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Abstract

We consider in this paper a class of semi-continuous quadratic programming prob-
lems which arises in many real-world applications such as production planning, port-
folio selection and subset selection in regression. We propose a lift-and-convexification
approach to derive an equivalent reformulation of the original problem. This lift-
and-convexification approach lifts the quadratic term involving x only in the original
objective function f(x, y) to a quadratic function of both x and y and convexifies this
equivalent objective function. While the continuous relaxation of our new reformulation
attains the same tight bound as achieved by the continuous relaxation of the well known
perspective reformulation, the new reformulation also retains the linearly constrained
quadratic programming structure of the original mix-integer problem. This prominent
feature improves the performance of branch-and-bound algorithms by providing the
same tightness at the root node as the state-of-the-art perspective reformulation and
offering much faster processing time at children nodes. We further combine the lift-
and-convexification approach and the quadratic convex reformulation approach in the
literature to form an even tighter reformulation. Promising results from our computa-
tional tests in both portfolio selection and subset selection problems numerically verify
the benefits from these theoretical features of our new reformulations.

1 Introduction

We consider in this paper the following mixed-integer quadratic programming (MIQP) prob-
lem:

(P) min f(x, y) = xTQx+ cTx+ hTy

s.t. Ax+By ≤ d,

aiyi ≤ xi ≤ biyi, yi ∈ {0, 1}, i = 1, . . . , n, (1)
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where Q is an n × n positive semidefinite symmetric matrix, c, h ∈ ℜn, d ∈ ℜm, and
A,B ∈ ℜm×n.

Problem (P) is in general NP-hard (see [7]). Its difficulty arises from the discrete structure
induced by the constraint in (1). This constraint is used to model the situation where xi

must rest inside an interval if it is not zero, that is, xi ∈ {0} ∪ [ai, bi]. These variables xi

are termed semi-continuous variables. We assume in our study ai < bi, i = 1, ..., n. We also
assume that the feasible region of problem (P) is nonempty. A recent review on problem (P)
and its solution methods can be found in [45].

Semi-continuous variables appear in many real-world optimization problems. For in-
stance, in production planning, the semi-continuous variables are used to describe the state
of a production process that is either turned off (inactive), hence nothing is produced, or
turned on (active) such that the production level has to lie in certain interval ([22, 26, 27]).
Other typical applications of semi-continuous variables include portfolio selection with mini-
mum buy-in threshold ([35, 21, 17, 45]) and lot-sizing with minimum order quantity ([3, 41]).

An important instance of (P) involves optimization models with a cardinality constraint:

|supp(x)| ≤ K, (2)

where supp(x) = {i | xi 6= 0} and K is an integer with 1 ≤ K ≤ n. The cardinality
constraint is often encountered when the number of nonzero variables has to be limited. The
cardinality constraint in (2) can be easily incorporated into problem (P) by introducing an
additional linear constraint

∑m

i=1 yi ≤ K.
A well-known application of semi-continuous variables and cardinality constraint is the

cardinality constrained mean-variance portfolio selection in financial optimization. The clas-
sical mean-variance model of Markowitz is a quadratic programming problem that minimizes
the variance subject to linear constraints on expected return and budget availabilities. In
real-world applications of portfolio selection models, however, most investors would invest
in only a limited number of assets due to market frictions such as management and transac-
tion fees. Moreover, the minimum buy-in threshold is often a mandate trading constraint.
Suppose that there are n risky assets in a financial market with a random return vector
R = (R1, . . . , Rn)

T . Furthermore, the expected return vector and the covariance matrix of
R are assumed to be given as µ and Q, respectively. The portfolio selection model with
cardinality and minimum buy-in threshold constraints can be then expressed as:

(MV) min xTQx

s.t.
n

∑

i=1

xi = 1,

µTx ≥ ρ,
n

∑

i=1

yi ≤ K,

aiyi ≤ xi ≤ biyi, yi ∈ {0, 1}, i = 1, . . . , n,

where xi represents the proportion of the total capital invested in the ith asset, and ρ is
a prescribed expected return level set by the investor. Portfolio selection problems with
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cardinality and/or minimum threshold constraints have been studied extensively in recent
literature. For exact solution methods, please see, e.g., [7, 37, 44, 13, 6, 17, 29]. For inexact
solution methods, such as heuristics, local search methods and randomized techniques, please
see, e.g., [34, 12, 15, 35, 43, 38, 16, 40, 19, 46].

Another application of (P) with cardinality constraint is the subset selection problem in
multivariate linear regression. Given m observed data points (ai, bi) with ai ∈ ℜn and bi ∈ ℜ,
we need to minimize the least square measure of

∑m

i=1(a
T
i x− bi)

2 with only a subset of the
prediction variables in x (see, e.g., [4, 39, 6]). This problem can be formally formulated as:

(SSP) min ‖Ax− b‖2

s.t. |supp(x)| ≤ K,

where AT = (a1, . . . , am), b = (b1, . . . , bm)
T , and K is an integer with 1 ≤ K ≤ n. When we

convert this problem to problem (P), lower bounds and upper bounds on x, i.e. L ≤ xi ≤ U ,
can be imposed for a sufficiently large positive number U and a sufficiently small negative
number L.

Cardinality constrained linear-quadratic optimal control was investigated in [28]. Fur-
thermore, a polynomially solvable case of the cardinality-constrained quadratic optimization
problem was identified in [30].

We focus in this paper on exact solution methods for problem (P). Standard MIQP solvers
that are based on branch-and-bound frameworks can be applied to (P) directly. However,
the lower bound generated from the continuous relaxation of (P) by relaxing yi ∈ {0, 1} to
yi ∈ [0, 1] is often quite loose. Equivalent reformulations with tighter continuous relaxation,
i.e., a larger lower bound, have been proposed in the literature [21, 23, 24, 47]. These reformu-
lations are more efficient when solved in MIQP solvers. We propose a lift-and-convexification
approach to construct a tight reformulation for problem (P). This lift-and-convexification ap-
proach lifts the quadratic term involving x only in the original objective function f(x, y) to
a quadratic function of both x and y and convexifies this equivalent objective function in a
quadratic form of (x, y). The new reformulation retains the linearly constrained structure of
the MIQP form so that its continuous relaxations can be solved efficiently. At the same time,
the lower bound achieved by the continuous relaxation of this newly proposed reformulation
is the same as the lower bound obtained from the state-of-the-art perspective reformulation.
Thus it improves the performance of branch-and-bound algorithms by providing the same
tightness at the root node as the state-of-the-art perspective reformulation and much faster
processing time at children nodes. We then further combine our lift-and-convexification ap-
proach and the quadratic convex reformulation (QCR) [10, 11] approach in the literature
to form an even tighter reformulation. The QCR approach has been applied to zero-one
quadratic programs [11] and integer quadratic programs [9]. While the QCR approach can-
not be directly applied to problem (P), it can be successfully applied on top of our new
lift-and-convexification reformulation. This further reduces the duality gap as we will show
in our numerical tests.

The paper is organized as follows: In §2, we review the current state-of-the-art reformula-
tion and exact solution methods for problem (P). In §3, we propose a lift-and-convexification
approach to obtain a tight reformulation. We show that this new reformulation is as tight as
the state-of-the-art reformulation in terms of the lower bound from its continuous relaxation.
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As the continuous relaxation of the new reformulation is a quadratic program, it can be thus
solved efficiently. In §4, we conduct numerical experiments to demonstrate the effectiveness
of our new lift-and-convexification reformulation. In §5, we review the QCR approach in
the literature for the binary and integer quadratic programs. We then combine lift-and-
convexification approach and the QCR approach to form an even tighter reformulation. We
conclude our paper in §6.

Notation: Throughout this paper, we denote by v(·) the optimal value of problem (·), and
ℜn

+ the nonnegative orthant of ℜn. For any a ∈ ℜn, we denote by diag(a) = diag(a1, . . . , an)
the diagonal matrix with ai being its ith diagonal element. We denote by e the all-one vector.

2 Literature review and related work

One efficient solution method for (P) is the perspective reformulation proposed by [21, 23],
in which problem (P) is transformed into the following equivalent form:

(PR(ρ)) min fρ(x, y) = xT (Q− diag(ρ))x+ cTx+ hT y +
n

∑

i=1

[ρi(x
2
i /yi)]

s.t. Ax+By ≤ d,

aiyi ≤ xi ≤ biyi, yi ∈ {0, 1}, i = 1, . . . , n,

where ρ ∈ ℜn is chosen such that

ρ ≥ 0 and Q− diag(ρ) � 0,

with an assumption 0/0 = 0.
The perspective reformulation is very tight, i.e., the lower bound generated from the

continuous relaxation of this reformulation is usually much higher than the lower bound
generated directly from the continuous relaxation of (P). To deal with the fractional terms
in the objective function of (PR(ρ)), two tractable reformulations of (PR(ρ)) were proposed
in the literature.

The first reformulation is a second-order cone programming (SOCP) reformulation [2, 32].
For each i, introducing an additional variable φi = x2

i /yi and then rewriting the constraint
φi ≥ x2

i /yi as an SOCP constraint yields the following SOCP reformulation:

(SOCP(ρ)) min xT (Q− diag(ρ))x+ cTx+ hTy + ρTφ

s.t. Ax+By ≤ d,

aiyi ≤ xi ≤ biyi, yi ∈ {0, 1}, i = 1, . . . , n,
∥

∥

∥

∥

xi
φi−yi

2

∥

∥

∥

∥

≤
φi + yi

2
, i = 1, . . . , n.

However, as the problem size grows, the time needed to solve the above SOCP relaxation
becomes a critical factor. When interior point methods are used, the corresponding branch-
and-bound algorithm may converge very slowly.
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The second reformulation is the perspective cut (PC) reformulation [21, 23]. Representing
the value of x2

i /yi by the supremum of a set of infinitely many hyperplanes, which are called
perspective cuts, gives rise to the following PC reformulation:

(PC(ρ)) min xT (Q− diag(ρ))x+ cTx+ hTy + ρTφ

s.t. Ax+By ≤ d,

aiyi ≤ xi ≤ biyi, yi ∈ {0, 1}, i = 1, . . . , n,

φi ≥ 2xixi − x2
i yi, ∀xi ∈ [ai, bi], i = 1, . . . , n. (3)

The perspective cuts in (3) can be added dynamically when (PC(ρ)) is solved in a branch-
and-cut framework (see [24]). With the help of warm start and dual methods, quadratic
programming relaxations in the perspective cut algorithm can be solved efficiently.

Let (PR(ρ)), (SOCP(ρ)) and (PC(ρ)) denote the continuous relaxations of
(PR(ρ)), (SOCP(ρ)) and (PC(ρ)), respectively, by relaxing yi ∈ {0, 1} to yi ∈ [0, 1]. It is easy
to see that the objective values of these continuous relaxations form the same lower bound
for (P). A key issue is how to choose the vector ρ such that this lower bound is as large as
possible. One natural way is to set every component of ρ to be the smallest eigenvalue of Q.
Frangioni and Gentile [23] proposed a better heuristic and set ρ to be the optimal solution
to the following SDP problem:

max{eTρ | ρ ≥ 0, Q− diag(ρ) � 0}. (4)

Ideally, the best parameter ρ that maximizes the lower bound v(PR(ρ)) can be found by
solving the following problem:

(MAXρ) max{v(PR(ρ)) | ρ ≥ 0, Q− diag(ρ) � 0}. (5)

Recently, Zheng et al. [47] established the following interesting result.

Theorem 1 Problem (MAXρ) is equivalent to the following semi-definite programming (SDP)
problem:

(SDPl) max τ

s.t.

(

ρi + µi
1
2
(ci − λi − (ai + bi)µi)

1
2
(ci − λi − (ai + bi)µi)

T hi − πi + (BTη)i + µaibi

)

� 0,

i = 1, . . . , n,
(

Q− diag(ρ) 1
2
(λ+ AT η)

1
2
(λ+ ATη)T −ηTd− eTπ − τ

)

� 0,

(η, µ, π, ρ) ∈ ℜm
+ × ℜn

+ ×ℜn
+ ×ℜn

+,

(λ, τ) ∈ ℜn ×ℜ.

Zheng et al. [47] showed that the perspective cut approach for (PC(ρ∗)) with ρ∗ obtained
from (SDPl) is most efficient for solving problem (P) to its optimality.

When B ≡ 0 in the constraint Ax+By ≤ d, Frangioni et al. [25] developed an equivalent
MIQP reformulation of (PR(ρ)), whose continuous relaxation becomes a quadratic program-
ming problem. Frangioni et al. [20] also proposed an MIQP reformulation of the original
problem (P). But the continuous relaxation of this MIQP reformulation is in general not as
tight as that of the perspective reformulation.
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3 Lift-and-convexification approach

In this section, we derive a tight
MIQP reformulation of (P) by proposing a lift-and-convexification approach. This approach
lifts the quadratic term involving x only in the original objective function f(x, y) to an equiv-
alent quadratic function of both x and y and convexifies this equivalent objective function
in a quadratic form of (x, y).

Contrast to the the perspective reformulation which involves fractional terms, our new
reformulation is a quadratic programming problem whose continuous relaxations can be
solved efficiently. At the same time, the lower bound achieved by the continuous relaxation
of this new reformulation can be proved to achieve the same lower bound obtained from
(SOCP(ρ∗)) or (PC(ρ∗)) with ρ∗ calculated from (SDPl). To construct the new reformulation,
we only need to solve an additional SOCP problem, given the solution for (SDPl).

Let us determine first what kind of quadratic functions in the (x, y)-space we need to
add to achieve the above mentioned goals.

Theorem 2 Let q(x, y) be a quadratic function of x and y. If q(x, y) = 0 for all (x, y) ∈
{(x, y) | aiyi ≤ xi ≤ biyi, yi ∈ {0, 1}, i = 1, . . . , n}, where ai < bi, i = 1, . . . , n, then
q(x, y) must take the following form:

q(x, y) =
n

∑

i=1

qi(xi, yi), (6)

where

qi(xi, yi) = uixiyi + viy
2
i − uixi − viyi (7)

is a quadratic function of (xi, yi) parameterized by (ui, vi).

Proof. If (x, y) ∈ {(x, y) | aiyi ≤ xi ≤ biyi, yi ∈ {0, 1}, i = 1, . . . , n}, then for any i = 1, .., n,
if yi = 0, then xi must be 0.

Let q(x, y) be of the following general form:

q(x, y) = (xT , yT )

(

P F
F T G

)(

x
y

)

+ pTx+ gTy,

parameterized by (P, F,G, p, g) ∈ S
n × ℜn×n × S

n × ℜn × ℜn. Let xi be a vector with a
non-zero component only in its ith position and yi be a vector with a non-zero component
(which is set at one) only in its ith position. It is clear that (xi, yi) ∈ {(x, y) | aiyi ≤ xi ≤
biyi, yi ∈ {0, 1}, i = 1, . . . , n}. If q(x, y) = 0 for all (x, y) ∈ {(x, y) | aiyi ≤ xi ≤ biyi,
yi ∈ {0, 1}, i = 1, . . . , n}, then

q(xi, yi) = 0, (8)

q(xi + xj , yi + yj) = 0, (9)
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for any i, j = 1, .., n. (8) implies

Piix
2
i + 2Fiixi +Gii + pixi + gi = 0. (10)

Because (10) must hold for any xi ∈ [ai, bi] and ai < bi, we have

Pii = 0, (11)

2Fii = −pi, (12)

Gii = −gi. (13)

Furthermore, (9) leads to

Piix
2
i + 2Pijxixj + Pjjx

2
j + 2((Fii + Fij)xi + (Fjj + Fji)xj)

+Gii + 2Gij +Gjj + pixi + pjxj + gi + gj = 0,

which can be simplified to the following equality by using (11)-(13),

Pijxixj + Fijxi + Fjixj +Gij = 0.

As the above equality holds for any (xi, xj) ∈ [ai, bi] × [aj , bj ] with ai < bi and aj < bj , we
must have 0 = Pij = Fij = Fji = Gij . Combining the above equality with (11)-(13) yields
the following form of q(x, y),

q(x, y) =
n

∑

i=1

2Fiixiyi +Giiy
2
i − 2Fiixi −Giiyi,

which is of the same form as (7). �

We propose the following reformulation of (P):

(P(u, v)) min fu,v(x, y) = f(x, y) +

n
∑

i=1

qi(xi, yi)

s.t. Ax+ By ≤ d,

aiyi ≤ xi ≤ biyi, yi ∈ {0, 1}, i = 1, . . . , n,

where qi(xi, yi) is defined in (7). It is easy to see that problem (P(u, v)) is equivalent to (P)
and the continuous relaxation of (P(u, v)) is a quadratic program.

The difference among equivalent formulations (P), (PR(ρ)), and (P(u, v)) lies in their
objective functions. The following example shows the relative relationship among these
three objective functions.

Example 1 Consider a univariate function f(x) = x2 − 4x, where (x, y) ∈ Ω = {(x, y) |
y ≤ x ≤ 3y, y ∈ [0, 1]}. Let q(x, y) = −xy + y2 + x− y. Then, q(x, y) is zero at the region
{(x, y) | y ≤ x ≤ 3y, y ∈ {0, 1}}. Figure 1 illustrates the original function f(x), the lifted
quadratic function fu,v(x, y) := f(x)+q(x, y) and the perspective function fp(x, y) =

x2

y
−4x.

While the three functions has the same value when y ∈ {0, 1}, we can see that fu,v(x, y)
always lies between f(x) and fp(x, y) in the region Ω. This can be numerically verified since
fu,v(x, y) − f(x) = (x − y)(1− y) ≥ 0 for all (x, y) ∈ {(x, y) | y ≤ x ≤ 3y, y ∈ [0, 1]}. We
can also verify that fp(x, y)− fu,v(x, y) = (1− y)y(x2 + y2 − xy) ≥ 0 for all (x, y) ∈ {(x, y) |
y ≤ x ≤ 3y, y ∈ (0, 1]}.
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Figure 1: Illustration of the lifting function

Example 1 shows that the objective function of our new reformulation could lie below that
of the perspective reformulation. This indicates that our new reformulation may not attain
a lower bound that is tighter than the perspective reformulation. However, we will show that
our new reformulation can achieve the same lower bound as the perspective reformulation.

Let u = (u1, ..., un)
T and v = (v1, ..., vn)

T . Now, one critical question is “What is the
best parameter vector of (u, v)?” Let (P(u, v)) denote the continuous relaxation of (P(u, v))
by relaxing yi ∈ {0, 1} to yi ∈ [0, 1]. It is desirable to choose (u, v) such that the continuous
relaxation of (P(u, v)) is as tight as possible. This clear goal motivates us to consider the
following problem:

(MAXuv) max{v(P(u, v)) | u, v ∈ ℜn, fu,v(x, y) is convex}. (14)

Theorem 3 Problem (MAXuv) is equivalent to the following SDP problem:

(SDPq) max τ

s.t.





Q 1
2
diag(u) 1

2
α(u, η, µ, σ)

1
2
diag(u) diag(v) 1

2
β(v, η, µ, σ, λ, π)

1
2
α(u, η, µ, σ)T 1

2
β(v, η, µ, σ, λ, π)T −ηTd− eTπ − τ



 � 0, (15)

(η, µ, σ, λ, π) ∈ ℜm
+ × ℜn

+ ×ℜn
+ × ℜn

+ × ℜn
+, (16)

(u, v, τ) ∈ ℜn ×ℜn ×ℜ,

where

α(u, η, µ, σ) = c− u+ ATη − µ+ σ, (17)

β(v, η, µ, σ, λ, π) = h− v +BTη + diag(a)µ− diag(b)σ − λ+ π. (18)

Proof. We first express (P(u, v)) by its dual form. Associate the following multipliers to the
constraints in (P(u, v)):
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• η ∈ ℜm
+ for Ax+By ≤ d;

• µi and σi ∈ ℜ+ for aiyi ≤ xi and xi ≤ biyi, respectively, i = 1, . . . , n; and

• λi and πi ∈ ℜ+ for yi ≥ 0 and yi ≤ 1, respectively, i = 1, . . . , n.

Let µ = (µ1, . . . , µn)
T , σ = (σ1, . . . , σn)

T , λ = (λ1, . . . , λn)
T and π = (π1, . . . , πn)

T . Let ω
denote the vector formed by η, µ, σ, λ and π. The Lagrangian function of (P(u, v)) is then
given by

L(x, y, ω) = xTQx+ cTx+ hTy +

n
∑

i=1

(uixiyi + viy
2
i − uixi − viyi)

+ ηT (Ax+By − d) +

n
∑

i=1

µi(aiyi − xi) +

n
∑

i=1

σi(xi − biyi)

+
n

∑

i=1

λi(−yi) +
n

∑

i=1

πi(yi − 1)

= (xT , yT )

(

Q 1
2
diag(u)

1
2
diag(u) diag(v)

)(

x
y

)

+ (c− u+ ATη − µ+ σ)Tx

+ (h− v +BTη + diag(a)µ− diag(b)σ − λ+ π)Ty − ηTd− eTπ.

Furthermore, the Lagrangian dual problem of (P(u, v)) can be expressed as

max{ min
(x,y)∈ℜn×ℜn

L(x, y, ω) | ω ≥ 0}. (19)

Introducing an additional variable τ , we can rewrite (19) as

max τ (20)

s.t. min
(x,y)∈ℜn×ℜn

L(x, y, ω) ≥ τ, (21)

ω ≥ 0. (22)

We see that the constraint in (21) is equivalent to L(x, y, ω) − τ ≥ 0 for all x, y, which is
further equivalent to

L(x/t, y/t, ω)− τ ≥ 0, ∀(x, y) ∈ ℜn × ℜn, ∀t ∈ ℜ, t 6= 0. (23)

Multiplying both sides of (23) by t2 yields a homogeneous quadratic form of (x, y, t) in the
left-hand side of (23). Thus, the constraint in (21) is equivalent to the following semidefinite
constraint:





Q 1
2
diag(u) 1

2
α(u, η, µ, σ)

1
2
diag(u) diag(v) 1

2
β(v, η, µ, σ, λ, π)

1
2
α(u, η, µ, σ)T 1

2
β(v, η, µ, σ, λ, π)T −ηTd− eTπ − τ



 � 0, (24)

where α(u, η, µ, σ) and β(v, η, µ, σ, λ, π) are defined by (17) and (18), respectively. Conse-
quently, the problem in (20)-(22) can be expressed as

max{τ | constraint (24), ω ≥ 0}. (25)
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If fu,v(x, y) is convex, by the strong duality of convex quadratic programming (see, e.g.,
Proposition 6.5.6 in [5]), the optimal values of (P(u, v)) and (25) are equal. Thus, we have
shown that problem (MAXuv) is equivalent to an SDP problem in the form of (SDPq). �

Let (u∗, v∗) be the optimal parameters for our new reformulation (P(u, v)) by solving the
SDP program (SDPq). Let ρ∗ be the optimal parameters for (PR(ρ)) by solving the SDP
program (SDPl). It is necessary to compare the tightness of v(P(u∗, v∗)) and v(PR(ρ∗)),
i.e., the bounds from the continuous relaxation of the “best” reformulation proposed in this
paper and the “best” perspective reformulation. We will show in the following that these
two bounds are the same using constructive proofs.

Theorem 4 Define ρ ∈ ℜn as

ρi =

{

0 if v∗i = 0,
u∗2

i

4v∗
i

otherwise,
i = 1, . . . , n. (26)

Then,

(a) ρ is feasible for problem (MAXρ),

(b) v(P(u∗, v∗)) ≤ v(PR(ρ)).

Proof. (a) From the proof of Theorem 3, we know that there exists (τ ∗, η∗, µ∗, σ∗,
λ∗, π∗) such that (u∗, v∗, τ ∗, η∗, µ∗, σ∗, λ∗, π∗) is optimal to (SDPq). The constraint in (15)
implies that

(

Q 1
2
diag(u∗)

1
2
diag(u∗) diag(v∗)

)

� 0.

For any g ∈ ℜn, we define p ∈ ℜn with

pi =

{

0 if v∗i = 0,

−
u∗

i

2v∗
i

gi otherwise,
i = 1, . . . , n.

We then have

gT (Q− ρ)g = gTQg +

n
∑

i=1

[g2i (−ρi)]

= gTQg +
n

∑

i=1

[u∗

i gipi + v∗i p
2
i ]

= gTQg + gTdiag(u∗)p+ pTdiag(v∗)p

= (gT , pT )

(

Q 1
2
diag(u∗)

1
2
diag(u∗) diag(v∗)

)(

g
p

)

≥ 0.
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Hence (Q− ρ) � 0 and ρ is feasible to problem (MAXρ).
(b) As (PR(ρ)) and (P(u∗, v∗)) have the same feasible region, for any feasible (x, y), we

can compare their objective values as follows,

fρ(x, y; ρ)− fu,v(x, y; u∗, v∗) (27)

=

n
∑

i=1

[ρi(
x2
i

yi
)− ρix

2
i − (u∗

ixiyi + v∗i y
2
i − u∗

ixi − v∗i yi)]

=
n

∑

i=1

[
1

4v∗i
(u∗2

i x2
i

1− yi
yi

+ 4u∗

iv
∗

i xi(1− yi) + 4v∗2i yi(1− yi))]

=
n

∑

i=1

[
yi(1− yi)

4v∗i
((
u∗
ixi

yi
)2 + 4u∗

i v
∗

i

xi

yi
+ 4v∗2i )]

=

n
∑

i=1

[
yi(1− yi)

4v∗i
(u∗

i

xi

yi
+ 2v∗i )

2]

≥ 0.

The above deduction is valid because if v∗i = 0, then u∗
i = 0 due to (15). Thus v(P(u∗, v∗)) ≤

v(PR(ρ)). �

The following corollary is a direct result of Theorem 4.

Corollary 1 v(P(u∗, v∗)) ≤ v(PR(ρ∗)).

Next we show the other way around.

Theorem 5 Suppose that (x∗, y∗) is optimal to problem (PR(ρ∗)), the continuous relaxation
of (PR(ρ∗)). Define u, v ∈ ℜn with

ui =

{

0 if y∗i = 0,

−2ρ∗i
x∗

i

y∗
i

otherwise,
i = 1, . . . , n, (28)

vi =

{

0 if y∗i = 0,

ρ∗i
x∗2

i

y∗2
i

otherwise,
i = 1, . . . , n. (29)

Then,

(a) (u, v) is feasible to problem (MAXuv),

(b) v(P(u, v)) = v(PR(ρ∗)).

11



Proof. (a) For any g, p ∈ ℜn, we have

(gT , pT )

(

Q 1
2
diag(u)

1
2
diag(u) diag(v)

)(

g
p

)

= gTQg + gTdiag(u)p+ pTdiag(v)p

= gTQg +
n

∑

i=1

[uigipi + vip
2
i ]

= gT (Q− ρ∗)g +
n

∑

i=1

[ρ∗i g
2
i − 2ρ∗i

x∗
i

y∗i
gipi + ρ∗i

x∗2
i

y∗2i
p2i ]

= gT (Q− ρ∗)g +

n
∑

i=1

[ρ∗i (gi −
x∗
i

y∗i
pi)

2]

≥ 0.

Hence (u, v) is feasible to problem (MAXuv).
(b) We first show that (x∗, y∗) is also an optimal solution for (P(u, v)), we compare the

gradients of fρ(x, y; ρ∗) and fu,v(x, y; u, v) at the point (x∗, y∗). For i = 1, .., n, we have

(∇fu,v(x
∗, y∗; u, v))i

= 2QT
i x

∗ + ci + uiy
∗

i − ui

= 2QT
i x

∗ + ci − 2ρ∗i
x∗
i

y∗i
∗ y∗i + 2ρ∗i

x∗
i

y∗i

= 2QT
i x

∗ + ci − 2ρ∗ix
∗

i + 2ρ∗i
x∗
i

y∗i
= (∇fρ(x

∗, y∗; ρ∗))i

and

(∇fu,v(x
∗, y∗; u, v))n+i

= hi + uix
∗

i + 2viy
∗

i − vi

= hi − 2ρ∗i
x∗
i

y∗i
∗ x∗

i + 2ρ∗i
x∗2
i

y∗2i
y∗i − ρ∗i

x∗2
i

y∗2i

= hi − ρ∗i
x∗2
i

y∗2i
= (∇fρ(x

∗, y∗; ρ∗))n+i.

So ∇fu,v(x
∗, y∗; u, v) = ∇fρ(x

∗, y∗; ρ∗). As (x∗, y∗) is assumed to be optimal to problem
(PR(ρ∗)), the directional derivative of fρ(x, y; ρ∗) at (x∗, y∗) along any feasible direction
should be non-negative. Since the feasible regions of P(u, v) and PR(ρ∗) are the same,
the directional derivative of fu,v(x, y; u, v) at (x∗, y∗) along any feasible direction is also
non-negative. So (x∗, y∗) must also be optimal for (P(u, v)) because of the convexity of
fu,v(x, y; u, v). (See e.g., Chapter 2.1 of [14].)
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Finally, we show v(P(u, v)) = v(PR(ρ∗)). Similar to (27), we have

fρ(x
∗, y∗; ρ∗)− fu,v(x

∗, y∗; u, v)

=
n

∑

i=1

[ρ∗i (
x∗2
i

y∗i
)− ρ∗ix

∗2
i − (uix

∗

i y
∗

i + viy
∗2
i − uix

∗

i − viy
∗

i )]

=

n
∑

i=1

[ρ∗i (
x∗2
i

y∗i
)− ρ∗ix

∗2
i − (−2ρ∗i

x∗
i

y∗i
x∗

i y
∗

i + ρ∗i
x∗2
i

y∗2i
y∗2i + 2ρ∗i

x∗
i

y∗i
x∗

i − ρ∗i
x∗2
i

y∗2i
y∗i )]

=
n

∑

i=1

[ρ∗i (
x∗2
i

y∗i
)− ρ∗ix

∗2
i − (−2ρ∗ix

∗2
i + ρ∗ix

∗2
i + 2ρ∗i

x∗2
i

y∗i
− ρ∗i

x∗2
i

y∗i
)]

= 0.

This completes the proof. �

The following corollary is a direct result of Theorem 5.

Corollary 2 v(P(u∗, v∗)) ≥ v(PR(ρ∗)).

Combining Corollaries 1 and 2 yields the following result.

Theorem 6 v(P(u∗, v∗)) = v(PR(ρ∗)).

Thus the bound from our new reformulation is as good as the bound from the perspective
reformulation. However, to find (u∗, v∗), we need to solve (SDPq) which is an SDP program
that has a much larger size than (SDPl). Our numerical tests show that (SDPq) could
consume ten times of the computation time of (SDPl). Fortunately, based on Theorems
4 and 5, the following corollary becomes evident which reveals the nonnecessity in using
(SDPq) in the calculation.

Corollary 3 (a) Define ρ as in (26). Then ρ is optimal for problem (MAXρ),

(b) Define (u, v) as in (28) and (29). Then (u, v) is optimal to problem (MAXuv).

Thus, in order to construct our new reformulation (P(u∗, v∗)), we only need to solve
(SDPl) first to get the optimal solution ρ∗ for (MAXρ) and then solve the SOCP prob-
lem (SOCP(ρ∗)) and construct (u∗, v∗) according to (28) and (29). Note that (PR(ρ∗)) is
equivalent to (SOCP(ρ∗)).

4 Computational results

In this section, we conduct computational experiments to compare the performance of the
perspective cut reformulation (PC(ρ)) and our new reformulation (P(u, v)). To be specific,
we compare the performance of standard MIQP solvers between solving the following two
reformulations of problem (P):

13



• (PC): the perspective reformulation (PC(ρ)) with ρ = ρ∗, where ρ∗ is computed by
solving (SDPl).

• (LCR): our lift-and-convexification reformulation (P(u, v)) with (u, v) = (u∗, v∗),
where (u∗, v∗) is obtained by first solving (SOCP(ρ∗)) and then configuring (u∗, v∗)
according to (28) and (29) in Theorem 5.

Although the continuous relaxation of (LCR) is as tight as that of (PC) at the root node
of the branch-and-bound tree, the relaxations in (LCR) are in general looser than those
in (PC) at children nodes. The advantage of (LCR) is that its continuous relaxations are
quadratic programs and thus can be solved much faster than the continuous relaxations of
(PC). We would like to test if this advantage of (LCR) would dominate (at least verifying
itself as a competitive and useful reformulation).

The time difference between finding ρ∗ and (u∗, v∗) is the time needed to solve one
SOCP programming problem (SOCP(ρ∗)). We will count this amount of time into the
computational time for (LCR) in the comparison, although this amount of time is quite
small in general.

The two reformulations and (SOCP(ρ∗)) are all solved in 64-bit IBM ILOG CPLEX
Optimization Studio 12.3 (Hereinafter referred to as CPLEX) through its C interface. The
perspective cut reformulation (PC) is implemented by means of user cut callbacks and
lazy constraint callbacks in CPLEX. Although [21] suggested to apply the separation
procedure only once at each node, we do not limit the times of separation because we find
that in our numerical tests, if we allow CPLEX to actively generate mixed integer cuts, the
computation would be much faster if the times of separation are unlimited at each node.
(SDPl) is solved using sedumi interfaced by CVX 1.21 ([18, 31]) on Matlab R2012b.

All the computation is conducted on a Linux machine (64-bit CentOS Release 5.5) with
48 GB of RAM. All the tests are confined on one single thread (2.99 GHz).

We consider two types of test problems from the cardinality constrained mean-variance
portfolio selection (MV) and the subset selection problem (SSP) in our computational ex-
periments.

4.1 Cardinality constrained portfolio selection problem

In this subsection, we compare (PC) and (LCR) for the cardinality constrained mean-variance
portfolio selection problem (MV) introduced in the introduction section.

Frangioni and Gentile [23] tested 90 instances of (MV) in their paper, 30 instances each
for n = 200, 300 and 400. The 30 instances for each n are divided further into three subsets
denoted by n−, n0 and n+, 10 in each subset, with different diagonal dominance in the matrix
Q. We use these 90 instances created in [23] in our test. While Frangioni and Gentile [23] did
not consider the cardinality constraint in their models, we add the cardinality constraint to
these instances in our numerical experiments. Testing each instance without the cardinality
constraint and with K = 6, 8, 10, and 12, we have 450 instances of (MV). The data files of
these instances can be downloaded at: http://www.di.unipi.it/optimize/Data/MV.html.

Table 1 summarizes the numerical results for the 450 instances of (MV) when the time
limit is set at 10000 seconds. Each line reports the average results for the 10 instances
in a subset. The notations in the table are given as follows: The column “(timel)” is the
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Table 1: Numerical results of reformulations for (MV)

(MV) K (timel) (times)
(PC) (LCR)

time nodes time nodes

200+

6 27.92 2.30 19.68 65 4.10 26
8 27.02 2.13 11.20 55 2.29 19
10 26.19 2.06 6.18 50 2.86 42
12 26.29 2.05 10.40 111 4.28 95

nonK 32.60 2.17 13.31 148 8.66 147

2000

6 26.66 2.54 18.03 86 7.07 65
8 27.20 2.05 16.02 96 7.59 73
10 23.83 2.21 9.38 126 4.16 120
12 24.88 2.10 30.73 256 24.44 217

nonK 30.64 2.00 33.76 291 27.42 281

200−

6 26.00 2.39 26.16 204 18.49 248
8 25.53 2.16 22.49 235 19.96 287
10 24.67 2.03 19.88 328 11.00 350
12 25.23 2.11 287.60 3306 329.02 1964

nonK 28.47 1.85 152.45 1935 219.22 1380

300+

6 62.05 5.91 82.11 127 14.25 26
8 65.26 5.54 48.48 133 8.43 25
10 55.55 5.47 16.85 76 4.20 30
12 60.31 6.89 18.43 128 10.27 119

nonK 87.59 16.23 108.44 446 26.60 241

3000

6 60.45 5.43 43.53 118 28.42 105
8 54.63 5.14 51.06 190 32.20 123
10 57.15 5.04 22.00 148 11.96 129
12 61.08 5.14 75.97 238 80.78 249

nonK 63.26 4.80 101.63 371 95.79 323

300−

6 63.27 5.10 55.05 236 48.85 237
8 62.77 5.72 99.03 399 62.47 328
10 60.52 6.40 47.20 471 40.47 609
12 62.08 4.92 35.73 312 48.94 341

nonK 68.22 4.56 137.15 493 117.96 506

400+

6 126.97 22.32 70.89 186 22.73 39
8 122.96 14.19 196.76 587 22.25 38
10 122.70 12.02 28.43 95 14.23 47
12 139.76 27.78 38.70 181 14.37 105

nonK 100.40 25.47 562.95 849 364.24 613

4000

6 104.11 11.74 105.06 236 88.21 197
8 124.41 10.54 149.88 435 82.51 170
10 119.51 10.47 54.55 276 49.06 287
12 128.22 10.73 71.52 376 40.67 287

nonK 125.80 13.20 542.91 1132 227.31 846

400−

6 104.30 11.77 115.01 393 216.02 566
8 116.33 10.08 341.40 1053 239.26 599
10 110.30 10.08 83.77 515 95.99 564
12 118.64 10.60 149.93 495 29.41 343

nonK 123.05 10.14 750.27 1448 715.51 1373
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computation time for solving (SDPl) and the column “(times)” is the computation time for
solving (SOCP(ρ∗)). The termination threshold of the relative gap (in percentage) between
the objective value of the incumbent solution and the best lower bound is set to be 0.01%.
(The exact value of the relative gap when CPLEX terminates could range between 0.00% and
0.01%. Rounding this number would make it 0.00% or 0.01%). Because all our instances
terminated with a relative gap smaller than 0.01%, the relative gap is not reported here.
The columns “time” and “nodes” are the computing time (in seconds) and the number of
nodes explored by CPLEX respectively. The “nonK” refers to the instances with no cardinality
constraints.
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Figure 2: Comparison of total computing time and nodes for (MV).

Figure 2 displays the total computing time and nodes of the two reformulations for (MV).
The total computing time for (PC) is the sum of “(timel)” and the “time” for (PC), and
the total computing time for (LCR) is the sum of “(timel)”, “(times)” and the “time” for
(LCR).

From Figure 2, we can see that, in terms of the total computing time, (LCR) performs
better than (PC) for 25 out of the total 45 cases. If we omit the time for solving the SDP and
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Table 2: Numerical results of reformulations for (SSP)

n K (timel) (times)
(PC) (LCR)

time nodes time nodes

50

5 3.86 0.14 2.90 61 0.35 115
10 3.58 0.21 9.17 205 1.29 445
15 3.24 0.20 6.82 119 0.71 218
20 3.44 0.25 9.20 136 0.77 276

100

5 14.39 0.48 8.69 99 3.35 295
10 14.90 0.37 34.65 334 14.11 993
15 14.95 0.49 89.46 739 41.38 3767
20 13.36 0.38 613.27 3737 140.76 11789

SOCP and only compare the time of the MIQP solver CPLEX, (LCR) performs better than
(PC) for 41 out of the total 45 cases. As the perspective cut approach represents the state-
of-the-art, the test result for this (MV) data set confirms that using (LCR) reformulation to
solve (P) is also efficient. We need to emphasize that, we have tried our best in our numerical
tests to optimize the implementation of the perspective cut approach, as the efficiency of the
perspective cut approach depends heavily on its implementation details and also on selected
parameters of the MIQP solvers.

For the number of nodes explored in (LCR) and (PC), they closely match each other.
We might think that because the relaxations in (LCR) are in general looser than the ones
in (PC) at children nodes, the number of nodes explored by (LCR) should be larger than
(PC) all the time. However, this might not always be the case because the branching
schemes, feasible solution heuristics and the branch-and-bound tree inside CPLEX could be
quite different for (PC) and (LCR) and the number of nodes explored could demonstrate a
more random pattern.

4.2 Subset selection problem

In this subsection, we compare (PC) and (LCR) for the subset selection problem (SSP)
introduced in the introduction section.

We use the 40 instances of the subset selection problem from [47] with n = 50, 100 and
K = 5, 10, 15, 20, 5 instances for each (n,K) pair. In those instances, we set m = 2n. The
elements of A are generated from the standard normal distribution N(0, 1) and b = Aβ + ǫ
where the elements of ǫ are generated from the standard normal distribution N(0, 1) and
the elements of β are generated uniformly form [−1, 1]. The lower and upper bounds for the
solution xi, i = 1, . . . , n, are set, respectively, at −100 and 100, which are sufficiently large
for those instances.

Table 2 summarizes the numerical results for the 40 instances of (SSP). Each line reports
the average results for 5 instances for each (n,K) pair. The notations in the table are the
same as those in Table 1.

Figure 3 displays the total computing time and nodes of the two reformulations for (SSP).
The total computing time for (PC) is the sum of “(timel)” and the “time” for (PC), and
the total computing time for (LCR) is the sum of “(timel)”, “(times)” and the “time” for

17



5 10 15 20 5 10 15 20
0

130

260

390

520

650

Cardinality

T
ot

al
 c

om
pu

tin
g 

tim
e

 

 

n=50 n=100

(PC) (LCR)

5 10 15 20 5 10 15 20
0

2000

4000

6000

8000

10000

12000

Cardinality

N
um

be
r 

of
 n

od
es

 

 

n=50 n=100

(PC) (LCR)

Figure 3: Comparison of total computing time and nodes for (SSP).

(LCR).
From Figure 3, we can see that although (LCR) explores more nodes than (PC), the total

computing time for (LCR) is smaller than that of (PC) in all cases and this advantage of
(LCR) over (PC) becomes more apparent as the problem size grows and/or as the cardinality
increases. Here for the (SSP) data set, trading off tighter children-node bounds with faster
processing time indeed has a good payoff. We also remark again that the efficiency of the
perspective cut approach depends heavily on its implementation details and also on the
selected parameters of the MIQP solvers. We, however, believe that our new reformulation
derived from the lift-and-convexification approach provides a good supplement to the current
state-of-the-art approaches.

5 Combination of lift-and-convexification and QCR

In this section, we further combine our lift-and-convexification approach and the QCR ap-
proach to derive an even tighter reformulation for (P).

Hammer and Rubin [33] pioneered the QCR approach in the following binary quadratic
programs:

(BQP) min xTQx+ cTx

s.t. Ax = d,

xi ∈ {0, 1}, i = 1, . . . , n,

where Q is indefinite. In the proposed QCR, they added to the objective function a term
∑

i u(x
2
i − xi), where u is a scaler and is chosen to be the negative value of the smallest

eigenvalue of Q. Billionnet and Elloumi [8] improved this method by adding the term
∑

i ui(x
2
i − xi) with ui being the optimal dual variables of a certain semi-definite program

(SDP). Plateau[42] and Billionnet et al.[10, 11] also utilized the equality Ax = d in QCR
and added the term

∑

i ui(x
2
i − xi) + (Ax − d)Tdiag(w)(Ax − d) to the objective, where

u and w are chosen to be the dual variables of an enlarged SDP program. Ahlatçıoğlu et
al. [1] proposed to combine QCR and the convex hull relaxation to solve problem (BQP).
The geometric investigation in Li et al. [36] for binary quadratic programs provides some
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theoretical support for QCR from another angle. Billionnet et al.[9] extended the QCR
approach to general mixed-integer programs by using binary decomposition.

To make our discussion more general, we add equality constraints to (P) and consider
the following variant of (P):

(P′) min f(x, y) := xTQx+ cTx+ hTy

s.t. Ax+ By ≤ d,

Ex+ Fy = g,

aiyi ≤ xi ≤ biyi, yi ∈ {0, 1}, i = 1, . . . , n,

where g ∈ ℜM , and E, F ∈ ℜM×n.
QCR would become beneficial when being applied to the equality and inequality con-

straints in (P’) on a top of our lift-and-convexification reformulation. Let us consider now
the following equivalent reformulation of (P′):

(P(u, v, w, t)) min f(x, y) +

n
∑

i=1

qi(xi, yi) + (Ex+ Fy − g)Tdiag(w)(Ex+ Fy − g)

+ (Ax+By + s− d)Tdiag(t)(Ax+By + s− d)

s.t. Ax+By + s = d, s ≥ 0,

Ex+ Fy = g,

aiyi ≤ xi ≤ biyi, yi ∈ {0, 1}, i = 1, . . . , n,

where qi(xi, yi) is defined in (7).
The best parameter set (u, v, w, t) can be found by solving the following problem:

(MAXuvwt)

max{v(P(u, v, w, t)) | The objective function of (P(u, v, w, t)) is convex},

where (P(u, v, w, t)) is the continuous relaxation of (P(u, v, w, t)).
Using the same technique in the proof for Theorem 3, we can convert the problem

(MAXuvwt) to an SDP problem.

Theorem 7 The problem (MAXuvwt) is equivalent to the following SDP problem:

(SDPa) max τ

s.t.









P11 P12 P13 P14

P T
12 P22 P23 P24

P T
13 P T

23 P33 P34

P T
14 P T

24 P T
34 P44









� 0, (30)

(δ, µ, σ, λ, π) ∈ ℜm
+ × ℜn

+ × ℜn
+ × ℜn

+ ×ℜn
+,

(η, ζ, u, v, τ) ∈ ℜm × ℜM × ℜn ×ℜn ×ℜ,
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where

P11 = Q+ ETdiag(w)E + ATdiag(t)A

P12 =
1

2
diag(u) + ETdiag(w)F + ATdiag(t)B

P13 = ATdiag(t)

P14 =
1

2
(c− u+ ATη + ET ζ − 2ETdiag(w)g + 2ATdiag(t)(−d)− µ+ σ)

P22 = diag(v) + F Tdiag(w)F +BTdiag(t)B

P23 = BTdiag(t)

P24 =
1

2
(h− v +BTη + F T ζ − 2F Tdiag(w)g + 2BTdiag(t)(−d)

+ diag(a)µ− diag(b)σ − λ+ π)

P33 = diag(t)

P34 =
1

2
(η − δ − 2diag(t)d)

P44 = −ηTd− eTπ − ζTg + gTdiag(w)g + dTdiag(t)d

Proof. We first express (P(u, v, w, t)) by its dual form. Associate the following multipliers
to the constraints in (P(u, v, w, t)):

• η ∈ ℜm for Ax+By + s = d;

• δ ∈ ℜm
+ for s ≥ 0;

• ζ ∈ ℜM for Ex+ Fy = g;

• µi and σi ∈ ℜ+ for aiyi ≤ xi and xi ≤ biyi, respectively, i = 1, . . . , n;

• λi and πi ∈ ℜ+ for yi ≥ 0 and yi ≤ 1, respectively, i = 1, . . . , n.

Let µ = (µ1, . . . , µn)
T , σ = (σ1, . . . , σn)

T , λ = (λ1, . . . , λn)
T and π = (π1, . . . , πn)

T . Let ω
denote the vector formed by δ, µ, σ, λ and π. The Lagrangian function of (P(u, v, w, t)) is
then given by
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L(x, y, ω, η, ζ)

= xTQx+ cTx+ hTy +

n
∑

i=1

(uixiyi + viy
2
i − uixi − viyi)

+ (Ex+ Fy − g)Tdiag(w)(Ex+ Fy − g)

+ (Ax+By + s− d)Tdiag(t)(Ax+By + s− d)

+ ηT (Ax+By + s− d) + δT (−s) + ζT (Ex+ Fy − g)

+
n

∑

i=1

µi(aiyi − xi) +
n

∑

i=1

σi(xi − biyi) +
n

∑

i=1

λi(−yi) +
n

∑

i=1

πi(yi − 1)

= (x, y, s)T





P11 P12 ATdiag(t)
P T
12 P22 BTdiag(t)

diag(t)A diag(t)B diag(t)









x
y
s





+ (c− u+ AT η + ET ζ − 2ETdiag(w)g + 2ATdiag(t)(−d)− µ+ σ)Tx

+ (h− v +BTη + F T ζ − 2F Tdiag(w)g + 2BTdiag(t)(−d)

+ diag(a)µ− diag(b)σ − λ+ π)Ty + (η − δ − 2diag(t)d)T s

− ηTd− eTπ − ζTg + gTdiag(w)g + dTdiag(t)d.

Furthermore, the Lagrangian dual problem of (P(u, v, w, t)) can be expressed as

max{ min
(x,y,s)∈ℜn×ℜn×ℜm

L(x, y, ω, η, ζ) | ω ≥ 0}. (31)

Introducing an additional variable τ , we can rewrite (31) as

max τ (32)

s.t. min
(x,y,s)∈ℜn×ℜn×ℜm

L(x, y, ω, η, ζ) ≥ τ, (33)

ω ≥ 0. (34)

We see that the constraint in (33) is equivalent to L(x, y, ω, η, ζ)− τ ≥ 0 for all x, y,s, which
is further equivalent to

L(x/k, y/k, ω, η, ζ)− τ ≥ 0, ∀(x, y, s) ∈ ℜn ×ℜn × ℜm, ∀k ∈ ℜ, k 6= 0. (35)

Multiplying both sides of (35) by k2 yields a homogeneous quadratic form of (x, y, s, t) in the
left-hand side of (35). Thus, the constraint in (33) is equivalent to the semidefinite constraint
(30). Consequently, the problem in (32)-(34) can be expressed as

max{τ | constraint (30), ω ≥ 0}. (36)

If the objective function of (P(u, v, w, t)) is convex, by the strong duality of convex quadratic
programming (see, e.g., Proposition 6.5.6 in [5]), the optimal values of (P(u, v, w, t)) and (36)
are equal. Thus, we have shown that problem (MAXuvwt) is equivalent to an SDP problem
in the form of (SDPa). �
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Table 3: Numerical results of bound improvement from combining lift-and-convexification
and QCR

n inst. impr. n inst. impr. n inst. impr.
200− 1 17.0% 300− 1 47.1% 400− 1 15.1%
200− 2 28.0% 300− 2 12.7% 400− 2 21.8%
200− 3 31.8% 300− 3 25.9% 400− 3 6.5%
200− 4 18.1% 300− 4 17.6% 400− 4 10.1%
200− 5 12.7% 300− 5 26.1% 400− 5 16.5%
200− 6 17.7% 300− 6 22.0% 400− 6 17.9%
200− 7 31.1% 300− 7 22.8% 400− 7 42.1%
200− 8 29.2% 300− 8 15.6% 400− 8 22.5%
200− 9 30.4% 300− 9 2.5% 400− 9 11.5%
200− 10 33.0% 300− 10 30.2% 400− 10 20.1%

average 24.9% 22.2% 18.4%

Although this SDP problem (SDPa) is very large and takes time to solve, it only needs to
be solved once to get the new reformulation. When the original problem (P′) is very difficult
to solve, solving this SDP to get a better reformulation can gain overall computational
advantage.

To test the effectiveness of the new reformulation, we compare the bounds of (SDPq)
and (SDPa) on the portfolio selection problem data set introduced in §4. We use the 30
instances with the least diagonal dominance. For each instance, we impose additional equal-
ity constraints by dividing the stocks into 10 sections and demanding only one stock to be
invested from each section. Such an additional constraint is a very practical one, as in real
life applications portfolios are often constructed by choosing investment opportunities from
different industries and sections. We use the following measure for bound improvement,

impr. =
v(SDPa) − v(SDPq)

optimal objective value − v(SDPq)
.

Table 3 shows the bound improvement for the 30 instances, which ranges from 2.5% to
47.1%, resulting an average bound improvement around 20%. This numerical experiment
confirms that combining the lift-and-convexification approach and QCR generates a much
tighter reformulation on average.

6 Concluding remarks

We have developed in this paper the lift-and-
convexification approach to construct a parameterized set of MIQP reformulations for convex
quadratic programs with semi-continuous variables. The primary idea behind this approach
is to lift the quadratic term in the objective function from the x-space to the (x, y)-space
and to convexify the resulting quadratic function of (x, y). We have proposed an SDP for-
mulation to identify the best MIQP reformulation from among this parameterized set and
have proved that the identified best reformulation has a continuous relaxation that is as tight
as the continuous relaxation of the well known perspective reformulation. By revealing the
relationship between our new reformulation and the perspective reformulation, we further
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reduce the computational effort required to construct our new reformulation and show that
we only need little extra effort to solve an additional SOCP problem when compared to
the perspective reformulation. Most importantly, our new reformulation retains the linearly
constrained quadratic programming structure of the original mix-integer problem, which
facilitates more effective utilization of commercial mixed integer programming solvers and
ensures much faster computational time at children nodes in the branch-and-bound search-
ing process. Our preliminary comparison results indicate that the performance of our new
reformulation solved in general MIQP solvers is, at least, competitive to the state-of-the-art
perspective cut approach in many cases and provides a good supplement to the state-of-the-
art approaches. We further combine our lift-and-convexification approach and the quadratic
convex reformulation approach in the literature to obtain an even tighter reformulation. In a
broader picture, the lift-and-convexification approach offers an efficient solution framework
of tight MIQP reformulation which improves the existing literature on the trade-off between
the bound quality and computational complexity.
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