(5.15)

Next, from Lemma 5.1 we conclude that

lim LE / o <S(t,i;(t),v),<1>(t) /0 t@(s)*lzsb(s)mg(s)dsﬁt

0t g2
(5.16) = %E <S(T,if(7’),v),5b(7’)> a.e. 7 €[0,T).

Also, by Lemmas 3.2 and 4.2, we deduce that

lim
e—0t

2

iE/r‘r—i-a <S(t,3‘:(t>,v>,®(t) /Ot(I)(s)—lgz(S)éam(s)yi(s)XEa(S)ds>dt‘

= lim
e—0t

2

1k /T o (8(t.2(0). v), (1 /T t 0(s) 0 ()30 () (s)ds )

1
2

< lim —[/T+E]E \S(t,f(t),v)]z’dt}

[SE

T+e
{/ (t—7)°E [ sup ’fl) )71‘- sup ‘yl u dt}
T s€[0,T] s€1[0,T]
T+e 1
<y S e el {o [, o)
=0, ae. T€[0,T).
(5.17)

In a similar way, we obtain that

lim

e—0t 12
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00 (8)yE (8)xE. (5 )}dW >dt‘

25 [ (30.20.0.00) [ 067 [Jouets) 0i(5).0705)
+5az(s)y§(s)] dW(s)>dt‘

< lim, E—IQE/TT+E <<I>(t)TS(t,J_7(t),v)—@(T)TS(T,J_?(T),U),
[ 00 oo 0 61,0760 + 01 6)]aw )
+m | [ "B (s(r 20, 0). 8(7) / ()[R () (). )
+oo (s)y;‘(s)] dW(s)>dt‘
< lim 52{/ E ‘cp (TS5 (), ) — (1) S(r, 3(r), 0|t}
/T+ / 00 () (45(5), 5 (9)) + o (s)i o) | s}
< lim Q{
e—=0t € -

=0, a.e. T€[0,7T).
(5.18)

Here, we have used the fact that

B(S(ra(r).0).0() [ () L 6) (451 91(9) + Fs (i ()] AW () = 0

for any t € [, T].
Combining (5.15)—(5.18) with (5.14), we obtain (5.12).
Step 3: In this step, we prove that

lim S /0 ' (Tt 2(8), 0)ys (1), 3 (1) Y xs. (D)t = %E (T(r,2(r), v)3o(7), 80(7) ).

es0t €2
(5.19)

Similar to the pervious discusses, we have

tim = | (Tt (0. 0,570 e (i

e—0+ €2
t

= 1_1)161+ E—QIE/hLE <’H‘(t, :E(t),v)( - @(t)/T ®(s) Lo, (s)do(s)ds
+a(1) /thb(s)léa(s)dW(s)),

t

—a(1) / B(s)" o (5)00 (5)ds + B(2) / D) So ()W (s) ) dt

T
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~ nm,14;/FH<T@¢mwﬂg¢ax/t@@y4aa@yuvgy

e—0+ €2 - -
@(t)/ Q)(s)’léa(s)dW(s)>dt
= %E <T(T,:E(T),v)&o(7),50(7)>, a.e. T€[0,T).

This proves (5.19).
Step 4: From Step 1-Step 3, we have proved that, for any v € V|

J(u() = J(u ()

2

0 > limsup
e—0t

1

= 3B (S(r,2(r),0), 80(r)) + 507 (S(r, (7). v);00(r)

1
+ZE <T(T,J_T(T),U)5U(T),5U(T)>, ae. 7 €[0,T).
Therefore, for any v € V', it follows that

E (S(r,7(r), v), 8b(r) ) + 07 (S(r, 2(7), v); 4o (r)
1

—|—§IE <T(T,if(7’),v)50’(7’),50’(7')> <0 ae 7€l0,7).

This completes the proof of Theorem 4.3.

5.2. Proof of Theorem 4.4. We borrow some idea from the proof of [28, The-
orem 3.9]. Denote by {t;}22, the totality of rational number in [0,7), by {v¥}3°, a
dense subset of V', and by {4;;}32; the countable subfamily of F;,, i € N such that for
any A € Fy,, there exists {A;;, )2y C {A;}52, such that lim,, oo P(AAA;;,) = 0,
where AAAZJn = (A \ Aljn) U (Aijn \A)

For any fixed t;, v* and A;; € Fy,,let 7 € [t;,T), e € (0,T—7), E. = [r,7+¢), and

. u(w,t), (w,t) e Q x O,T Ai'X ti,T R
it ) - | 50 Q) s <
ufi(t), te k.,

a(t), te[0,T]\ E..

Clearly, uf;(-) €

Upg. Put 4°(t) = { By Proposition 3.4 and using the condi-

tion (4.1), we have
J(u() = J(@())
22

T
_1lg / (L, (), 0%) + (S(L,2(6),0%), 55 (1) + 95(1)
0

0>

(T, 2(8), 0")55 (6, 55 (0) | . (Ot +0(1) (= = 07)

(5.20) +

where §5(-), 95(-) are the solutions to the variational equations (3.4) and (3.5) with
respect to 4°(-), respectively.
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We first prove that there exists a sequence {e,}32,, e — 0" as £ — oo, and,

. 1 r — k\ nEe
(5.21) lim —QE/O <S(t,x(t),v )i (t)>XAinE€e (t)dt

{— 00 €y

= %IEKVS(T,:E(T),vk),U(T,:E(T),vk) — 0(7,@(7’),@(7))>XA”}, a.e. T € [t;, T,

By (5.4), 95(-) enjoys the following explicit representation:
t
ﬂi(f) = —@(t)/ (I)(S)_law(s) (0(87 .’Z‘(s), Uk) - 0(87 .’Z‘(S), a(s)))XAinEs (S)dS
0

(5.22) —|—<I>(t)/0 @(s)fl(a(s,f(s),vk) - a(s,a‘:(s),ﬁ(s)))XAinEa(s)dW(s).

Then,

(5.23) (o (s, z(s), v*) — o(s, Z(s), u(s)))xa,, dW(s)>XAij dt.

By Lemma 5.1, we obtain that for a.e. 7 € [t;, T

t

lim [_E%E/TW <S(t,it(t),v),<1>(t)/ B(s) Lo, (s)

e—0+ r
(o (s, z(s), v*) — o(s, Z(s), ﬁ(s)))XAijds>XAijdt}
= —%E [<S(T,£(T),Uk), 02 (T) (0(7’,9@(7’),1)]“) —o(r,z(1), ’U/(T)))>XA”.]
(5.24)

On the other hand, by (4.4), we deduce that

lim iE/m <S(t,a‘;(t),vk),‘1>(t) /tfb(s)1

es0t €2

.(a(s, Z(s), ’Uk) —o(s,Z(s), a(s)))XA”. dW(s)>XA”dt

.(a(s, Z(s), ’Uk) —o(s,Z(s), a(s)))XA”. dW(s)>XA”dt
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+ lim i]E/TW <S(t,i(t),vk),/ 0 () ()W (5) /th>(3)-1

e—0t 52 -
(0(s,8(5), 0") = 05, 2(5), 5(5))) ¥, AW (5) )X, -
(5.25)

Similar to the proof of (5.9)-(5.10), we obtain that, for a.e. T € [t;, T,

(5.26) lim iE/TTJFE <S(t,a‘:(t),vk),/:bz(s)fb(s)ds/:<I>(s)1

e—0+ g2
(05, (5), 0") = 05, 2(5), 0(5))) xa,, AW (5) ) xa,

=0,
and
Jim 5 " st / () ()W () :@(s)-l
(0(s,8(s), 0%) = o5, 2(5), 0l5))) xa,, AW (5) ),
= 2B [(S(r.2(r), %), 02(r) (o, 2(r),0*) — o, 2(7), 0()) Y,
(5.27)

Then, by (5.23)—(5.27), in order to prove (5.21), it remains to show that there exists
a sequence {€¢}7°,, &, = 07 as £ — oo such that

lim %E[W <S(t,f(t),v’“)7<1>(7) /t@(S)‘l

{— 00 Ef r
(o(s,2(s),v") — o(s,2(s), ﬂ(s)))XAide(s)>XA”dt
_ %E [<VS(T,f(T),vk),a(T,a_:(T),vk) . U(T,a‘:(r),ﬁ(r))>x,4ij], ae. T € [t;,T].
(5.28)

By the regularity assumption (C3) and the Clark-Ocone representation formula, we
have that
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(5.29) ()@ (s) " (o(s, Z(s), oP) — (s, Z(s), a(s)))xa,, >XAij dsdt.

By the assumptions (C1)-(C3) and [28, Lemma 2.1], there exists a sequence {e,}7°,
¢ — 07 as £ — oo such that

{—00 €y

lim %‘E/j /Tt (DS(t, 2(1), %) = VS(s,7(5), "),
O(1)P(s

)7 (o, 3(5),0%) = (s, 3(5), () xa, Y, dsdt]

-

< lim Q[E( Sup “1’(7)‘1’(3)71‘2)}5

T l—oo gy selr,T)
T+eg t
]

=0, ae.T€][t;T]
(5.30)

1
2

D,S(t, Z(t), v*) — VS(s, z(s), Uk)rdsdt}

On the other hand, by Lemma 5.1,

T+e t
El_i)rél+ 6—12E/T /7- <VS(S,@(S),’UI€),
(T)D(s) " (o(s,2(s),v") — o(s,Z(s),(s))) x as, >XAU dsdt
1

— SE [<VS(T,f(T),vk),a(T,a_:(T),vk) _ U(T,a‘:(r),ﬁ(r))>x,4ij], ae. 7€ [t;,T.

(5.31)

Combining (5.29), (5.30) with (5.31), we obtain (5.28). By (5.23)—(5.28), we obtain
(5.21).
Next, similar to Steps 2 and 3 in the proof of Theorem 4.3, we obtain that

e—0+ g2

T
(5.32) lim ~E /0 <S(t,:ﬁ(t),v’“),gjg(t)>XE5(t)dt

_ %E [(8(7,2(r), 0%),b(r, 2(7),0*) = b(r, (), () Y, |, e 7€ [6, T,

and

T
(5.33) lim ~E / (Tt 2(0). )35 (1), 55(0) . ()t

e—0t €2
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o(r,z(1),v") — U(T,f(T),ﬁ(T))>XAi]}, a.e. T € [t;, T].
Finally, combining (5.20), (5.21), (5.32) and (5.33), we end up with

E [ (S(r.a(r), v"), b(r, 2(7), v*) = b{r, 2(), a(r))) xa,

(5.34) o(r,z(1),v") — 0(7’,9@(7’),@(7’))>XA”} <0.

By the arbitrariness of i, j, k, the construction of {A4;;}5°,, the continuities of the
filter F and the map v — VS(7,Z(7),v), and the density of {v*}$° ,, we conclude that
the desired necessary condition (4.7) holds. This completes the proof of Theorem 4.4.

Appendix A. Proof of Lemma 3.2. To simplify the notation, we only prove
the 1-dimensional case (The high dimensional case can be proved in the same way).

The proof is long and requires heavy computations (The main idea comes from
the proof of [26, Theorem 4.4, p. 128]). We will divide it into 4 steps

Step 1: Estimation of [[yil|% 4, [y5l% 5. 19515 5 and [ly5l% s-

By the conditions (C1)—(C2) and the estimate (3.2), we have

T B
(A.1) E [ sup |yf(t)|6} < CE [/ ]50(1:);(,;5@)]2(14 P < et
te[0,7T] 0

In a similar way, we have

T 1

[5bes (U5 (0 + db(E)x. (0] t]

E | sup]|y;<t>|ﬂ < CE [/0 :

tel0,T
B
2

T
+CE [ [ |50l 02 + s (i (e, ()

<clE LSE&% ] w5 O] +&?

B
(A.2) +E | sup [yi(O1°] +E | sup [yi(t))7]ef} < e,
te[0,T] te[0,T]

E[ sw |y50))7]
t€[0,T]

T
< CE [ [ [5her 0o 005(0) + 55(0°) + Gheosa (1)
G

B
+8b, ()57 (e 0]at] -+ CE [ [ |30 ) Qi 050 + (0

vw ~—

20 (U0 + Soa (30X () + 5000 ()95 (1 X, (0]t



32 H. Zhang and X. Zhang

<C{E | swp i@ 50" +E [ sup fy5(0)*]
te[0,T7] te[0,T]

+E | sup ()| +E | sup lyi(0))"]<”

te[0,T] te[0,T]
(A.3) +E [ sup |y§(t)|5](€g +E [ sup |y§(t)|2ﬁ]€§} < Ca%,
te[0,T] te[0,T]

and

E [ sup yi)’]
te[0,T7]

1
< CE | / b () (205 ()55 (0) + 205005 (0) + 45(0)%)
1

+5baaa (1) (BYT (8795 (1) + 3y (D5 (1)° + 95(1)°)

1 £(4\4 £ 1 £ 2 A
+ogbeaea (Y1 ()" + 002 ()12 () xE. (1) + 50b2a(t)yi (2)"XE. (t)\dt}

T
+CE { / \gam(t)@yi(t)yé(t) + 2y5(t)y5 (1) + y5(1)?)
0

1

+5 e (1) (BYT(4)°95(1) + 3y1 (D5 (1)° + 95(1)°)

ﬁazm(t)yi (8)4 + G0 (£)5 (£)x s (1)

My

450022 (1) (2UEOUE ) + U0 () + 500 (O (D) . ()]
<O{E [ swp iP5 ] +B | sw [y5(0)1°1u51)1°]
te[0,T7] te[0,7]

+E | sup [y5(0)*] +E | sup |yi(0)* i (0))°]
-te[0,T] te[0,T

+E | sup [yi(O1 5] +E | sup |y5(0)]
-te[0,T] te[0,T)

+E | sup [yi(O1] +E [ sup |y5(0))?]<"

-te[0,T] te[0,T]

+E | sup [yi(O1*]" +E | sup [y5(0))7]e*
-t€[0,T] t€(0,7

[ 8 8
+E | sup [yi(O1 5|7 +E | sup lys(6) )<
-te[0,T] te[0,T

(A4) +E [ sup |y§(t)|3ﬂ5%} < 0
-te[0,T]

Step 2: Estimation of [|r1]|%, 4, [Ir2]2, 5 and ||rs]|2, ,-

By (3.3) and the condition (C1)—(C2), we have

T B T 2 1%

E [ sup |5x(t)|ﬂ < CE [/ |5b(t)xE5(t)\dt} +CE [/ |65(t)x . (£)] dt}
te[0,T] 0 0

5

(A.5) < CeP 4 Ot < Cet,
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Define
(t,0z(t 1—0)xc(t),us(t))do,
(A6) fo + (1= 0)a"(t),u(1))
ae(t fo o (t, 07 (t ) (1 —0)xc(t),us(t))do.
Then, 0x(-) =2°(-)—Z(+) is the solution to the following stochastic differential equation:
dox(t) = [Bg(t)ax(t) + 6b(t)xE. (t)} dt
(A7) + [a ()8 (t) + do (t)xE. (t)} AW (t), te [0,T),
5x(0) = 0.

Also, r1(-) = 0x(-) — y5(-) is the solution to the following stochastic differential equa-
tion:

dri(t) = [B(0)m () + 8b(O)xm (1) + (B5(0) — ba(t) i (1) dt
+[FE @) + (350 — 0 ()i (0] aW (1), t € [0,7).

r1(0) = 0.
(A.8)
Since
E /T|B€ t) — ba( t|dt ’
_ / }/ (-0 ()u(t))—bz(t)deldt]ﬁ
<E /O (L|:1c (t) — &(t |+\6bw(t)xE5(t)|)dtr
<CE | s[%pT]wx(t)ﬂ +CeP < Oe?,
and
T B
/ 35(0) — o (1) *at]
_ / }/ o (,05(t) + (1 — 0)2° (1), u (t))_am(t)defdtf
gc[A (Llas(t) - uﬁﬂwanEmUﬁf
<CE | s[up]|5x(t)|6] +CeR < Cet,
€[0,T
we have

E[wpmuwygm[/ﬁ%@mx>(wu—b Dyi(oar]”

t€[0,T
LCE / |(35(0) — o (1)) wi (1) ]
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< C{EB sup |yi(¢t) |'8 / |G2(t) — oa(t ’dt ]
te[o T)
(A.9) sup lyf(t |B / ‘ba — by ( ’ dt }} < CeP,

This gives the estimation for r1(~).
Next, we prove the estimation for r5(-). For ¢ = b,0, by Taylor’s formula, we
have

p(t, 2% (1), u () — p(t, 2(t), u(t))
= @(t, 2" (t), u(t)) — (¢, 2(t), u(t)) + @(t, (), u*())
—p(t, 2(t), u(t)) + P (t, 2% (), u( )
t,x° (t)

+% [ ana(1,02(0) + (1= 0)2°(0) u(1)) ()6
+ [ (entt.0a(t) + (1= 0)2% (). (1)
(A.10) —ou(t,02(t) + (1 — 0)2° (1), ﬁ(t)))é:z:(t)d@

= @ (t)0x(t) + %S"m (t)é;v(t)z + é@wm (t)é;v(t)B
+0p(t)xe. (1) + 0pa (t)dx(t)xe. (1)

! 193 t,07(t) + (1 — 0)2°(t),u(t))dx(t)*do
+5 | O anelt.03(0) + (1= 00 (1) 50 (0)
! - g g
+/O 0(pan(t,03(1) + (1= 0)2° (1), u (1))
(A.11) —pua (8, 0T (1) + (1 — B)2° (1), ﬁ(t)))éx(t)QdH
= @a(t)dz(t) + %S"m (t)é;v(t)z + é@wm (t)é;v(t)B
() (1) + B (D62 (1)x, (1) + 500 (152(1) X, (1)
/ 0 g (1, 0T (1) + (1 — 0)2= (£), 6(t))2(t)3d0
#2 [ 0 (praelt.030) + (- 00270 0)
(A.12) — pwaa (,0T(t) + (1 — B)25 (1), ﬁ(t)))éa:(t)gdt?
= or()52(0) + 50ar (T + preal®)0r(1)* + Splt) i (1)
(032X, (1) + 5000 (D021 X () + §0para(D52(0) x5, (1)

& /01 0 Pz (t, 02(1) + (1 = 6)a= (1), u(t))dx(t)" b
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+% /0 0% (s (1. 02(1) + (1 0)a7(0) 47(1)
(A.13) — Punaal(t, 02(t) + (1 — 0)2% (1), ﬂ(t)))é:v(t)4d9.

By (A.10) and (A.11), we find that dx(-) is the solution to the following differential
equation:

aba(t) = [ba(H)5w(t) + Lbas (£)62(t)? + 00(t)x. (1)

+i 92bm(t 0Z(t) + (1 — 0)2=(t), u(t))sz(t)3do

[ (ba (8, 07(8) + (1 — 0)2= (), u* (1))

—b, (£, 02(t) + (1 — 0)2= (1), a(t)))ax(t)de] dt

+ {Uz(t)éa:(t) + Loy, (8)6(t)?
(A.14) +d0(t)x . (t) + dou(t)0x(t)xe. (1)
L 020,00 (1,02(t) + (1 — 0)2= (1), a(t))dx(t)>d6
+ fo 0(0wa(t,02(t) + (1 — 0)a* (1), us(t))

e (t, 0T () + (1 — 0)a (1), a(t)))ax(t)%e} AW (1),
€ [0, 7],

0x(0) = 0.

Similarly, by (A.11)—(A.13), dz(-) is the solution to the stochastic differential
equation

sz (t) = [bm ()02 (E) + Lbyn (£)62()2 + Lby ()52 (t)?
+0b(t)xE. () + 0bs (t)0x(t)xE. (1)
A [ 030 (1, 05(t) + (1 — 0)2= (1), a(t))da(t)* b
+ fy 0(baa(t,05(1) + (1 — 0)a= (), u(£)
~baalt, 02 (t) + (1 = 0)a% (1), u(t))) da(t) 0|t
+ 02 (152(0) + 300 ()62(1)? + 00ss ()00 (1)°
+00(t)x . () + 60, (1)dx(t)x B, (t) + 5004 (1)0x(t)* x . (t)
+3 o 030 (£, 02(2) + (1 — 0)2° (¢), ()0 (t) O
+1 [ 02 (0wan (t, 02(2) + (1 — 0)a (1), us(t))
—Opaa(t, 0T (t) + (1 — 0)2= (1), a(t)))ax(t)Bde} AW (t),
te[0,T],

(A.15)
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and the stochastic differential equation

A5 (t) = [ba()52(1) + 3bra(t)62(6)” + Eboas(1)0(1)?
+0b(t)x 2. (t) + 0bs (1) 0x(t) X E. (t) + 50b2a(t)02(t)* X £ (t)
[ 030 (8, 0T () + (1 — 0)2=(t), a(t))dx(t) d6
3 0 02 (a1, 02(8) + (1 — 6)2% (1), u (1))
bya (£, 02(t) + (1 — 9)x8(t),a(t)))5x(t)3d9} dt
+ {Uz(t)éa:(t) + 100 (0)02()? + L0 (H)02(t)?
(A.16) +oo(t)x . (£) + 604 (1)5(t)x 5. (1)
+50002(8)02(1)* X . (t) + §00222(1)02()* X . (1)
[ 030 (8, 0T () + (1 — 0)a=(t), (1)) dx(t)*d6
3 [0 0% (00naa(t, 02(t) + (1 — 0)2°(t), us(t))
—Opaws(t,0Z(t) + (1 — 0)2%(t), a(t)))aa:(t)‘lde} dW (t),
€ [0, 7],
5z(0) = 0.

Combining the variational equations (3.4) and (3.5) with the equation (A.14), we

see that 75(+) is the solution to the stochastic differential equation:

dra(t) = [ba(O)ra() + bas (1) (52(6)? — y5(1)?)
1 0%, 9@@) (1 — 0)2= (1), a(t))dx(t)*do
+ fy (bt 02(t) + (1 — 0)2° (1), us (1))
—ba(t,0T(t) + (1 — 0)2(t), alt )))6:c(t)d9] dt
(A.17) + [Ux(t)rz (t) + 5002 () (82(t)* — y5(t)?) + dou ()r1 () xp. (1)
1 [ 0200 (1, 02(1) + (1 — 0)a" (1), (1)) (t)*do
+ fy 0(0wa (8, 02(t) + (1 — 0)2° (1), us (1))

0 (6,02(1) + (1 - 0)2° (1), a(1)))Sx(t)2d8| VY (¢),

€ (0,77,
TQ(O) =0.

By the conditions (C1)—(C2), we have

/ ‘/ 0°bgan (t +(1-0)x (),a(t))&gc(t)%e‘dtr

(A.18) §OIE / |6z (t)? |dt} SCE[ sup |5x(t)|3ﬁ} < Ce¥,
0

t€[0,T]
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E [/OT‘/OI (bt 02(0) + (1= B)a (1) w2 (1)

—by (£, 02(t) + (1 — H)xa(t),a(t)))&c(t)dﬁ‘dtr

(A.19) <€ ]E[/OT oty (0]dt] < CE[ sup [sa(0)?]e” < 0¥

(A.20) gO]E / |ox(t)? | dt}
0

and

(A.21) < CE [/O |5x(t)2XE€(t)|2dt}

te[0,T]

ol

/ ‘ / 0% 0aa(t, 02(t) + (1 — 0)2°(t), (t))éx(t)Sdefdt]

B
* <CE [ sup |5x(t)|36] <%
t€[0,T)

/}/ (0t 63() + (1 — )2 (1), u (1))

)+ (1 —0)z° (t),a(t)))éx(t)QdH‘th}

B
2

—042(t, 0

v &I

T
38
2

< CE [ sup |5:1:(t)|25]
te[0,T]

<Ce

On the other hand, combining (A.1) and (A.5) with (A.9), we have

E[ sup |50(t)? = yi()2)°] =E[ swp (Iri()I°|0x(t) + v (1)) ]

te[0,T7] t€[0,T]

(A22) < (E[ sup |r1(t)|2ﬁD%(E[ sup |5x(t)+yf(t)|2ﬁD% <%,

te[0,T] te[0,T]

Then, combining (A.5), (A.18)—(A.22) with (A.17), we obtain that

E [ sup |ra(t))?]
te[0,7)

T
< CE / }%bm t)(0x(t)® — yi(t)?)
/ by (1= 0)a= (1), a(t))(t)*do
+A(mmeo (1= )2 (1), (1)
b (£, 02(8) + (1 — B)2= (), ﬁ(t)))zix(t)d@‘dt} ’
1
+CE [ [ 5ol (G20 = i) + 50, (O (Ox. (1)

+1 /1 020400 (t, 0Z(t) + (1 — 0)2® (1), u(t))dx(t)>do
0

[\

+ /0 005 (t, 02(t) + (1 — 0)2° (£), u" (£))

B
2

37
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—02a (1, 0Z(t) + (1 — 0)2° (1), a(t)))ax(tﬁdordt}

gC{E[ sup |5$(t)2—yf(t)2|ﬁ} +E[ sup |5‘T(t)|3ﬁ}

(0,17 t€[0,T]
(A.23) +E | sup [02(t)|7]<7 +E | sup |oxn(t)*|e" } < ce ¥
t€[0,7] t€[0,7]

This proves the estimation for ro(-).

Now, we prove the estimate for r3(-).

Combining the variational equation (3.4), (3.5) and (3.6) with (A.15), we see that,
r3(-) is the solution to the stochastic differential equation:

drs(t) = [ba (D)7 (8) + Sbaa(t) (62(1)? — 7(1)?)
+5bua(t) (02(1)° — yi(£)*) + 0ba (t)r1 () x . (1)
L [ 030 (t, 02 () + (1 — 0)a®(t), a(t))dx(t) do
+ Jo O(baa(t,02(8) + (1 = 6)27 (1), u* (1))
~bua(t, 0 (1) + (1 = 0)a= (1), a())) da(t)do | dt
(A2) +[oa (O () + 0a(t) (52(1)* ( ) )
+50aaa () (02(1)° — y5(1)*) + dou ()r2(t)xp. (1)
+50040(8) (02(t) — y5(1)?) x5, (1)
+1 fO 030w (t, 02(t) + (1 — 0)2=(2), u(t))dx(t)*db
L 0% (00ma (t, 0T () + (1 — 0)2=(t), u (1))
(1,00 (1) + (1= 0)a%(8), u(1))) b (1) a0 | aW (1),
r5(0) = 0.

(t,
(

Similar to (A.18), we can prove that

E| /0 T‘ /O by (t.02() + (1 —9):55(16),ﬂ(t))é:v(t)‘ldﬁ‘dtr

(A25) < CE [tes[%pT] |5;C(t)|4ﬂ} < 08,

Similar to (A.19), we have

E [/OT \ /01 02{ 0w (t, 02 (t) + (1 — 0)a= (£), u (1))
g (1, 0() + (1 — )2 (1), a(t)) } o (t) dﬁ‘dt]
(A26) <CE [/T|5x(t)3x (t)|dtr < CE [ su |5x(t)|36]gf < 0
' n 0 b n te[ol,pT] - '

In a similar way, we have

B
2

E| /0 T‘ /O P (t.07() + (1 —9):&@),a(t))ax(t)4d9\2dt]
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(A27) <CE [ sup |5x(t)|4ﬁ] < 0P,

t€[0,T]

and
/ ‘/9{%“1593; (1—0)a" (1), u" (1))
>\
s (t, 0T (L) + (1 — 0)z° (¢), a(t)) }6;v(t)3d9‘ dt)

T : ;
(A28) <C E(/ 621, (0P dr) T < CE[ sup |oa(n)]*] < < 0=,

0 t€[0,T]

On the other hand, by (A.1), (A.2), (A.5) and (A.23), we get that

E [ sup [da(t)? - (t)?)]
te[0,T]

=E [ sup (Ir2()f" -162(t) + 1 () + 301"

1 1

- E[ sup |T2(t)|26]>§ : (E[ sup |<sa:(t)+y’f(t)+yé(t)l2’3])E

te[0,T] te[0,T]

(A.30) < Ce?P.

Combining (A.25)-(A.30) with (3.2), we obtain that

E [ sup |ra(t))’]
te[0,7)

T
<CE [ [ |5t (G2t =)
+5boaa(t ) (0x(t)® = yi (1)) + 0ba(t)r1 (t)x . (¢)
/ 0y (1, 07(E) + (1 — 0)2° (1), a(t))0x(t) B

)—‘

+/O 0 (baa (1, 02(8) + (1 = 0)a° (1), u (1))
B
a1, 07(0) + (1~ 0)2 (1), 5(1))) (1?1
T
+CE [/O ‘%om(t)(&c(t)2 —7(t)*)
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+%om<t> (2()* — 45 (1)?) + 6o (D)r(t)xp. (1)
45002 (1) (320 = (0 xs, (1)

+% /01 93amzmm(t, Gf(t) + (1 — G)l's(t), ﬂ(t))6$(t)4d6‘
1 1

+§/0 92(0111(@9@(15)—1—(1—H)xa(t),ua(t))

B
2

a1, 02(1) + (1 — 0)a° (1), a(t)))sx(tﬁdefdt}

< C{E | suwp [02() 4| +E | sup [02(t) - yi(t)*)’]
te[0,T] te[0,T]

4E | sup |r1(t)|ﬁ}6ﬁ+€2ﬁ+€2ﬁ+E [ sup |ox(t)? —7(t)2|ﬁ]
-te[0,T] te[0,T

+E | sup [02(t)* — yi(®)*°] +E | sup |ra(t))7]e%

-te[0,T] te[0,T]
A.31 —i—E_ sup 6:Et2—y5t255§+525+525 < O£,
1
-te[0,T]

This proves the estimate for r3(-).
Step 3: We now estimate [[(62)2—1||2 5, [[(62)2—~3]|%, 5 and [|(62)*—(y5)*]|% 4-
First, by (A.1)-(A.3), (A.5) and (A.31), we have

E[ sup [a(t)® —n(t)?/’]
t€[0,T]

= E[tes[%pﬂ (Im ()P - 162(t) + 5 (t) + y5(t) + yg(mﬁﬂ
< (E[t:[%%] |r3(t)|26D% (E[t:[%%] 62(t) + 5 () + y5(2) + yg(mgﬂbé

58
2

(A.32) <Ce
Next, by (A.1), (A.2), (A.5) and (A.23), we get

E[ sup_|5a® —(0)°)]
t€[0,T]

= [ sup (a0 1520 + 52000) + 70

< (E[ Sup |r2(t)|2ﬂ)% : (E[ Sup |53:(t)2+5:1:(t)”y(t)+~y(t)2|25D%

te[0,T te[0,T]

(A.33) < Ce%.

Finally, by (A.1), (A.5) and (A.9), we have
E | sup |oo* — (i)*)?]
t€[0,T]

=E | sup_ (Il - 182(t) + 5 ()17 - 102()° + v (6?17
te[0,T]
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3 1
< (B | suwp [n@P])" (B[ s |o2() +y50)1*])" -
te[0,T] te[0,T]
1

(B | sup toa()? +5i@1”])"

te[0,T
58
2

(A34) <Ce

Step 4: Estimate for ||r4||
By (3.4)~(3.7) and (A.16), we obtaln that

dra(t) = [ba(O)ra(t) + $baa(t) (50(1)* = n(1)?)
+ 0w (8) (0 (1) = 7(8)?) + 6bs ()72 () x 8. (1)
+20bga (1) (62(t)? — Y5 (t)?) xp. (t)
+ [ 03baan (.02 (t) + (1 — 0)a=(t), u(t))dx(t)*df
I OTHON
+3 [ 02 (boaa(t,03() + (1 — 0)2°(t), u" (1))
baa(t,02(t) + (1 — 0)2° (1), ﬁ(t)))5x(t)3d9} dt
(t)(dx( t)?)
t)3)+50m(t) 3(t)xE. (1)
t)?)xE. (1)
(%) xe. (1)
(1 — 0)z=(¢), a(t))da(t)1dd

+[0$(t) )+ 5 om t

(A.35) + g 0waa (t) (0 (t)3 — ~(

+30044(t) (535 —(

+= 50’1”(15)(61:() — Y5

3 [ 030w (8, 0T (L) +
— 510zaxa (05 (1)*

3 fy 0% (0 (t, 02(1) + (1 — 0)a= (1), us (1))

€ [0,T7,
7‘4(0) =0.

y (A.34) and the conditions (C1)—(C2), we have

/‘ /93 + (1= 0)a"(t), a(t))ox(t)"do
b (i (1) 1]
=F /’/HSMM (1= 0)°(0) a(0))

e (t)) 6:1:(t)4d9‘dt} ’

1Tt 4 1 VIR L
+CE {_/ ‘/ 07z (1) 02(¢)*dO — =bywa (B)y5 (1) ‘dt}
6.Jo 1o 1

— Oz (t, 0Z(t) + (1 — 0)z° (1), ﬂ(t)))éa:(t)‘ld@} dw (t),

41



42 H. Zhang and X. Zhang

< CE [ sup |5x(t)55|dt] +CE [ sup |5x(t)4_y§(t)4|ﬂ
te[0,T7] te[0,T]
(A.36) < Ce¥
Similarly,
B[ [3 [ Poueen(t02() + (10320 )30 a0

wlw

1 € (44 2
~ g5 (0)"] dt]

(A.37) < Ce¥.

Next, similar to (A.19), we have

/ }/ 0% baaa( + (1= 0)z5(t), us(t))

B
e (t, 02 (1) + (1 — 9)x8(t),a(t)))sx(tﬁde]dt]

(A.38) < CE [/T’(Sx(t)ngs(t)’dt}ﬁ < CE { sup |6;v(t)|35}55 <0
0

telo.1]
and
/ ]/ Orana(t + (1 = 0)z=(t),us(t))
e (L, 0T(t) + (1 — O)z 8(t),a(t)))5x(t)4d9\2dt]g
(A39) <CE | / [0x(t) xe. (1) Pt * < CE LGS[%pT (1) 7<% < 0%
Finally, by (3.2) and (A.32)—(A.39), we obtain that
E [ sup Ira(t)’]
<CE [/OT ’%bm(t)(éx(t)Q —n(t)?) + é baae (1) (0(t)* — 4(1)?)
0 (0 (). (1) + 3 8bea (1) (G207 — 5 (1) . (1)
/ 03bsmwn(t, 0T() + (1 — 0)2° (1), u(t))dx(t)*do — 2—14bmm(t)yf(t)4

13 [0 (aelt. 020) + (1 0120, 00)
B
—byaa(t, 02(t) + (1 = 0)a°(t), a(t)))h(tﬁd@‘dt}
YL 2 2 1 3 3
+CE | /O }ym(t)@w(t) = (t)*) + 5 0aaa(t) (02(0)° — 4 (1)°)

+o0q()rs () xe. () + %5%1(0 (62(t)* —~(t)*)xp. (t)
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1
+ G 00 z2x(t) (655 (t)g -1 (t)g) XE. (1)

+% /O 9301111@7 Gf(t) + (1 — 9);[;5 (t), ﬂ(t))é,’t(f)4d9 - Tzammzw(t)yi(tyl
1 1

+2 /0 93(%”1@,95@)+(1_9)x8(t),u€(t))

8
2

(£, 0T(1) + (1 — 0)2= (1), a(t)))sx(t)‘*defdt]

< cfE [ sup [52(t)* — ()] +E | sup |ox(t)* —2(t))]
te[0,T] te[0,T]

+E [ sup |r2(t)|ﬁ}£ﬁ+E [ sup |5x(t)2 —yf(t)2|ﬁ]55
te[0,T te[0,T]

+e¥ +eF +E [ sup |0z (t)? — n(t)?ﬂ +E [ sup [0z (t)? — v(t)?’lﬁ]

te[0,T] te[0,T]
+E [ sup |7“3(t)|6}8§ +E [ sup |ox(t)? —7(t)2|6}5§
t€[0,T te[0,T]
+E [ sup |0x(t)® —yf(t)gﬂsg +e¥F +£}
te[0,7)
58
< (Cez.

This completes the proof of Lemma 3.2.
Appendix B. Proof of Proposition 3.4. First, by (3.4)—(3.7), we have

€)= [ [p9605) + Fer(6) (1(5):1(9) + hins ) (22 2(5)

+ib1111(5)(yi(5)7 yi(5),yi(5),yi(s)) + 0b(s)xe. (s)
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This proves (3.11), and completes the proof of Proposition 3.4.
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