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Abstract: In this paper, we consider the local well-posedness of the Prandtl boundary layer
equations that describe the behavior of boundary layer in the small viscosity limit of the com-
pressible isentropic Navier-Stokes equations with non-slip boundary condition. Under the strictly
monotonic assumption on the tangential velocity in the normal variable, we apply the Nash-
Moser-Hormander iteration scheme and further develop the energy method introduced in [1I] to
obtain the well-posedness of the equations locally in time.
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1 Introduction

In this paper, we study the well-posedness of the compressible Prandtl boundary layer equations
that are derived in the small viscosity limit from the compressible isentropic Naiver-Stokes equa-
tions with non-slip boundary condition. Note that the Prandtl equations describe the behavior
of the characteristic boundary layer in the leading order. Denote by T x RT = {(z,n)|z €
R/Z,0 < n < 400} the periodic spatial domain, and let u(¢, z,n) and v(t, z,n) be the tangential
and normal velocity components in the boundary layer. Consider the following compressible
Prandtl equations with (z,7) € T x R*,
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with the initial data

u(t, z,m)l=0 = uo(z,n), (1.2)
and the boundary and the far-field conditions

u(t,z )l =0, o(tz o =0, lim_u(t,a,n) = U 2). (1.3
n o

Here, p(t,z) and U(t, z) are the traces on the boundary {y = 0} of the density and the tangential

velocity of the outer Euler flow that satisfy the Bernoulli’s law

U+ UUy, + Py =0, (1.4)

with P(t,x) being the trace of the enthalpy of the outer Euler flow.

It is well-known that the leading order characteristic boundary layer for the incompressible
Navier-Stokes equations with non-slip boundary condition is described by the classical Prandtl
equations that were proposed by Prandtl [I7] in 1904. Under the monotone assumption on
the tangential velocity in the normal direction, Oleinik firstly obtained the local existence of
classical solutions in the two spatial dimension by using the Crocco transformation, cf. [I5]. This
result together with some other extensions in this direction are presented in Oleinik-Samokhin’s
classical book [16]. Recently, this well-posedness result was re-proved by using an energy method
in the framework of Sobolev spaces in [I] and [I1] independently. On the other hand, by imposing
an additional favorable condition on the pressure, a global in time weak solution was obtained
in [22].

When the monotonicity condition is violated, seperation of the boundary layer is well ex-
pected and observed. For this, E-Engquist constructed a finite time blowup solution to the
Prandtl equations in [4]. Recently, when the background shear flow has a non-degenerate crit-
ical point, some interesting ill-posedness (or instability) phenomena of solutions to both the
linear and nonlinear Prandtl equations around the shear flow are studied, cf. [5l 6 [7, §]. All
these results show that the monotone assumption on the tangential velocity is very important
for well-posedness except in the framework of analytic functions studied in [2] and some other
references with generalization.

This paper aims to obtain the local well-posedness of the problem (II)-(L3]) for the com-
pressible Prandtl equations in some weighted Sobolev spaces. To state the main results, we first
give the following assumptions on the initial data.

Main assumptions (H) on the initial data:

(H1) For a fixed integer kg > 9, the initial data ug(x,n) satisfies the compatibility condition of
the problem (ILT))-(T3) up to order 4ky + 2;
o

(L+m)r+2
positive constant oy and a positive integer v > 2;

(H2) Monotone condition d,ug(z,n) > > 0 holds for all z € T and n > 0 with some

(H3) ||(1 4+ n)T*2D*(ug(x,n) — U(0,2))||2(rxr+) < Co, where D = 031 0p? with a = (a1, as)
and |a] = a1 + ag < 4kg + 2;



1
(H4) [[(1+n)+2+92 DOOpug|| oo (myrt) < o’ for [a| < 3ko.

Denote by V (t,z) the trace of dyul’ on {y = 0} for the normal velocity u’ of Euler outer
flow. From the conservation of mass in the Euler equations, we have

Op(t,x) + 0. (p(t,2)U(t,x)) + p(t, )V (t,x) = 0.

Here, we have used the fact that u¥(¢,2,y)|y—0 = 0. Thus, from the problem (LI)-(L3)), we
know that the normal velocity v(¢,z,n) can be represented by

ot z,m) = V(t,2)n + ﬁ /0 "0 (p(t, ) (Ut 2) — ult, . 7)))di. (1.5)

The main result of this paper can be stated as follows.

Theorem 1.1 Suppose that the outer Euler flow is smooth for 0 <t < Ty, the density p(t, )
has both positive lower and upper bounds, and the Sobolev norm H*([0,Ty] x R) of (p,U,V) is
bounded for a suitably large integer s, moreover, the Main Assumption (H) on the initial data
uo(x,n) is satisfied. Then there exists 0 < T < Ty, such that the initial boundary value problem
(L1)-(I3) has a unique classical solutions (u,v) satisfying

Z |’(?7>l322;)37712 (w = U)ll 220, xTxr+) < +00, (1.6)
[m |+ [(m2+1)/2]<ko

for a fized | > % depending only on ~y given in (H) with (n) = (1 +n), and

Z sup “58;)8;”2 (0 = V) Com)ll 22 oty < 400 )
[ma|+[(me+1)/2]<ko—1 neERT

Remark 1.1 (1) When the outer Euler flow density p(t,z) is a positive constant, the system
(1)) is reduced to the classical incompressible Prandtl equations. Thus the analysis in this paper
works also for the classical incompressible Prandtl equations with general far-field condition and
initial data satisfying the Main Assumption (H). Note that the case with a uniform outer flow
with slightly different assumption on the initial data was studied in [1)].

(2) 1t is straightforward to verify that the set of the initial data satisfying the Main As-
sumption (H) is not empty because it contains the functions with polynomial decay in 7).

Now, let us give some comments on the analysis in this paper. In principle, we will apply the
approach of [I] to study the problem (LIJ)-(L3]). There are several crucial differences between
the system (LI and classical incompressible Prandtl equations. Firstly, the normal velocity
v contains the linearly increasing part V(¢,x)n in 7, consequently, in estimating the solution
to the linearized problem, we need to study the conormal estimates. Secondly, the divergence
free condition in the classical Prandtl system is now replaced by an inhomogeneous equation
in (LI). Moreover, the far-field state is not uniform so that the shear flow is no longer an
exact solution to the compressible Prandtl equations (ILI). Therefore, to apply the Nash-Moser-
Hoémander iteration scheme used in [I] for the nonlinear problem (I1])-(L3]), we need to construct



a suitable zero-th order approximate solution with suitable error estimate. And the construction
is given in subsection 4.1 in three steps.

Finally, the rest of the paper is organized as follows. We will first introduce some weighted
Sobolev spaces and give some preliminaries in Section 2. The well-posedness of the linearized
compressible Prandtl equations is given in Section 3. In Section 4, we introduce the Nash-Moser-
Homander iteration scheme, and construct the first approximate solution as the starting point
of iteration. Then the local existence and uniqueness of solution to the nonlinear problem of the
compressible Prandtl equations are proved.

2 Preliminaries

In this section, we will introduce some weighted Sobolev spaces and norms for later use. To
simplify the notations, we denote by 97" the summation of tangential derivatives 9" = 9;"* 01"
for all m = (mq,m2) € N2 |m| = mq +mq. Denote 9 by Z¢, (nd,)* by Z§ and Z™ = Z{" Z)™
for further simplification. Define

1/2
1Nl e = > [{m)! Z7" Z52 f| 2o T <R+ ;
co! 0<ma <k1,0<ma<ks
and
1/2
1Nl peree = > sup ||(n)! Z{"™ Z5"2 £ (-,n) | 22 (jo, 77 xT) ,
co! 0<ma <ks,0<ma <ks 120
1/2
”f”cklka - Z sup ”(n>lZIn1 £n2f(t7x7 ’)HL%R‘U

co! 0<ma <k1,0<ma <k, HXEOTIXT

Denote

I, = D2 Il e

ki1i+ko=k

The function spaces Di“o ; and C’fo ; can be defined similarly. Since the conormal operator Z™ does
not communicate with the normal derivative operator 0,, the following estimate of commutator

is frequently used,
112", Onl fllz < 100 fll g (2.1)

Here and after 0 < a < b means that there exists a uniform constant C' > 0 such that a < Cb.
The following weighted Sobolev spaces are also used frequently. Denote by 8,’? the k-th normal
derivative, for any given ki,ko € Nl € R™ and 0 < T < +o0, set

1/2

”f”Blkl’kQ = Z ”<77>lZma77fH%2([0,T]><T><]R+) ’

0<|m|<k1,0<n<ks



1/2

£ 1l g e = > 1) 2™ 05 £l o,y 2(eszry) |
0<|m|<h1 0<n<ks

1/2
| fll.ag = > 1) 2702 F 1122 o 1yt
Ima[+[(ma+1)/2]<|m]
It is straightforward to verify that
A;n — ﬂ Blml’mz'
mi1+[(ma+1)/2]<m
We also define
1/2
o ={ X Iz s,
k1+[(ka+1)/2]<m ’
and
1/2
Il = Yoo I 2RO T 1)
ka+[(ka+1)/21<m ’
In addition, the homogeneous norms || - || g Il ém> || - ”DZ” correspond to the summation over

1< | + [(m2 + 1)/2] < |m].
For 1 < p < 400, we will use ||f||Lf(11‘x1R+) = ||<77>lf||Lp(’]T><R+)- It is direct to show the following
Sobolev type embeddings,

1Fllep < CsllflL gz, 1fllop < Cullf L (22)

Moreover, for any [ > 0 and m > 2, the space A}" is continuously embedded into an—z which
is the space of (m — 2)—th order continuously differentiable functions with bounded derivatives.
And the following Morse-type inequalities hold.

Lemma 2.1 For any proper functions f and g, we have

1£gllap < Con {1 Lap Ngloe + 11z llgll i }

and

1£gllap < Con {1 Fllcplglng + 17 llcp gl }-

Similar inequalities hold in the norms |- ||gm , | - HB{"I”"?’ |- lley» and || - ||pp. Here, Cp, > 0 is
a constant depending only on m.

These results can be obtained similarly as those given in [10].



3 Well-posedness of linearized system

The strategy to prove the main result, Theorem [[.]], is to apply an iteration scheme to construct
a sequence of approximate solution sequences, and then to show these approximate solutions
converge in some suitable weighted Sobolev space. Since there is a loss of regularity, the Nash-
Moser-Homander iteration scheme is used for this purpose. In this section, we study the well-
posedness of the linearized equations and obtain the required energy estimates of solutions to
the linearized equations for the Nash-Moser-Homander iteration.

Let (i, ) be a smooth background state satisfying the following conditions.

Byi(t,z,m) >0, 8,(pit) + 0y(pt) = —pr, Gilyo = Vlpmo =0,  lim @ =U(t,x).

n——+00

Here v is given by
- 1 K g~ A _
o=Vt 2+ —— | O(p(t,2)(U(t,z) — a))diy = V(t,2)n + v.
p(tax) 0

It extracts the linear increasing part V (¢, x)n by introducing the new function v. The linearized
problem of (LI))-(L3) around (@,?) can be written as

N - N N 1
Up + Uty + 00U + Ully + Uy — Eu,m =/,

Oy (pv) + Ou(pu) =0, (3.1)
Ulp=0 = v[y=0 =0, ngl}rloo u(t,z,m) =0,

’LL|t:0 = 0.

Similar to [I], by introducing the transformation

st = (F%) (b
=/

then for classical solutions, from (B.I]) we know that w satisfies the following problem in {t >
0,z €T,n>0}

7

. ~ 2 ( Ok K - Pt 1 ;
wi + (Iw) + (NVw)y + (tw), — Y34 + 5/0 w(t,z,q)dn | — YT 5em = s
n n

1 924 _
5 <wn + 2‘”%) ln=0 = —fln=0

. w’t:O - 07

where )
(O + WOy + 00, — 58,3)1177 - - -
5: - _Tzfl_Ty f=~—.

Un p p Un




To simplify the presentation, we use the notations:

My = (18 = Ull grrks + 1270520l e 12y + 127052 x| Lo (r2 ) + [SUPSEES (3.3)

ith y = 2"
Wlthx—au.Set

n

Ak = Z Aot ko - (3.4)

ki+[(k2+1)/2]<k
Similar to [I], we have the following energy estimates of the solution to the problem (32]).

Theorem 3.1 Suppose that the outer Euler flow (p(t,z),U(t,z),V (t,x)) € H*(R2), for s suit-
ably large, and p(t,z) has uniform lower positive bound. Moreover, for a given positive k, the
compatibility condition for the problem (32) holds up to order k. Then for any fized | > 1/2,
we have

lwoll g < CrAD) g + CoA) Akl fllas (3.5)
with C1(-) and Ca(+) being two smooth functions in their arguments.

As we mentioned in the introduction, the main difference of the linear problem ([B.2]) from
the one studied in [I] is that there is a linear growth term 7V in the equation of (32]). Hence,
we can not obtain the estimates of tangential derivatives directly as in [I]. Similar to [12], we
will study the linearized problem (B2]) in some conormal space. First, we have

Lemma 3.1 (L%-estimate) Under the assumptions in Theorem 3.1, there exists a positive con-
stant C' such that

d -
Enwuig(rxﬂy) + HWTIH%?(TxRJr) < C()‘3,1 + 1)||WH%Z2(T><R+) + CHfH%?(TX]Rﬂ- (3.6)

Proof.  Multiplying (32 by (7)%w and integrating it over T x RT, we obtain

illw\lz +2/ ( >2lw (ww)z + (MVw), + (tw) 22 w%
de "L (TXRT) Tx Rt N z T \NVW)n 5\ Yo,
! g Pt 1 N
+ (& | wtzi)di) —=w——wyy — fr ¢ dody = 0. (3.7)
0 w PP

It is straightforward to obtain

~ = 2 —p— 7V_717x _ _
L QG+ @y oPadudy = [ o (P i) dady
X X

5 (1 + Hﬁ”Lw(TXRJr) + HT)”LOO(TXR+)) ”wH%lz(TxR‘F)?



and

1 _
L avelmPededy = [ VeRGH - i) dadn S ol e
X X

On the other hand, by integration by parts and using the boundary condition given in ([B.2])
we get

2 1 ~ 2 1 -
/TX]R+ {_;(WX)U - Ewm] - fn} () wdzdn = /11‘x1R+ {;(WX) + Ewn + f} ((77>21w)nda:d777

where the right hand side can be estimated as follows.

2
/T - EWX(<77>2lw)ndxd77 S HXHL"O(TXRﬂ(HWHi%(TXRﬂ + ||w||Ll2(’]I‘><R+)||anw||le(TxR+))’
X

1 _
[ en@ o+ %) 2 100 ~ 1ol ras
TxR+ P ! !

and
L T e+ %) S 1 Fligeeane (llizimns) + 10l spren):
X
Denote by
™) n
[ (@2 [Coteaiin) oo 2 i 4 12
TxR+ P Jo n
As [ > 1/2, by integration by parts, it follows

1 2
H'| S ||51||Lgo(L3M)(||W||Ll2(TxR+) + ||w||Ll2(T><R+)HaanLl?(’]l‘xRJr)),

and

(a—U) [" e
sl [ P P i) dads)
TxR+ p 0

pzU [ N 2
+ | = w(t,z,n)di | (n)*wddn|
TxR+ P Jo n

ol ermey + 1 = Ullzezz ) (ol ey + 19l 2o 150l 2 o)

Thus, from (31 we obtain

4
dt
by noting

Hw”%f(’ﬂ‘xRﬂ + Hw””%f(’ﬂ‘xRﬂ <C(l+ >\3,1)||W||%l2(']r><R+) + CHfH%l?(qerﬂy

1%, 0, X oo (mxrry + W€l oo (2 ) + 18 = Ullpge(rz ) S (14 A30)-
It completes the proof of the estimate (B.6]).



Lemma 3.2 (Estimates of conormal derivatives) Under the assumptions in Theorem 3.1, for
any fixed T > 0, there exists a positive constant C' > 0 such that
2 2
aHWHHW + ||Wv7||Hm

<O+ M DllwllEm  + CUF 7, + anlle (Mo A0 + 1)||WH§;;,1) (3.8)

holds for t € [0,T].

Proof.  The proof is divided into four steps.
(1) Applying the conormal derivative operator Z™ on the equation in ([B.2]), multiplying the
resulting equation by (n)?Z™w and integrating it over T x RT, it follows

d 2 ( O
| zm 2 2 2lzm Zm ~ 174 _~
dt” w”LIQ(TxRﬂ + /11‘><R+ <77> w (uw) (77 w) (Uw)n /5 ( B u)ﬁ

! N, Pt 1
+ 5/ w(t,z,n)dn | ——=w— — fy p dxdn = 0. (3.9)
0 n P P
Now, let us estimate each term of ([3.9). Denote

,
I = / Z™{(i0)e + (00} (n) 2 2 wodedn,
TxR+t

0,

2
1 ~
12 = —/ (’I’]>2lZmWZm w—n ) + jwm/, + f77 dilfd'l’],
TxR+ n P

2
ﬁ(
n

I3 = / (m*Z"wz™ (é / W(t,x,ﬁ)dﬁ> dadn.
TxR+ 0

n

=31

<

(2) Estimate of I. Obviously, we have

= 2w, + (@) ) 2 wdnd
TxR+

:/ Zm[(—'ot —I—_pV)w + (- Pt Jw + i, + vwy) () Z™wdrdn
TxR+ P p

A+ R+ 1+ 17,

and
=] ¥ ap [ (2P ) (zrazradnr) € ey,
mi+mo=m TxR+ co,l
P (U — 't Pz m m
IHE E C',anl/ zZm [(p (@ EJ(:E ))) + ,o_U] Z™20(n) 2 Z™wdadn
mi+ma=m TxR+ P P




Slla = Ul Nlwollzeollwllzzzs, + (1 + @l o)l -

co,l co,l

On the other hand, one has

B= Y om / (2 (2™ 0) (2700 (27w dadn
TxR+t

mi+ma=m,ma<m

4+ / (V2L 2w, (27w dadn & 13 4 T3,
TxRt
and

D e / (V2 (2™ 5) (2™ w0, (27w dardy
TxR+

mi1+ma=m,ma<m
+ / (M2 0(Z"w,))(Z™w)dxdn 2 I + I
TxR+
Note that I$¢ can be estimated similarly as I7, and
1) < 127wl 12 (1270l e 2 il 22 220y + 120 2 127 gl 12).

By using 0,(pv) + 0.(ptt) = —py — pV/, integration by parts and the commutator estimate (2Z.1)),
we obtain

b b . _ _
117+ 1) S (U llallzee + [0l 1270 o ey + 19l oo 10y | -2 127 w1l 22 (et -
Moreover, the definition of the operator Zy gives that

L zmave),m zrdedy = [ 27Vt Vi ) 27 wdedn 5 oy,
) |

TxR+

(3) Estimate of Is. First, by using the boundary condition given in ([B.2]), we have
2 02 1 .
L R el Ly g P
TxR+ ! p Oy p !
1 -
- / A Z2™mw(Z™, 0y (ju% + —wy + f) dxdn
TxR+ P
2L+ I3+ I3 + I,
with I3 being the terms involving f ,

2 0% 2 0%
11:/ 2gmN, 7™ | 2w | dad —/ 2Lgm, Z™. 0, Zw=l | dxdn,
2 MW(W )n 70, n MW(W [ ] 70,0 n



and

1
I = —/ (A Z™mw(Z™, 0y <—wn> dxdn.
TxR+ P

It is straightforward to show that

1I3] <

/ ZM(Zxw) () (2 wy + < Z"w + [Z ,8n]w)dwdn‘+HZ wll g2 ll= (xw)nll g1
TxR+ P (n) Lp co,l

2 2
SHEXWHH;ZJ(HZWLWWHL% +12" w2 + 10pwll gm-1) + IIZmWIILgIIE(XW)nIIH;g;l

Sl lwllzrzs , + Ixlipg o lwllzz (e Ulwllmzs, + 10pwlla )

co,l co,l

127 2 (0 ol ey + 18 Il g + Il pmrollpll 2 ooy + Ilzee ol

w
B=[ (2 2me + () (27w, dedy
TxR+ P
1
Z—HmenH%lz - HMH%{ZZL - ”wn”é:;;l’

and

w
1< 105127052

From the equation ([B.2]), we have

185

Wn
P

N _ 2 ( Oy " o A
=[lwt + (w), + (va)n + (Uw)n - = WT + 5/ w(t,z,)dn ) — —w— fn”Hm*l-
P nu . 0 n P co,l

The terms on the right hand side of the above equation can be estimated as

M gm-
g1

Pt
o V) — Ll 5 ol

n
co,l’

o2
(| (aw)z + (ﬁw)n - g (WL~> ||Hm71
n

ﬂ_) anu co,l
oo+ pV + e 2 [ 024 2 0%
p p anu 0 p 877’[,[, co,l

< (Lt [[allpoe + [Ixqllzoo) @]z, + (117]

co,l

[z + Izl -
(18 = Ullgnor + Il (el + lwallze) + (ol o + I prm) lnlz2 o)

11



and

n
(e [ wttinan) e
0 n co,

< (el + 18— Ul llollzs 4+ €l ol s
€, @ = Uyl gm-allwolizz  ngey + 1(€0)n (@ = Uhyllzz (o) lll grm—s-
(4) Estimate of I3. Decompose I3 into
L=1I5+13,

with
I

n
/ <77>2lmeZm (51/ w(t,x,ﬁ)dﬁ) dxdn,
TxR+ 0 n

TN
I2 = —/ R ARYAL <%/ w(t,a:,ﬁ)dﬁ) dxdn.
TxR+ P Jo n

and

For [ > 1/2, we have

/1er+ zm (51 /On wdﬁ) (<77>2lme)nda;dn‘ + /1er+ (Z™, 8] (51 /077 wdﬁ) ()2 27w\ dwdn

<illze o lwllmm, + 1276 zllwlcz e (127 3 + ol

co,l co,l
n
127l 30,6 [ i)l
<U6alze gz lollmz, + 1276 llliz o)) 127l 3 + ol

1127 3 (Wl o I lzge + N llage ool -

I3] <

m)

co,l

+ ”(fl)UHH;’;;lHWHLEM(Lg’) + ”(fl)nHLg’l(Lgo)HWHH;Z’Il)a

and

13| =

PO n
/ zZm <px(u—_U—|—U)/ w(t,x,ﬁ)dﬁ) (’I’}>2lmed$d77
TxR+ P 0 n

SUZ™ @ =U)lezllwllzz  (nee) + 12 = Ullzz ooy lollzz Y2l 2z + llwnllmz )

co,l co,l

H1270) 13 (1035 = O)lage ol s+ 100(@ = U)ol e

i~ Ull s ol + 1l = Ullzoe ol s + 127 ).

Summarizing the above estimates, it follows

a”wH%{gJ + HO‘)UH%{;’OLJ

S W, + Wl + (U N Dl + 0+ A21 s+ Dl (3.10)

12



where we have used the inequalities

”wvwx”L;’O(TXRﬂv ”wvc‘)nHL%’l(L;O) < CHWHB?J’
And this completes the proof of the lemma.
Remark 3.1 Similar to the above proof, one can obtain

ol Zma < CULFIFm  + 1l 3m-1), 0 <m <3, (3.11)
Bl co,l co,l

When m = 0, the term ||fn||§{m,1 is not in (FI1). By combining (FI104), (FI1) and using
co,l
Gronwall’s inequality, we get

[l < OO + 172 1) + (L Rars + M) g0 + 11200 (312)
We are now ready to prove Theorem B.11

Proof of Theorem [31]: Tt remains to estimate the higher order normal derivatives.
From the equation given in ([32]), we have

1 92 o2 n -
—wyy = Wi + (Uw)y + (MVw)y + (tw), — = wLu + <£/ w(t,x, ﬁ)dﬁ) - p—fw — fa-
p il 0 , P

P O
(3.13)
Applying the conormal operator Z™ to the above equation ([B.I3)) gives
[llgra < 3l ggno + 16((0)s + @)l o + 5Vl + 2 s
(3.14)

n ~
o€ [t i)dn) o+ lggno + 150, o

We estimate each term on the right hand side of the above inequality. By using Lemma 2.1] we
get

el gm + 1V @)yl g + 1Pl gn S ol g
Obviously, it holds

(@) + (0w)y )l gro = (P + PV + prit)w — iy, — powyl|gm.o,
where

12+ PV )ollgro < 1wl gpno,

1553 lggeo S 1ol zoellonllggeo + 3o o ez ey

x

13



and

Sla=Uligmollwallzee + ([[a = Ullzee + 1) |wl gmsr0-

The term ||p,tiw|| gm0 can be estimated similarly. Moreover, we have
l

I2xewllggns < xllzoe Nl gns + Il o2 ooy

And
10,(€ [ it i) lgpo = 16, | slt, )+ ) o
where
— 77 ~ ~
Hp(fn/o W(tal’ﬂ?)dﬁ”zgrﬂ 5“5177”37%0HW”LEM(Lgo) + HflnuLg’l(Lgft)HWHBIM»O
1= Ul g oz zgey + lillzge ol g
and

1€l gmo S N€allgmollwllzze, + [1€llzge lwllgmo + [[@ = Ullgmo l[wl[zee + ([[a] e + Dfjwl] gms-
Plugging the above estimates into (3.14]) yields
[wllgrm2 S Asallwllgmr + llwllgmrro) + Am,illwllgos +[1.fll g

Next, for any fixed n > 3, applying the differential operator Zm@’;_2 on the equation (3.13))
gives

el
_ _ _ 2 ( Oru U o Dt -
=|lp(w + (aw)z + (MVw)y + (vw), — 5 wo o + 5/0 w(t,z,n)dn | — Ew - fn)HBlm,n—2,
" n
where

_ Pt
P+ (V) — ilgprs S ol

[p(aw)s + p(ow)yll gmn—2 Sllwllgmn-2 + @ = Ul gmn-2llwslroe + ([ = Ullpee + 1)[jw]|gm+1.n-2

12l leonlgn-2 + ol g2 lonllzz ooy

12l gz S Tellgmnmt iz + Ixlpgrn-illllzz osey

14



and

n n
1 (¢ [ wttso. i) lggn-a =Ny [tz i+ €l g
n

Sl gn-2lollzz ze) + Il lllgnns + 1€l gmn-zliwlzes, + €l lolgmn-z.

Thus, we obtain
leollgzn S O+ Dl grsrn-s + ol 1) + At + 17l g

By induction on n, we conclude the estimate ([B5). And this completes the proof of Theorem
3.1.

4 TIteration scheme and convergence

Based on the energy estimate (3.3 on the solution to the linearized equations obtained in the
previous section, we now study the well-posedness of the nonlinear problem (LI]) by using a
suitable linear iteration scheme. From (B.1H), there is a loss of regularity in the solutions to the
linearized problem (B.I]) with respect to both of the background states and initial data. Hence,
as in [I], we apply the Nash-Moser-Homander iteration scheme. As we explained in Section
1, we do not have the divergence free condition, and the far-field state is not uniform. Thus,
the shear flow is no longer the special exact solution to the compressible Prandtl equations
(CI) in contrast to the incompressible problem studied in [I]. Thus, to start the Nash-Moser-
Homander iteration, we need to construct a proper zero-th order approximate solution satisfying
the nonlinear compressible Prandtl equations with enough decay in n. The construction will be
given Subsection 4.1. Then, in Subsection 4.2 we present the Nash-Moser-Hémander iteration
scheme for the problem (LIJ). The estimates of the approximate solutions are obtained in
Subsection 4.3. In Subsection 4.4, we conclude the convergence of iteration for the existence
and uniqueness of the solution to the nonlinear problem (IT)-(T3]).

4.1 The Zero-th order approximate solution

In this subsection, we construct the initial approximate solution to in the following three sub-
sections.

4.1.1 Compatibility conditions and initial data

Set
u=U(t,x)+u, v=V(tz)n+o.
By using the Bernoulli law (4], from (LI we know that (u,v) satisfies
1
Uy + Uyt + Uty + Gty + (0 + V)i, — Eaf,a =0,

0,(70) + D7) = 0, (41)

a(t7x777)‘t=0 = ug — U(wa)a @‘7720 =0.
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Denote ‘ ' ‘ ‘
@’ (x,n) = Ofu(t,z,n)li=0, ¥ (x,1) = lv(t,x,m)li=0-

From the compatibility condition of [@II), {@’, 7} <y, is in turn given explicitly by ug(x, ), U(0, 2)
and V(0,x).
We define the first approximate solution (u,v) of ([@Il) as follows.

. ko tj,' . 1 (" " .
u (t7x777) = Z FU](.Z',T]), v (t7x777) = _;/0 (pu ):c(tal’ﬂ?)dﬁ (42)
=07’

From (H3) and (H4) in the Main Assumptions (H), it follows that

max [[m)74 D™ ()2 rarey < CCo, ] < 2k, (43)

for a fixed T > 0, where C' depends on o and the Sobolev norms of dF(p,U,V,U,), k < k.
Setting

u(t,x,n) = U(t,x) +u(t,z,m), v (t,x,m) = V(t,x)n + vt z,n), (4.4)

then, (u*,v*) is an approximate solution to the problem (L)) satisfying compatibility condi-
tions up to order kg and initial data.

4.1.2 Improving decay in 7

Note that the approximate solution (u®',v®) satisfies
. al o
ngg—loou (t,x,ﬁ) - U(t,ﬂj‘), (45)
and the divergence constraint
0z (pu) + 0y (o) = —pr, (4.6)
for all ¢ > 0. However, the error
1

= (0 +u™o, + v, — 8$)u“1 + P,

p(t, )
does not have enough decay compared with anual as 11 — 400. Since this property is essential
for the convergence of the Nash-Moser-Hormander iteration scheme of the nonlinear problem

given in next section, we need to modify the approximate solution (u®!,v?!) as follows.
From (L)), 0,u satisfies

1
(Of + u0y +v0, — m@%)un + (uz + vy)uy, = 0,

Uply=0 = PP
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This motivates us to consider the following initial-boundary value problem for a linear degenerate
parabolic equation:

b+ (u 9, + (1), — %@%gb 0,

Ioly=0 = (pPr)(t, z),
Pli=0 = (Fyuo)(z,n).

(4.7)

Suppose that the solution ¢ of (7)) is obtained. Define an approximate solution (u??, v%?)
as

[e's) 1 n S
w =) [t o =vaed 6 [T o e gana @y
" PJo i
It is straightforward to verify that the compatibility conditions of (ILI]), the far-field condi-
tion ([AH) and the divergence constraint (6] still hold for (u®?,v%?). Moreover, it satisfes the
equation,
7

o= /noo ([U —u /: o(t, z, s)ds} ¢> dij — (v"% — v,

T

1
uf? + uul? + vl + P, — Eﬁguﬂ = f°, (4.9)

where

which will be shown to decay faster than a,,ua?

From the boundedness of u® given in (£3]) and some elementary weighted energy estimates
on the solution to ([.7]), we have

Proposition 4.1 Under the Main Assumptions (H) on the initial data, there exists a unique
solution ¢(t,z,m) to [{.7). Moreover, there is T > 0 such that ¢ satisfies

Cy N
o < >
max 9] 200 < Crv o lt ) 2 s V(t,z,n) € 0,T] x T x R, 10)

[(1+7)7+2492 DG Lo o 1wty < C3, || < ko,

where

lE@ y2r0 = > A+ )2 DG ()| p2(rartys
|| <2ko

with D* = 0;10p%, a = (a1, az).

Proof.  The proof is divided in two steps.
(1) Applying the operator D% = 9;",05* to the equation (&), multiplying the resulting
equation by (1 + 7)?7+292 D% and integrating it over T x R, we obtain

1d IO 1
sl (L+m)7 2D ¢(t)72 + | —=

7
(L+n)7 2 D%, (0|7 = ) L, (4.11)
\/ﬁ n L ZZ:;
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where
= [ g (D ) dad,
TxR+

,[2 — / (UalDa¢x + UalDa¢n)(1 4 77)2’Y+2012D0c¢dxd7]7
TxR+

1 — (07 (07
Iy = 20y + a») / L 4 21 (Deg, ) (D% ) dedn,
TxR+ P

L=y c / (14 7)2202 D8 (us! 4 1) (D5 5)(D° ) deedy,
0<f<a 7 TXRT

= > Cf / (14 n)?rt202(DPy DB, + D™ DY ¢, ) D* pdadn,

0<B§O¢ TxR+t
1
= Y / (1 + )27+ (D8 Ly (62 D8 8) (D g)
0<B<afBa=0  JTXRT P

and .
17 = / — (0, DYPD@)|y=odz.
T P
It is straightforward to show

1] <z, vt oo (1 + n) 702 DY 7,

[Io| =| . (U™ D%, + v DY) (1 + 1) 214292 D2 Gz
X

SlugHlzee + llog lzee + llogt /(1 +m) o) 1 (1 +0) 72D,

by integration by parts, and using fu“l\n:o =0, and

1
[I3] =2(y + az)| — D¢y (1 4 )7 T2*2 7LD pddn)|
TxR+ P

1,1 1
<cll—=(1+n)* D%, 7. + CHEHLM 1L+ n)7+ 2 Dg|[72.

=307
On the other hand, we have

_ = = al
L=l 30 08 [ DA PP 1D (14 g D )
0<B§a TxR+

pt + paU =
<C| ZDB(TQC)IILOOHQSHZ?O + [ L],
B

ot + p.U
by noting that 8y = 0 for the operator D? acting on M Hence,

_ Do ual —-U
il < el (D2 =) ol for 191 <
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and

Ll <cla+ n)ﬁwﬁ%nmn(l )2 DAB | (1 4 )70 DO 1o

D ual —-U
<cl+n (D P fafol s tor 181> ko

by using the weighted Sobolev embedding. Similarly, one has

Bl=l S [ CHDDY o+ DD E,) (1 4 D odady
0<B<a TxR+
<|I3| + |13,
where
1y [CUP D040 i DV T 12191 < o
T CUDP e —0)+  + 1DOU )y Tor 161> o
and

ClIDo (14 m)% " [ [ 912 2, for 1< |B] < ko,
s

|I2|§
C||DPv (1 +77)B2_1HL2”¢H§{%07 for 2 #0, |B] > ko;
vy

5

12| <CID W™ (14 0) ™ seu) 1D 2y (1 + )+ 1o o) | D21 + ) 7H2 2,
<CID?0 (1 0) a0y Tor 5= 0, 18] > ko

For the term I, by integration by parts, we have
— 1 a— a
Tol= > (! / C2y + 200)(1 + )* 720271 (D7 =)(9, D7) (D ¢)
0<B<a.Ba=0 TxR+ P

[ B0 0,0 ) (D1, dnd
TxR+ 1Y
1
- oﬁ(DﬁﬁxanDa—%)(D%)|n:odx|)

1
< ¥ (r [ 0" 20,0°76) (0% 0)| - +cu<1+n>v+a2m-%nu%z)

0<B<a,ﬁ2

H (1+77)”’+°‘2Da¢ 172

8"\V/p

It remains to handle the boundary integration terms on the right hand side of the above
estimate and I7. For illustration, we only estimate I7.
Firstly, noticing that

817¢|77:0 = ﬁny
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and applying the operator 9, on the equation (1), we obtain
1 3 al al al
58 ¢ = (Pn)t + (ug @)y + (U™ ¢z )y + (V" @)y
Taking this equation on the boundary { = 0} and using the boundary condition, we get
383 — (P alfp al al 5P al al—P al
ﬁ ¢’77:0 - (p Sc)t + Uy Pl + uxn¢’n:0 +u (p Z‘)CE + un ¢Z"n:0 + 2’1)77 Py + Unﬁ(b‘n:()'
By induction, for positive integer k, we have

1
507 =0 =95 00+ O (w1 0) + 07 () + O (0 9)

2k—1
1 1 (= ] ] 192k—1—1
:[F(Dfo{z\§2k—2ua ’D%\§2k—2va 7D%‘§2k_3¢yD (/07 Pm))]t + Z O%k—la%ug 817 qu
=1
2k—1 ) ' ' 2k
X Gl B, S Chop o
j=1 s=1

o 1 B 1 5
_G(D\O‘;|S2kua vD\5|§2kva ,Dﬁyggk_l@b, Dﬂ(p, Pac))),

where F, G are polynomial functions. Hence, the normal derivative of ¢ can be reduced by two
order using the boundary condition and the equation (47]). Therefore, we can use the trace
estimate to control the boundary integral.

Thus, by summarizing the above estimates, and taking summation over |a| < 2k for ([@.I1]),
it follows

d 1 o o
I+ 3 =14 )72 D% 1) < ClODI -
|| <2ko

which implies the first boundedness estimate given in ([£I0) by using Gronwall inequality.

(2) Next, we apply the maximal principle to prove the second estimate given in (4.10).
From [&7), y(t,z,n) = (1 + 1) 2¢ satisfies the following degenerate parabolic equation,

2(v+2) 1

al al 2
2y, — —0%y = 0.

v (2 4 +2)(v+3
yt—l-(ugl—l-vf;l— ( 7) _ (/7_ )(7 . )
1+n p(1+n)

By the maximal principle (see also Lemma E.2 in [I1]), we have

min y(t) > (1 — e )k(t),

TxR+
with
k() — mi . - . -
(t) mln{Tn;[le Yli=o, [O,I%ISTMW—O}’
al 2 2
foraﬁxed)\z“(uglﬁ-vgl—v @+v _ O+ )(V+3))HL°°

1+ p(1+mn)?
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It follows from the Main Assumptions (H2) on the initial data that

min y(0) > > 0.
TxR+ y( ) =90

It suffices to derive the lower bound on : gn}inTyM:o. Notice that y|,—o = ¢|,—0, the first bound-
4%
edness estimate of (ZI0)) and the Sobolev inequality give

1¢tln=o0llz < C.
Consequently,
(t) =0 > ¢(0,z,1)|y=0 — Ct > a9 — C't.

Thus, we have the lower bound given in the second estimate in (£I0]) provided that ¢ is suitably
small. The third estimate in (£I0) can also be proved by the maximal principle similarly (also
refer to Lemma E.1 in [II]). Then the proof of this proposition is completed.

4.1.3 Boundary condition

It is noted that the approximate solution u%? does not satisfy the original boundary condition,
that is, u®?|,—o # 0. For this, set

C(t ) & u)y_g = Ult,z) /0 o(t, 2, m)dn.

¢(t,x) is uniformly continuous and bounded due to (£I0). By the compatibility condition of
the initial data, we have ((0,z) = 0. Consequently, |((t,z)| < e, t € [0, 1], with eg — 0 as ¢
tends to zero.

In addition, there exists a smooth monotone decreasing function ¥ (n) C [0,1],7 > 0 such that
suppy C [0,1], ¥(0) = 1 and [¢'(n)| < C. Note that there exists a positive constant ag such
that ¢(t,z,n) > ag,n € [0, 1].

Now, define
a3 a2 a3 1 K —/ a2 ~ ~ ~
wh = = ((apiln), = — [ ) ~ UG ) = (o @)edi (412)
It is direct to check that u®3(t,z,mn)|,=0 = 0, and
gt ,) = 9lt,,m) — () (n) > & >0, (113)

provided that ¢ € [0, o] with ¢y being suitably small. And the profile (u®®,v®?) satisfies

1
ud3 4+ uBud3 + U“3ug3 + P, — j@%u“g = fe,

O (pv®3) + O (pu®3) = —py,
ua3(07 .Z', 7]) = (87]U0)(.Z', 77)7

(4.14)
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with ¢ = f0 — fO where

a2 (g n "5 n
FO = G Con? G = G ot = I [ gy S [y i - L

0 p 0 p

Remark 4.1 The approach of constructing the zero-th approximate solution to (I1) introduced
above can be applied to the incompressible Prandtl equations.

4.2 The Nash-Moser-Homander iteration scheme

We now construct the approximate solution sequence of (ILT]) by using the Nash-Moser-Hémander
Iteration Scheme. The procedure mainly follows the one given in [I]. Thus, we will only present
the main steps.

Denote the linearized operator P’ around (&, §) of (L)) by

. . . . 1
P&M) (w,q) = Opw + Qwy + Gy + Wy + gy — Eﬁgw.

Suppose that the approximate solutions (uk, vk) of (LI)) have been constructed for all & < n,

with u® = 4% and v = v® being defined in Subsection 4.1.3, we construct the (n + 1)—th
approximate solution (u"! v"*1) as follows:

u" = 4 U = w4+ A 4w, " = 0" 4 " = 0 4 0"+ S, (4.15)

where the increment (du",d6v™) is the solution to the following initial-boundary value problem

qug vy )(5un’5vn) = f",

aﬁ(ﬁ(tv :E)(S’Un) + 8w(ﬁ(t7 gj)éun) =0,

u"|p—p = "= =0 lim du" =0 (4.16)
n= n= ’ n=sto0 ’

(5u”]t:0 = 0.

Here, ug = u® + Sp 4" and vy, = v93 + Sp, 9" with 0, = \/02 + n for any n > 1 and a large
fixed constant #y. The smoothing operator Sy is defined by

(Sof)(t,2,m) = / / / Jo(r)do(€)do() F(t — 7+ 07V x — £ — o+ 6~V )drdédp,

for a function f defined on Q = [0,4+00[xT, X R;’ with f being the zero extension of f to
R3, and the mollifier jy(7) = 05(07) with j € C§°(R) being a non-negative function satisfying
Suppj C [~1,1] and [|j]|1 = 1.
In order to show that the approximate solution (u™,v™) converges to the solution of the
nonlinear problem (LL1), we need to define the source term f™ properly for the problem (4.I4).
To do this, denoting the nonlinear operator on the left hand side of (LIl by P(w,q),
obviously, the following identity holds:
Pu"T ") — P(u™,0™) = P y(0u™, 6v™) + en, (4.17)

n n
(uen Vo,
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where
en = ei + efl,
with el being the error term from the Newton iteration,
el =P(u™ + du™, o™ + sv™) — P(u",v™) — Péu7l7vn)(5un, do™)
=0u" 0, (0u™) + dv" 0y (6u™), (4.18)
and €2 being the error from mollifying the coefficients,
2 :PEunwn)((Sun, ") — Péugn ’Ugn)(du", ™)
=((1 — Sp, ) (u"™ — u®))dy (6u™) 4 6u"d, ((1 — Sp,, ) (u™ — u®?))
+ ((1 = Sg,) (V™ — v*))Dpdu™ + 0™, (1 — Sp,, ) (u™ — u®)). (4.19)
Taking summation of (£I7]) over all n € N leads to

n

n+l ,n+1ly __
P v )—Z(PE

J=0

o, mg)»j)(éuj,év]) +e5) + f9, (4.20)
with f@ = P(u®,v3).

It is obvious that if the approximate solution (u™,v™) converges to the solution to (L),
then the right hand side of (£20]) must converge to zero as n tends to +oo. In this way, it is
convenient to require that (du", 0v™) (n > 0) satisfies the equation,

Péug )(5u", o) =,

/U’!L
n’ On

where f" is defined by

3
|
—

n

=8> ej)— S, [ (4.21)
=0 j

<
I
o

inductively, that is,
fo = _SGOfav fl = (590 - 591)fa + Seofav
n—2

"= (S0, —S0,)( > €)= So,en-1+ (S0, —S6,)f" Vn=>2,

j=

(4.22)

o

with f given in (414).
We now give some properties of the smoothing operator in the following lemma, which also
can be found in Section 4.1 of [1J.

Lemma 4.1 The smoothing operator {Sp}e=o : AYQ) — Ns>0 A7 (), satisfies the following
estimates:

[Spula; < CH0= e, for all s,0> 0, o
[(1 = Sp)vllar < CJH(S_")HUHA?, for all 0 < s < a, ’
and
[(Se,, — Se,,_1)vllaz < C;A0;7v]|ap, for all s,a >0, (4.24)

where A0y, = 011 — 0y, and the constant C; depends only on the mollifier function j € C§°(R).
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4.3 Estimates of the approximate solutions

To study the solutions (éu", Jv™) to the problem (A.I6]) with f" given in ([@.22]), as in Section 3,

set
pou™
"=0,| —— | . 4.25
w n <87]ugn ) ( )
Then w™ satisfies
2 n 0 1 -
QW™ + 0z (ug W) + Oy (vg W) — ;(w"x")n + (5"/0 W (t, x,7)dn), — %w" — Ew;‘n =17,
1 _
E(MZL +2w"X")ln=0 = —f"[n=0,
wn’tZO - 07
(4.26)
where
1
O + ul Oy + vl 8, — =02)0,ul _
Xn:(?%ugn gn:(t 6, %z T Vg, On pn)nen_ugnpxégn_gn
8,7ugn’ Oy p 1 2
and
n p_fn
— . 4.27
f Oy, (4.27)

Similar to B.3)-@B4]), we define

k1 ak: k1 ak:
Mo = 15, = % oo + 12505208, | e 3 ) + 12 08X oz + €0 gt

and

n __ n
Ak: - Z k1,ka"

k1+[(k2+1)/2]<k
Applying Theorem B to the linearized problem (4.26]), we have

Theorem 4.1 Suppose the known functions (p,U,V)(t,z) satisfy the same assumptions as in
Theorem [, and the main assumptions (H) are satisfied. Then for any fized | > 1/2, the
following estimate holds for the solution of the problem (E24]),

o™ g < CLODIF™ g + CoODAIF L g (4.28)

Similar to the Lemma 5.3 in [I], we also have

f(l
I3, e | atoqorixrsy < O
because the construction of (u®®,v*?) and the estimates in Proposition @Il Where e comes from
the smallness of the integral interval of time. Then, as in [1], by studying estimates of f" and

using an induction argument, we have
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Theorem 4.2 Under the same assumptions as those in Theorem [{.1], there exists a positive
constant Cy such that

max{3 — k, k — %}AH

Hw"HAf < C0€9 (4.29)

holds for allm > 0,0 < k < ko and k> 6 here 6, = V02 +n and A0, = 0piq — 0.
Using the transformation ([£.20]), we can obtain

Corollary 4.1 Under the same assumptions as those in Theorem [[.3, the following estimates
hold

max{3 — k,k — k}

[5u™ || 41 < Ceb; 0<k< ko, (4.30)

and

max{3 — k,k +1— k}

”(S’UanDg § C1€9j 0 S k § ko —1. (4.31)

4.4 Existence to the nonlinear problem

To show the existence of solution to the nonlinear boundary layer equations (I.I]), we need to
show the convergence of the iteration scheme (EI0)-(@.I6). From this iteration, we know that
the approximate solutions (u"*!,v"*1) solve the following problem

P(u"+1,vn+l) _ (1 _ Sﬁn) Z €; + S@nen + (1 - Sﬁn)fa’

=0

Oy (pu™ ) + an(ﬂ_’vn+l) = =P, (4.32)
n+1 — g+l : n+l _

u |?7=0 v |77—0 0, nE—Hi-loo u U(t7 33),

un-i—l ’tZO = uo(az, T')

From the estimates given in Corollary 1] we know that there exist functions u € Af_Q and

v E Dg_?’, such that ™ converges to u in Af_2 and v" converges to v in Dlg_?’. In order to show
the function pair (u,v) is indeed a solution to the system (I.T), it suffices to show that the right
hand side in equation (£32]); converges to zero as n tends to +o0o. Firstly, by using Lemma 4.1,

1= Se)(f* + > e)llap < CO S| g + 1 Zej”A;chl).

J=0 J=0

n

Then it suffices to show the || Z ej|| yr+1 converges. From the definition of e; = e;- + e? given
1

=0
in (@I8)-@I19), we have

et s <CG eI | sz + 1607 oo 0 | g + 11607 o 607 22 )
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<2t Rrmaxi =R R 2=k g g2 < o2ghts-ting,,

fork:ﬁ/;;—5. And
I€3lLagn <UL = So,)(00 =00 007)] g + 212 (1 = 5,) (00 = )6 g

1105((1— S,) (07 — 0 (30 | g + (1~ So,) (07— 0%))8y (007 g
(1~ So, )7 —u)) (607

<C(||u? - u“?’HLgJ(Lgfw)||5vj\lpg+z + [lu? — ua?’HAfHHan(‘sUj)HLOO
= g |22 e+ = e P25
+ H5UHA5+1H@7(W —v™)| L + HéuHL%J(LZOz)H(Uj = v“?’)||7315+2
+ H5U\|Af+2\l(vj — v~ + ||3n5UHL3M(Lg§>x>H(Uj = v“?’)llng
11007 s 1967 — g2 s + 1007 o0 ? — ) yer)

<0268+ k e,

for k < k — 5. Thus, we get that

+o00 +o0o B
Y lesllar < Y0506, < CCy,
=0 =0

for k < k—5.
Therefore, the right hand side of (£.32)); tends to zero as n tends to +00. The uniqueness
of classical solutions to (II]) can be proved as in [I]. Then we complete the proof of Theorem

L1
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