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INTERTWINING CONNECTIVITY IN MATROIDS

RONG CHEN AND GEOFF WHITTLE

ABSTRACT. Let M be a matroid and lef), R, S andT" be subsets of the ground set
such that the smallest separation that sepa@téom R has orderk and the smallest
separation that separat€drom T" has ordef. We prove that it (M) — (QURUSUT)

is sufficiently large, then there is an elemendf M such that, in one of\f/\e or M/e,
both connectivities are preserved.

1. INTRODUCTION

Let M be a matroid with ground sét(M). For anyX C E(M), definey(X) :=
rv(X)+ru(E(M) — X) —r(M). For disjoint subset§, R of E(M), theconnectivity
betweert) andR is

KM(Q,R) = mln{/\]w(X) : Q CXC E(M) — R}
In the paper, we prove

Theorem 1.1. There is a functior : N2> — N with the following property. Led/ be a
matroid, andQ, R, S, T, F C E(M) sets of elements such th@in R = SN T = () and
F=EM)—-(QURUSUT). Letk := kp(Q, R) and( := s(S,T). If |F| > ¢(k, £),
then there is an elemeate F' such that one of the following holds:

() kane(@, R) =kandryne(S,T) = ¢,

(||) K:]W/e(Qv R) =k andK,M/e(S, T) =/.

This theorem resolves a conjecture of Geelen (private comization). It strengthens
a theorem of Huynh and van Zwam [2] who prove the result foraa<that includes all
representable matroids but does not include all matroids.

The value that we give foe(k, ¢) is unlikely to be tight. Thék + 1) x (¢ + 1) grid
gives an example where the theorem fails with = 2kl — [ — k. Perhaps this example is
extremal?

Conjecture1.2. Theoreni I holds withF'| = 2kl — 1 — k + 1.

2. PROOF OFTHEOREM[L.]

For any disjoint subset®, R of the ground set of a matroidi/, Tutte [3] proved that
there is a mino?V of M with E(N) = Q U R and such that(Q, R) = An(Q), which is
a generalization of Menger’s theorem to matroids. Equivilfewe have

Lemma 2.1. Let M be a matroid and?, R be disjoint subsets af(M). For anye €
E(M) - (Q U R) eitherl{]\ff\e(Qa R) = I{M(Qv R) or I{]\{[/G(Qa R) = K’M(Qv R)
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Let M be a matroid and), R be disjoint subsets oF'(M). DefineMy (Q,R) =
ra(Q)+rum(R) —ra(QUR). Apartition(A, B) of E(M) is Q — R-separating of order
E+1ifQC A RC Band\y(A) <k. Letec E(M) - (QUR). If kppne(Q,R) =
ku(Q, R), thene is deletable with respect (@), R); if k/.(Q, R) = ku(Q, R), then
e is contractible with respect t@Q, R); and if e is both deletable and contractible with
respecttq@, R), thene is flexible with respect t¢Q), R). Lemmd 2.1l implies that for any
e € E(M) — (Q U R) eithere is deletable with respect (@), R) or e is contractible with
(Q.R).

Theorem 2.2. ([2], Theorem 3.4.) Led/ be a matroid andy, R be disjoint subsets of
E(M),letk .= k(Q, R), and letF C E(M) — (Q U R) be a set of non-flexible elements.
There are an orderind f1,--- , f,) of F and a sequence df4,,--- , A,,) of subsets of
E(M) such that

(i) A, is @ — R-separating of ordek + 1 for eachi € {1,--- ,n};

(i) A; C A;4q foreachi € {1,---,n};

(i) AinF={f1, -, fi}foreachi e {1,--- ,n};

(IV) fi € C|(Al - {fz}) n C|(E(M) - Az) or f; € C|*(Ai - {fl}) n C|*(E(M) - Al)

Theorem 2.3. ([2], Lemma 3.6.) Lefl/ be a matroid and?y, R be disjoint subsets of
E(M), letk := k(Q, R), and let(U, E(M) — U) be aQQ — R-separating set of order
k+1.Ife e E(M)— (UUR) is non-contradictable with respect {Q), R), thene is also
non-contradictable with respect {&/, R).

First we prove that Theoreim 1.1 holds for the cge= |T'| = /.

Lemma 2.4. There is a functior: : N> — N with the following property. Lefi/ be a
matroid, andQ, R, S, T, F C E(M) sets of elements such th@tn R = SN T = () and
F=EM)—(QURUSUT). Letk := kp(Q, R) and{ := kps (S, T). If |S| = |T| = ¢
and|F| > c(k, ), then there is an elemeate F such that one of the following holds:
() kane(@, R) =kandryne(S,T) = ¢,
(||) K:]W/e(Qv R) =k andHM/e(S, T) =/.

Proof. We prove that the result holds fo(k, ¢) := (2¢ + 1)2%*+1. If F contains some
flexible element with respect t@, R) or (S,T), then we are done. So we may assume
that each element ift is non-flexible with respect t(Q, R) and non-flexible with respect
to (S,T). By Lemma2.1 an elementin F is deletable (or contractible) with respect to
(@, R) if and only if e is contractible (or deletable) with respect(t, T'), for otherwise
the lemma holds.

Let (Ay,---, Ack,p)) be the nested sequence@f- R separating sets from Theorem
2.2, let(By,- -+, Bek,e)) be their complements, and 1€f1,-- -, f..r)) be the corre-
sponding ordering of". Since|S| = |T| = ¢, there is a positive integersuch that

i+ 2% < ¢(k,0)and suchtha URUSUT C A; U By g2k41. Set
Q :=A;, R := Bijo2s1, F := E(M)— (Q UR'),

A; = Ai-l—j7 B; = Bi-l—j7 f;
Thatis,F" = {fi, -, f,er1}. By duality and Lemm&2]3, each elementfinis non-
flexible with respect t4Q’, R).
Let(Cy,- - ,Cyk+1) be the nested sequence®f T separating sets from Theoréml2.2
determined by the non-flexible-element 8ewith respect td S, ), let (D, - - - , Dozis1)
be their complements, and I, - - - , go2++1) be the corresponding ordering Bt By

= fitj, foranyl <j < 92k+1
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duality we may assume that is a deletable element with respect{#) 7T"). Then (i)g; €
cl(C1—{g1}) and (ii) g1 is a contractible element with respec{, R). By (i) and the fact
thatC; —{g1} € Q'"UR’ we see thay, € cl(Q'UR’). From (ii) we deduce that, ¢ cl(Q")
andg; ¢ cl(R'). Thereforey (Q U{g:}, R') = My (Q', R') + 1. Assume thag, = f;.
If j < 22*thense” := A}, R" = R';elseifj > 2?* thense®” := Q',R" := B;_,.
No matter which case happens, #et := E(M) — (Q" U R"). Evidently,|F"| > 22
as|F'| = 221 ReplacingQ’, R, F' with Q" R", F" respectively and repeating the
above analysigk times, there are numbeys, j> with 2k + 1 < j; < jo < 2261 such
thaty (A),, B;,) > k+1orMy-(A; ,Bj,) > k + 1, a contradiction to the fact that

A(A},) = k. So the lemma holds. O
To prove Theorem 111 we still need the following lemma.

Lemma2.5. ([1], Lemma4.7.) LeM be a matroid andb, T be disjoint subsets df(M).
There exists set§; C 5,71 C T such thatS;| = |T1| = (51, T1).

For convenience we restate Theoffeni 1.1 here.

Theorem 2.6. There is a functiore : N> — N with the following property. Led/ be a
matroid, and@, R, S, T, F C E(M) sets of elements suchth@tn R = SN T = () and
F=EM)—-(QURUSUT). Letk := kp(Q, R) and( := s(S,T). If |F| > ¢(k, £),
then there is an elemente F' such that one of the following holds:

() kane(@, R) =kandryne(S,T) = ¢,

(||) K:]W/e(Qv R) =k andHM/e(S, T) =/.

Proof. We prove that the result holds fetk, ¢) := (2¢ + 1)2%*+1. By Lemmd2.b there
are setsS; C S, Ty C T such thalS,| = |T1| = kam(S1,T1). Then LemmaZ]4 implies
that there is an elemert € E(M) — (Q U R U S; U Ty) such that for somé/; €
{M\e1, M/e1} we havery, (Q, R) = k andkpy, (S1,T1) = £. Sinceryy, (S1,T1) = ¢
implies s, (S,T) = ¢, whene; € F the lemma holds. So we may assume that
F. Thatis,e; € (SUT) — (51 UTy). SinceF C E(M;) — (QURUS; UTY),
using LemmaZJ4 again there is an elementc E(M;) — (Q U RU S; U Ty) such
that for someM; € {M;\es, M1 /es} we haver,, (Q, R) = k and kg, (S1,T1) = L.
Without loss of generality we may assume thét = M;\ea2. Thenky.,(Q, R) = k
andrppe, (S1,T1) = £ asky(Q, R) = k andrp(S1,T1) = £. Thus, where; € F,
the lemma holds. So we may assume that? F. Since(S UT) — (S1 U Ty) is finite,
repeating the above analysis several times we can always finithor with an element
such that (i) or (ii) holds. The theorem follows from this ebsation and the fact that the
connectivity function is monotone under minors. O
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