
ar
X

iv
:1

40
3.

09
97

v1
  [

m
at

h.
C

O
]  

5 
M

ar
 2

01
4

Key Words:matroids, connectivity, interwining connectivity.

INTERTWINING CONNECTIVITY IN MATROIDS

RONG CHEN AND GEOFF WHITTLE

ABSTRACT. Let M be a matroid and letQ, R, S andT be subsets of the ground set
such that the smallest separation that separatesQ from R has orderk and the smallest
separation that separatesS fromT has orderl. We prove that ifE(M)−(Q∪R∪S∪T )
is sufficiently large, then there is an elemente of M such that, in one ofM\e or M/e,
both connectivities are preserved.

1. INTRODUCTION

Let M be a matroid with ground setE(M). For anyX ⊆ E(M), defineλM (X) :=
rM (X) + rM (E(M)−X)− r(M). For disjoint subsetsQ,R of E(M), theconnectivity
betweenQ andR is

κM (Q,R) := min{λM (X) : Q ⊆ X ⊆ E(M)−R}.

In the paper, we prove

Theorem 1.1. There is a functionc : N2 → N with the following property. LetM be a
matroid, andQ,R, S, T, F ⊆ E(M) sets of elements such thatQ ∩ R = S ∩ T = ∅ and
F = E(M) − (Q ∪ R ∪ S ∪ T ). Letk := κM (Q,R) andℓ := κ(S, T ). If |F | ≥ c(k, ℓ),
then there is an elemente ∈ F such that one of the following holds:

(i) κM\e(Q,R) = k andκM\e(S, T ) = ℓ;
(ii) κM/e(Q,R) = k andκM/e(S, T ) = ℓ.

This theorem resolves a conjecture of Geelen (private communication). It strengthens
a theorem of Huynh and van Zwam [2] who prove the result for a class that includes all
representable matroids but does not include all matroids.

The value that we give forc(k, ℓ) is unlikely to be tight. The(k + 1) × (ℓ + 1) grid
gives an example where the theorem fails with|F | = 2kl− l− k. Perhaps this example is
extremal?

Conjecture 1.2. Theorem 1.1 holds with|F | = 2kl− l − k + 1.

2. PROOF OFTHEOREM 1.1

For any disjoint subsetsQ,R of the ground set of a matroidM , Tutte [3] proved that
there is a minorN of M with E(N) = Q ∪R and such thatκ(Q,R) = λN (Q), which is
a generalization of Menger’s theorem to matroids. Equivalently, we have

Lemma 2.1. Let M be a matroid andQ,R be disjoint subsets ofE(M). For anye ∈
E(M)− (Q ∪R) eitherκM\e(Q,R) = κM (Q,R) or κM/e(Q,R) = κM (Q,R).
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Let M be a matroid andQ,R be disjoint subsets ofE(M). Define⊓M (Q,R) :=
rM (Q)+ rM (R)− rM (Q∪R). A partition(A,B) of E(M) isQ−R-separating of order
k + 1 if Q ⊆ A, R ⊆ B andλM (A) ≤ k. Let e ∈ E(M) − (Q ∪ R). If κM\e(Q,R) =
κM (Q,R), thene is deletable with respect to(Q,R); if κM/e(Q,R) = κM (Q,R), then
e is contractible with respect to(Q,R); and if e is both deletable and contractible with
respect to(Q,R), thene is flexible with respect to(Q,R). Lemma 2.1 implies that for any
e ∈ E(M)− (Q ∪R) eithere is deletable with respect to(Q,R) or e is contractible with
(Q,R).

Theorem 2.2. ([2], Theorem 3.4.) LetM be a matroid andQ,R be disjoint subsets of
E(M), letk := κ(Q,R), and letF ⊆ E(M)− (Q∪R) be a set of non-flexible elements.
There are an ordering(f1, · · · , fn) of F and a sequence of(A1, · · · , An) of subsets of
E(M) such that

(i) Ai isQ−R-separating of orderk + 1 for eachi ∈ {1, · · · , n};
(ii) Ai ⊆ Ai+1 for eachi ∈ {1, · · · , n};
(iii) Ai ∩ F = {f1, · · · , fi} for eachi ∈ {1, · · · , n};
(iv) fi ∈ cl(Ai −{fi})∩ cl(E(M)−Ai) or fi ∈ cl∗(Ai −{fi})∩ cl∗(E(M)−Ai).

Theorem 2.3. ([2], Lemma 3.6.) LetM be a matroid andQ,R be disjoint subsets of
E(M), let k := κ(Q,R), and let(U,E(M) − U) be aQ − R-separating set of order
k+1. If e ∈ E(M)− (U ∪R) is non-contradictable with respect to(Q,R), thene is also
non-contradictable with respect to(U,R).

First we prove that Theorem 1.1 holds for the case|S| = |T | = ℓ.

Lemma 2.4. There is a functionc : N2 → N with the following property. LetM be a
matroid, andQ,R, S, T, F ⊆ E(M) sets of elements such thatQ ∩ R = S ∩ T = ∅ and
F = E(M)− (Q∪R∪S ∪T ). Letk := κM (Q,R) andℓ := κM (S, T ). If |S| = |T | = ℓ
and|F | ≥ c(k, ℓ), then there is an elemente ∈ F such that one of the following holds:

(i) κM\e(Q,R) = k andκM\e(S, T ) = ℓ;
(ii) κM/e(Q,R) = k andκM/e(S, T ) = ℓ.

Proof. We prove that the result holds forc(k, ℓ) := (2ℓ + 1)22k+1. If F contains some
flexible element with respect to(Q,R) or (S, T ), then we are done. So we may assume
that each element inF is non-flexible with respect to(Q,R) and non-flexible with respect
to (S, T ). By Lemma 2.1 an elemente in F is deletable (or contractible) with respect to
(Q,R) if and only if e is contractible (or deletable) with respect to(S, T ), for otherwise
the lemma holds.

Let (A1, · · · , Ac(k,ℓ)) be the nested sequence ofQ − R separating sets from Theorem
2.2, let (B1, · · · , Bc(k,ℓ)) be their complements, and let(f1, · · · , fc(k,ℓ)) be the corre-
sponding ordering ofF . Since|S| = |T | = ℓ, there is a positive integeri such that
i+ 22k+1 ≤ c(k, ℓ) and such thatQ ∪R ∪ S ∪ T ⊆ Ai ∪Bi+22k+1 . Set

Q
′

:= Ai, R
′

:= Bi+22k+1 , F
′

:= E(M)− (Q
′

∪R
′

),

A
′

j := Ai+j , B
′

j := Bi+j , f
′

j := fi+j , for any1 ≤ j ≤ 22k+1.

That is,F
′

= {f
′

1, · · · , f
′

22k+1}. By duality and Lemma 2.3, each element inF
′

is non-
flexible with respect to(Q

′

, R
′

).
Let (C1, · · · , C22k+1) be the nested sequence ofS−T separating sets from Theorem 2.2

determined by the non-flexible-element setF
′

with respect to(S, T ), let(D1, · · · , D22k+1)

be their complements, and let(g1, · · · , g22k+1) be the corresponding ordering ofF
′

. By
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duality we may assume thatg1 is a deletable element with respect to(S, T ). Then (i)g1 ∈
cl(C1−{g1}) and (ii)g1 is a contractible element with respect to(Q,R). By (i) and the fact
thatC1−{g1} ⊆ Q′∪R′ we see thatg1 ∈ cl(Q′∪R′). From (ii) we deduce thatg1 /∈ cl(Q

′

)

andg1 /∈ cl(R
′

). Therefore⊓M (Q
′

∪{g1}, R
′

) = ⊓M (Q
′

, R
′

)+1. Assume thatg1 = f
′

j .

If j ≤ 22k then setQ
′′

:= A
′

j , R
′′

:= R
′

; else ifj > 22k then setQ
′′

:= Q
′

, R
′′

:= B
′

j−1.

No matter which case happens, setF
′′

:= E(M) − (Q
′′

∪ R
′′

). Evidently,|F
′′

| ≥ 22k

as |F
′

| = 22k+1. ReplacingQ
′

, R
′

, F
′

with Q
′′

, R
′′

, F
′′

respectively and repeating the
above analysis2k times, there are numbersj1, j2 with 2k + 1 ≤ j1 ≤ j2 ≤ 22k+1 such
that⊓M (A

′

j1 , B
′

j2) ≥ k + 1 or ⊓M∗(A
′

j1 , B
′

j2) ≥ k + 1, a contradiction to the fact that

λ(A
′

j1
) = k. So the lemma holds. �

To prove Theorem 1.1 we still need the following lemma.

Lemma 2.5. ([1], Lemma 4.7.) LetM be a matroid andS, T be disjoint subsets ofE(M).
There exists setsS1 ⊆ S, T1 ⊆ T such that|S1| = |T1| = κ(S1, T1).

For convenience we restate Theorem 1.1 here.

Theorem 2.6. There is a functionc : N2 → N with the following property. LetM be a
matroid, andQ,R, S, T, F ⊆ E(M) sets of elements such thatQ ∩ R = S ∩ T = ∅ and
F = E(M) − (Q ∪ R ∪ S ∪ T ). Letk := κM (Q,R) andℓ := κ(S, T ). If |F | ≥ c(k, ℓ),
then there is an elemente ∈ F such that one of the following holds:

(i) κM\e(Q,R) = k andκM\e(S, T ) = ℓ;
(ii) κM/e(Q,R) = k andκM/e(S, T ) = ℓ.

Proof. We prove that the result holds forc(k, ℓ) := (2ℓ + 1)22k+1. By Lemma 2.5 there
are setsS1 ⊆ S, T1 ⊆ T such that|S1| = |T1| = κM (S1, T1). Then Lemma 2.4 implies
that there is an elemente1 ∈ E(M) − (Q ∪ R ∪ S1 ∪ T1) such that for someM1 ∈
{M\e1,M/e1} we haveκM1

(Q,R) = k andκM1
(S1, T1) = ℓ. SinceκM1

(S1, T1) = ℓ
impliesκM1

(S, T ) = ℓ, whene1 ∈ F the lemma holds. So we may assume thate1 /∈
F . That is,e1 ∈ (S ∪ T ) − (S1 ∪ T1). SinceF ⊆ E(M1) − (Q ∪ R ∪ S1 ∪ T1),
using Lemma 2.4 again there is an elemente2 ∈ E(M1) − (Q ∪ R ∪ S1 ∪ T1) such
that for someM2 ∈ {M1\e2,M1/e2} we haveκM2

(Q,R) = k andκM2
(S1, T1) = ℓ.

Without loss of generality we may assume thatM2 = M1\e2. ThenκM\e2 (Q,R) = k
andκM\e2(S1, T1) = ℓ asκM (Q,R) = k andκM (S1, T1) = ℓ. Thus, whene2 ∈ F ,
the lemma holds. So we may assume thate2 /∈ F . Since(S ∪ T ) − (S1 ∪ T1) is finite,
repeating the above analysis several times we can always finda minor with an elemente
such that (i) or (ii) holds. The theorem follows from this observation and the fact that the
connectivity function is monotone under minors. �
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