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Abstract: In this paper, we consider the local well-posedness of the Prandtl boundary layer
equations that describe the behavior of boundary layer in the small viscosity limit of the com-
pressible isentropic Navier-Stokes equations with non-slip boundary condition. Under the strictly
monotonic assumption on the tangential velocity in the normal variable, we apply the Nash-
Moser-Hörmander iteration scheme and further develop the energy method introduced in [1] to
obtain the well-posedness of the equations locally in time.
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1 Introduction

In this paper, we study the well-posedness of the compressible Prandtl boundary layer equations
that are derived in the small viscosity limit from the compressible isentropic Naiver-Stokes equa-
tions with non-slip boundary condition. Note that the Prandtl equations describe the behavior
of the characteristic boundary layer in the leading order. Denote by T × R

+ = {(x, η)|x ∈
R/Z, 0 ≤ η < +∞} the periodic spatial domain, and let u(t, x, η) and v(t, x, η) be the tangential
and normal velocity components in the boundary layer. Consider the following compressible
Prandtl equations with (x, η) ∈ T× R

+,







ut + uux + vuη −
1

ρ̄(t, x)
∂2ηu+ Px = 0,

∂x(ρ̄u) + ∂η(ρ̄v) = −ρ̄t,
(1.1)

2
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with the initial data

u(t, x, η)|t=0 = u0(x, η), (1.2)

and the boundary and the far-field conditions

u(t, x, η)|η=0 = 0, v(t, x, η)|η=0 = 0, lim
η→+∞

u(t, x, η) = U(t, x). (1.3)

Here, ρ̄(t, x) and U(t, x) are the traces on the boundary {y = 0} of the density and the tangential
velocity of the outer Euler flow that satisfy the Bernoulli’s law

Ut + UUx + Px = 0, (1.4)

with P (t, x) being the trace of the enthalpy of the outer Euler flow.
It is well-known that the leading order characteristic boundary layer for the incompressible

Navier-Stokes equations with non-slip boundary condition is described by the classical Prandtl
equations that were proposed by Prandtl [17] in 1904. Under the monotone assumption on
the tangential velocity in the normal direction, Oleinik firstly obtained the local existence of
classical solutions in the two spatial dimension by using the Crocco transformation, cf. [15]. This
result together with some other extensions in this direction are presented in Oleinik-Samokhin’s
classical book [16]. Recently, this well-posedness result was re-proved by using an energy method
in the framework of Sobolev spaces in [1] and [11] independently. On the other hand, by imposing
an additional favorable condition on the pressure, a global in time weak solution was obtained
in [22].

When the monotonicity condition is violated, seperation of the boundary layer is well ex-
pected and observed. For this, E-Engquist constructed a finite time blowup solution to the
Prandtl equations in [4]. Recently, when the background shear flow has a non-degenerate crit-
ical point, some interesting ill-posedness (or instability) phenomena of solutions to both the
linear and nonlinear Prandtl equations around the shear flow are studied, cf. [5, 6, 7, 8]. All
these results show that the monotone assumption on the tangential velocity is very important
for well-posedness except in the framework of analytic functions studied in [2] and some other
references with generalization.

This paper aims to obtain the local well-posedness of the problem (1.1)-(1.3) for the com-
pressible Prandtl equations in some weighted Sobolev spaces. To state the main results, we first
give the following assumptions on the initial data.

Main assumptions (H) on the initial data:

(H1) For a fixed integer k0 ≥ 9, the initial data u0(x, η) satisfies the compatibility condition of
the problem (1.1)-(1.3) up to order 4k0 + 2;

(H2) Monotone condition ∂ηu0(x, η) ≥
σ0

(1 + η)γ+2
> 0 holds for all x ∈ T and η ≥ 0 with some

positive constant σ0 and a positive integer γ ≥ 2;

(H3) ‖(1 + η)γ+α2Dα(u0(x, η)−U(0, x))‖L2(T×R+) ≤ C0, where D
α = ∂α1

x ∂α2
η with α = (α1, α2)

and |α| = α1 + α2 ≤ 4k0 + 2;
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(H4) ‖(1 + η)γ+2+α2Dα∂ηu0‖L∞(T×R+) ≤
1

σ0
, for |α| ≤ 3k0.

Denote by V (t, x) the trace of ∂yu
E
2 on {y = 0} for the normal velocity uE2 of Euler outer

flow. From the conservation of mass in the Euler equations, we have

∂tρ̄(t, x) + ∂x(ρ̄(t, x)U(t, x)) + ρ̄(t, x)V (t, x) = 0.

Here, we have used the fact that uE2 (t, x, y)|y=0 = 0. Thus, from the problem (1.1)-(1.3), we
know that the normal velocity v(t, x, η) can be represented by

v(t, x, η) = V (t, x)η +
1

ρ̄(t, x)

∫ η

0
∂x(ρ̄(t, x)(U(t, x) − u(t, x, η̃)))dη̃. (1.5)

The main result of this paper can be stated as follows.

Theorem 1.1 Suppose that the outer Euler flow is smooth for 0 ≤ t ≤ T0, the density ρ̄(t, x)
has both positive lower and upper bounds, and the Sobolev norm Hs([0, T0] × R) of (ρ̄, U, V ) is
bounded for a suitably large integer s, moreover, the Main Assumption (H) on the initial data
u0(x, η) is satisfied. Then there exists 0 < T ≤ T0, such that the initial boundary value problem
(1.1)-(1.3) has a unique classical solutions (u, v) satisfying

∑

|m1|+[(m2+1)/2]≤k0

‖〈η〉l∂m1

(t,x)∂
m2

η (u− U)‖L2([0,T ]×T×R+) < +∞, (1.6)

for a fixed l >
1

2
depending only on γ given in (H) with 〈η〉 = (1 + η), and

∑

|m1|+[(m2+1)/2]≤k0−1

sup
η∈R+

‖∂m1

(t,x)∂
m2

η (v − V η)(·, η)‖L2([0,T ]×T) < +∞. (1.7)

Remark 1.1 (1) When the outer Euler flow density ρ̄(t, x) is a positive constant, the system
(1.1) is reduced to the classical incompressible Prandtl equations. Thus the analysis in this paper
works also for the classical incompressible Prandtl equations with general far-field condition and
initial data satisfying the Main Assumption (H). Note that the case with a uniform outer flow
with slightly different assumption on the initial data was studied in [1].

(2) It is straightforward to verify that the set of the initial data satisfying the Main As-
sumption (H) is not empty because it contains the functions with polynomial decay in η.

Now, let us give some comments on the analysis in this paper. In principle, we will apply the
approach of [1] to study the problem (1.1)-(1.3). There are several crucial differences between
the system (1.1) and classical incompressible Prandtl equations. Firstly, the normal velocity
v contains the linearly increasing part V (t, x)η in η, consequently, in estimating the solution
to the linearized problem, we need to study the conormal estimates. Secondly, the divergence
free condition in the classical Prandtl system is now replaced by an inhomogeneous equation
in (1.1). Moreover, the far-field state is not uniform so that the shear flow is no longer an
exact solution to the compressible Prandtl equations (1.1). Therefore, to apply the Nash-Moser-
Hömander iteration scheme used in [1] for the nonlinear problem (1.1)-(1.3), we need to construct
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a suitable zero-th order approximate solution with suitable error estimate. And the construction
is given in subsection 4.1 in three steps.

Finally, the rest of the paper is organized as follows. We will first introduce some weighted
Sobolev spaces and give some preliminaries in Section 2. The well-posedness of the linearized
compressible Prandtl equations is given in Section 3. In Section 4, we introduce the Nash-Moser-
Hömander iteration scheme, and construct the first approximate solution as the starting point
of iteration. Then the local existence and uniqueness of solution to the nonlinear problem of the
compressible Prandtl equations are proved.

2 Preliminaries

In this section, we will introduce some weighted Sobolev spaces and norms for later use. To
simplify the notations, we denote by ∂mτ the summation of tangential derivatives ∂mτ = ∂m1

t ∂m2
x

for all m = (m1,m2) ∈ N
2, |m| = m1+m2. Denote ∂ατ by Zα

1 , (η∂η)
α by Zα

2 and Zm = Zm1

1 Zm2

2

for further simplification. Define

‖f‖
H

k1,k2
co,l

=





∑

0≤m1≤k1,0≤m2≤k2

‖〈η〉lZm1

1 Zm2

2 f‖L2([0,T ]×T×R+)





1/2

,

and

‖f‖
D

k1,k2
co,l

=





∑

0≤m1≤k1,0≤m2≤k2

sup
η≥0

‖〈η〉lZm1

1 Zm2

2 f(·, η)‖L2([0,T ]×T)





1/2

,

‖f‖
C

k1,k2
co,l

=





∑

0≤m1≤k1,0≤m2≤k2

sup
(t,x)∈[0,T ]×T

‖〈η〉lZm1

1 Zm2

2 f(t, x, ·)‖L2(R+)





1/2

.

Denote
‖f‖Hk

co,l
=

∑

k1+k2=k

‖f‖
H

k1,k2
co,l

.

The function spacesDk
co,l and C

k
co,l can be defined similarly. Since the conormal operator Zm does

not communicate with the normal derivative operator ∂η, the following estimate of commutator
is frequently used,

‖[Zm, ∂η ]f‖L2
l
. ‖∂ηf‖Hm−1

co,l
. (2.1)

Here and after 0 < a . b means that there exists a uniform constant C > 0 such that a ≤ Cb.
The following weighted Sobolev spaces are also used frequently. Denote by ∂kη the k-th normal
derivative, for any given k1, k2 ∈ N, l ∈ R

+ and 0 < T < +∞, set

‖f‖
B
k1,k2
l

=





∑

0≤|m|≤k1,0≤n≤k2

‖〈η〉lZm∂nη f‖2L2([0,T ]×T×R+)





1/2

,
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‖f‖
B̃
k1,k2
l

=





∑

0≤|m|≤k1,0≤n≤k2

‖〈η〉lZm∂nη f‖2L∞([0,T ];L2(T×R+))





1/2

,

‖f‖Am
l
=





∑

|m1|+[(m2+1)/2]≤|m|

‖〈η〉lZm1∂m2

η f‖2L2([0,T ]×T×R+)





1/2

.

It is straightforward to verify that

Am
l =

⋂

m1+[(m2+1)/2]≤m

Bm1,m2

l .

We also define

‖f‖Dm
l
=





∑

k1+[(k2+1)/2]≤m

‖〈η〉lZk1∂k2η f‖2L∞

η (L2
t,x)





1/2

,

and

‖f‖Cm
l

=





∑

k1+[(k2+1)/2]≤m

‖〈η〉lZk1∂k2η f‖2L∞

t,x(L
2
η)





1/2

.

In addition, the homogeneous norms ‖ · ‖Ȧm
l
, ‖ · ‖Ċm

l
, ‖ · ‖Ḋm

l
correspond to the summation over

1 ≤ |m1|+ [(m2 + 1)/2] ≤ |m|.
For 1 ≤ p ≤ +∞, we will use ‖f‖Lp

l
(T×R+) = ‖〈η〉lf‖Lp(T×R+). It is direct to show the following

Sobolev type embeddings,

‖f‖Cm
l

≤ Cs‖f‖Am+2

l
, ‖f‖Dm

l
≤ Cs‖f‖Am+1

l+1

. (2.2)

Moreover, for any l ≥ 0 and m ≥ 2, the space Am
l is continuously embedded into Cm−2

b which
is the space of (m− 2)−th order continuously differentiable functions with bounded derivatives.
And the following Morse-type inequalities hold.

Lemma 2.1 For any proper functions f and g, we have

‖fg‖Am
l
≤ Cm

{

‖f‖Am
l
‖g‖L∞ + ‖f‖L∞‖g‖Ȧm

l

}

,

and

‖fg‖Am
l
≤ Cm

{

‖f‖Cm
l
‖g‖D0

0
+ ‖f‖C0

l
‖g‖Ḋm

0

}

.

Similar inequalities hold in the norms ‖ · ‖Hm
co,l
, ‖ · ‖Bm1,m2

l
, ‖ · ‖Cm

l
and ‖ · ‖Dm

l
. Here, Cm > 0 is

a constant depending only on m.

These results can be obtained similarly as those given in [10].
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3 Well-posedness of linearized system

The strategy to prove the main result, Theorem 1.1, is to apply an iteration scheme to construct
a sequence of approximate solution sequences, and then to show these approximate solutions
converge in some suitable weighted Sobolev space. Since there is a loss of regularity, the Nash-
Moser-Hömander iteration scheme is used for this purpose. In this section, we study the well-
posedness of the linearized equations and obtain the required energy estimates of solutions to
the linearized equations for the Nash-Moser-Hömander iteration.
Let (ũ, ṽ) be a smooth background state satisfying the following conditions.

∂ηũ(t, x, η) > 0, ∂x(ρ̄ũ) + ∂η(ρ̄ṽ) = −ρ̄t, ũ|η=0 = ṽ|η=0 = 0, lim
η→+∞

ũ = U(t, x).

Here ṽ is given by

ṽ = V (t, x)η +
1

ρ̄(t, x)

∫ η

0
∂x(ρ̄(t, x)(U(t, x) − ũ))dη̃ , V (t, x)η + v̄.

It extracts the linear increasing part V (t, x)η by introducing the new function v̄. The linearized
problem of (1.1)-(1.3) around (ũ, ṽ) can be written as























ut + ũux + ṽ∂ηu+ uũx + ũηv −
1

ρ̄
uηη = f,

∂η(ρ̄v) + ∂x(ρ̄u) = 0,
u|η=0 = v|η=0 = 0, lim

η→+∞
u(t, x, η) = 0,

u|t=0 = 0.

(3.1)

Similar to [1], by introducing the transformation

ω(t, x, η) =

(

ρ̄u

∂ηũ

)

η

(t, x, η),

then for classical solutions, from (3.1) we know that w satisfies the following problem in {t >
0, x ∈ T, η > 0}:


































ωt + (ũω)x + (ηV ω)η + (v̄ω)η −
2

ρ̄

(

ω
∂2η ũ

∂ηũ

)

η

+

(

ξ

∫ η

0
ω(t, x, η̃)dη̃

)

η

− ρ̄t
ρ̄
ω − 1

ρ̄
ωηη = f̃η,

1

ρ̄

(

ωη + 2ω
∂2η ũ

∂ηũ

)

|η=0 = −f̃ |η=0,

ω|t=0 = 0,

(3.2)

where

ξ =

(∂t + ũ∂x + ṽ∂η −
1

ρ̄
∂2η)ũη

ũη
− ũρ̄x

ρ̄
, ξ1 −

ũρ̄x
ρ̄
, f̃ =

ρ̄f

ũη
.
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To simplify the presentation, we use the notations:

λk1,k2 = ‖ũ− U‖
B
k1,k2
l

+ ‖Zk1∂k2η v̄‖L∞
η (L2

t,x)
+ ‖Zk1∂k2η χ‖L∞

η (L2
t,x)

+ ‖ξ1‖Bk1,k2
l

, (3.3)

with χ =
∂2η ũ

∂ηũ
. Set

λk =
∑

k1+[(k2+1)/2]≤k

λk1,k2 . (3.4)

Similar to [1], we have the following energy estimates of the solution to the problem (3.2).

Theorem 3.1 Suppose that the outer Euler flow (ρ̄(t, x), U(t, x), V (t, x)) ∈ Hs(R2
+), for s suit-

ably large, and ρ̄(t, x) has uniform lower positive bound. Moreover, for a given positive k, the
compatibility condition for the problem (3.2) holds up to order k. Then for any fixed l > 1/2,
we have

‖ω‖Ak
l
≤ C1(λ4)‖f̃‖Ak

l
+ C2(λ4)λk‖f̃‖A3

l
, (3.5)

with C1(·) and C2(·) being two smooth functions in their arguments.

As we mentioned in the introduction, the main difference of the linear problem (3.2) from
the one studied in [1] is that there is a linear growth term ηV in the equation of (3.2). Hence,
we can not obtain the estimates of tangential derivatives directly as in [1]. Similar to [12], we
will study the linearized problem (3.2) in some conormal space. First, we have

Lemma 3.1 (L2-estimate) Under the assumptions in Theorem 3.1, there exists a positive con-
stant C such that

d

dt
‖ω‖2L2

l
(T×R+) + ‖ωη‖2L2

l
(T×R+) ≤ C(λ3,1 + 1)‖ω‖2L2

l
(T×R+) + C‖f̃‖2L2

l
(T×R+). (3.6)

Proof. Multiplying (3.2) by 〈η〉2lω and integrating it over T× R
+, we obtain

d

dt
‖ω‖2L2

l
(T×R+) + 2

∫

T×R+

〈η〉2lω







(ũω)x + (ηV ω)η + (v̄ω)η −
2

ρ̄

(

ω
∂2η ũ

∂ηũ

)

η

+

(

ξ

∫ η

0
ω(t, x, η̃)dη̃

)

η

− ρ̄t
ρ̄
ω − 1

ρ̄
ωηη − f̃η

}

dxdη = 0. (3.7)

It is straightforward to obtain

∫

T×R+

{(ũω)x + (v̄ω)η}〈η〉2lωdxdη =

∫

T×R+

〈η〉2lω
2

2
(
−ρ̄t − ρ̄V − ũρ̄x

ρ̄
)− lv̄ω2〈η〉2l−1dxdη

.
(

1 + ‖ũ‖L∞(T×R+) + ‖v̄‖L∞(T×R+)

)

‖ω‖2L2
l
(T×R+),
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and
∫

T×R+

(ηV ω)η〈η〉2lωdxdη =

∫

T×R+

V ω2(
1

2
〈η〉2l − lη〈η〉2l−1)dxdη . ‖ω‖2L2

l
(T×R+).

On the other hand, by integration by parts and using the boundary condition given in (3.2)
we get
∫

T×R+

{

−2

ρ̄
(ωχ)η −

1

ρ̄
ωηη − f̃η

}

〈η〉2lωdxdη =

∫

T×R+

{

2

ρ̄
(ωχ) +

1

ρ̄
ωη + f̃

}

(〈η〉2lω)ηdxdη,

where the right hand side can be estimated as follows.
∫

T×R+

2

ρ̄
ωχ(〈η〉2lω)ηdxdη . ‖χ‖L∞(T×R+)(‖ω‖2L2

l
(T×R+) + ‖ω‖L2

l
(T×R+)‖∂ηω‖L2

l
(T×R+)),

∫

T×R+

1

ρ̄
ωη(2l〈η〉2l−1ω + 〈η〉2lωη) & ‖∂ηω‖2L2

l
(T×R+) − ‖ω‖2L2

l
(T×R+),

and
∫

T×R+

f̃(2l〈η〉2l−1ω + 〈η〉2lωη) . ‖f̃‖L2
l
(T×R+)(‖ω‖L2

l
(T×R+) + ‖∂ηω‖L2

l
(T×R+)).

Denote by
∫

T×R+

(

(ξ1 −
ũρ̄x
ρ̄

)

∫ η

0
ω(t, x, η̃)dη̃

)

η

〈η〉2lωdxdη , H1 +H2.

As l > 1/2, by integration by parts, it follows

|H1| . ‖ξ1‖L∞
x (L2

η,l
)(‖ω‖2L2

l
(T×R+) + ‖ω‖L2

l
(T×R+)‖∂ηω‖L2

l
(T×R+)),

and

|H2| ≤|
∫

T×R+

ρ̄x(ũ− U)

ρ̄

∫ η

0
ω(t, x, η̃)dη̃(〈η〉2lω)ηdxdη|

+ |
∫

T×R+

(

ρ̄xU

ρ̄

∫ η

0
ω(t, x, η̃)dη̃

)

η

〈η〉2ωdxdη|

.‖ω‖2L2
l
(T×R+) + ‖ũ− U‖L∞

x (L2
η,l

)(‖ω‖2L2
l
(T×R+) + ‖ω‖L2

l
(T×R+)‖∂ηω‖L2

l
(T×R+)).

Thus, from (3.7) we obtain

d

dt
‖ω‖2L2

l
(T×R+) + ‖ωη‖2L2

l
(T×R+) ≤ C(1 + λ3,1)‖ω‖2L2

l
(T×R+) + C‖f̃‖2L2

l
(T×R+),

by noting
‖ũ, v̄, χ‖L∞(T×R+) + ‖ξ1‖L∞

x (L2
η,l

) + ‖ũ− U‖L∞

x (L2
η,l

) . (1 + λ3,1).

It completes the proof of the estimate (3.6).
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Lemma 3.2 (Estimates of conormal derivatives) Under the assumptions in Theorem 3.1, for
any fixed T > 0, there exists a positive constant C > 0 such that

d

dt
‖ω‖2Hm

co,l
+ ‖ωη‖2Hm

co,l

≤C(1 + λ23,1)‖ω‖2Hm
co,l

+ C(‖f̃‖2Hm
co,l

+ ‖f̃η‖2Hm−1

co,l

+ (λ2m−1,1 + λ2m,0 + 1)‖ω‖2
B3,1
l

) (3.8)

holds for t ∈ [0, T ].

Proof. The proof is divided into four steps.
(1) Applying the conormal derivative operator Zm on the equation in (3.2), multiplying the

resulting equation by 〈η〉2lZmω and integrating it over T× R
+, it follows

d

dt
‖Zmω‖2L2

l
(T×R+) + 2

∫

T×R+

〈η〉2lZmωZm







(ũω)x + (ηV ω)η + (v̄ω)η −
2

ρ̄

(

ω
∂2η ũ

∂ηũ

)

η

+

(

ξ

∫ η

0
ω(t, x, η̃)dη̃

)

η

− ρ̄t
ρ̄
ω − 1

ρ̄
ωηη − f̃η

}

dxdη = 0. (3.9)

Now, let us estimate each term of (3.9). Denote



































I1 =

∫

T×R+

Zm[(ũω)x + (v̄ω)η]〈η〉2lZmωdxdη,

I2 = −
∫

T×R+

〈η〉2lZmωZm

(

2

ρ̄
(ω
∂2η ũ

∂ηũ
)η +

1

ρ̄
ωηη + f̃η

)

dxdη,

I3 =

∫

T×R+

〈η〉2lZmωZm

(

ξ

∫ η

0
ω(t, x, η̃)dη̃

)

η

dxdη.

(2) Estimate of I1. Obviously, we have

I1 =

∫

T×R+

Zm[(ũω)x + (v̄ω)η]〈η〉2lZmωdxdη

=

∫

T×R+

Zm[(− ρ̄t + ρ̄V

ρ̄
)ω + (− ρ̄xũ

ρ̄
)ω + ũωx + v̄ωη]〈η〉2lZmωdxdη

,I11 + I21 + I31 + I41 ,

and

|I11 | =
∣

∣

∣

∣

∣

∑

m1+m2=m

Cm1

m

∫

T×R+

〈η〉2l
(

Zm1(− ρ̄t + ρ̄V

ρ̄
)

)

(Zm2ω)(Zmω)dxdτ

∣

∣

∣

∣

∣

. ‖ω‖2Hm
co,l
,

|I21 | =
∣

∣

∣

∣

∣

∑

m1+m2=m

Cm1

m

∫

T×R+

Zm1

[

(
ρ̄x(ũ− U(x, t))

ρ̄
) +

ρ̄xU

ρ̄

]

Zm2ω〈η〉2lZmωdxdη

∣

∣

∣

∣

∣

9



.‖ũ− U‖Hm
co,l

‖ω‖L∞‖ω‖Hm
co,l

+ (1 + ‖ũ‖L∞)‖ω‖2Hm
co,l
.

On the other hand, one has

I31 =
∑

m1+m2=m,m2<m

Cm1

m

∫

T×R+

〈η〉2l(Zm1 ũ)(Zm2ωx)(Z
mω)dxdη

+

∫

T×R+

〈η〉2lũ(Zmωx)(Z
mω)dxdη , I3a1 + I3b1 ,

and

I41 =
∑

m1+m2=m,m2<m

Cm1

m

∫

T×R+

〈η〉2l(Zm1 v̄)(Zm2ωη)(Z
mω)dxdη

+

∫

T×R+

〈η〉2l v̄(Zmωη)(Z
mω)dxdη , I4a1 + I4b1 .

Note that I3a1 can be estimated similarly as I21 , and

|I4a1 | . ‖Zmω‖L2
l
(‖Zmv̄‖L∞

η (L2
x)
‖ωη‖L2

η(L
∞

x ) + ‖Zv̄‖L∞‖Zm−1ωη‖L2
l
).

By using ∂η(ρ̄v̄) + ∂x(ρ̄ũ) = −ρ̄t − ρ̄V , integration by parts and the commutator estimate (2.1),
we obtain

|I3b1 + I4b1 | . (1 + ‖ũ‖L∞ + ‖v̄‖L∞)‖Zmω‖2L2
l
(T×R+) + ‖v̄‖L∞‖∂ηω‖Hm−1

co,l
‖Zmω‖L2

l
(T×R+).

Moreover, the definition of the operator Z2 gives that
∫

T×R+

Zm(ηV ω)η〈η〉2lZmωdxdη =

∫

T×R+

Zm(V ω + V ηωη)〈η〉2lZmωdxdη . ‖ω‖2Hm
co,l
.

(3) Estimate of I2. First, by using the boundary condition given in (3.2), we have

I2 =

∫

T×R+

(〈η〉2lZmω)ηZ
m

(

2

ρ̄
ω
∂2η ũ

∂ηũ
+

1

ρ̄
ωη + f̃

)

dxdη

−
∫

T×R+

〈η〉2lZmω[Zm, ∂η]

(

2

ρ̄
ω
∂2η ũ

∂ηũ
+

1

ρ̄
ωη + f̃

)

dxdη

,I12 + I22 + I32 + I42 ,

with I42 being the terms involving f̃ ,

I12 =

∫

T×R+

(〈η〉2lZmω)ηZ
m

(

2

ρ̄
ω
∂2η ũ

∂ηũ

)

dxdη −
∫

T×R+

〈η〉2lZmω[Zm, ∂η]

(

2

ρ̄
ω
∂2η ũ

∂ηũ

)

dxdη,

I22 =

∫

T×R+

(〈η〉2lZmω)ηZ
m

(

1

ρ̄
ωη

)

dxdη,
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and

I32 = −
∫

T×R+

〈η〉2lZmω[Zm, ∂η]

(

1

ρ̄
ωη

)

dxdη.

It is straightforward to show that

|I12 | ≤
∣

∣

∣

∣

∫

T×R+

Zm(
2

ρ̄
χω)〈η〉2l(Zmωη +

2l

〈η〉Z
mω + [Zm, ∂η ]ω)dxdη

∣

∣

∣

∣

+ ‖Zmω‖L2
l
‖2
ρ̄
(χω)η‖Hm−1

co,l

.‖2
ρ̄
χω‖Hm

co,l
(‖Zmωη‖L2

l
+ ‖Zmω‖L2

l
+ ‖∂ηω‖Hm−1

co,l
) + ‖Zmω‖L2

l
‖2
ρ̄
(χω)η‖Hm−1

co,l

.(‖χ‖l∞‖ω‖Hm
co,l

+ ‖χ‖Dm
co,0

‖ω‖L2
η,l

(L∞
x ))(‖ω‖Hm

co,l
+ ‖∂ηω‖Hm

co,l
)

+‖Zmω‖L2
l
(‖∂ηχ‖Dm−1,0

co,0
‖ω‖L2

η,l
(L∞

x ) + ‖∂ηχ‖L∞‖ω‖Hm−1

co,l
+ ‖χ‖Dm−1,0

co,0
‖ωη‖L2

η,l
(L∞

x ) + ‖χ‖L∞‖ωη‖Hm−1

co,l
),

I22 =

∫

T×R+

(Zmωη

ρ̄
)(2l〈η〉2l−1Zmω + 〈η〉2l(Zmω)η)dxdη

&
1

2
‖Zmωη‖2L2

l
− ‖ω‖2Hm

co,l
− ‖ωη‖2Hm−1

co,l

,

and

|I32 | ≤ ‖∂η(
ωη

ρ̄
)‖Hm−1

co,l
‖Zmω‖L2

l
.

From the equation (3.2), we have

‖∂η(
ωη

ρ̄
)‖Hm−1

co,l

=‖ωt + (ũω)x + (ηV ω)η + (v̄ω)η −
2

ρ̄

(

ω
∂2η ũ

∂ηũ

)

η

+

(

ξ

∫ η

0
ω(t, x, η̃)dη̃

)

η

− ρ̄t
ρ̄
ω − f̃η‖Hm−1

co,l
.

The terms on the right hand side of the above equation can be estimated as

‖ωt + (ηV ω)η −
ρ̄t
ρ
ω‖Hm−1

co,l
. ‖ω‖Hm

co,l
,

‖(ũω)x + (v̄ω)η −
2

ρ̄

(

ω
∂2η ũ

∂ηũ

)

η

‖Hm−1

co,l

= ‖ −





ρ̄t + ρ̄V + ρ̄xũ

ρ̄
+

2

ρ̄

(

∂2η ũ

∂ηũ

)

η



ω + ũωx +

(

v̄ − 2

ρ̄

∂2η ũ

∂ηũ

)

ωη‖Hm−1

co,l

≤ (1 + ‖ũ‖L∞ + ‖χη‖L∞)‖ω‖Hm
co,l

+ (‖v̄‖L∞ + ‖χ‖L∞)‖ωη‖Hm−1

co,l

+ (‖ũ− U‖Hm−1

co,l
+ ‖χη‖Hm−1

co,l
)(‖ω‖L∞ + ‖ωx‖L∞) + (‖v̄‖

Dm,0
co,l

+ ‖χ‖
Dm,0

co,l
)‖ωη‖L2

η,l
(L∞

x ),
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and

‖
(

ξ

∫ η

0
ω(t, x, η̃)dη̃

)

η

‖Hm−1

co,l

≤ (‖ξ1‖Hm−1

co,l
+ ‖ũ− U‖Hm−1

co,l
)‖ω‖L∞ + ‖ξ‖L∞‖ω‖Hm−1

co,l

+ ‖(ξ1)η, (ũ− U)η‖Hm−1

co,l
‖ω‖L2

η,l
(L∞

x ) + ‖(ξ1)η , (ũ− U)η‖L2
η,l

(L∞
x )‖ω‖Hm−1

co,l
.

(4) Estimate of I3. Decompose I3 into

I3 = I13 + I23 ,

with

I13 =

∫

T×R+

〈η〉2lZmωZm

(

ξ1

∫ η

0
ω(t, x, η̃)dη̃

)

η

dxdη,

and

I23 = −
∫

T×R+

〈η〉2lZmωZm

(

ũρ̄x
ρ̄

∫ η

0
ω(t, x, η̃)dη̃

)

η

dxdη.

For l > 1/2, we have

|I13 | ≤
∣

∣

∣

∣

∫

T×R+

Zm

(

ξ1

∫ η

0
ωdη̃

)

(〈η〉2lZmω)ηdxdη

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

T×R+

[Zm, ∂η ]

(

ξ1

∫ η

0
ωdη̃

)

(〈η〉2lZmω)dxdη

∣

∣

∣

∣

.(‖ξ1‖L2
η,l

(L∞

x )‖ω‖Hm
co,l

+ ‖Zmξ1‖L2
l
‖ω‖L2

η,l
(L∞

x ))(‖Zmω‖L2
l
+ ‖ωη‖Hm

co,l
)

+ ‖Zmω‖L2
l
‖∂η(ξ1

∫ η

0
ωdη̃)‖Hm−1

co,l

.(‖ξ1‖L2
η,l

(L∞
x )‖ω‖Hm

co,l
+ ‖Zmξ1‖L2

l
‖ω‖L2

η,l
(L∞

x ))(‖Zmω‖L2
l
+ ‖ωη‖Hm

co,l
)

+ ‖Zmω‖L2
l
(‖ξ1‖Hm−1

co,l
‖ω‖L∞

l
+ ‖ξ1‖L∞

l
‖ω‖Hm−1

co,l

+ ‖(ξ1)η‖Hm−1

co,l
‖ω‖L2

η,l
(L∞

x ) + ‖(ξ1)η‖L2
η,l

(L∞

x )‖ω‖Hm−1

co,l
),

and

|I23 | =
∣

∣

∣

∣

∣

∫

T×R+

Zm

(

ρ̄x(ũ− U + U)

ρ̄

∫ η

0
ω(t, x, η̃)dη̃

)

η

〈η〉2lZmωdxdη

∣

∣

∣

∣

∣

.(‖Zm(ũ− U)‖L2
l
‖ω‖L2

η,l
(L∞

x ) + ‖ũ− U‖L2
η,l

(L∞

x )‖ω‖Hm
co,l

)(‖Zmω‖L2
l
+ ‖ωη‖Hm

co,l
)

+ ‖Zmω‖L2
l
(‖∂η(ũ− U)‖L∞

l
‖ω‖Hm−1

co,l
+ ‖∂η(ũ− U)‖Hm−1

co,l
‖ω‖L2

η,l
(L∞

x )

+ ‖ũ− U‖Hm−1

co,l
‖ω‖L∞ + ‖ũ− U‖L∞‖ω‖Hm−1

co,l
+ ‖Zmω‖L2

l
).

Summarizing the above estimates, it follows

d

dt
‖ω‖2Hm

co,l
+ ‖ωη‖2Hm

co,l

.‖f̃‖2Hm
co,l

+ ‖f̃η‖2Hm−1

co,l

+ (1 + λ23,1)‖ω‖2Hm
co,l

+ (λ2m,0 + λ2m−1,1 + 1)‖ω‖2
B3,1
l

, (3.10)
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where we have used the inequalities

‖ω, ωx‖L∞

l
(T×R+), ‖ω, ωη‖L2

η,l
(L∞

x ) ≤ C‖ω‖B3,1
l
.

And this completes the proof of the lemma.

Remark 3.1 Similar to the above proof, one can obtain

‖ω‖2
Bm,1
l

≤ C(‖f̃‖2Hm
co,l

+ ‖f̃η‖2Hm−1

co,l

), 0 ≤ m ≤ 3. (3.11)

When m = 0, the term ‖f̃η‖2Hm−1

co,l

is not in (3.11). By combining (3.10), (3.11) and using

Gronwall’s inequality, we get

‖ω‖2
Bm,1
l

≤ C(‖f̃‖2
Bm,0
l

+ ‖f̃‖2
Bm−1,1
l

) + (1 + λ2m−1,1 + λ2m,0)(‖f̃‖2B3,0
l

+ ‖f̃‖2
B2,1
l

). (3.12)

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1: It remains to estimate the higher order normal derivatives.
From the equation given in (3.2), we have

1

ρ̄
ωηη = ωt + (ũω)x + (ηV ω)η + (v̄ω)η −

2

ρ̄

(

ω
∂2η ũ

∂ηũ

)

η

+

(

ξ

∫ η

0
ω(t, x, η̃)dη̃

)

η

− ρ̄t
ρ̄
ω − f̃η.

(3.13)

Applying the conormal operator Zm to the above equation (3.13) gives

‖ω‖Bm,2
l

≤ ‖ρ̄ωt‖Bm,0
l

+ ‖ρ̄((ũω)x + (v̄ω)η)‖Bm,0
l

+ ‖ρ̄(ηV ω)η‖Bm,0
l

+ ‖2χω‖Bm,1
l

+‖ρ̄∂η(ξ
∫ η

0
ω(t, x, η̃)dη̃)‖Bm,0

l
+ ‖ρ̄tω‖Bm,0

l
+ ‖ρ̄∂ηf̃‖Bm,0

l
.

(3.14)

We estimate each term on the right hand side of the above inequality. By using Lemma 2.1, we
get

‖ρ̄ωt‖Bm,0
l

+ ‖(ηV ω)η‖Bm,0
l

+ ‖ρ̄tω‖Bm,0
l

. ‖ω‖
Bm+1,0
l

.

Obviously, it holds

‖ρ̄((ũω)x + (v̄ω)η)‖Bm,0
l

= ‖(ρ̄t + ρ̄V + ρ̄xũ)ω − ρ̄ũωx − ρ̄v̄ωη‖Bm,0
l
,

where

‖(ρ̄t + ρ̄V )ω‖Bm,0
l

. ‖ω‖Bm,0
l
,

‖ρ̄v̄ωη‖Bm,0
l

. ‖v̄‖L∞‖ωη‖Bm,0
l

+ ‖v̄‖Dm,0
co,0

‖ωη‖L2
η,l

(L∞
x ),
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and

‖ρ̄ũωx‖Bm,0
l

=‖ρ̄(ũ− U)ωx + ρ̄Uωx‖Bm,0
l

.‖ũ− U‖Bm,0
l

‖ωx‖L∞ + (‖ũ− U‖L∞ + 1)‖ω‖Bm+1,0
l

.

The term ‖ρ̄xũω‖Bm,0
l

can be estimated similarly. Moreover, we have

‖2χω‖Bm,1
l

. ‖χ‖L∞‖ω‖Bm,1
l

+ ‖χ‖Dm,1
0

‖ω‖L2
η,l

(L∞
x ).

And

‖ρ̄∂η(ξ
∫ η

0
ω(t, x, η̃)dη̃)‖Bm,0

l
= ‖ρ̄(ξη

∫ η

0
ω(t, x, η̃)dη̃ + ξω)‖Bm,0

l
,

where

‖ρ̄(ξη
∫ η

0
ω(t, x, η̃)dη̃‖Bm,0

l
.‖ξ1η‖Bm,0

l
‖ω‖L2

η,l
(L∞

x ) + ‖ξ1η‖L2
η,l

(L∞

x,t)
‖ω‖Bm,0

l

+ ‖ũ− U‖
Bm,1
l

‖ω‖L2
η,l

(L∞

x ) + ‖ũ‖L∞

l
‖ω‖

Bm,1
l
,

and

‖ξω‖Bm,0
l

. ‖ξ1‖Bm,0
l

‖ω‖L∞

η,l
+ ‖ξ1‖L∞

l
‖ω‖Bm,0

l
+ ‖ũ− U‖Bm,0

l
‖ω‖L∞ + (‖ũ‖L∞ + 1)‖ω‖Bm,1

l
.

Plugging the above estimates into (3.14) yields

‖ω‖Bm,2
l

. λ3,1(‖ω‖Bm,1
l

+ ‖ω‖Bm+1,0
l

) + λm,1‖ω‖B3,1
l

+ ‖f̃‖Bm,1
l
.

Next, for any fixed n ≥ 3, applying the differential operator Zm∂n−2
η on the equation (3.13)

gives

‖ω‖Bm,n
l

=‖ρ̄(ωt + (ũω)x + (ηV ω)η + (v̄ω)η −
2

ρ̄

(

ω
∂2η ũ

∂ηũ

)

η

+

(

ξ

∫ η

0
ω(t, x, η̃)dη̃

)

η

− ρ̄t
ρ̄
ω − f̃η)‖Bm,n−2

l
,

where

‖ρ̄(ωt + (ηV ω)η −
ρ̄t
ρ̄
ω‖Bm,n−2

l
. ‖ω‖Bm+1,n−2

l
,

‖ρ̄(ũω)x + ρ̄(v̄ω)η‖Bm,n−2

l
.‖ω‖

Bm,n−2

l
+ ‖ũ− U‖

Bm,n−2

l
‖ωx‖L∞ + (‖ũ− U‖L∞ + 1)‖ω‖

Bm+1,n−2

l

+ ‖v̄‖L∞‖ωη‖Bm,n−2

l
+ ‖v̄‖Dm,n−2

0

‖ωη‖L2
η,l

(L∞

x ),

‖2(ωχ)η‖Bm,n−2

l
. ‖ω‖

Bm,n−1

l
‖χ‖L∞ + ‖χ‖

Dm,n−1

0

‖ω‖L2
η,l

(L∞

x ),
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and

‖
(

ξ

∫ η

0
ω(t, x, η̃)dη̃

)

η

‖
Bm,n−2

l

= ‖ξη
∫ η

0
ω(t, x, η̃)dη̃ + ξω‖

Bm,n−2

l

.‖ξη‖Bm,n−2

l
‖ω‖L2

η,l
(L∞

x ) + ‖ξη‖L∞

l
‖ω‖

Bm,n−2

l
+ ‖ξ‖

Bm,n−2

l
‖ω‖L∞

η,l
+ ‖ξ‖L∞

l
‖ω‖

Bm,n−2

l
.

Thus, we obtain

‖ω‖Bm,n
l

. (λ3,1 + 1)(‖ω‖
Bm+1,n−2

l
+ ‖ω‖

Bm,n−1

l
) + λm,n−1‖ω‖B3,1

l
+ ‖f̃‖

Bm,n−1

l
.

By induction on n, we conclude the estimate (3.5). And this completes the proof of Theorem
3.1.

4 Iteration scheme and convergence

Based on the energy estimate (3.5) on the solution to the linearized equations obtained in the
previous section, we now study the well-posedness of the nonlinear problem (1.1) by using a
suitable linear iteration scheme. From (3.5), there is a loss of regularity in the solutions to the
linearized problem (3.1) with respect to both of the background states and initial data. Hence,
as in [1], we apply the Nash-Moser-Hömander iteration scheme. As we explained in Section
1, we do not have the divergence free condition, and the far-field state is not uniform. Thus,
the shear flow is no longer the special exact solution to the compressible Prandtl equations
(1.1) in contrast to the incompressible problem studied in [1]. Thus, to start the Nash-Moser-
Hömander iteration, we need to construct a proper zero-th order approximate solution satisfying
the nonlinear compressible Prandtl equations with enough decay in η. The construction will be
given Subsection 4.1. Then, in Subsection 4.2 we present the Nash-Moser-Hömander iteration
scheme for the problem (1.1). The estimates of the approximate solutions are obtained in
Subsection 4.3. In Subsection 4.4, we conclude the convergence of iteration for the existence
and uniqueness of the solution to the nonlinear problem (1.1)-(1.3).

4.1 The Zero-th order approximate solution

In this subsection, we construct the initial approximate solution to in the following three sub-
sections.

4.1.1 Compatibility conditions and initial data

Set
u = U(t, x) + ū, v = V (t, x)η + v̄.

By using the Bernoulli law (1.4), from (1.1) we know that (ū, v̄) satisfies















ūt + Uxū+ Uūx + ūūx + (v̄ + V η)ūη −
1

ρ̄
∂2η ū = 0,

∂η(ρ̄v̄) + ∂x(ρ̄ū) = 0,
ū(t, x, η)|t=0 = u0 − U(0, x), v̄|η=0 = 0.

(4.1)

15



Denote
ūj(x, η) = ∂jt ū(t, x, η)|t=0, v̄j(x, η) = ∂jt v̄(t, x, η)|t=0.

From the compatibility condition of (4.1), {ūj , v̄j}j≤k0 is in turn given explicitly by u0(x, η), U(0, z)
and V (0, x).
We define the first approximate solution (ū, v̄) of (4.1) as follows.

ua(t, x, η) =

k0
∑

j=0

tj

j!
ūj(x, η), va(t, x, η) = −1

ρ̄

∫ η

0
(ρ̄ua)x(t, x, η̃)dη̃. (4.2)

From (H3) and (H4) in the Main Assumptions (H), it follows that

max
0≤t≤T

‖〈η〉γ+α2Dαua(t, ·)‖L2(T×R+) ≤ CC0, |α| ≤ 2k0, (4.3)

for a fixed T > 0, where C depends on σ0 and the Sobolev norms of ∂kt (ρ̄, U, V, Ux), k ≤ k0.
Setting

ua1(t, x, η) = U(t, x) + ua(t, x, η), va1(t, x, η) = V (t, x)η + va(t, x, η), (4.4)

then, (ua1, va1) is an approximate solution to the problem (1.1) satisfying compatibility condi-
tions up to order k0 and initial data.

4.1.2 Improving decay in η

Note that the approximate solution (ua1, va1) satisfies

lim
η→+∞

ua1(t, x, η) = U(t, x), (4.5)

and the divergence constraint

∂x(ρ̄u
a1) + ∂η(ρ̄v

a1) = −ρ̄t, (4.6)

for all t ≥ 0. However, the error

fa1 = (∂t + ua1∂x + va1∂η −
1

ρ̄(t, x)
∂2η)u

a1 + Px

does not have enough decay compared with ∂ηu
a1 as η → +∞. Since this property is essential

for the convergence of the Nash-Moser-Hörmander iteration scheme of the nonlinear problem
given in next section, we need to modify the approximate solution (ua1, va1) as follows.

From (1.1), ∂ηu satisfies







(∂t + u∂x + v∂η −
1

ρ̄(t, x)
∂2η)uη + (ux + vη)uη = 0,

uη|η=0 = ρ̄Px.
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This motivates us to consider the following initial-boundary value problem for a linear degenerate
parabolic equation:















φt + (ua1φ)x + (va1φ)η −
1

ρ̄
∂2ηφ = 0,

∂ηφ|η=0 = (ρ̄Px)(t, x),
φ|t=0 = (∂ηu0)(x, η).

(4.7)

Suppose that the solution φ of (4.7) is obtained. Define an approximate solution (ua2, va2)
as

ua2 = U(t, x)−
∫ ∞

η
φ(t, x, η̃)dη̃, va2 = V η +

1

ρ̄

∫ η

0
(ρ̄

∫ ∞

η̃
φ(t, x, s)ds)xdη̃. (4.8)

It is straightforward to verify that the compatibility conditions of (1.1), the far-field condi-
tion (4.5) and the divergence constraint (4.6) still hold for (ua2, va2). Moreover, it satisfes the
equation,

ua2t + ua2ua2x + va2ua2η + Px −
1

ρ̄
∂2ηu

a2 = f0, (4.9)

where

f0 = −
∫ ∞

η

([

U − ua1 −
∫ ∞

η̃
φ(t, x, s)ds

]

φ

)

x

dη̃ − (va2 − va1)φ,

which will be shown to decay faster than ∂ηu
a2.

From the boundedness of ua given in (4.3) and some elementary weighted energy estimates
on the solution to (4.7), we have

Proposition 4.1 Under the Main Assumptions (H) on the initial data, there exists a unique
solution φ(t, x, η) to (4.7). Moreover, there is T > 0 such that φ satisfies










max
0≤t≤T

‖φ(t)‖
H

2k0
γ

≤ C1, φ(t, x, η) ≥ C2

(1 + η)γ+2
, ∀(t, x, η) ∈ [0, T ]× T× R

+,

‖(1 + η)γ+2+α2Dαφ‖L∞([0,T ]×T×R+) ≤ C3, |α| ≤ k0,

(4.10)

where
‖φ(t)‖

H
2k0
γ

=
∑

|α|≤2k0

‖(1 + η)γ+α2Dαφ(t)‖L2(T×R+),

with Dα = ∂α1

t,x∂
α2
η , α = (α1, α2).

Proof. The proof is divided in two steps.
(1) Applying the operator Dα = ∂α1

t,x∂
α2
η to the equation (4.7), multiplying the resulting

equation by (1 + η)2γ+2α2Dαφ and integrating it over T× R
+, we obtain

1

2

d

dt
‖(1 + η)γ+α2Dαφ(t)‖2L2 + ‖ 1√

ρ̄
(1 + η)γ+α2Dαφη(t)‖2L2 =

7
∑

i=1

Ii, (4.11)

17



where

I1 =

∫

T×R+

(ua1x + va1η )(1 + η)2γ+2α2(Dαφ)2dxdη,

I2 =

∫

T×R+

(ua1Dαφx + va1Dαφη)(1 + η)2γ+2α2Dαφdxdη,

I3 = 2(γ + α2)

∫

T×R+

1

ρ̄
(1 + η)2γ+2α2−1(Dαφη)(D

αφ)dxdη,

I4 =
∑

0<β≤α

Cβ
α

∫

T×R+

(1 + η)2γ+2α2Dβ(ua1x + va1η )(Dα−βφ)(Dαφ)dxdη,

I5 =
∑

0<β≤α

Cβ
α

∫

T×R+

(1 + η)2γ+2α2(Dβua1Dα−βφx +Dβva1Dα−βφη)D
αφdxdη,

I6 =
∑

0<β≤α,β2=0

Cβ
α

∫

T×R+

(1 + η)2γ+2α2(Dβ 1

ρ̄
)(∂2ηD

α−βφ)(Dαφ)dxdη,

and

I7 =

∫

T

1

ρ̄
(∂ηD

αφDαφ)|η=0dx.

It is straightforward to show

|I1| ≤‖ua1x , va1η ‖L∞‖(1 + η)γ+α2Dαφ‖2L2 ,

|I2| =|
∫

T×R+

(ua1Dαφx + va1Dαφη)(1 + η)2γ+2α2Dαφdxdη|

.(‖ua1x ‖L∞ + ‖va1η ‖L∞ + ‖va1η /(1 + η)‖L∞)‖(1 + η)γ+α2Dαφ‖2L2 ,

by integration by parts, and using va1|η=0 = 0, and

|I3| =2(γ + α2)|
∫

T×R+

1

ρ̄
Dαφη(1 + η)2γ+2α2−1Dαφdxdη|

≤1

8
‖ 1√

ρ̄
(1 + η)γ+α2Dαφη‖2L2 + C‖1

ρ̄
‖L∞‖(1 + η)γ+α2Dαφ‖2L2 .

On the other hand, we have

|I4| =|
∑

0<β≤α

Cβ
α

∫

T×R+

(1 + η)β2Dβ(
−ρ̄t − ρ̄xu

a1

ρ̄
)(1 + η)γ+α2−β2Dα−βφ(1 + η)γ+α2Dαφdxdη|

≤C‖
∑

β

Dβ(
ρ̄t + ρ̄xU

ρ̄
)‖L∞‖φ‖2

H
2k0
γ

+ |Ĩ4|,

by noting that β2 = 0 for the operator Dβ acting on
ρ̄t + ρ̄xU

ρ̄
. Hence,

|Ĩ4| ≤ C‖(1 + η)β2

(

Dβ ρ̄x(u
a1 − U)

ρ̄

)

‖L∞‖φ‖2
H

2k0
γ

, for |β| ≤ k0,
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and

|Ĩ4| ≤C‖(1 + η)β2(Dβ ρ̄x(u
a1 − U)

ρ̄
)‖L2‖(1 + η)γ+α2−β2Dα−βφ‖L∞‖(1 + η)γ+α2Dαφ‖L2

≤C‖(1 + η)β2

(

Dβ ρ̄x(u
a1 − U)

ρ̄

)

‖L2‖φ‖2
H

2k0
γ

, for |β| > k0,

by using the weighted Sobolev embedding. Similarly, one has

|I5| =|
∑

0<β≤α

∫

T×R+

Cβ
α(D

βua1Dα−βφx +Dβva1Dα−βφη)(1 + η)2γ+2α2Dαφdxdη|

≤|I15 |+ |I25 |,

where

|I15 | ≤







C(‖Dβ(ua1 − U)(1 + η)β2‖L∞ + ‖DβU‖L∞)‖φ‖2
H

2k0
γ

, for 1 ≤ |β| ≤ k0,

C(‖Dβ(ua1 − U)(1 + η)β2‖L2 + ‖DβU‖L∞)‖φ‖2
H

2k0
γ

, for |β| > k0,

and

|I25 | ≤







C‖Dβva1(1 + η)β2−1‖L∞‖φ‖2
H

2k0
γ

, for 1 ≤ |β| ≤ k0,

C‖Dβva1(1 + η)β2−1‖L2‖φ‖2
H

2k0
γ

, for β2 6= 0, |β| > k0;

|I25 | ≤C‖Dβva1(1 + η)−1‖L∞

η (L2
x)
‖Dα−βφη(1 + η)γ+α2+1‖L2

η(L
∞

x )‖Dαφ(1 + η)γ+α2‖L2 ,

≤C‖Dβva1(1 + η)−1‖L∞

η (L2
x)
‖φ‖2

H
2k0
γ

for β2 = 0, |β| > k0.

For the term I6, by integration by parts, we have

|I6| =
∑

0<β≤α,β2=0

(

|
∫

T×R+

Cβ
α(2γ + 2α2)(1 + η)2γ+2α2−1(Dβ 1

ρ̄
)(∂ηD

α−βφ)(Dαφ)dxdη

+

∫

T×R+

Cβ
α(1 + η)2γ+2α2(Dβ 1

ρ̄
)(∂ηD

α−βφ)(Dαφη)dxdη|

−|
∫

T

Cβ
α(D

β 1

ρ̄
)(∂ηD

α−βφ)(Dαφ)|η=0dx|
)

≤
∑

0<β≤α,β2=0

(

|
∫

T

Cβ
α(D

β 1

ρ̄
)(∂ηD

α−βφ)(Dαφ)|η=0dx|+C‖(1 + η)γ+α2Dα−βφη‖2L2

)

+
1

8
‖ 1√

ρ̄
(1 + η)γ+α2Dαφη‖2L2 .

It remains to handle the boundary integration terms on the right hand side of the above
estimate and I7. For illustration, we only estimate I7.
Firstly, noticing that

∂ηφ|η=0 = ρ̄Px,
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and applying the operator ∂η on the equation (4.7), we obtain

1

ρ̄
∂3ηφ = (φη)t + (ua1x φ)η + (ua1φx)η + (va1φ)ηη .

Taking this equation on the boundary {η = 0} and using the boundary condition, we get

1

ρ̄
∂3ηφ|η=0 = (ρ̄Px)t + ua1x ρ̄Px + ua1xηφ|η=0 + ua1(ρ̄Px)x + ua1η φx|η=0 + 2va1η ρ̄Px + va1ηηφ|η=0.

By induction, for positive integer k, we have

1

ρ̄
∂2k+1
η φ|η=0 =(∂2k−1

η φ)t + ∂2k−1
η (ua1x φ) + ∂2k−1

η (ua1φx) + ∂2kη (va1φ)

=[F (Dα
|α|≤2k−2u

a1,Dβ
|β|≤2k−2v

a1,Dγ
|γ|≤2k−3φ,D

π(ρ̄, Px))]t +

2k−1
∑

i=1

Ci
2k−1∂

i
ηu

a1
x ∂

2k−1−i
η φ

+

2k−1
∑

j=1

Cj
2k−1∂

i
ηu

a1∂2k−1−j
η φx +

2k
∑

s=1

Cs
2k∂

s
ηv

a1∂2k−s
η φ

=G(Dα
|α|≤2ku

a1,Dβ
|β|≤2kv

a1,Dγ
|γ|≤2k−1φ,D

π(ρ̄, Px))),

where F,G are polynomial functions. Hence, the normal derivative of φ can be reduced by two
order using the boundary condition and the equation (4.7). Therefore, we can use the trace
estimate to control the boundary integral.

Thus, by summarizing the above estimates, and taking summation over |α| ≤ 2k0 for (4.11),
it follows

d

dt
‖φ(t)‖2

H
2k0
γ

+
∑

|α|≤2k0

‖ 1√
ρ̄
(1 + η)γ+α2Dαφη(t)‖2L2 ≤ C‖φ(t)‖2

H
2k0
γ

.

which implies the first boundedness estimate given in (4.10) by using Gronwall inequality.

(2) Next, we apply the maximal principle to prove the second estimate given in (4.10).
From (4.7), y(t, x, η) , (1 + η)γ+2φ satisfies the following degenerate parabolic equation,

yt + (ua1x + va1η − va1(2 + γ)

1 + η
− (γ + 2)(γ + 3)

ρ̄(1 + η)2
)y + ua1yx + (va1 +

2(γ + 2)

ρ̄(1 + η)
)yη −

1

ρ̄
∂2ηy = 0.

By the maximal principle (see also Lemma E.2 in [11]), we have

min
T×R+

y(t) ≥ (1− λteλt)k(t),

with
k(t) = min{ min

T×R+
y|t=0, min

[0,t]×T

y|η=0},

for a fixed λ ≥ ‖(ua1x + va1η − va1(2 + γ)

1 + η
− (γ + 2)(γ + 3)

ρ̄(1 + η)2
)‖L∞ .
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It follows from the Main Assumptions (H2) on the initial data that

min
T×R+

y(0) ≥ σ0 > 0.

It suffices to derive the lower bound on min
[0,t]×T

y|η=0. Notice that y|η=0 = φ|η=0, the first bound-

edness estimate of (4.10) and the Sobolev inequality give

‖φt|η=0‖L∞ ≤ C.

Consequently,

φ(t)|η=0 ≥ φ(0, x, η)|η=0 − Ct ≥ σ0 − Ct.

Thus, we have the lower bound given in the second estimate in (4.10) provided that t is suitably
small. The third estimate in (4.10) can also be proved by the maximal principle similarly (also
refer to Lemma E.1 in [11]). Then the proof of this proposition is completed.

4.1.3 Boundary condition

It is noted that the approximate solution ua2 does not satisfy the original boundary condition,
that is, ua2|η=0 6= 0. For this, set

ζ(t, x) , ua2|η=0 = U(t, x)−
∫ ∞

0
φ(t, x, η)dη.

ζ(t, x) is uniformly continuous and bounded due to (4.10). By the compatibility condition of
the initial data, we have ζ(0, x) = 0. Consequently, |ζ(t, x)| ≤ ε0, t ∈ [0, t0], with ε0 → 0 as t0
tends to zero.
In addition, there exists a smooth monotone decreasing function ψ(η) ⊆ [0, 1], η ≥ 0 such that
suppψ ⊆ [0, 1], ψ(0) = 1 and |ψ′(η)| < C. Note that there exists a positive constant a0 such
that φ(t, x, η) > a0, η ∈ [0, 1].

Now, define

ua3 = ua2 − ζ(t, x)ψ(η), va3 = −1

ρ̄

∫ η

0
(ρ̄(ua2(t, x, η̃)− U(x, t)− ζ(t, x)ψ(η̃))xdη̃. (4.12)

It is direct to check that ua3(t, x, η)|η=0 = 0, and

ua3η (t, x, η) = φ(t, x, η) − ζ(t, x)ψ′(η) >
φ

2
> 0, (4.13)

provided that t ∈ [0, t0] with t0 being suitably small. And the profile (ua3, va3) satisfies














ua3t + ua3ua3x + va3ua3η + Px −
1

ρ̄
∂2ηu

a3 = fa,

∂η(ρ̄v
a3) + ∂x(ρ̄u

a3) = −ρ̄t,
ua3(0, x, η) = (∂ηu0)(x, η),

(4.14)
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with fa = f0 − f̄0, where

f̄0 = ζtψ + ζψua2x + ua2ζxψ − ζζxψ
2 + va2ζψ′ −

ua2η (ρ̄ζ)x

ρ̄

∫ η

0
ψ(η̃)dη̃ +

ζψ′(ρ̄ζ)x
ρ̄

∫ η

0
ψ(η̃)dη̃ − ψ

′′

ζ

ρ̄
.

Remark 4.1 The approach of constructing the zero-th approximate solution to (1.1) introduced
above can be applied to the incompressible Prandtl equations.

4.2 The Nash-Moser-Hömander iteration scheme

We now construct the approximate solution sequence of (1.1) by using the Nash-Moser-Hömander
Iteration Scheme. The procedure mainly follows the one given in [1]. Thus, we will only present
the main steps.

Denote the linearized operator P ′ around (ω̂, q̂) of (1.1) by

P ′
(ω̂,q̂)(ω, q) = ∂tω + ω̂ωx + q̂ωη + ωω̂x + qω̂η −

1

ρ̄
∂2ηω.

Suppose that the approximate solutions (uk, vk) of (1.1) have been constructed for all k ≤ n,
with u0 = ua3 and v0 = va3 being defined in Subsection 4.1.3, we construct the (n + 1)−th
approximate solution (un+1, vn+1) as follows:

un+1 = un + δun = ua3 + ũn + δun, vn+1 = vn + δvn = va3 + ṽn + δvn, (4.15)

where the increment (δun, δvn) is the solution to the following initial-boundary value problem



















P ′
(un

θn
,vn

θn
)(δu

n, δvn) = fn,

∂η(ρ̄(t, x)δv
n) + ∂x(ρ̄(t, x)δu

n) = 0,
δun|η=0 = δvn|η=0 = 0, lim

η→+∞
δun = 0,

δun|t=0 = 0.

(4.16)

Here, unθn = ua3 + Sθnũ
n and vnθn = va3 + Sθn ṽ

n with θn =
√

θ20 + n for any n ≥ 1 and a large
fixed constant θ0. The smoothing operator Sθ is defined by

(Sθf)(t, x, η) =

∫∫∫

jθ(τ)jθ(ξ)jθ(µ)f̃(t− τ + θ−1, x− ξ, η − µ+ θ−1)dτdξdµ,

for a function f defined on Ω = [0,+∞[×Tx × R
+
η with f̃ being the zero extension of f to

R
3, and the mollifier jθ(τ) = θj(θτ) with j ∈ C∞

0 (R) being a non-negative function satisfying
Suppj ⊆ [−1, 1] and ‖j‖L1 = 1.

In order to show that the approximate solution (un, vn) converges to the solution of the
nonlinear problem (1.1), we need to define the source term fn properly for the problem (4.16).

To do this, denoting the nonlinear operator on the left hand side of (1.1) by P(ω, q),
obviously, the following identity holds:

P(un+1, vn+1)− P(un, vn) = P ′
(un

θn
,vn

θn
)(δu

n, δvn) + en, (4.17)
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where
en = e1n + e2n,

with e1n being the error term from the Newton iteration,

e1n =P(un + δun, vn + δvn)− P(un, vn)− P ′
(un,vn)(δu

n, δvn)

=δun∂x(δu
n) + δvn∂η(δu

n), (4.18)

and e2n being the error from mollifying the coefficients,

e2n =P ′
(un,vn)(δu

n, δvn)− P ′
(un

θn
,vn

θn
)(δu

n, δvn)

=((1− Sθn)(u
n − ua3))∂x(δu

n) + δun∂x((1 − Sθn)(u
n − ua3))

+ ((1− Sθn)(v
n − va3))∂ηδu

n + δvn∂η((1− Sθn)(u
n − ua3)). (4.19)

Taking summation of (4.17) over all n ∈ N leads to

P(un+1, vn+1) =

n
∑

j=0

(P ′
(uj

θj
,vj

θj
)
(δuj , δvj) + ej) + fa, (4.20)

with fa = P(ua3, va3).
It is obvious that if the approximate solution (un, vn) converges to the solution to (1.1),

then the right hand side of (4.20) must converge to zero as n tends to +∞. In this way, it is
convenient to require that (δun, δvn) (n ≥ 0) satisfies the equation,

P ′
(un

θn
,vn

θn
)(δu

n, δvn) = fn,

where fn is defined by

n
∑

j=0

f j = −Sθn(
n−1
∑

j=0

ej)− Sθnf
a, (4.21)

inductively, that is,










f0 = −Sθ0fa, f1 = (Sθ0 − Sθ1)f
a + Sθ0f

a,

fn = (Sθn−1
− Sθn)(

n−2
∑

j=0

ej)− Sθnen−1 + (Sθn−1
− Sθn)f

a, ∀n ≥ 2,
(4.22)

with fa given in (4.14).
We now give some properties of the smoothing operator in the following lemma, which also

can be found in Section 4.1 of [1].

Lemma 4.1 The smoothing operator {Sθ}θ>0 : A0
l (Ω) → ∩s≥0As

l (Ω), satisfies the following
estimates:

{ ‖Sθv‖As
l
≤ Cjθ

(s−α)+‖v‖Aα
l
, for all s, α ≥ 0,

‖(1− Sθ)v‖As
l
≤ Cjθ

(s−α)‖v‖Aα
l
, for all 0 ≤ s ≤ α,

(4.23)

and

‖(Sθn − Sθn−1
)v‖As

l
≤ Cj△θs−α

n ‖v‖Aα
l
, for all s, α ≥ 0, (4.24)

where △θn = θn+1− θn, and the constant Cj depends only on the mollifier function j ∈ C∞
0 (R).
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4.3 Estimates of the approximate solutions

To study the solutions (δun, δvn) to the problem (4.16) with fn given in (4.22), as in Section 3,
set

ωn = ∂η

(

ρ̄δun

∂ηunθn

)

. (4.25)

Then ωn satisfies


















∂tω
n + ∂x(u

n
θn
ωn) + ∂η(v

n
θn
ωn)− 2

ρ̄
(ωnχn)η + (ξn

∫ η

0
ωn(t, x, η̃)dη̃)η −

ρ̄t
ρ̄
ωn − 1

ρ̄
ωn
ηη = f̃nη ,

1

ρ̄
(ωn

η + 2ωnχn)|η=0 = −f̃n|η=0,

ωn|t=0 = 0,

(4.26)

where

χn =
∂2ηu

n
θn

∂ηunθn
, ξn =

(∂t + unθn∂x + vnθn∂η −
1

ρ̄
∂2η)∂ηu

n
θn

∂ηunθn
−
unθn ρ̄x

ρ̄
, ξn1 − ξn2 ,

and

f̃n =
ρ̄fn

∂ηunθn
. (4.27)

Similar to (3.3)-(3.4), we define

λk1,k2 = ‖unθn − ua3‖
B
k1,k2
l

+ ‖Zk1∂k2η v
n
θn‖L∞

η (L2
t,x)

+ ‖Zk1∂k2η χ
n‖L∞

η (L2
t,x)

+ ‖ξn1 ‖Bk1,k2
l

,

and

λnk =
∑

k1+[(k2+1)/2]≤k

λnk1,k2 .

Applying Theorem 3.1 to the linearized problem (4.26), we have

Theorem 4.1 Suppose the known functions (ρ̄, U, V )(t, x) satisfy the same assumptions as in
Theorem 1.1, and the main assumptions (H) are satisfied. Then for any fixed l > 1/2, the
following estimate holds for the solution of the problem (4.26),

‖ωn‖Ak
l
≤ C1(λ

n
4 )‖f̃n‖Ak

l
+ C2(λ

n
4 )λ

n
k‖f̃n‖A3

l
. (4.28)

Similar to the Lemma 5.3 in [1], we also have

‖ fa

∂ηua3
‖
A

k0
l

([0,T ]×T×R+)
≤ Cε,

because the construction of (ua3, va3) and the estimates in Proposition 4.1. Where ε comes from
the smallness of the integral interval of time. Then, as in [1], by studying estimates of f̃n and
using an induction argument, we have
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Theorem 4.2 Under the same assumptions as those in Theorem 4.1, there exists a positive
constant C0 such that

‖ωn‖Ak
l
≤ C0εθ

max{3 − k̃, k − k̃}
n △θn, (4.29)

holds for all n ≥ 0, 0 ≤ k ≤ k0 and k̃ ≥ 6 here θn =
√

θ20 + n and △θn = θn+1 − θn.

Using the transformation (4.25), we can obtain

Corollary 4.1 Under the same assumptions as those in Theorem 4.2, the following estimates
hold

‖δun‖Ak
l
≤ Cεθ

max{3− k̃, k − k̃}
j , 0 ≤ k ≤ k0, (4.30)

and

‖δvn‖Dk
0
≤ C1εθ

max{3− k̃, k + 1− k̃}
j , 0 ≤ k ≤ k0 − 1. (4.31)

4.4 Existence to the nonlinear problem

To show the existence of solution to the nonlinear boundary layer equations (1.1), we need to
show the convergence of the iteration scheme (4.15)-(4.16). From this iteration, we know that
the approximate solutions (un+1, vn+1) solve the following problem































P(un+1, vn+1) = (1− Sθn)

n
∑

j=0

ej + Sθnen + (1− Sθn)f
a,

∂x(ρ̄u
n+1) + ∂η(ρ̄v

n+1) = −ρ̄t,
un+1|η=0 = vn+1|η=0 = 0, lim

η→+∞
un+1 = U(t, x),

un+1|t=0 = u0(x, η).

(4.32)

From the estimates given in Corollary 4.1, we know that there exist functions u ∈ Ak̃−2
l and

v ∈ Dk̃−3
0 , such that un converges to u in Ak̃−2

l and vn converges to v in Dk̃−3
0 . In order to show

the function pair (u, v) is indeed a solution to the system (1.1), it suffices to show that the right
hand side in equation (4.32)1 converges to zero as n tends to +∞. Firstly, by using Lemma 4.1,

‖(1− Sθn)(f
a +

n
∑

j=0

ej)‖Ak
l
≤ Cθ−1

n (‖fa‖
Ak+1

l
+ ‖

n
∑

j=0

ej‖Ak+1

l
).

Then it suffices to show the ‖
n
∑

j=0

ej‖Ak+1

l
converges. From the definition of ej = e1j + e2j given

in (4.18)-(4.19), we have

‖e1j‖Ak+1

l
≤C(‖δuj‖L∞‖δuj‖Ak+2

l
+ ‖δvj‖L∞‖δuj‖Ak+2

l
+ ‖δvj‖Dk+2

0

‖δuj‖L2
η,l

(L∞

t,x)
)
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≤Cε2θ3−k̃+ max{3 − k̃, k + 2− k̃}
j (△θj)2 ≤ Cε2θk+5−2k̃

j △θj,

for k ≤ k̃ − 5. And

‖e2j‖Ak+1

l
≤‖(1− Sθj)(u

j − ua3)∂η(δv
j)‖Ak+1

l
+ 2‖ ρ̄x

ρ̄
(1− Sθj)(u

j − ua3)(δuj)‖Ak+1

l

+ ‖∂η((1 − Sθj)(v
j − va3))(δuj)‖Ak+1

l
+ ‖((1 − Sθj)(v

j − va3))∂η(δu
j)‖Ak+1

l

+ ‖∂η((1 − Sθj)(u
j − ua3))(δvj)‖Ak+1

l

≤C(‖uj − ua3‖L2
η,l

(L∞

t,x)
‖δvj‖Dk+2

0

+ ‖uj − ua3‖Ak+1

l
‖∂η(δvj)‖L∞

+ ‖uj − ua3‖Ak+1

l
‖ ρ̄x
ρ̄
δu‖L∞ + ‖uj − ua3‖L∞‖ ρ̄x

ρ̄
δu‖Ak+1

l

+ ‖δu‖Ak+1

l
‖∂η(vj − va3)‖L∞ + ‖δu‖L2

η,l
(L∞

t,x)
‖(vj − va3)‖Dk+2

0

+ ‖δu‖Ak+2

l
‖(vj − va3)‖L∞ + ‖∂ηδu‖L2

η,l
(L∞

t,x)
‖(vj − va3)‖Dk+1

0

+ ‖δvj‖Dk+1

0

‖∂η(uj − ua3)‖L2
η,l

(L∞

t,x)
+ ‖δvj‖L∞‖uj − ua3‖Ak+2

l
)

≤Cε2θk+3−k̃
j △θj,

for k ≤ k̃ − 5. Thus, we get that

+∞
∑

j=0

‖ej‖Ak
l
≤ C

+∞
∑

j=0

θk+3−k̃
j △θj ≤ CC0,

for k ≤ k̃ − 5.
Therefore, the right hand side of (4.32)1 tends to zero as n tends to +∞. The uniqueness

of classical solutions to (1.1) can be proved as in [1]. Then we complete the proof of Theorem
1.1.
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