
ar
X

iv
:1

10
6.

25
25

v1
  [

m
at

h.
ST

] 
 1

3 
Ju

n 
20

11

Uniform Stability of a Particle Approximation of the Optimal

Filter Derivative∗

Pierre Del Moral†, Arnaud Doucet‡, Sumeetpal S. Singh§

October 23, 2018

Abstract

Sequential Monte Carlo methods, also known as particle methods, are a widely used set
of computational tools for inference in non-linear non-Gaussian state-space models. In many
applications it may be necessary to compute the sensitivity, or derivative, of the optimal filter
with respect to the static parameters of the state-space model; for instance, in order to obtain
maximum likelihood model parameters of interest, or to compute the optimal controller in an
optimal control problem. In Poyiadjis et al. [2011] an original particle algorithm to compute
the filter derivative was proposed and it was shown using numerical examples that the particle
estimate was numerically stable in the sense that it did not deteriorate over time. In this paper
we substantiate this claim with a detailed theoretical study. Lp bounds and a central limit
theorem for this particle approximation of the filter derivative are presented. It is further shown
that under mixing conditions these Lp bounds and the asymptotic variance characterized by
the central limit theorem are uniformly bounded with respect to the time index. We demon-
strate the performance predicted by theory with several numerical examples. We also use the
particle approximation of the filter derivative to perform online maximum likelihood parameter
estimation for a stochastic volatility model.

Some key words: Hidden Markov Models, State-Space Models, Sequential Monte Carlo,
Smoothing, Filter derivative, Recursive Maximum Likelihood.

1 Introduction

State-space models are a very popular class of non-linear and non-Gaussian time series models in
statistics, econometrics and information engineering; see for example Cappé et al. [2005], Doucet et al.
[2001], Durbin and Koopman [2001]. A state-space model is comprised of a pair of discrete-time
stochastic processes, {Xn}n≥0 and {Yn}n≥0, where the former is an X -valued unobserved process
and the latter is a Y-valued process which is observed. The hidden process {Xn}n≥0 is a Markov
process with initial law dxπθ (x) and time homogeneous transition law dx′fθ (x

′|x), i.e.

X0 ∼ dx0πθ (x0) and Xn| (Xn−1 = xn−1) ∼ dxnfθ (xn|xn−1) , n ≥ 1. (1.1)
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It is assumed that the observations {Yn}n≥0 conditioned upon {Xn}n≥0 are statistically independent
and have marginal laws

Yn|
(
{Xk}k≥0 = {xk}k≥0

)
∼ dyngθ (yn|xn) . (1.2)

Here πθ (x), fθ (x| x′) and gθ (y|x) are densities with respect to (w.r.t.) suitable dominating measures
denoted generically as dx and dy. For example, if X ⊆ Rp and Y ⊆ Rq then the dominating measures
could be the Lebesgue measures. The variable θ in the densities are the particular parameters of
the model. The set of possible values for θ, denoted Θ, is assumed to be an open subset of Rd. The
model (1.1)-(1.2) is also often referred to as a hidden Markov model in the literature Cappé et al.
[2005].

For a sequence {zn}n≥0 and integers i, j, let zi:j denote the set {zi, zi+1, ..., zj}, which is empty
if j < i. Equations (1.1) and (1.2) define the law of (X0:n, Y0:n−1) which is given by the measure

dx0πθ (x0)

n∏

k=1

dxkfθ (xk|xk−1)

n−1∏

k=0

dykgθ (yk|xk) , (1.3)

from which the probability density of the observed process, or likelihood, is obtained

pθ (y0:n−1) =

∫
dx0πθ (x0)

n∏

k=1

dxkfθ (xk|xk−1)

n−1∏

k=0

gθ (yk|xk) . (1.4)

For a realization of observations Y0:n−1 = y0:n−1, let Qθ,n denote the law of X0:n conditioned on this
sequence of observed variables, i.e.

Qθ,n(dx0:n) =
1

pθ (y0:n−1)

(
dx0πθ (x0) gθ (y0|x0)

n−1∏

k=1

dxkfθ (xk|xk−1) gθ (yk|xk)

)
dxnfθ (xn|xn−1)

Let ηθ,n denote the time nmarginal of Qθ,n. This marginal, which we call the filter, may be computed
recursively using Bayes’ formula:

ηθ,n+1(dxn+1) = Qθ,n+1 (dxn+1) =
dxn+1

∫
ηθ,n (dxn) gθ (yn|xn) fθ (xn+1|xn)∫

ηθ,n (dx′
n) gθ (yn|x′

n)
, n ≥ 0

and ηθ,0 = πθ by convention. Except for simple models such the linear Gaussian state-space model
or when X is a finite set, it is impossible to compute pθ (y0:n), Qθ,n or ηθ,n exactly. Particle methods
have been applied extensively to approximate these quantities for general state-space models of the
form (1.1)–(1.2); see Cappé et al. [2005], Doucet et al. [2001].

The particle approximation of Qθ,n is the empirical measure corresponding to a set of N ≥ 1
random samples termed particles, that is

Q
p,N
θ,n (dx0:n) =

1

N

N∑

i=1

δ
X

(i)
0:n

(dx0:n) (1.5)

where δz (dz) denotes the Dirac delta mass located at z. This approximation is referred to as the
path space approximation Del Moral [2004] and it is denoted by the superscript ‘p’. The particle

approximation of ηθ,n is obtained from Q
p,N
θ,n by marginalization

ηNθ,n(dxn) =
1

N

N∑

i=1

δ
X

(i)
n

(dxn) .
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These particles are propagated in time using importance sampling and resampling steps; see Doucet et al.
[2001] and Cappé et al. [2005] for a review of the literature. Specifically, Qp,N

θ,n+1 is the empirical mea-
sure constructed from N independent samples from

Q
p,N
θ,n (dx0:n) dxn+1fθ (xn+1|xn) gθ (yn|xn)∫

Q
p,N
θ,n (dx0:n) gθ (yn|xn)

. (1.6)

It is a well known fact that the particle approximation of Qθ,n becomes progressively impoverished
as n increases because of the successive resampling steps [Del Moral and Doucet, 2003, Olsson et al.,

2008]. That is, the number of distinct particles representing the marginal Qp,N
θ,n (dx0:k) for any fixed

k < n diminishes as n increases until it collapses to a single particle – this is known as the particle
path degeneracy problem.

The focus of this paper is on the convergence properties of particle methods which have been re-
cently proposed to approximate the derivative of the measures {ηθ,n(dxn)}n≥0 w.r.t. θ = [θ1, . . . θd]

T ∈
Rd:

ζθ,n = ∇ηθ,n =

[
∂ηθ,n
∂θ1

, . . . ,
∂ηθ,n
∂θd

]T
.

(See Section 2 for a definition.) References Cérou et al. [2001] and Doucet and Tadić [2003] present
particle methods which have a computational complexity that scales linearly with the number N
of particles. It was shown in Poyiadjis et al. [2011] (see also Poyiadjis et al. [2009] for a more de-
tailed numerical study) that the performance of these O(N) methods, which inherently rely on the
particle approximations of {Qθ,n}n≥0 constructed as in (1.6) above, degraded over time and it was
conjectured that this may be attributed to the particle path degeneracy problem. In contrast, the
alternative method of Poyiadjis et al. [2005] was shown in numerical examples to be stable. The
method of Poyiadjis et al. [2005] is a non-standard particle implementation that avoids the parti-
cle path degeneracy problem at the expense of a computational complexity per time step which is
quadratic in the number of particles, i.e. O(N2); see Section 2 for more details. Supported by
numerical examples, it was conjectured in Poyiadjis et al. [2011] that even under strong mixing as-
sumptions, the variance of the estimate of the filter derivative computed with the O(N) methods
increases at least linearly in time while that of the O(N2) is uniformly bounded w.r.t. the time index.
This conjecture is confirmed in this paper. Specifically, we analyze the O(N2) implementation of
Poyiadjis et al. [2005] in Section 3 and obtain results on the errors of the approximation, in partic-
ular, Lp bounds and a Central Limit Theorem (CLT) are presented. We show that these Lp bounds
and asymptotic variances appearing in the CLT are uniformly bounded w.r.t. the time index when
the state-space model satisfies certain mixing assumptions. In contrast, the asymptotic variance of
the O(N) implementations, which is also captured through the CLT, is shown to increase linearly.
To the best of our knowledge, these are the first results of this kind.

An important application of our results, which is discussed in detail in Section 4, is to the
problem of estimating the parameters of the model (1.1)–(1.2) from observed data. The estimates
of the model parameters are found by maximizing the likelihood function pθ(y0:n) with respect to θ
using a gradient ascent algorithm which relies on the particle approximation of the filter derivative.
The results we present in Section 3 have bearing on the performance of the parameter estimation
algorithm, which we illustrate with numerical examples in Section 4. The Appendix contains the
proofs of the main results as well as that of some supporting auxiliary results. As a final remark,
although the algorithms and theoretical results are presented for a state-space model, they may be
reinterpreted for Feynman-Kac models as well.
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1.1 Notation and definitions

We give some basic definitions from probability and operator semigroup theory. For a measurable
space (E, E) let M(E) denote the set of all finite signed measures and P(E) the set of all probability
measures on E. The n-fold product space E×· · ·×E is denoted by En. Let B(E) denote the Banach
space of all bounded real-valued and measurable functions ϕ : E → R equipped with the uniform
norm ‖ϕ‖ = supx∈E|ϕ(x)|. For ν ∈ M(E) and ϕ ∈ B(E), let ν(ϕ) =

∫
ν(dx) ϕ(x) be the Lebesgue

integral of ϕ w.r.t. ν. If ν is a density w.r.t. some dominating measure dx on E then, ν(ϕ) =
∫
dx

ν(x) ϕ(x). We recall that a bounded integral kernel M(x, dx′) from a measurable space (E, E) into
an auxiliary measurable space (E′, E ′) is an operator ϕ 7→ M(ϕ) from B(E′) into B(E) such that the
functions

x 7→ M(ϕ)(x) :=

∫

E′

M(x, dx′)ϕ(x′)

are E-measurable and bounded for any ϕ ∈ B(E′). The kernel M also generates a dual operator
ν 7→ νM from M(E) into M(E′) defined by

(νM)(ϕ) := ν(M(ϕ)).

Given a pair of bounded integral operators (M1,M2), we let (M1M2) the composition operator
defined by (M1M2)(ϕ) = M1(M2(ϕ)).

A Markov kernel is a positive and bounded integral operator M such that M(1) (x) = 1 for any
x ∈ E. For ϕ ∈ B(E), let

osc(ϕ) = sup
x,x′∈E

|ϕ(x)− ϕ(x′)|

and let
Osc1(E) = {ϕ ∈ B(E) : osc(ϕ) ≤ 1}.

Let β(M) ∈ [0, 1] denote the Dobrushin coefficient of the Markov kernel M which is defined by the
formula [Del Moral, 2004, Prop. 4.2.1]:

β(M) := sup {osc(M(ϕ)) ; ϕ ∈ Osc1(E
′)}.

If there exists a positive constant ρ such that the Markov kernel M satisfies

M(x, dz) ≥ ρM(x′, dz) for all x, x′ ∈ E then β (M) ≤ 1− ρ.

For two Markov kernels M1,M2, β(M1M2) ≤ β(M1)β(M2).
Given a positive function G on E, let ΨG : ν ∈ P(E) 7→ ΨG(ν) ∈ P(E) be the probability

distribution defined by

ΨG(ν)(dx) :=
ν(dx)G(x)

ν(G)

provided ∞ > ν(G) > 0. The definitions above also apply if ν is a density and M is a transition den-
sity. In this case all instances of ν(dx) should be replaced with dxν(x) and M(x, dx′) by dx′M(x, x′)
where dx and dx′ is generic notation for the dominating measures.

It is convenient to introduce the following transition kernels:

Qθ,n(xn−1, dxn) = gθ(yn−1|xn−1)dxnfθ(xn|xn−1) = dxnqθ(xn|xn−1), n > 0,

Qθ,k,n(xk, dxn) = (Qθ,k+1Qθ,k+2 · · ·Qθ,n) (xk, dxn), 0 ≤ k ≤ n,

with the convention that Qθ,n,n = Id, the identity operator. Note that Qθ,k,n(1) (xk) is the density
of the law of Yk:n−1 given Xk = xk. For 0 ≤ p ≤ n, define the potential function Gθ,p,n on X to be

Gθ,p,n(xp) = Qθ,p,n(1)(xp)/ηθ,pQθ,p,n(1). (1.7)
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Let the mapping Φθ,k,n : P(X ) → P(X ), 0 ≤ k ≤ n, be defined as follows

Φθ,k,n(ν)(dxn) =
νQθ,k,n(dxn)

νQθ,k,n(1)
.

It follows that ηθ,n = Φθ,k,n(ηθ,k). For conciseness, we also write Φθ,n−1,n as Φθ,n.
A key quantity that facilitates the recursive computation of the derivative of ηθ,n is the following

collection of backward Markov transition kernels:

Mθ,n(xn, dxn−1) =
ηθ,n−1(dxn−1)qθ(xn|xn−1)

ηθ,n−1(qθ(xn|·))
, n > 0. (1.8)

Their particle approximations are

MN
θ,n(xn, dxn−1) =

ηNθ,n−1(dxn−1)qθ(xn|xn−1)

ηNθ,n−1(qθ(xn|·))
. (1.9)

These backward Markov kernels are convenient for computing certain conditional expectations and
probability measures. In particular, for ϕ ∈ B(X 2), we have

Eθ [ϕ (Xn−1, Xn)| y0:n−1, xn] =

∫
Mθ,n(xn, dxn−1)ϕ (xn−1, xn) ,

and the law of X0:n−1 given Xn = xn and Y0:n−1 = y0:n−1 is Mθ,n(xn, dxn−1) · · ·Mθ,1(x1, dx0).
Finally, the following two definitions are needed for the CLT of the particle approximation of

the derivative of ηθ,n. The bounded integral operator Dθ,k,n from X into Xn+1 is defined for any
Fn ∈ B(Xn+1) by

Dθ,k,n(Fn)(xk) :=

∫ 


1∏

j=k

Mθ,j(xj , dxj−1)






n−1∏

j=k

Qθ,j+1(xj , dxj+1)


Fn(x0:n), 0 ≤ k ≤ n,

(1.10)
with the convention that

∏ ∅ = 1. The particle approximation, DN
θ,k,n, is defined to be

DN
θ,k,n(Fn)(xk) :=

∫ 


1∏

j=k

MN
θ,j(xj , dxj−1)






n−1∏

j=k

Qθ,j+1(xj , dxj+1)


Fn(x0:n). (1.11)

To be concise we write

ηθ,k(dxk)Dθ,k,n(xk, dx0:k−1, dxk+1:n) as ηθ,kDθ,k,n(dx0:n).

(And similarly for the particle versions.) Although convention dictates that ηθ,kDθ,k,n should be
understood as the measure (ηθ,kDθ,k,n)(dx0:k−1, dxk+1:n), when we mean otherwise it should be
clear from the infinitesimal neighborhood.
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2 Computing the filter derivative

For any Fn ∈ B(Xn+1), we have

∇Qθ,n(Fn)

=
1

pθ (y0:n−1)

∫
dx0:n∇

(
πθ (x0)

n∏

k=1

fθ (xk|xk−1)

n−1∏

k=0

gθ (yk|xk)

)
Fn(x0:n)

− 1

pθ (y0:n−1)
Eθ {Fn(X0:n)| y0:n−1}

∫
dx0:n∇

(
πθ (x0)

n∏

k=1

fθ (xk|xk−1)

n−1∏

k=0

gθ (yk|xk)

)

= Eθ {Fn(X0:n)Tθ,n(X0:n)| y0:n−1} − Eθ {Fn(X0:n)| y0:n−1}Eθ {Tθ,n(X0:n)| y0:n−1} (2.1)

where

Tθ,n(x0:n) =
n∑

k=0

tθ,k(xk−1, xk) (2.2)

tθ,k(xk−1, xk) = ∇ log (gθ (yk−1|xk−1) fθ (xk|xk−1)) , k > 0, (2.3)

tθ,0(x−1, x0) = tθ,0(x0) = ∇ log πθ (x0) . (2.4)

The first equality in (2.1) follows from the definition of Qθ,n and interchanging the order of differ-
entiation and integration. The interchange is permissible under certain regularity conditions [Pflug,
1996]; e.g. a sufficient condition would be the main assumption in Section 3 under which the uni-
form stability results are proved. The second equality follows from a change of measure, which
then permits an importance sampling based estimator for the derivative of Qθ,n; this is the well
known score method, e.g. see Pflug [1996, Section 4.2.1]. For any ϕn ∈ B(X ), it follows by setting
Fn(x0:n) = ϕn(xn) in (2.1) that

∇
∫

ηθ,n(dxn)ϕn(xn)

= Eθ {ϕn(Xn)Tθ,n(X0:n)| y0:n−1} − Eθ {ϕn(Xn)| y0:n−1}Eθ {Tθ,n(X0:n)| y0:n−1}

=

∫
ζθ,n(dxn)ϕn(xn)

where
ζθ,n(dxn) = ηθ,n(dxn) (Eθ [Tθ,n (X0:n)| y0:n−1, xn]− Eθ [Tθ,n (X0:n)| y0:n−1]) . (2.5)

We call ζθ,n the derivative of ηθ,n.
Given the particle approximation (1.5) of Qθ,n, it is straightforward to construct a particle ap-

proximation of ζθ,n:

ζp,Nθ,n (dxn) =

N∑

i=1

1

N


Tθ,n(X

(i)
0:n)−

1

N

N∑

j=1

Tθ,n(X
(j)
0:n)


 δ

X
(i)
n

(dxn) . (2.6)

This approximation is also referred to as the path space method. Such approximations were implicitly
proposed in Cérou et al. [2001] and Doucet and Tadić [2003] and there are several reasons why this

estimate appears attractive. Firstly, even with the resampling steps in the construction of Qp,N
θ,n ,

ζp,Nθ,n can be computed recursively. Secondly, there is no need to store the entire ancestry of each

particle, i.e.
{
X

(i)
0:n

}
1≤i≤N

, and thus the memory requirement to construct ζp,Nθ,n is constant over
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time. Thirdly, the computational cost per time is O(N). However, as Qp,N
θ,n suffers from the particle

path degeneracy problem, we expect the approximation ζp,Nθ,n to worsen over time. This was indeed
observed in numerical examples in Poyiadjis et al. [2011] and it was conjectured that the asymptotic

variance (i.e. as N → ∞) of ζp,Nθ,n for bounded integrands would increase linearly with n even under
strong mixing assumptions. This is now proven in this article.

An alternative particle method to approximate {ζθ,n}n≥0 has been proposed in Poyiadjis et al.
[2005, 2011]. We now reinterpret this method using the representation in (2.5) and a different particle
approximation of Qθ,n that avoids the path degeneracy problem.

The measure Qθ,n admits the following backward representation

Qθ,n(dx0:n) = ηθ,n(dxn)

1∏

k=n

Mθ,k(xk, dxk−1)

and the corresponding particle approximation of Qθ,n is given by

QN
θ,n(dx0:n) = ηNθ,n(dxn)

1∏

k=n

MN
θ,k(xk, dxk−1)

where MN
θ,k was defined in (1.9). This now gives rise to the following particle approximation of ζθ,n

[Poyiadjis et al., 2005, 2011]:

ζNθ,n(ϕn) =

∫
QN

θ,n(dx0:n)Tθ,n(x0:n)
(
ϕn(xn)− ηNθ,n(ϕn)

)

and indeed ηNθ,n(ϕn) =
∫
QN

θ,n(dx0:n)ϕn(xn). It is apparent thatQ
N
θ,n constructed using this backward

method avoids the degeneracy in paths. It is even possible to compute ζNθ,n recursively as detailed
in Algorithm 1; since a recursion for ηθ,n is already available, it is apparent from (2.5) that what
remains is to specify a recursion for Eθ [Tθ,n (X0:n)| y0:n−1, xn]. Let T θ,n(xn) denote this term, then
for n ≥ 1,

T θ,n(xn) = Eθ [Tθ,n (X0:n)| y0:n−1, xn]

= Eθ [Tθ,n−1 (X0:n−1)| y0:n−1, xn] + Eθ [ tθ,n (Xn−1, Xn)| y0:n−1, xn]

=

∫
Mθ,n(xn, dxn−1) (Eθ [Tθ,n−1 (X0:n−1)| y0:n−2, xn−1] + tθ,n (xn−1, xn))

=

∫
Mθ,n(xn, dxn−1)

(
T θ,n−1(xn−1) + tθ,n (xn−1, xn)

)

where T θ,0(x0) = tθ,0(x0). Algorithm 1 computes ζNθ,n recursively in time by computing
(
T θ,n, ηθ,n

)

and is initialized with T
(i)

θ,0 = tθ,0(X
(i)
0 ) (see (2.2)) where

{
X

(i)
0

}
1≤i≤N

are samples from πθ(x0).

Algorithm 1: A Particle Method to Compute the Filter Derivative

• Assume at time n − 1 that approximate samples
{
X

(i)
n−1

}
1≤i≤N

from ηθ,n−1 and approximations
{
T

(i)

θ,n−1

}
1≤i≤N

of
{
T θ,n−1

(
X

(i)
n−1

)}
1≤i≤N

are available.

• At time n, sample
{
X

(i)
n

}
1≤i≤N

independently from the mixture

∑N

j=1 fθ

(
xn|X(j)

n−1

)
gθ

(
yn−1|X(j)

n−1

)

∑N

j=1 gθ

(
yn−1|X(j)

n−1

) (2.7)
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and then compute
{
T

(i)

θ,n

}
1≤i≤N

and ζNθ,n as follows:

T
(i)

θ,n =

∑N

j=1

(
T

(j)

θ,n−1 + tθ,n

(
X

(j)
n−1, X

(i)
n

))
fθ

(
X

(i)
n |X(j)

n−1

)
gθ

(
yn−1|X(j)

n−1

)

∑N

j=1 fθ

(
X

(i)
n |X(j)

n−1

)
gθ

(
yn−1|X(j)

n−1

) , (2.8)

ζNθ,n(dxn) =
1

N

N∑

i=1


T

(i)

θ,n − 1

N

N∑

j=1

T
(j)

θ,n


 δ

X
(i)
n
(dxn). (2.9)

Algorithm 1 uses the bootstrap particle filter of Gordon et al. [1993]. Note that any SMC imple-
mentation of {ηθ,n}n≥0 may be used, e.g. the auxiliary SMC method of Pitt and Shephard [1999] or
sequential importance resampling with a tailored proposal distribution [Doucet et al., 2001]. It was
conjectured in Poyiadjis et al. [2011] that the asymptotic variance of ζNθ,n(ϕ) for bounded integrands
ϕ is uniformly bounded w.r.t. n under mixing assumptions. This is established in this article.

3 Stability of the particle estimates

The convergence analysis of ζNθ,n (and ζp,Nθ,n for performance comparison) will largely focus on the

convergence analysis of the N -particle measures QN
θ,n (and correspondingly Q

p,N
θ,n ) towards their

limiting values Qθ,n, as N → ∞, which is in turn intimately related to the convergence of the flow of

particle measures
{
ηNθ,n

}
n≥0

towards their limiting measures {ηθ,n}n≥0. The Lr error bounds and the

central limit theorem presented here have been derived using the techniques developed in Del Moral
[2004] for the convergence analysis of the particle occupation measures ηNθ,n . One of the central
objects in this analysis is the local sampling errors defined as

V N
θ,n =

√
N
(
ηNθ,n − Φθ,n(η

N
θ,n−1)

)
(3.1)

The fluctuation and the deviations of these centered random measures can be estimated using non-
asymptotic Kintchine’s type Lr-inequalities, as well as Hoeffding’s or Bernstein’s type exponential de-
viations [Del Moral, 2004, Del Moral and Rio, 2009]. In Del Moral and Miclo [2000] it is proved that
these random perturbations behave asymptotically as Gaussian random perturbations; see Lemma
7.10 in the Appendix for more details. In the proof of Theorem 7.11 (a supporting theorem) in
the Appendix we provide some key decompositions expressing the deviation of the particle measures
QN

θ,n around its limiting value Qθ,n in terms of the local sampling errors (V N
θ,0, . . . , V

N
θ,n). These de-

compositions are key to deriving the Lr-mean error bounds and central limit theorems for the filter
derivative.

The following regularity conditions are assumed.
(A) The dominating measures dx on X and dy on Y are finite, and there exist constants 0 <

ρ, δ, c < ∞ such that for all (x, x′, y, θ) ∈ X 2 ×Y ×Θ, the derivatives of πθ(x), fθ (x
′|x) and gθ (y|x)

with respect to θ exists and

ρ−1 ≤ fθ (x
′|x) ≤ ρ, δ−1 ≤ gθ (y|x) ≤ δ, (3.2)

|∇ log πθ (x)| ∨ |∇ log fθ (x
′|x)| ∨ |∇ log gθ (y|x)| ≤ c. (3.3)

Admittedly, these conditions are restrictive and fail to hold for many models in practice. (Exceptions
would include applications with a compact state-space.) However, they are typically made to estab-
lish the time uniform stability of particle approximations of the filter [Del Moral, 2004, Cappé et al.,
2005] as they lead to simpler and more transparent proofs. Also, we observe that the behaviors pre-
dicted by the Theorems below seem to hold in practice even in cases where the state-space models
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do not satisfy these assumptions; see Section 4. Thus the results in this paper can be seen to provide
a qualitative guide to the behavior of the particle approximation even in the more general setting.

For each parameter vector θ ∈ Θ, realization of observations y = {yn}n≥0 and particle number

N , let (Ω,F ,Py
θ) be the underlying probability space of the random process {(X(1)

n , . . . , X
(N)
n )}n≥0

comprised of the particle system only. Let E
y
θ the corresponding expectation operator computed

with respect to P
y
θ . The first of the two main results in this section is a time uniform non-asymptotic

error bound.

Theorem 3.1 Assume (A). For any r ≥ 1, there exists a constant Cr such that for all θ ∈ Θ,
y = {yn}n≥0, n ≥ 0, N ≥ 1, and ϕn ∈ Osc1(X ),

√
NE

y
θ

{∣∣ζNθ,n(ϕn)− ζθ,n(ϕn)
∣∣r
} 1

r ≤ Cr

Let {Vθ,n}n≥0 be a sequence of independent centered Gaussian random fields defined as follows.
For any sequence {ϕn}n≥0 in B(X ) and any p ≥ 0, {Vθ,n(ϕn)}pn=0 is a collection of independent
zero-mean Gaussian random variables with variances given by

ηθ,n(ϕ
2
n)− ηθ,n(ϕn)

2. (3.4)

Theorem 3.2 Assume (A). There exists a constant C < ∞ such that for any θ ∈ Θ, y = {yn}n≥0,

n ≥ 0 and ϕn ∈ Osc1(X ),
√
N
(
ζNθ,n − ζθ,n

)
(ϕn) converges in law, as N → ∞, to the centered

Gaussian random variable
n∑

p=0

Vθ,p

(
Gθ,p,n

Dθ,p,n(Fθ,n −Qθ,n(Fθ,n))

Dθ,p,n(1)

)
(3.5)

whose variance is uniformly bounded above by C where

Fθ,n = (ϕn −Qθ,n(ϕn)) (Tθ,n −Qθ,n(Tθ,n)) .

The proofs of both these results are in the Appendix.
As a comparison, we quantify the variance of the particle estimate of the filter derivative computed

using the path-based method (see (2.6).) Consider the following simplified example that serves to
illustrate the point. Let gθ (y|x) = g (y|x) (that is θ-independent), fθ (xn|xn−1) = πθ(xn), where
πθ is the initial distribution. (Note that fθ in this case satisfies a rephrased version of (3.2) under
which the conclusion of Theorem 3.2 also holds.) Also, consider the sequence of repeated observations
y0 = y1 = · · · where y0 is arbitrary. Applying Lemma 7.12 (in the Appendix) that characterizes the

limiting distribution of
√
N(Qp,N

θ,n − Qθ,n) to this special case results in
√
N(ζp,Nθ,n − ζθ,n)(ϕ) (see

(2.6)) having an asymptotic distribution which is Gaussian with mean zero and variance

n × πθ(ϕ
2)π′

θ

[
(∇ log πθ)

2
]
+ πθ

[
ϕ2(∇ log πθ)

2
]
−∇πθ(ϕ)

2

where ϕ = ϕ−πθ(ϕ), π
′
θ(x) = πθ(x)g (y0|x) /πθ (g (y0| ·)). This variance increases linearly with time

in contrast to the time bounded variance of Theorem 3.2.

4 Application to recursive parameter estimation

Being able to compute {ζθ,n}n≥0 is particularly useful when performing online static parameter esti-
mation for state-space models using Recursive Maximum Likelihood (RML) techniques [Le Gland and Mevel,
1997, Poyiadjis et al., 2005, 2011]; see also Kantas et al. [2009] for a general review of available
particle methods based solutions, including Bayesian ones, for this problem. The computed filter
derivative may also be useful in other areas; e.g. see Coquelin et al. [2008] for an application in
control.
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4.1 Recursive Maximum Likelihood

Let θ∗ be the true static parameter generating the observed data {yn}n≥0. Given a finite record of
observations y0:T , the log-likelihood may be maximized with the following steepest ascent algorithm:

θk = θk−1 + γk ∇ log pθ(y0:T )|θ=θk−1
, k ≥ 1, (4.1)

where θ0 is some arbitrary initial guess of θ∗, ∇ log pθ(y0:T )|θ=θk−1
denotes the gradient of the

log-likelihood evaluated at the current parameter estimate and {γk}k≥1 is a decreasing positive
real-valued step-size sequence, which should satisfy the following constraints:

∞∑

k=1

γk = ∞,
∞∑

k=1

γ2
k < ∞.

Although ∇ log pθ(y0:T ) can be computed using (4.3), the computation cost can be prohibitive for
a long data record since each iteration of (4.1) would require a complete browse through the T + 1
data points. A more attractive alternative would be a recursive procedure in which the data is run
through once only sequentially. For example, consider the following update scheme:

θn = θn−1 + γn ∇ log pθ(yn|y0:n−1)|θ=θn−1
(4.2)

where ∇ log pθ(yn|y0:n−1)|θ=θn−1
denotes the gradient of log pθ(yn|y0:n−1) evaluated at the current

parameter estimate; that is upon receiving yn, θn−1 is updated in the direction of ascent of the
conditional density of this new observation. Since we have

∇ log pθ(yn|y0:n−1)|θ=θn−1
=

∫
dxnηθn−1,n(xn) ∇gθ (yn|xn)|θn−1

+
∫
dxn (yn|xn) ζθn−1,n(xn)gθn−1∫

dxnηθn−1,n(xn)gθn−1 (yn|xn)
,

(4.3)
this clearly requires the filter derivative ζθ,n. The algorithm in the present form is not suitable
for online implementation as it requires re-computing the filter and its derivative at the value θ =
θn−1 from time zero. The RML procedure uses an approximation of (4.3) which is obtained by
updating the filter and its derivative using the parameter value θn−1 at time n; we refer the reader
to Le Gland and Mevel [1997] for details. The asymptotic properties of the RML algorithm, i.e.
the behavior of θn in the limit as n goes to infinity, has been studied in the case of an i.i.d. hidden
process by Titterington [1984] and Le Gland and Mevel [1997] for a finite state-space hidden Markov
model. It is shown in Le Gland and Mevel [1997] that under regularity conditions this algorithm
converges towards a local maximum of the average log-likelihood and that this average log-likelihood
is maximized at θ∗. A particle version of the RML algorithm of Le Gland and Mevel [1997] that uses
Algorithm 1’s estimate of ηθ,n is presented as Algorithm 2.

Algorithm 2: Particle Recursive Maximum Likelihood

• At time n− 1 we are given y0:n−1, the previous estimate θn−1 of θ∗ and {(X(i)
n−1, T

(i)

n−1)}Ni=1.

• At time n, upon receiving yn, sample
{
X

(i)
n

}
1≤i≤N

independently from (2.7) using parameter

θ = θn−1 to obtain

ηNn (dxn) =
1

N

N∑

i=1

δ
X

(i)
n
(dxn)
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and then compute

T
(i)

n =

∑N

j=1

(
T

(j)

n−1 + tθn−1,n

(
X

(j)
n−1, X

(i)
n

))
fθn−1

(
X

(i)
n |X(j)

n−1

)
gθn−1

(
yn−1|X(j)

n−1

)

∑N

j=1 fθn−1

(
X

(i)
n |X(j)

n−1

)
gθn−1

(
yn−1|X(j)

n−1

) , (4.4)

ζNn (dxn) =
1

N

N∑

i=1


T

(i)

n − 1

N

N∑

j=1

T
(j)

n


 δ

X
(i)
n
(dxn), (4.5)

and

∇̂ log p (yn| y0:n−1) =

∫
ηNn (dxn) ∇gθ (yn|xn)|θn−1

+
∫
ζNn (dxn)gθn−1 (yn|xn)∫

ηNn (dxn)gθn−1 (yn|xn)
.

Finally update the parameter:

θn = θn−1 + γn∇̂ log p (yn| y0:n−1) . (4.6)

Under Assumption A, the particle approximation of the filter is stable [Del Moral, 2004]; see also
Lemma 7.4 in the Appendix. This combined with the proven stability of the particle approximation
of the filter derivative implies that the particle estimate of the derivative of log p (yn| y0:n−1) is also
stable.

4.2 Simulations

The RML algorithm is applied to the following stochastic volatility model [Pitt and Shephard, 1999]:

X0 ∼ N
(
0,

σ2

1− φ2

)
, Xn+1 = φXn + σVn+1,

Yn = β exp (Xn/2)Wn,

where N (m, s) denotes a Gaussian random variable with mean m and variance s, Vn
i.i.d.∼ N (0, 1)

and Wn
i.i.d.∼ N (0, 1) are two mutually independent sequences, both independent of the initial state

X0. The model parameters, θ = (φ, σ, β), are to be estimated.
Our first example demonstrates the theoretical results in Section 3. The estimate of ∂/∂σ

log p (yn:n+L−1| y0:n−1) at θ∗ = (0.8,
√
0.1, 1) was computed using Algorithm 1 with 500 parti-

cles and using the path-space method (see (2.6)) with 2.5× 105 particles for the stochastic volatility
model. The block size L was 500. Shown in Figure 1 is the variance of these particle estimates
for various values of n derived from many independent random replications of the simulation. The
linear increase of the variance of the path-space method as predicted by theory is evident although
Assumption A is not satisfied.

For the path-space method, because the variance of the estimate of the filter derivative grows
linearly in time, the eventual high variance in the gradient estimate can result in the divergence of the
parameter estimates. To illustrate this point, (4.6) was implemented with the path-space estimate of
the filter derivative (2.6) computed with 10000 particles and constant step-size sequence, γn = 10−4

for all n. θ0 was initialized at the true parameter value. A sequence of two million observations was
simulated with θ∗ = (0.8,

√
0.1, 1). The results are shown in Figure 3.

For the same value of θ∗ and sequence of observations used in the previous example, Algorithm
2 was executed with 500 particles and γn = 0.01, n ≤ 105, γn = (n − 5 × 104)−0.6, n > 105. As it
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Figure 1: Variance of the particle estimates of ∂/∂σ log p (yn:n+500−1| y0:n−1) for various values of n
for the stochastic volatility model. Circles are variance of Algorithm 1’s estimate with 500 particles.
Stars indicate the variance of the estimate of the path-space method with 2.5×105 particles. Dotted
line is best fitting straight line to path-space method’s variance to indicate trend.
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Figure 2: Sequence of recursive parameter estimates, θn = (σn, φn, βn), computed using (4.6) with
N = 500. From top to bottom: βn, φn and σn and marked on the right are the “converged values”
which were taken to be the empirical average of the last 1000 values.
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Figure 3: RML for stochastic volatility with path-space gradient estimate with 10,000 particles,
constant step-size and initialized at the true parameter values which are indicated by the dashed
lines. From top to bottom, φ, β and σ.

can be seen from the results in Figure 2 the estimate converges to a value in the neighborhood of
the true parameter.

5 Conclusion

We have presented theoretical results establishing the uniform stability of the particle approximation
of the optimal filter derivative proposed in Poyiadjis et al. [2005, 2009]. While these results have
been presented in the context of state-space models, they can also be applied to Feynman-Kac
models [Del Moral, 2004] which could potentially enlarge the range of applications. For example, if
dx′fθ (x

′|x) is reversible w.r.t. to some probability measure µθ and if we replace gθ (yn|xn) with
a time-homogeneous potential function gθ (xn) then ηθ,n converges, as n → ∞, to the probability
measure µθ,h defined as

µθ,h(dx) :=
1

µθ(hθ

∫
dx′fθ (x′| ·)hθ(x′))

µθ(dx) hθ(x)

∫
dx′fθ (x

′|x) hθ(x
′)

where hθ is a positive eigenmeasure associated with the top eigenvalue of the integral operator
Qθ(x, dx

′) = gθ(x)dx
′fθ (x

′|x) (see section 12.4 of Del Moral [2004]). The measure µθ,h is the
invariant measure of the h-process defined as the Markov chain with transition kernel Mθ (x, dx

′) ∝
dx′fθ (x

′|x)hθ(x
′). The particle algorithm described here can be directly used to approximate the

derivative of this invariant measure w.r.t to θ. It would also be of interest to weaken Assumption A
and there are several ways this might be approached. For example for non-ergodic signals using ideas
in Oudjane and Rubenthaler [2005], Heine and Crisan [2008] or via Foster-Lyapunov conditions as
in Beskos et al. [2011], Whiteley [2011].
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7 Appendix

The statement of the results in this section hold for any θ and any sequence of observations y =
{yn}n≥0. All mathematical expectations are taken with respect to the law of the particle system only
for the specific θ and y under consideration. While θ is retained in the statement of the results, it is
omitted in the proofs. The superscript y of the expectation operator is also omitted in the proofs.

This section commences with some essential definitions in addition to those in Section 1.1. Let

Pθ,k,n(xk, dxn) =
Qθ,k,n(xk, dxn)

Qθ,k,n(1)(xk)
,

and

Mθ,p(xp, dx0:p−1) =

1∏

k=p

Mθ,k(xk, dxk−1), p > 0,

and its corresponding particle approximation is

MN
θ,p(xp, dx0:p−1) =

1∏

k=p

MN
θ,k(xk, dxk−1)

To make the subsequent expressions more terse, let

η̃Nθ,n = Φθ,n(η
N
θ,n−1), n ≥ 0, (7.1)

where η̃Nθ,0 = Φθ,0(η
N
−1) = ηθ,0 = πθ by convention. (Recall Φθ,n = Φθ,n−1,n.) Let

FN
n = σ

({
X

(i)
k ; 0 ≤ k ≤ n, 1 ≤ i ≤ N

})
, n ≥ 0,

be the natural filtration associated with the N -particle approximation model and let FN
−1 be the

trivial sigma field.
The following estimates are a straightforward consequence of Assumption (A). For all θ and time

indices 0 ≤ k < q ≤ n,

bθ,k,n = sup
xk,x

′

k

Qθ,k,n(1)(xk)

Qθ,k,n(1)(x′
k)

≤ ρ2δ2, β

(
Qθ,k,q(xk, dxq)Qθ,q,n(1)(xq)

Qθ,k,q(Qθ,q,n(1))(xk)

)
≤
(
1− ρ−4

)(q−k)
= ρq−k,

(7.2)
and for θ, 0 < k ≤ q,

MN
θ,k(x, dz) ≤ ρ4 MN

θ,k(x
′, dz) =⇒ β

(
MN

θ,q · · ·MN
θ,k

)
≤
(
1− ρ−4

)q−k+1
. (7.3)

Note that setting q = n in (7.2) yields an estimate for β(Pθ,k,n)
Several auxiliary results are now presented, all of which hinge on the following Kintchine type

moment bound proved in Del Moral [2004, Lem. 7.3.3].

Lemma 7.1 Del Moral [2004, Lemma 7.3.3]Let µ be a probability measure on the measurable space
(E, E). Let G and h be E-measurable functions satisfying G(x) ≥ cG(x′) > 0 for all x, x′ ∈ E where c
is some finite positive constant. Let {X(i)}1≤i≤N be a collection of independent random samples from
µ. If h has finite oscillation then for any integer r ≥ 1 there exists a finite constant ar, independent
of N , G and h, such that

√
NE

{∣∣∣∣∣

∑N

i=1 G(X(i))h(X(i))
∑N

i=1 G(X(i))
− µ(Gh)

µ(G)

∣∣∣∣∣

r} 1
r

≤ c−1osc(h)ar.
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Proof:
The result for G = 1 and c = 1 is proved in Del Moral [2004]. The case stated here can be established
using the representation

µN (Gh)

µN (G)
− µ(Gh)

µ(G)
=

µ(G)

µN (G)

(
µN − µ

) [ G

µ(G)

(
h− µ(Gh)

µ(G)

)]

where µN (dx) = N−1
∑N

i=1 δX(i)(dx).

Remark 7.2 For k ≥ 0, let hN
k−1 be a FN

k−1 measurable function satisfying hN
k−1 ∈ Osc1(X ) almost

surely. Then Lemma 7.1 can be invoked to establish

√
NE

y
θ

{∣∣∣∣∣
ηNθ,k(GhN

k−1)

ηNθ,k(G)
−

Φθ,k(η
N
θ,k−1)(GhN

k−1)

Φθ,k(ηNθ,k−1)(G)

∣∣∣∣∣

r} 1
r

≤ c−1ar

where G is defined as in Lemma 7.1.

Lemma 7.3 to Lemma 7.6 are a consequence of Lemma 7.1 and the estimates in (7.2).

Lemma 7.3 For any r ≥ 1 there exist a finite constant ar such that the following inequality holds
for all θ, y, 0 ≤ k ≤ n and FN

k−1 measurable function ϕN
n satisfying ϕN

n ∈ Osc1(X )
almost surely,

√
NE

y
θ

(∣∣Φθ,k,n(η
N
θ,k)(ϕ

N
n )− Φθ,k−1,n(η

N
θ,k−1)(ϕ

N
n )
∣∣r

) 1
r ≤ ar bθ,k,n β (Pθ,k,n) ,

where, by convention Φθ,−1,n(η
N
θ,−1) = ηθ,n, and the constants bθ,k,n and β (Pθ,k,n) were defined in

(7.2).

Proof:

Φk,n(η
N
k )(ϕN

n )− Φk−1,n(η
N
k−1)(ϕ

N
n )

=

∫ (
ηNk (dxk)Qk,n(1)(xk)

ηNk Qk,n(1)
− Φk(η

N
k−1)(dxk)Qk,n(1)(xk)

Φk(ηNk−1)Qk,n(1)

)
Pk,n(ϕ

N
n )(xk)

where Φ0(η
N
−1) = η0 by convention. Applying Lemma 7.1 with the estimates in (7.2) we have

√
NE

(∣∣Φk,n(η
N
k )(ϕN

n )− Φk−1,n(η
N
k−1)(ϕ

N
n )
∣∣r ∣∣ FN

k−1

) 1
r ≤ ar bk,n β (Pk,n)

almost surely.
Lemma 7.3 may be used to derive the following error estimate [Del Moral, 2004, Theorem 7.4.4].

Lemma 7.4 For any r ≥ 1, there exists a constant cr such that the following inequality holds for
all θ, y, n ≥ 0 and ϕ ∈ Osc1(X ),

√
NE

y
θ

(∣∣[ηNθ,n − ηθ,n](ϕ)
∣∣r
) 1

r ≤ cr

n∑

k=0

bθ,k,n β (Pθ,k,n) . (7.4)
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Assume (A). For any r ≥ 1, there exists a constant c′r such that for all θ, y, n ≥ 0, ϕ ∈ Osc1(X ),
G ∈ B(X ) such that G is positive and satisfies G(x) ≥ cGG(x′) for all x, x′ ∈ X for some positive
constant cG,

√
NE

y
θ

(∣∣∣∣∣

[
ηNθ,n(dxn)G(xn)

ηNθ,n(G)
− ηθ,n(dxn)G(xn)

ηθ,n(G)

]
(ϕ)

∣∣∣∣∣

r) 1
r

≤ c′r(1 + c−1
G ). (7.5)

Proof:
The first part follows from applying Lemma 7.3 to the telescopic sum [Del Moral, 2004, Theorem
7.4.4]:

(
ηNn − ηn

)
(ϕ) =

n∑

k=0

Φk,n(η
N
k )(ϕ) − Φk−1,n(η

N
k−1)(ϕ)

with the convention that Φ−1,n(η
N
−1) = ηn. For the second part, use the same telescopic sum but

with the k-th term being

Φk,n(η
N
k )(ϕG)

Φk,n(ηNk )(G)
− Φk−1,n(η

N
k−1)(ϕG)

Φk−1,n(ηNk−1)(G)

=

∫ (
ηNk (dxk)Qk,n(G)(xk)

ηNk Qk,n(G)
− Φk(η

N
k−1)(dxk)Qk,n(G)(xk)

Φk(ηNk−1)Qk,n(G)

)
Qk,n(Gϕ)(xk)

Qk,n(G)(xk)
.

Apply Lemma 7.1 using the same estimates in (7.2), i.e. the same estimates hold with G replacing
1 in the definition of bk,n and with G replacing Qq,n(1) in the argument of β.

The following result is a consequence of Lemma 7.4.

Lemma 7.5 Assume (A). For any r ≥ 1, there exists a constant cr such that the following inequality
holds for all θ, y, 0 ≤ k ≤ n, N > 0 and ϕn ∈ Osc1(X ),

√
NE

y
θ

(∣∣[Φθ,k,n(η
N
θ,k)− Φθ,k,n(ηθ,k)

]
(ϕn)

∣∣r
) 1

r ≤ crρ
n−k

Proof:
The result is established by expressing Φk,n(η

N
k ) as

Φk,n(η
N
k )(dxn) =

∫
ηNk (dxk)Qk,n(1)(xk)

ηNk Qk,n(1)
Pk,n(xk, dxn),

expressing Φk,n(ηk) similarly, setting G in (7.5) to Qk,n(1), ϕ = Pk,n(ϕn) and using the estimates in
(7.2).

Lemma 7.6 For each r ≥ 1, there exists a finite constant cr such that for all θ, y, 0 ≤ k ≤ q ≤ n,
and FN

k−1 measurable functions ϕN
q satisfying ϕq ∈ Osc1(X ) almost surely,

√
NE

y
θ

(∣∣∣∣∣

∫ (
Φθ,k,q(η

N
θ,k)(dxq)Qθ,q,n(1)(xq)

Φθ,k,q(ηNθ,k)Qθ,q,n(1)
−

Φθ,k−1,q(η
N
θ,k−1)(dxq)Qθ,q,n(1)(xq)

Φθ,k−1,q(ηNθ,k−1)Qθ,q,n(1)

)
ϕN
q (xq)

∣∣∣∣∣

r ) 1
r

≤ cr bθ,k,n β

(
Qθ,k,q(xk, dxq)Qθ,q,n(1)(xq)

Qθ,k,q(Qθ,q,n(1))(xk)

)
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Proof:
This results is established by noting that

Φk,q(η
N
k )(dxq)Qq,n(1)(xq)

Φk,q(ηNk )Qq,n(1)
− Φk−1,q(η

N
k−1)(dxq)Qq,n(1)(xq)

Φk−1,q(ηNk−1)Qq,n(1)

=

∫ (
ηNk (dxk)Qk,n(1)(xk)

ηNk Qk,n(1)
− Φk(η

N
k−1)(dxk)Qk,n(1)(xk)

Φk(ηNk−1)Qk,n(1)

)
Qk,q(xk, dxq)Qq,n(1)(xq)

Qk,n(1)(xk)
.

Now Lemma 7.1 is applied using the estimates in (7.2).

Lemma 7.7 Assume (A). There exists a collection of a pair of finite positive constants, ai, ci, i ≥ 1,

such that the following bounds hold for all r ≥ 1, θ, y, 0 ≤ p ≤ n, N ≥ 1, xp ∈ X , Fp ∈ B(X p+1
),

Fn ∈ B(Xn+1),

√
NE

y
θ

(∣∣MN
θ,p (Fp(., xp)) (xp)−Mθ,p (Fp(., xp)) (xp)

∣∣r
) 1

r ≤ ‖Fp‖ arp,
√
NE

y
θ

(∣∣DN
θ,p,n(Fn)(xp)−Dθ,p,n(Fn)(xp)

∣∣r
) 1

r ≤ arcn ‖Fn‖ .

Proof:
For each xp, let x0:p−1 → Gp−1,xp

(x0:p−1) = Fp(x0:p)q(xp|xp−1). Adopting the convention η̃N0 = η0,

MN
p (Fp(., xp)) (xp)−Mp (Fp(., xp)) (xp)

=

p∑

k=1

∫ (
ηNp−kD

N
p−k,p−1(dx0:p−1)q(xp|xp−1)

ηNp−kD
N
p−k,p−1(q(xp|.))

−
η̃Np−kD

N
p−k,p−1(dx0:p−1)q(xp|xp−1)

η̃Np−kD
N
p−k,p−1(q(xp|.))

)
Fp(x0:p)

=

p∑

k=1

∫ (
ηNp−k(dxp−k)Qp−k,p−1(q(xp|.))(xp−k)

ηNp−kQp−k,p−1(q(xp|.))
−

η̃Np−k(dxp−k)Qp−k,p−1(q(xp|.))(xp−k)

η̃Np−kQp−k,p−1(q(xp|.))

)

×
GN

p−k,p−1,xp
(xp−k)

Qp−k,p−1(q(xp|.))(xp−k)

where GN
p−k,p−1,xp

(xp−k) = DN
p−k,p−1(Gp−1,xp

)(xp−k), which is a FN
p−k−1-measurable function with

norm

sup
xp−k

∣∣∣∣∣
GN

p−k,p−1,xp
(xp−k)

Qp−k,p−1(q(xp|.))(xp−k)

∣∣∣∣∣ ≤ ‖Fp‖ .

The result is established upon applying Lemma 7.1 (see Remark 7.2) to each term in the sum
separately and using the estimates in (7.2). To establish the second result, let

Fp,n(x0:p) =

∫
Qp+1(xp, dxp+1) · · ·Qn(xn−1, dxn)Fn(x0:n).

Then,
DN

p,n(Fn)(xp)−Dp,n(Fn)(xp) = MN
p (Fp,n(., xp)) (xp)−Mp (Fp,n(., xp)) (xp).

The result follows by setting cn = p supθ ‖Qθ,p,n(1)‖ and it follows from Assumption (A) that cn is
finite.

Lemma 7.8 and Lemma 7.9 both build on the previous results and are needed for the proof of
Theorem 3.1.

17



Lemma 7.8 Assume (A). For any r ≥ 1 there exists a constant Cr such that for all θ, y, 0 ≤ k < n,
N ≥ 1, ϕn ∈ Osc1(X ),

√
NE

y
θ

{∣∣∣∣
∫

QN
θ,n(dx0:n)tθ,k (xk−1, xk)

(
ϕn(xn)− ηNθ,n(ϕn)

)

−
∫

ηNθ,kD
N
θ,k,n(dx0:n)

ηNθ,kD
N
θ,k,n(1)

tθ,k (xk−1, xk)

(
ϕn(xn)−

ηNθ,kD
N
θ,k,n(ϕn)

ηNθ,kD
N
θ,k,n(1)

)∣∣∣∣∣

r} 1
r

≤ 2(n− k)Crρ
n−k (7.6)

Proof:
The term (7.6) can be further expanded as

∫
ηNk DN

k,n(dx0:n)

ηNk DN
k,n(1)

tk (xk−1, xk)

(
ϕn(xn)−

ηNk DN
k,n(ϕn)

ηNk DN
k,n(1)

)

−
∫

QN
n (dx0:n)tk (xk−1, xk)

(
ϕn(xn)− ηNn (ϕn)

)

=
n−1∑

p=k

∫
ηNp DN

p,n(dx0:n)

ηNp DN
p,n(1)

tk (xk−1, xk)

(
ϕn(xn)−

ηNp DN
p,n(ϕn)

ηNp DN
p,n(1)

)

−
n−1∑

p=k

∫
ηNp+1D

N
p+1,n(dx0:n)

ηNp+1D
N
p+1,n(1)

tk (xk−1, xk)

(
ϕn(xn)−

ηNp+1D
N
p+1,n(ϕn)

ηNp+1D
N
p+1,n(1)

)

=

n−1∑

p=k

∫ (
ηNp DN

p,n(dx0:n)

ηNp DN
p,n(1)

−
ηNp+1D

N
p+1,n(dx0:n)

ηNp+1D
N
p+1,n(1)

)
tk (xk−1, xk)

(
ϕn(xn)−

ηNp DN
p,n(ϕn)

ηNp DN
p,n(1)

)

−
n−1∑

p=k

(
ηNp DN

p,n(ϕn)

ηNp DN
p,n(1)

− ηNp+1D
N
p+1,n(ϕn)

ηNp+1D
N
p+1,n(1)

)(
ηNp+1D

N
p+1,n(tk)

ηNp+1D
N
p+1,n(1)

− ηNp DN
p,n(tk)

ηNp DN
p,n(1)

)

−
n−1∑

p=k

(
ηNp DN

p,n(ϕn)

ηNp DN
p,n(1)

− ηNp+1D
N
p+1,n(ϕn)

ηNp+1D
N
p+1,n(1)

)
ηNp DN

p,n(tk)

ηNp DN
p,n(1)

=
n−1∑

p=k

∫ (
ηNp DN

p,n(dx0:n)

ηNp DN
p,n(1)

− ηNp+1D
N
p+1,n(dx0:n)

ηNp+1D
N
p+1,n(1)

)

×
(
tk (xk−1, xk)−

ηNp DN
p,n(tk)

ηNp DN
p,n(1)

)(
ϕn(xn)−

ηNp DN
p,n(ϕn)

ηNp DN
p,n(1)

) (7.7)

−
n−1∑

p=k

(
ηNp DN

p,n(ϕn)

ηNp DN
p,n(1)

− ηNp+1D
N
p+1,n(ϕn)

ηNp+1D
N
p+1,n(1)

)(
ηNp+1D

N
p+1,n(tk)

ηNp+1D
N
p+1,n(1)

− ηNp DN
p,n(tk)

ηNp DN
p,n(1)

)
(7.8)

For the first equality, note that ηNn DN
n,n(dx0:n) = QN

n (dx0:n). It is straightforward to establish that

ηNp DN
p,n(dx0:n)/η

N
p (g(yp| ·)) = η̃Np+1D

N
p+1,n(dx0:n), (7.9)
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which is due to

ηNp (dxp)

ηNp (g(yp| ·))

n−1∏

j=p

Qj+1(xj , dxj+1)

=
ηNp (dxp)g(yp|xp)f(xp+1|xp)

ηNp (g(yp| ·)f(xp+1| ·))
dxp+1η

N
p (g(yp| ·)f(xp+1| ·))
ηNp (g(yp| ·))

n−1∏

j=p+1

Qj+1(xj , dxj+1)

= MN
p+1(xp+1, dxp)η̃

N
p+1(dxp+1)

n−1∏

j=p+1

Qj+1(xj , dxj+1).

Thus

(7.10)

ηNp DN
p,n(dx0:p+1, dxn)

ηNp DN
p,n(1)

− ηNp+1D
N
p+1,n(dx0:p+1, dxn)

ηNp+1D
N
p+1,n(1)

=
η̃Np+1D

N
p+1,n(dx0:p+1, dxn)

η̃Np+1D
N
p+1,n(1)

− ηNp+1D
N
p+1,n(dx0:p+1, dxn)

ηNp+1D
N
p+1,n(1)

=

(
η̃Np+1(dxp+1)Qp+1,n(1)(xp+1)

η̃Np+1Qp+1,n(1)

−
ηNp+1(dxp+1)Qp+1,n(1)(xp+1)

ηNp+1Qp+1,n(1)

)
MN

p+1(xp+1, dx0:p)
Qp+1,n(xp+1, dxn)

Qp+1,n(1)(xp+1)
.

In the first line, variables xp+2:n−1 of the measures ηpD
N
p,n(dx0:n) and ηp+1D

N
p+1,n(dx0:n) are inte-

grated out while the second line follows from (7.9). Using (7.10), the term (7.7) can be expressed
as

n−1∑

p=k

∫ (
η̃Np+1(dxp+1)Qp+1,n(1)(xp+1)

η̃Np+1Qp+1,n(1)
− ηNp+1(dxp+1)Qp+1,n(1)(xp+1)

ηNp+1Qp+1,n(1)

)

× Pp+1,n

(
ϕn − ηNp DN

p,n(ϕn)

ηNp DN
p,n(1)

)
(xp+1)MN

p+1

(
tk −

η̃Np+1D
N
p+1,n(tk)

η̃Np+1D
N
p+1,n(1)

)
(xp+1)

Note that by (3.3), (7.2) and (7.3),
∣∣∣∣∣Pp+1,n

(
ϕn −

ηNp DN
p,n(ϕn)

ηNp DN
p,n(1)

)
(xp+1)

∣∣∣∣∣ ≤ β

(
Qp+1,n(xp+1, dxn)

Qp+1,n(1)(xp+1)

)
,

∣∣∣∣∣M
N
p+1

(
tk −

η̃Np+1D
N
p+1,n(tk)

η̃Np+1D
N
p+1,n(1)

)
(xp+1)

∣∣∣∣∣ ≤ Cβ
(
MN

p+1 . . .M
N
k+1

)
.

Thus by (7.2) and Lemma 7.6, we conclude that there exists a finite constant Cr (depending only
on r)

n−1∑

p=k

√
NE

{∣∣∣∣∣

∫ (
tk (xk−1, xk)−

ηNp DN
p,n(tk)

ηNp DN
p,n(1)

)(
ϕn(xn)−

ηNp DN
p,n(ϕn)

ηNp DN
p,n(1)

)

×
(
ηNp DN

p,n(dx0:n)

ηNp DN
p,n(1)

− ηNp+1D
N
p+1,n(dx0:n)

ηNp+1D
N
p+1,n(1)

)∣∣∣∣∣

r} 1
r

≤ (n− k)Crρ
n−k (7.11)
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For the term (7.8), it follows from (7.10)

ηNp+1D
N
p+1,n(tk)

ηNp+1D
N
p+1,n(1)

− ηNp DN
p,n(tk)

ηNp DN
p,n(1)

=

∫
ηNp+1(dxp+1)Qp+1,n(1)(xp+1)

ηNp+1Qp+1,n(1)

(
MN

p+1 (tk) (xp+1)−
η̃Np+1

(
Qp+1,n(1)MN

p+1 (tk)
)

η̃Np+1Qp+1,n(1)

)
.

Thus, using (3.3) and (7.3), there exists some non-random constant C such that the following bound
holds almost surely for all integers k ≤ p < n, N :

∣∣∣∣∣
ηNp+1D

N
p+1,n(tk)

ηNp+1D
N
p+1,n(1)

− ηNp DN
p,n(tk)

ηNp DN
p,n(1)

∣∣∣∣∣ ≤ Cρp−k+1.

Combine this bound with Lemma 7.3 to conclude that there exists a finite (non-random) constant
Cr (depending only on r) such that for all integers k ≤ p < n, N :

√
NE

{∣∣∣∣∣

(
ηNp DN

p,n(ϕn)

ηNp DN
p,n(1)

− ηNp+1D
N
p+1,n(ϕn)

ηNp+1D
N
p+1,n(1)

)(
ηNp+1D

N
p+1,n(tk)

ηNp+1D
N
p+1,n(1)

− ηNp DN
p,n(tk)

ηNp DN
p,n(1)

)∣∣∣∣∣

r} 1
r

≤ Crρ
n−k

(7.12)

The result now follows from (7.11) and (7.12).

Lemma 7.9 Assume (A). For any r ≥ 1 there exists a constant Cr such that for all θ, y, 0 ≤ k < n,
N ≥ 1, ϕn ∈ Osc1(X ),

√
NE

y
θ

{∣∣∣∣∣

∫
ηNθ,kD

N
θ,k,n(dx0:n)

ηNθ,kD
N
θ,k,n(1)

tθ,k (xk−1, xk)

(
ϕn(xn)−

ηNθ,kD
N
θ,k,n(ϕn)

ηNθ,kD
N
θ,k,n(1)

)

−
∫

Qθ,n(dx0:n)tθ,k (xk−1, xk) (ϕn(xn)− ηθ,n(ϕn))

∣∣∣∣
r} 1

r

≤ Crρ
n−k (7.13)

Proof:

∫
ηNk DN

k,n(dx0:n)

ηNk DN
k,n(1)

tk (xk−1, xk)

(
ϕn(xn)−

ηNk DN
k,n(ϕn)

ηNk DN
k,n(1)

)

=

∫
Qn(dx0:n)tk (xk−1, xk) (ϕn(xn)− ηn(ϕn))

+

∫ (
ηNk DN

k,n(dx0:n)

ηNk DN
k,n(1)

−Qn(dx0:n)

)
tk (xk−1, xk) (ϕn(xn)− ηn(ϕn)) (7.14)

+

(
ηn(ϕn)−

ηNk DN
k,n(ϕn)

ηNk DN
k,n(1)

)
ηNk DN

k,n(tk)

ηNk DN
k,n(1)

(7.15)

To study the errors, term (7.14) may be decomposed as

∫ (
ηNk DN

k,n(dx0:n)

ηNk DN
k,n(1)

−Qn(dx0:n)

)
tk (xk−1, xk) (ϕn(xn)− ηn(ϕn))

=

k∑

p=0

∫ (
ηNp DN

p,n(dx0:n)

ηNp DN
p,n(1)

− η̃Np DN
p,n(dx0:n)

η̃Np DN
p,n(1)

)
tk (xk−1, xk) (ϕn(xn)− ηn(ϕn))
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with the convention that η̃N0 = Φ0

(
ηN−1

)
= η0. The term corresponding to p = k can be expressed as

∫ (
ηNk (dxk)Qk,n(1)(xk)

ηNk Qk,n(1)
− η̃Nk (dxk)Qk,n(1)(xk)

η̃Nk Qk,n(1)

)
MN

k (xk, dxk−1)tk (xk−1, xk)Pk,n(ϕn−ηn(ϕn))(xk)

Using Lemma 7.1 and Remark 7.2,

√
NE

{∣∣∣∣
∫ (

ηNk (dxk)Qk,n(1)(xk)

ηNk Qk,n(1)
− η̃Nk (dxk)Qk,n(1)(xk)

η̃Nk Qk,n(1)

)
MN

k (tk) (xk)Pk,n(ϕn − ηn(ϕn))(xk)

∣∣∣∣
r} 1

r

≤ Crρ
n−k

Similarly, the pth term when p < k can be expressed as

∫ (
ηNp DN

p,n(dx0:n)

ηNp DN
p,n(1)

− η̃Np DN
p,n(dx0:n)

η̃Np DN
p,n(1)

)
tk (xk−1, xk) (ϕn(xn)− ηn(ϕn))

=

∫ (
Φp,k−1(η

N
p )(dxk−1)Qk−1,n(1)(xk−1)

Φp,k−1(ηNp )Qk−1,n(1)
− Φp,k−1(η̃

N
p )(dxk−1)Qk−1,n(1)(xk−1)

Φp,k−1(η̃Np )Qk−1,n(1)

)

×
∫

Qk(xk−1, dxk)Qk,n(1)(xk)

Qk−1,n(1)(xk−1)
tk (xk−1, xk)Pk,n (ϕn − ηn(ϕn)) (xk)

Using Lemma 7.6 for the outer integral (recall Φp,k−1(η̃
N
p ) = Φp−1,k−1(η

N
p−1)),

√
NE

{∣∣∣∣∣

∫ (
ηNp DN

p,n(dx0:n)

ηNp DN
p,n(1)

− Φp

(
ηNp−1

)
DN

p,n(dx0:n)

Φp

(
ηNp−1

)
DN

p,n(1)

)
tk (xk−1, xk) (ϕn(xn)− ηn(ϕn))

∣∣∣∣∣

r} 1
r

≤ Crρ
n−kρk−1−p

Combining both cases for p yields

(7.16)

√
NE

{∣∣∣∣∣

∫ (
ηNk DN

k,n(dx0:n)

ηNk DN
k,n(1)

−Qn(dx0:n)

)
tk (xk−1, xk) (ϕn(xn)− ηn(ϕn))

∣∣∣∣∣

r} 1
r

≤ Crρ
n−k

k−1∑

p=0

ρk−1−p + Crρ
n−k

≤ Crρ
n−k

(
1 +

1

1− ρ

)
.

For (7.15), Lemma 7.5 yields the following estimate

√
NE

{∣∣∣∣∣

(
ηn(ϕn)−

ηNk DN
k,n(ϕn)

ηNk DN
k,n(1)

)
ηNk DN

k,n(tk)

ηNk DN
k,n(1)

∣∣∣∣∣

r} 1
r

≤ Crρ
n−k. (7.17)

The proof is completed by summing the bounds in (7.16), (7.17) and inflating constant Cr appro-
priately.
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7.1 Proof of Theorem 3.1

ζNn (ϕn)− ζn(ϕn) =
n∑

k=0

∫
QN

n (dx0:n)tk (xk−1, xk)
(
ϕn(xn)− ηNn (ϕn)

)

−
∫

Qn(dx0:n)tk (xk−1, xk) (ϕn(xn)− ηn(ϕn)) .

To prove the theorem, it will be shown that the error due to the k-th term in this expression is

√
NE

{∣∣∣∣
∫

QN
n (dx0:n)tk (xk−1, xk)

(
ϕn(xn)− ηNn (ϕn)

)

−
∫

Qn(dx0:n)tk (xk−1, xk) (ϕn(xn)− ηn(ϕn))

∣∣∣∣
r} 1

r

≤ (n− k + 1)Crρ
n−k

where constant Cr depends only on r and the bounds in Assumption (A) (through the estimates ρ
and ρ2δ2 in (7.2) as well as the bounds on the score).

∫
QN

n (dx0:n)tk (xk−1, xk)
(
ϕn(xn)− ηNn (ϕn)

)
−
∫

Qn(dx0:n)tk (xk−1, xk) (ϕn(xn)− ηn(ϕn))

=

∫
QN

n (dx0:n)tk (xk−1, xk)
(
ϕn(xn)− ηNn (ϕn)

)

−
∫

ηNk DN
k,n(dx0:n)

ηNk DN
k,n(1)

tk (xk−1, xk)

(
ϕn(xn)−

ηNk DN
k,n(ϕn)

ηNk DN
k,n(1)

) (7.18)

+

∫
ηNk DN

k,n(dx0:n)

ηNk DN
k,n(1)

tk (xk−1, xk)

(
ϕn(xn)−

ηNk DN
k,n(ϕn)

ηNk DN
k,n(1)

)

−
∫

Qn(dx0:n)tk (xk−1, xk) (ϕn(xn)− ηn(ϕn))

(7.19)

The proof is completed by summing the bounds in Lemma 7.8 for (7.18) and Lemma 7.9 for (7.19)
and inflating constant Cr appropriately.

7.2 Proof of Theorem 3.2

The following result which characterizes the asymptotic behavior of the local sampling errors defined
in (3.1) is proved in Del Moral [2004, Theorem 9.3.1]

Lemma 7.10 Let {ϕn}n≥0 ⊂ B(X ). For any θ, y, n ≥ 0, the random vector (V N
θ,0(ϕ0), . . . , V

N
θ,n(ϕn))

converges in law, as N → ∞, to (Vθ,0(ϕ0), . . . , Vθ,n(ϕn)) where Vθ,i is defined in (3.4).

The following multivariate fluctuation theorem first proved under slightly different assumptions
in Del Moral et al. [2010] is needed. See also Douc et al. [2009] for a related study.

Theorem 7.11 Assume (A). For any θ, y, n ≥ 0, Fn ∈ B(Xn+1),
√
N
(
QN

θ,n −Qθ,n

)
(Fn) converges

in law, as N → ∞, to the centered Gaussian random variable

n∑

p=0

Vθ,p

(
Gθ,p,n

Dθ,p,n(Fn −Qθ,n(Fn))

Dθ,p,n(1)

)
.

where Vθ,p is defined in (3.4).
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Proof:
Let

γn =

n−1∏

k=0

ηk(g(yk| .))

and define the unnormalized measure
Γn = γnQn.

The corresponding particle approximation is ΓN
n = γN

n QN
n where γN

n =
∏n−1

k=0η
N
k (g(yk| .)). The result

is proven by studying the limit of
√
N
(
ΓN
n − Γn

)
since

[QN
n −Qn](Fn) =

1

γN
n

[
ΓN
n − Γn

]
(Fn −Qn(Fn)) .

Note that Lemma 7.4 implies γN
n converges almost surely to γn. The key to studying the limit of√

N
(
ΓN
n − Γn

)
is the decomposition

√
N
[
ΓN
n − Γn

]
(Fn) =

n∑

p=0

γN
p V N

p (Dp,n(Fn)) +RN
n (Fn)

where the remainder term is

RN
n (Fn) :=

n∑

p=0

γN
p V N

p

(
FN
p,n

)
and the function FN

p,n := [DN
p,n −Dp,n](Fn)

By Slutsky’s lemma and by the continuous mapping theorem (see van der Vaart [1998]) it suffices to
show that RN

n (Fn) converges to 0, in probability, as N → ∞. To prove this, it will be established
that E

(
RN

n (Fn)
2
)
is O(N−1). Since

E
{
RN

n (Fn)
2
}
=

n∑

p=0

E

{(
γN
p V N

p

(
FN
p,n

))2}
,

and
∣∣γN

p

∣∣ ≤ cp almost surely, where cp is some non-random constant which can be derived using (A),

it suffices to prove that E
(
V N
p

(
FN
p,n

)2)
is O(N−1). By expanding the square one arrives at

E

(
V N
p

(
FN
p,n

)2 ∣∣ FN
p−1

)
≤ Φp

(
ηNp−1

) ((
FN
p,n

)2)
.

By Assumption (A), for any xp−1 ∈ X ,

Φp

(
ηNp−1

)((
FN
p,n

)2) ≤ ρ2
∫

dxp f(xp|xp−1) F
N
p,n(xp)

2.

By Lemma 7.7, E
(
V N
p

(
FN
p,n

)2)
is O(N−1).

The next lemma is needed to quantify the variance of the particle estimate of the filter gradient
computed using the path-based method. Note that this lemma does not require the hidden chain to
be mixing. We refer the reader to Del Moral and Miclo [2001] for a propagation of chaos analysis.

For any θ, y = {yn}n≥0, let {Vθ,n}n≥0 be a sequence of independent centered Gaussian ran-
dom fields defined as follows. For any sequence of functions {Fn ∈ B(Xn+1)}n≥0 and any p ≥ 0,
{Vθ,n(Fn)}pn=0 is a collection of independent zero-mean Gaussian random variables with variances
given by

Eθ(Fn(X0:n)
2|y0:n−1)− Eθ(Fn(X0:n)|y0:n−1)

2. (7.20)
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Lemma 7.12 Let {δθ}θ∈Θ ⊂ [1,∞) and assume δ−1
θ ≤ gθ(y|x) ≤ δθ for all (x, y, θ) ∈ X×Y×Θ. For

any θ, y, n ≥ 0, Fn ∈ B(Xn+1),
√
N
(
pNθ (dx0:n|y0:n−1)−Qθ,n

)
(Fn) converges in law, as N → ∞, to

the centered Gaussian random variable

n∑

p=0

Vθ,p (Gθ,p,n Fθ,p,n) .

where Gθ,p,n was defined in (1.7) and

Fθ,p,n = Eθ(F (X0:n)|x0:p, yp+1:n−1)−Qθ,n(Fn)

7.2.1 Proof of Theorem 3.2

It follows from Algorithm 1 that
(
ζNn − ζn

)
(ϕn)

= QN
n (ϕnTn)−Qn(ϕnTn) +Qn(ϕn)Qn(Tn)−QN

n (ϕn)Q
N
n (Tn) (7.21)

The second term on the right hand side of the equality can be expressed as

Qn(ϕn)Qn(Tn)−QN
n (ϕn)Q

N
n (Tn)

= Qn(ϕnQn(Tn) +Qn(ϕn)Tn)−QN
n (ϕnQn(Tn) +Qn(ϕn)Tn)

+
(
QN

n (ϕn)−Qn(ϕn)
) (

Qn(Tn)−QN
n (Tn)

)
. (7.22)

Combining the two expressions in (7.21) and (7.22) gives
(
ζNn − ζn

)
(ϕn)

= QN
n ((ϕn −Qn(ϕn)) (Tn −Qn(Tn)))

−Qn ((ϕn −Qn(ϕn)) (Tn −Qn(Tn)))

+
(
QN

n (ϕn)−Qn(ϕn)
) (

Qn(Tn)−QN
n (Tn)

)

Using Lemma 7.4 with r = 2 and Chebyshev’s inequality, we see that
(
QN

n (ϕn)−Qn(ϕn)
)
converges

in probability to 0. Theorem 7.11 can now be invoked with Slutsky’s theorem to arrive at the stated
result in (3.5).

Moving on to the uniform bound on the variance, let

Tn −Qn(Tn) =

n∑

k=0

t̃k,

t̃k = tk −Qn(tk),

ϕ̃n = ϕn −Qn(ϕn).

Also, the argument of Vp can be expressed as

φp(xp) =
Qp,n(1)(xp)

ηpQp,n(1)

n∑

k=0

Dp,n

(
ϕ̃nt̃k −Qn

(
ϕ̃nt̃k

))
(xp)

Dp,n(1)(xp)
.

It is straightforward to see that ηp(φp) = 0. Therefore the variance (see (3.4)) now simplifies to

var

n∑

p=0

Vp

(
Gp,n

Dp,n(Fn −Qn(Fn))

Dp,n(1)

)
=

n∑

p=0

ηp(φ
2
p). (7.23)
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Consider the function φp. For p ≤ k − 1,

Dp,n

(
ϕ̃nt̃k −Qn

(
ϕ̃n t̃k

))
(xp)

Dp,n(1)(xp)
=

∫
ηp(dx

′
p)Qp,n(1)(x

′
p)

ηpQp,n(1)

×
∫ (

Qp,k−1(xp, dxk−1)Qk−1,n(1)(xk−1)

Qp,n(1)(xp)

− Qp,k−1(x
′
p, dxk−1)Qk−1,n(1)(xk−1)

Qp,n(1)(x′
p)

)

×
∫

Qk(xk−1, dxk)Qk,n(1)(xk)

Qk−1,n(1)(xk−1)
t̃k(xk−1, xk)Pk,n(ϕ̃n)(xk).

Using the estimates in (3.3) and (7.2), this function is bounded by

sup
xp

∣∣∣∣∣
Dp,n

(
ϕ̃nt̃k −Qn

(
ϕ̃nt̃k

))
(xp)

Dp,n(1)(xp)

∣∣∣∣∣ ≤ Cρn−1−p (7.24)

for some constant C. When p ≥ k,

Dp,n

(
ϕ̃nt̃k −Qn

(
ϕ̃n t̃k

))
(xp)

Dp,n(1)(xp)

=

∫
ηp(dx

′
p)Qp,n(1)(x

′
p)

ηpQp,n(1)

(
Mp(t̃k)(xp)Pp,n(ϕ̃n)(xp)−Mp(t̃k)(x

′
p)Pp,n(ϕ̃n)(x

′
p)
)
.

Again using the estimates in (3.3), (7.2) and (7.3),

sup
xp

∣∣∣∣∣
Dp,n

(
ϕ̃n t̃k −Qn

(
ϕ̃nt̃k

))
(xp)

Dp,n(1)(xp)

∣∣∣∣∣ ≤ Cρn−k. (7.25)

Combining (7.24) and (7.25),

sup
xp

|φp(xp)| ≤
Cρn−p

1− ρ
+ Cρn−p−1(n− p),

0 ≤ p ≤ n. Combining this bound with (7.23) will establish the result.
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