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SEMIDEFINITE PROGRAMMING FOR CHANCE CONSTRAINED OPTIMIZATION

OVER SEMIALGEBRAIC SETS ∗

A. M. JASOUR† , N. S. AYBAT ‡ , AND C. M. LAGOA §

Abstract. In this paper, “chance optimization” problems are introduced, where one aims at maximizing the probability
of a set defined by polynomial inequalities. These problems are, in general, nonconvex and computationally hard. With the
objective of developing systematic numerical procedures to solve such problems, a sequence of convex relaxations based on the
theory of measures and moments is provided, whose sequence of optimal values is shown to converge to the optimal value of
the original problem. Indeed, we provide a sequence of semidefinite programs of increasing dimension which can arbitrarily
approximate the solution of the original problem. To be able to efficiently solve the resulting large-scale semidefinite relaxations,
a first-order augmented Lagrangian algorithm is implemented. Numerical examples are presented to illustrate the computational
performance of the proposed approach.

Key words. Semialgebraic set, Chance constrained, SDP relaxation, Augmented Lagrangian, First-order methods.

1. Introduction. In this paper, we aim at solving chance optimization problems; i.e., problems which
involve maximization of the probability of a semialgebraic set defined by polynomial inequalities. More
precisely, given a probability space

(

Rm, Σ̄q, µ̄q

)

with Σ̄q denoting the Borel σ-algebra of Rm and µ̄q : Σ̄q →
R+ denoting a finite (positive) Borel measure on Σ̄q, we focus on the problem given in (1.1) over decision
variable x ∈ Rn.

P∗ := sup
x∈Rn

µ̄q





⋃

k=1,...,N

⋂

j=1,...,ℓk

{

q ∈ R
m : P(k)

j (x, q) ≥ 0
}



 , (1.1)

where P(k)
j : Rn × Rm → R, j = 1, 2, . . . , ℓk and k = 1, . . . , N are given polynomials. Let Kk :=

{

(x, q) : P(k)
j (x, q) ≥ 0, j = 1, . . . , ℓk

}

and K :=
⋃N

k=1 Kk. Under the assumption that K is bounded, we

show that by solving a sequence of semidefine programming (SDP) problems of growing dimension, we
can construct a sequence {yd

x}d∈Z+ ⊂ RN that has an accumulation point in the weak-⋆ topology of ℓ∞,
and for every accumulation point y∗

x ∈ RN, there is a representing finite (positive) Borel measure µ∗
x such

that any x∗ ∈ supp(µ∗
x) is an optimal solution to (1.1), i.e., the supremum P∗ is attained at x∗, where

RN denotes the vector space of real sequences. Note that the problem of interest in (1.1), when refor-
mulated in hypograph form, can be equivalently written as a chance constrained optimization problem:

supx∈Rn,γ∈R

{

γ : µ̄q

(

⋃

k=1,...,N

⋂

j=1,...,ℓk

{

q ∈ Rm : P(k)
j (x, q) ≥ 0

})

≥ γ
}

. First, the emphasis will be

placed on the following special case of (1.1), where N = 1,

P∗ := sup
x∈Rn

µ̄q

(

{

q ∈ R
m : Pj(x, q) ≥ 0, j = 1, . . . , ℓ

}

)

, (1.2)

and then all the results derived for the special case (1.2) will be extended to the case where N > 1.
The potential application area of this problem class is quite large and encompasses many well-known

problems in different areas as special cases. For example, designing probabilistic robust controllers [25],
model predictive controllers in presence of random disturbances [13, 42, 52], and optimal path planning and
obstacle avoidance problems in robotics [14, 15, 19] can be cast as special cases of this framework. Moreover,
problems in the area of economics, finance, and trust design [34, 54, 57] can also be formulated as (1.1) and
(1.2). Although, in some particular cases, the problem in (1.1) is convex (e.g., see [28, 49]), in general, chance
constrained problems are not convex; e.g., see [28] for non-convex chance constrained linear programs. In
this paper, we use previous results on moments of measures (e.g., see [31, 32]) to develop a sequence of SDP
problems, known as Lasserre’s hierarchy [32], whose solutions converge to the solution of (1.1).
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§EE Department, The Pennsylvania State University, PA, USA (lagoa@psu.edu)
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1.1. Previous Work. Several approaches have been proposed to solve chance constrained problems.
The main idea behind most of the proposed methods is to find a tractable approximation for chance con-
straints. One particular method is the so-called scenario approach; see [16, 17, 36, 38, 55] and the references
therein. In this approach, the probabilistic constraint is replaced by a (large) number of deterministic con-
straints obtained by drawing independent identically distributed (iid) samples of random parameters. Being
a randomized approach, there is always a positive probability of failure (perhaps small). In [7, 8, 9, 10, 11],
robust optimization is used to deal with uncertain linear programs (LP). In this method, the uncertain LP
is replaced by its robust counterpart, where the worst case realization of uncertain data is considered. The
proposed method is not computationally tractable for every type of uncertainty set. A specific case that is
tractable is LP with ellipsoidal uncertainty set [7]. In [12, 35, 39], an alternative approach is proposed where
one analytically determines an upper bound on the probability of constraint violation. Although this method
does provide a convex approximation, it can only be applied to specific uncertainty structures. In [37, 43]
the authors propose the so-called Bernstein approximation where a convex conservative approximation of
chance constraints is constructed using generating functions. Although approximation is efficiently com-
putable, it is only applicable to problems with convex constraints that are affine in random vector q ∈ Rm.
Moreover, components of q need to be independent and have computable finite generating functions. In
[18, 21, 22] convex relaxations of chance constrained problems are presented. The concept of polynomial
kinship function is used to estimate an upper bound on the probability of constraint violation. Solutions to
a sequence of relaxed problems are shown to converge to a solution of the original problem as the degree of
the polynomial kinship function increases along the sequence. In [22, 27], an equivalent convex formulation
is provided based on the theory of moments. In this method the probability of a polynomial being negative
is approximated by computing polynomial approximations for univariate indicator functions [27].

Distributionally robust chance constrained programming – see [44, 45, 46, 47, 48], is another popular tool
for dealing with uncertainty in the problem, where only a finite number of moments mα of the underlying
measure µ̄q are assumed to be known, i.e., {mα}α∈A is known for A ⊂ Nm such that |A| < ∞. In this
approach robust chance constraints are formulated by considering the worst case measure within a family of
measures with moments equal to {mα}α∈A. However, proposed methods in this literature are mainly limited
to linear chance constraints and/or to specific types of uncertainty distributions. For instance, in [44], under
the assumption m̄ = Eµ̄q

[q] and S̄ = Eµ̄q
[(q − m̄)(q − m̄)T ] are known, the linear chance constraint of the

form µ̄q

(

{q : qTx ≥ 0}
)

≥ 1− ǫ is replaced by its robust counterpart: infµq∈M µq

(

{q : qTx ≥ 0}
)

≥ 1− ǫ,
where M is the set of finite (positive) Borel measures on Σ̄q with their means and covariances equal to m̄
and S̄, respectively; and it is shown that these robust constraints can be represented as second-order cone
constraints for a wide class of probability distributions. In [45], the authors has reviewed and developed
different approximation methods for problems with joint chance constraints. In the proposed method, joint
chance constraints are decomposed into individual chance constraints, and classical robust optimization
approximation is used to deal with the new constraints. In [46] a tractable approximation method for
probabilistically dependent linear chance constraints is presented. In [47] linear chance constraints with
Gaussian and log-concave uncertainties are addressed, and it is shown that they can be reformulated as
semi-infinite optimization problems; moreover, tight probabilistic bounds are provided for the resulting
comprehensive robust optimization problems [58, 59]. In [48] an SDP formulation is provided to approximate
distributionally robust chance constraints where only the support of µ̄q, and its first and second order
moments are known.

In this paper, we take a different approach to deal with chance constrained problems. The proposed
method is based on volume approximation results in [24] and the theory of moments [31, 32]. In [24], a
hierarchy of SDP problems are proposed to compute the volume of a given compact semialgebraic set. It is
shown that the volume of a semialgebraic can be computed by solving a maximization problem over finite
(positive) Borel measures supported on the given set, and restricted by the Lebesgue measure on a simple
set containing the semialgebraic set of interest. Building on this result, we propose the chance optimization
problem over semialgebraic sets –see our preliminary results in [26]. In particular, we address the problem
of probability maximization over the union of semialgebraic sets defined by intersections of finite number of
polynomial inequalities as in (1.1). Here, one needs to search for the (positive) Borel measure with maximum
possible mass on the given semialgebraic set, while simultaneously searching for an upper bound probability
measure over a simple set containing the semialgebraic set and restricting the Borel measure.
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1.2. The Sequel. The outline of the paper is as follows: in Section 2, the notation adopted in the
paper, and preliminary results on measure theory are presented; in Sections 3 and 4, we propose equivalent
problems, and sequences of SDP relaxations to (1.2) and (1.1), respectively; and show that the sequence of
optimal solutions to SDP relaxations converge to the solutions of the original problems. In Section 5, we
implement an efficient first-order algorithm to solve regularized SDP relaxations of the chance constrained
problems, and finally, present numerical results, followed by some concluding remarks given in Section 6.

2. Notation and Preliminary Results.

2.1. Notations and Definitions. Throughout the paper, given a sequence p = {pα}α∈A ⊂ R over
a countable index set A ⊂ Nn, we assume that the elements of A is sorted according to graded reverse
lexicographic order (grevlex): A = {α(i) : i = 1, . . . , |A|} such that α(1) <g . . . <g α(|A|), where |A| denotes
the cardinality of A; and the order on A also induces an order on the elements of p = [pα(1) , . . . , pα(|A|) ]T ∈
R|A|. Throughout the paper the notation (p)α refers to pα. Let R[x] be the ring of real polynomials in the
variables x ∈ Rn. Given P ∈ R[x], we will represent P as

∑

α∈Nn pαx
α using the standard basis {xα}α∈Nn of

R[x], where xα := Πn
j=1x

αj

j , and p = {pα}α∈Nn denotes the sequence of polynomial coefficients. Note that p
contains finitely many nonzeros, and we assume that the elements of the coefficient sequence p = {pα}α∈Nn

are sorted according to grevlex order on the corresponding monomial exponent α. Given y = {yα}α∈Nn ⊂ R,
let Ly : R[x] → R be a linear map defined as

P 7→ Ly(P) =
∑

α∈Nn

pαyα, where P(x) =
∑

α∈Nn

pαx
α. (2.1)

Given n and d in N, we define Sn,d :=
(

d+n
n

)

and Nn
d := {α ∈ Nn : ‖α‖1 ≤ d}. Let Rd[x] ⊂ R[x] denote

the set of polynomials of degree at most d ∈ N, which is indeed a vector space of dimension Sn,d. Similar
to P ∈ R[x], given P ∈ Rd[x], p = {pα}α∈Nn

d
is sorted such that p = [pα(1) , . . . , p

α
(Sn,d) ]T ∈ R

Sn,d , where

Nn
d ∋ 0 = α(1) <g . . . <g α(Sn,d). Moreover, let S2[x] ⊂ R[x] be the set of sum of squares (SOS) polynomials.

s : Rn → R is an SOS polynomial if it can be written as a sum of finitely many squared polynomials, i.e.,
s(x) =

∑ℓ
j=1 hj(x)

2 for some ℓ < ∞ and hj ∈ R[x] for 1 ≤ j ≤ ℓ.

Let RN denote the vector space of real sequences, and let M(K) be the set of finite (positive) Borel
measures µ such that supp(µ) ⊂ K, where supp(µ) denotes the support of the measure µ; i.e., the smallest
closed set that contains all measurable sets with strictly positive µ measure. A sequence y = {yα}α∈Nn ∈ RN

is said to have a representing measure, if there exists a finite Borel measure µ on Rn such that yα =
∫

xαdµ
for every α ∈ N

n – see [31, 32]. In this case, y is called the moment sequence of the measure µ. Given two
measures µ1 and µ2 on a Borel σ-algebra Σ, the notation µ1 4 µ2 means µ1(S) ≤ µ2(S) for any set S ∈ Σ.
Moreover, if µ1 and µ2 are both measures on Borel σ-algebras Σ1 and Σ2, respectively, then µ = µ1 × µ2

denotes the product measure satisfying µ(S1×S2) = µ1(S1)µ2(S2) for any measurable sets S1 ∈ Σ1, S2 ∈ Σ2

[24]. Let C ⊂ Rn, Σ(C) denotes the Borel σ-algebra over C. Given two square symmetric matrices A and
B, the notation A < 0 denotes that A is positive semidefinite, and A < B stands for A − B being positive
semidefinite.

Putinar’s property: A closed semialgebraic set K = {x ∈ Rn : Pj(x) ≥ 0, j = 1, 2, . . . , ℓ } defined by
polynomials Pj ∈ R[x] satisfies Putinar’s property [50] if there exists U ∈ R[x] such that {x : U(x) ≥ 0} is

compact and U = s0 +
∑ℓ

j=1 sjPj for some SOS polynomials {sj}ℓj=0 ⊂ S2[x] – see [29, 32, 50]. Putinar’s
property holds if the level set {x : Pj(x) ≥ 0} is compact for some j, or if all Pj are affine and K is compact
- see [29]. Putinar’s property is not a geometric property of the semi-algebraic set K, but rather an algebraic
property related to the representation of the set by its defining polynomials. Hence, if there exits M > 0
such that the polynomial Pℓ+1(x) := M − ‖x‖2 ≥ 0 for all x ∈ K, then the new representation of the set
K = {x ∈ Rn : Pj(x) ≥ 0, j = 1, 2, . . . , ℓ+ 1 } satisfies Putinar’s property.

Moment matrix: Given d ≥ 1 and a sequence {yα}α∈Nn , the moment matrix Md(y) ∈ RSn,d×Sn,d is a
symmetric matrix and its (i, j)-th entry is defined as follows [31, 32]:

Md(y)(i, j) := Ly

(

xα(i)+α(j)
)

= yα(i)+α(j) , 1 ≤ i, j ≤ Sn,d, (2.2)

where Nn
d = {α(i)}Sn,d

i=1 such that 0 = α(1) <g . . . <g α(Sn,d) are sorted according to grevlex order.
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Let BT
d =

[

xα(1)

, . . . , xα
(Sn,d)

]T

denote the vector comprised of the monomial basis of Rd[x]. Note that

the moment matrix can be written as Md(y) = Ly

(

BdBT
d

)

; here, the linear map Ly operates componentwise
on the matrix of polynomials, BdBT

d . For instance, let d = 2 and n = 2; the moment matrix containing
moments up to order 2d is given as

M2 (y) =

























y00 | y10 y01| y20 y11 y02
− − − − − −

y10 | y20 y11| y30 y21 y12
y01 | y11 y02| y21 y12 y03

− − − − − −
y20 | y30 y21| y40 y31 y22
y11 | y21 y12| y31 y22 y13
y02 | y12 y03| y22 y13 y04

























. (2.3)

Localizing matrix: Given a polynomial P ∈ R[x], let p = {pγ}γ∈Nn be its coefficient sequence in standard
monomial basis, i.e., P(x) =

∑

α∈Nn pαx
α, the (i, j)-th entry of the localizing matrix Md(y;p) ∈ R

Sn,d×Sn,d

with respect to y and p is defined as follows [31, 32]:

Md(y;p)(i, j) := Ly

(

Pxα(i)+α(j)
)

=
∑

γ∈Nn

pγyγ+α(i)+α(j) , 1 ≤ i, j ≤ Sn,d. (2.4)

Equivalently, Md(y;p) = Ly

(

PBdBT
d

)

, where Ly operates componentwise on PBdBT
d . For example, given

y = {yα}α∈N2 and the coefficient sequence p = {pα}α∈N2 corresponding to polynomial P ,

P(x1, x2) = a− bx1 − cx2
2, (2.5)

the localizing matrix for d = 1 is formed as follows

M1(y;p) =

[

ay00 − by10 − cy02 ay10 − by20 − cy12 ay01 − by11 − cy03
ay10 − by20 − cy12 ay20 − by30 − cy22 ay11 − by21 − cy13
ay01 − by11 − cy03 ay11 − by21 − cy13 ay02 − by12 − cy04

]

. (2.6)

2.2. Preliminary Results. In this section, we state some standard results found in the literature that
will be referred to later in Sections 3 and 4.

Lemma 2.1. Let µ be a Borel probability measure supported on the hyper-cube [−1, 1]n. Its moment
sequence y ∈ RN satisfies ‖y‖∞ ≤ 1.

Proof. Since supp(µ) ⊂ [−1, 1]n and µ is a probability measure, we have |yα| ≤
∫

|xα|dµ ≤
∫

|x|dµ ≤ 1
for each α ∈ Nn. Hence, ‖y‖∞ ≤ 1.

The following lemmas give necessary, and sufficient conditions for y to have a representing measure µ –
for details see [24, 30, 32].

Lemma 2.2. Let µ be a finite Borel measure on Rn, and y = {yα}α∈Nn such that yα =
∫

xαdµ for all
α ∈ Nn. Then Md(y) < 0 for all d ∈ N.

Lemma 2.3. Let y = {yα}α∈Nn be a real sequence. If Md(y) < 0 for some d ≥ 1, then

|yα| ≤ max

{

y0, max
i=1,...,n

Ly

(

x2d
i

)

}

∀α ∈ N
n
2d.

Lemma 2.4. If there exist a constant c > 0 such that Md(y) < 0 and |yα| ≤ c for all d ∈ N and α ∈ Nn,
then there exists a representing measure µ with support on [−1, 1]n.

Given polynomials Pj ∈ R[x], let pj be its coefficient sequence in standard monomial basis for j =
1, 2, . . . , ℓ; consider the semialgebraic set K defined as

K = {x ∈ R
n : Pj(x) ≥ 0, j = 1, 2, . . . , ℓ }. (2.7)

The following lemma gives a necessary and sufficient condition for y to have a representing measure µ
supported on K – see [24, 30, 31, 32].
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Lemma 2.5. If K defined in (2.7) satisfies Putinar’s property, then the sequence y = {yα}α∈Nn has a
representing finite Borel measure µ on the set K, if and only if

Md(y) < 0, Md(y;pj) < 0, j = 1, . . . , ℓ, for all d ∈ N.

Finally, the following lemma, proven in [24], shows that the Borel measure of a compact set is equal to the
optimal value of an infinite dimensional LP problem.

Lemma 2.6. Let Σ be the Borel σ-algebra on Rn, and µ1 be a measure on a compact set B ∈ Σ. Then
for any given K ∈ Σ such that K ⊆ B, one has

µ1(K) =

∫

K

dµ1 = sup
µ2∈M(K)

{∫

dµ2 : µ2 4 µ1

}

,

where M(K) is the set of finite Borel measures on K.

3. Chance Optimization over a Semialgebraic Set. In this section we focus on the chance op-
timization problem stated in (1.2). We first provide an equivalent problem over finite (positive) Borel
measures as variables, and then we will consider its relaxations in the moment space. Given polynomials
Pj : R

n × Rm → R with degree δj for j = 1, . . . , ℓ, we define

K = {(x, q) ∈ R
n × R

m : Pj(x, q) ≥ 0, j = 1, 2, . . . , ℓ}. (3.1)

Assumption 1. K satisfies Putinar’s property.
Remark 3.1. Assumption 1 implies that K is a compact set; hence the projections of K onto x-

coordinates and onto q-coordinates, i.e., Π1 =: {x ∈ Rn : ∃q ∈ Rm s.t. (x, q) ∈ K} and Π2 =: {q ∈
Rm : ∃x ∈ Rn s.t. (x, q) ∈ K}, are also compact. Therefore, after rescaling of polynomials, we assume
without loss of generality that Π1 ⊂ χ := [−1, 1]n and Π2 ⊂ Q := [−1, 1]m. Furthermore, instead of working
on the original probability space (Rm, Σ̄q, µ̄q), we can adopt a smaller probability space (Q,Σq, µq), where

Σq := {S ∩ Q : S ∈ Σ̄q} and µq(S) :=
µ̄q(S)
µ̄q(Q) for all S ∈ Σq. Therefore, we can take for granted that

µq ∈ M(Q), where M(Q) is the set of finite Borel measures µq such that supp(µq) ⊂ Q. We also assume
that moments of any order of µq can be computed.

3.1. An Equivalent Problem. As an intermediate step in the development of convex relaxations of
the original problem, a related infinite dimensional problem in the measure space is provided below:

P∗
µq

:= sup
µ,µx

∫

dµ, (3.2)

s.t. µ 4 µx × µq, (3.2a)

µx is a probability measure, (3.2b)

µx ∈ M(χ), µ ∈ M(K). (3.2c)

Theorem 3.1. The optimization problems in (1.2) and (3.2) are equivalent in the following sense:
i) The optimal values are the same, i.e., P∗ = P∗

µq
.

ii) If an optimal solution to (3.2) exists, call it µ∗
x, then any x∗ ∈ supp(µ∗

x) is an optimal solution to (1.2).
iii) If an optimal solution to (1.2) exists, call it x∗, then µx = δx∗, Dirac measure at x∗, and µ = δx∗ × µq

is an optimal solution to (3.2).
Proof. Let (Q,Σ, µq) be the probability space defined in Remark 3.1. Note that since Pj(x, q) is a

polynomial in random vector q ∈ Rm for all x ∈ Rn, it is continuous in q; hence Pj(x, .) is Borel measurable
for all x ∈ Rn and j = 1, . . . , ℓ. As discussed in Remark 3.1, it can be assumed that K ⊂ χ × Q =
[−1, 1]n × [−1, 1]m. Define F : Rn → Σ as follows

F(x) := {q ∈ R
m : Pj(x, q) ≥ 0, j = 1, 2, . . . , ℓ}, (3.3)

and consider the following problem over the probability measures in M(χ):

P := sup
µx∈M(χ)

{∫

χ

µq(F(x)) dµx : µx(χ) = 1

}

. (3.4)

5



Fig. 3.1: a) Simple chance optimization problem over semialgebraic set K with random parameter q, and decision
variable x, b) Equivalent problem in the measure space over probability measure µx as variable for given probability
measure µq , c) Probability of given semi algebraic set K for a fixed µx is equal to the integral of K with respect to
the measure µx × µq , d) The probability is equal to the volume of the measure µ which is supported on the set K
and has the same distribution as the measure µx × µq over its support

Note that the optimal value of (1.2) can be written as P∗ = supx∈χ µq(F(x)). Let µx be a feasible
solution to (3.4). Since µq(F(x)) ≤ P∗ for all x ∈ χ, we have

∫

µq(F(x)) dµx ≤ P∗. Thus, P ≤ P∗.
Conversely, let x ∈ Rn be a feasible solution to the problem in (1.2) and δx denote the Dirac measure at
x. The objective value of x in (1.2) is equal to µq(F(x)). Moreover, µx = δx is a feasible solution to the
problem in (3.2) with objective value equal to µq(F(x)). This implies that P∗ ≤ P. Hence, P∗ = P, and
(3.4) can be rewritten as

P∗ = sup
µx∈M(χ)

{

∫

χ

∫

F(x)

dµqdµx : µx(χ) = 1

}

= sup
µx∈M(χ)

{
∫

K

dµxµq : µx(χ) = 1

}

, (3.5)

and using the epigraph formulation shown in Lemma 2.6, we finally obtain

P∗ = sup
µx∈M(χ)

sup
µ∈M(K)

∫

dµ s.t. µ 4 µx × µq, µx(χ) = 1.

Therefore, P∗ = P∗
µq
.

As an example, consider the following chance constrained problem corresponding to the semialgebraic
set K, displayed in Fig.1.a, in the space of (x, q) ∈ R× R. Our objective is to compute an optimal decision
x∗ that attains P∗ = supx∈[−1,1] µq(F(x)), in presence of random variable q with known probability measure
µq supported on [−1, 1]. In other words, x∗ should be chosen such that the probability of the random
point (x∗, q) belonging to K becomes maximum. Fig.1.b shows the problem in the measure space, where a
probability measure µx is assigned to decision variable x. If x ∈ [−1, 1] is chosen randomly according to fixed
µx, then to calculate the probability of the random event (x, q) ∈ K, one should compute an integral with

6



respect to measure µx × µq over the set K as in (3.5) – see (Fig.1.c). This integral is equal to the volume of
a measure which is supported on K and has the same distribution as µx × µq on K – see (Fig.1.d). Hence,
for fixed µx, one needs to look for the measure µ supported on K with maximum volume, and bounded
above with measure µx × µq. Therefore, searching for µx and µ simultaneously leads to the optimization
problem (3.2) in the measure space.

3.2. Semidefinite Relaxations. In this section, we provide an infinite dimensional SDP of which
feasible region is defined over real sequences in RN. Unlike the problem (3.2) in which we are looking for
measures, in the SDP formulation given in (3.6), we aim at finding moment sequences corresponding to a
measure that is optimal to (3.2). After proving the equivalence of (3.2) and (3.6), we next provide a sequence
of finite dimensional SDPs and show that the corresponding sequence of optimal solutions can arbitrarily
approximate the optimal solution of (3.6), which characterizes the optimal solution of (3.2).

Consider the following infinite dimensional SDP:

P∗
yq

:= sup
y,yx∈RN

(y)0, (3.6)

s.t. M∞(y) < 0, M∞(y;pj) < 0, j = 1, . . . , ℓ, (3.6a)

M∞(yx) < 0, ‖yx‖∞ ≤ 1, (yx)0 = 1, (3.6b)

M∞(Ayx − y) < 0, (3.6c)

where A : RN → RN is a linear map depending only on µq. Indeed, let yq := {yqβ}β∈Nm be the moment
sequence of µq. Then for any given yx = {yxα

}α∈Nn , Ayx = ȳ such that (ȳ)θ = (yq)β(yx)α for all
θ = (β, α) ∈ Nm × Nn. Given y ∈ RN, M∞(y) < 0 means that Md(y) < 0 for all d ∈ Z+.

The following lemma establishes the equivalence of (3.2) and (3.6).
Lemma 3.2. Suppose that K satisfies Assumption 1. If an optimal solution to (3.2) exists, call it

(µ∗, µ∗
x), then their moment sequences (y∗,y∗

x) is an optimal solution to (3.6). Conversely, if an optimal
solution to (3.6) exists, call it (y∗,y∗

x), then there exists representing measures µ∗ and µ∗
x such that (µ∗, µ∗

x)
is optimal to (3.2). Moreover, the optimal values of (3.2) and (3.6) are the same, i.e., P∗

µq
= P∗

yq
.

Proof. Suppose that (µ, µx) is feasible to (3.2). Let y and yx be the moment sequences corresponding
to µ and µx, respectively. Lemma 2.5 implies (3.6a); Lemma 2.1 and Lemma 2.2 imply (3.6b). Moreover, let
ȳ = {ȳα}α∈Nn+m be the moment sequence corresponding to the product measure µ̄ := µx×µq. (3.2a) implies
that µ̄− µ is a measure; hence, Lemma 2.2 implies M∞(ȳ − y) < 0. Moreover, the definition of A implies
that ȳ = Ayx, which gives (3.6c). Since y is chosen to be the moment sequence of µ, we have

∫

dµ = y0.
This shows that for each (µ, µx) feasible to (3.2), one can construct a feasible solution to (3.6) with the same
objective value. Therefore, P∗

yq
≥ P∗

µq
. Note that Assumption 1 is not used for this argument.

Next, suppose that (y,yx) is a feasible solution to (3.6). Since K satisfies Assumption 1, (3.6a) and
Lemma 2.5 together imply that y has a representing finite Borel measure µ supported on K, i.e., µ ∈ M(K).
Moreover, (3.6b) and Lemma 2.4 together imply that yx has a representing probability measure µx supported
on hyper-cube χ, i.e., µx ∈ M(χ) such that µx(χ) = 1. Hence, the sequence Ayx has a representing measure
µ̄ which is the product measure of µx and µq, i.e., µ̄ = µx×µq. Furthermore, since K ⊂ χ×Q = [−1, 1]n+m,
(3.6c) implies that µ � µ̄, which is (3.2a). Finally, the fact that µ is a representing measure of y implies
that

∫

dµ = y0. Therefore, P
∗
yq

≤ P∗
µq
. Combining this with the above result gives us P∗

yq
= P∗

µq
.

In order to have tractable approximations to the infinite dimensional SDP in (3.6), we consider the
following sequence of SDPs, known as Lasserre’s hierarchy [32], defined below:

Pd := sup
y∈R

Sn+m,2d , yx∈R
Sn,2d

(y)0, (3.7)

s.t. Md(y) < 0, Md−rj(y;pj) < 0, j = 1, . . . , ℓ, (3.7a)

Md(yx) < 0, ‖yx‖∞ ≤ 1, (yx)0 = 1, (3.7b)

Md(Adyx − y) < 0, (3.7c)

where δj is the degree of Pj , rj :=
⌈

δj
2

⌉

for all 1 ≤ j ≤ ℓ, and Ad : RSn,2d → RSn+m,2d is defined similarly

to A in (3.6). Indeed, let yq := {yqβ}β∈Nm
2d

be the truncated moment sequence of µq. Then for any given

yx = {yxα
}α∈Nn

2d
, Adyx = y such that (ȳ)θ = (yq)β(yx)α for all θ = (β, α) ∈ N

n+m
2d .
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In the following theorem, it is shown that the sequence of optimal solutions to the SDPs in (3.7)
converges to the solution of the infinite dimensional SDP in (3.6). In essence, the following theorem is
similar to Theorem 3.2 in [24]; however, for the sake of completeness we give its proof below.

Theorem 3.3. For all d ≥ 1, there exists an optimal solution (yd,yd
x) ∈ RSn+m,2d × RSn,2d to (3.7)

with the optimal value Pd. Let S := {(yd,yd
x)}d∈Z+ ⊂ R

N × R
N be such that each element of S is obtained

by zero-padding, i.e.,
(

yd
)

α
= 0 for all α ∈ Nn+m such that ‖α‖1 > 2d, and

(

yd
x

)

α
= 0 for all α ∈ Nn such

that ‖α‖1 > 2d. Then {Pd}d∈Z+ and S have the following properties:
i) limd∈Z+ Pd = P∗, the optimal value of (1.2),
ii) There exists an accumulation point of S in the weak-⋆ topology of ℓ∞ and every accumulation point of

S is an optimal solution to (3.6). Hence, there exists corresponding representing measures (µ∗, µ∗
x) that

is optimal to (3.2) and any x∗ ∈ supp(µ∗
x) is optimal to (1.2).

Proof. First, we will show that for all d ≥ 1, the corresponding feasible region of (3.7) is bounded . Fix
d ≥ 1. Let (y,yx) be a feasible solution to (3.7). Then from (3.7b), we have ‖yx‖∞ ≤ 1. Since µq is a
probability measure supported on Q = [−1, 1]m, Lemma 2.1 implies that ‖yq‖∞ ≤ 1 as well. Moreover, the
definition of Ad further implies that ‖Adyx‖∞ ≤ 1. Let ȳ := Adyx. It follows from (3.7c) that the diagonal
elements of Md(ȳ − y) are nonnegative, i.e., (ȳ)2α − (y)2α ≥ 0 for all α ∈ N

n+m
d . This implies that

max

{

y0, max
i=1,...,n+m

Ly

(

x2d
i

)

}

≤ max
α∈N

n+m
d

y2α ≤ max
α∈N

n+m
d

ȳ2α ≤ ‖ȳ‖∞ ≤ 1, (3.8)

where the first inequality follows from the fact that

{y0} ∪
{

Ly

(

x2d
i

)

: i = 1, . . . , n+m
}

⊂ {y2α : α ∈ N
n+m
d }.

From (3.7a), we have Md(y) < 0. Hence, using Lemma 2.3, (3.8) implies that |yα| ≤ ‖ȳ‖∞ ≤ 1 for all
α ∈ N

n+m
2d . Therefore, the feasible region is bounded. Since the cone of positive semidefinite matrices is a

closed set and all the mappings in (3.7) is linear, we also conclude that the feasible region is compact. Hence,
there exists an optimal solution (yd,yd

x) to the problem (3.7) for all d ≥ 1.
Fix d ≥ 1. Clearly, for any given feasible solution (y,yx) to (3.6), by truncating the both sequences to

vectors y ∈ RSn+m,2d and yx ∈ RSn,2d , we can construct a feasible solution to (3.7) with the same objective
value. Hence, it can be concluded that Pd ≥ P∗

yq
for all d ≥ 1. Moreover, the same argument also shows

that Pd ≥ Pd′ for all d′ ≥ d. Hence, {Pd}d∈Z+ is a decreasing sequence bounded below by P∗
yq
. Therefore,

it is convergent and has a limit such that limk∈Z+ Pk ≥ P∗
yq
.

In order to collect all the optimal solutions corresponding to different d in one space, we extend (yd,yd
x) ∈

RSn+m,2d × RSn,2d to vectors in ℓ∞ (the Banach space of bounded sequences equipped with the sup-norm)
by zero-padding, i.e., we set (yd)α = 0 for all α ∈ Nn+m such that ‖α‖1 > 2d, and

(

yd
x

)

α
= 0 for all α ∈ Nn

such that ‖α‖1 > 2d. Note that ℓ∞ is the dual space of ℓ1, which is separable; hence, sequential Banach-
Alaoglu theorem states that the closed unit ball of ℓ∞, denoted by B∞, is weak-⋆ sequentially compact.
Since {yd}d∈Z+ ⊂ B∞ and {yd

x}d∈Z+ ⊂ B∞, there exists a subsequence {dk} ⊂ Z+ such that {ydk}k∈Z+ and
{ydk

x }k∈Z+ converge weak-⋆ to y∗ ∈ B∞ and y∗
x ∈ B∞ in the weak-⋆ topology, respectively. Hence,

lim
k∈Z+

(

ydk
)

α
= (y∗)α , ∀ α ∈ N

n+m, lim
k∈Z+

(

ydk
x

)

α
= (y∗

x)α , ∀ α ∈ N
n. (3.9)

Fix d ≥ 1, then for all k ∈ Z+ such that dk ≥ d, we have

Md(y
dk) < 0, Md−rj(y

dk ;pj) < 0, j = 1, . . . , ℓ,

Md(y
dk
x ) < 0, ‖ydk

x ‖∞ ≤ 1,
(

ydk
x

)

0
= 1,

Md(Aydk
x − ydk) < 0.

Since d ∈ Z+ is arbitrary, by taking the limit as k → ∞, we see that (y∗,y∗
x) satisfies all the constraints

in (3.6). Therefore, (y∗)0 ≤ P∗
yq
. On the other hand, (y∗)0 = limk∈Z+

(

ydk
)

0
= limk∈Z+ Pdk

. Moreover,
since every subsequence of a convergent sequence converges to the same point, we have limk∈Z+ Pk =
limk∈Z+ Pdk

= P∗
yq
. This shows that the subsequential limit (y∗,y∗

x) is an optimal solution to (3.6). The
rest of the claims follow from our previous results: Theorem 3.1 and Lemma 3.2.
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3.3. Discussion on Improving Estimates of Probability. In our numerical experiments, we have
observed that the convergence of the upper bound Pd to the optimum probability P∗ was slow in d when
we solved the sequence of SDP relaxations in (3.7). Suppose that the semi-algebraic set K := {(x, q) :
Pj(x, q) ≥ 0, j = 1, . . . , ℓ} satisfies Putinar’s property. The procedure detailed below helped us to get better
estimates on the optimum probability P∗. To make the upcoming discussion easier we make the following
assumptions: i) there is a unique x∗ ∈ Π1 such that µq(F(x∗)) = P∗, and there exists some q̄ such that
(x∗, q̄) ∈ relintK, where F is defined in (3.3), and Π1 := {x ∈ Rn : ∃q ∈ Rm s.t. (x, q) ∈ K} ⊂ χ := [−1, 1]n;
and ii) µq ∈ M(Q) has the following “continuity” property: if {Sk} ⊂ Σq such that limk→∞ Sk = S∗ in
the Hausdorff-metric, then limk→∞ µq(Sk) = µq(S

∗). Let (yd,yd
x) denote an optimal solution to the SDP

relaxation in (3.7), and form xd ∈ Rn using the components of (yd
x)α such that ‖α‖1 = 1. Clearly, xd ∈ χ.

Since µq ∈ M(Q) is given, we approximate the volume
∫

F(xd)
dµq as described in [24] by solving an SDP

relaxation for

P̄d := sup
µ′∈M(F(xd))

∫

dµ′ s.t. µ′ � µq. (3.10)

Note that this intermediate SDP can be built only after the relaxation in (3.7) is solved. Let P′
d denote the

optimal value of the volume approximation SDP corresponding to (3.10) with relaxation order d. Clearly,
P̄d = µq

(

F(xd)
)

≥ 0, and for all d we have Pd ≥ P∗ ≥ P̄d, and Pd ≥ P′
d ≥ P̄d. Note that since x∗ is

the unique optimal solution (assumption i), Theorem 3.3 implies that limd→∞(yd
x)α = (y∗

x)α for all α ∈ N
n

such that y∗
x is the moment sequence corresponding to Dirac measure at x∗. Therefore, from the definition

of xd, it follows that limd→∞ xd = x∗. Also note that since K is compact (from Putinar’s property) and
Pj is a polynomial in (x, q) for all j = 1, . . . , ℓ, it follows that the multifunction F : χ → Σq such that
F(x) = {q ∈ Q : (x, q) ∈ K} with domF = Π1 is locally bounded, closed-valued, and limd→∞ F(xd) =
F(x∗) in Hausdorff metric. Hence, assumption ii implies that limd→∞ P̄d = limd→∞ µq

(

F(xd)
)

= P∗.
Moreover, since limd→∞ Pd = P∗ (from Theorem 3.3), and Pd ≥ P′

d ≥ P̄d for all d, we can conclude that
limd→∞ P′

d = P∗ as well.
We noticed in our numerical experiments that although {P′

d}d∈Z+ is closer to P∗ when compared to
{Pd}d∈Z+ , the convergence of P

′
d to P∗ was still slow in practice as d increases. This phenomena may partly

be explained as in [24] by considering the dual problem. Let C be the Banach space of continuous functions
on Q such that ‖f‖ := supq∈Q f(q) for f ∈ C, and C+ := {f ∈ C : f ≥ 0 on Q}. The Lagrangian dual of
(3.10) is given below:

P̄Dual
d := inf

f∈C+

∫

f dµq, (3.11)

s.t. f ≥ 1 on F(xd).

Moreover, assumption ii (“continuity” of µq) and Urysohn’s Lemma together imply that P̄Dual
d = P̄d for all d.

Let IF(xd) denote the indicator function of the semi-algebraic set F(xd), i.e., IF(xd)(q) = 1 if q ∈ F(xd), and
0 otherwise. Indeed, solving the SDP relaxation of (3.10) corresponds in dual space to approximating IF(xd),
which is discontinuous on the boundary of the set. Therefore, although there exists a minimizing sequence of
functions belonging to C+ that approximates IF(xd) from above, the discontinuity on the boundary of F(xd)
causes the Gibbs phenomenon – see the oscillation observed in Figure 3.3.a. This might be an important
factor lurking behind the numerically observed slow convergence of {P′

d}d∈Z+ to P∗.

Let Gd : Q → R such that Gd(q) :=
∏ℓ

j=1 Pj(x
d, q). To deal with the numerical problems caused by

approximating the discontinuous indicator function, we propose to solve

sup
µ̃∈M(F(xd))

∫

Gd dµ̃ s.t. µ̃ � µq. (3.12)

Let µ∗
d denote the optimal solution to (3.12). “Continuity” of µq in assumption ii implies that Gd is strictly

positive almost everywhere on F(xd). Hence, µ∗
d is clearly also optimal to (3.10). Therefore, µ∗

d

(

F(xd)
)

=
µq(F(xd)) = P̄d → P∗ as d → ∞. Let Ud(q) = max{Gd(q), 0}, and note that Ud is continuous on the
boundary of F(xd); hence, it is important to emphasize that solving (3.12) corresponds to approximating
the continuous function Ud from above on F(xd). These properties of (3.12) motivated us to numerically
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investigate the behaviour of {P̃d}d∈Z+ sequence, where P̃d := (ỹd)0 and ỹd denotes an optimal solution

to the SDP relaxation for (3.12) with order d. In our numerical experiments we observed that P̃d → P∗;
however, this time with a faster convergence rate. To illustrate this behavior numerically, we considered two
simple example problems in Section 3.4.

3.4. Simple Examples. In this section, we present two simple example problems that illustrate the
effectiveness of the proposed methodology to solve the chance optimization problem in (1.2). The decision
variables and the uncertain problem parameters in these examples are low dimensional for illustrative pur-
poses. In the first example, we considered a problem over a semialgebraic set defined by a single polynomial:

sup
x∈R

µq ({q ∈ R : P(x, q) ≥ 0 }) , (3.13)

where P (x, q) = 1
2q
(

q2 + (x− 1
2 )

2
)

−
(

q4 + q2(x− 1
2 )

2
+ (x − 1

2 )
4
)

. (3.14)

The uncertain parameter q ∈ R has a uniform distribution on [-1,1]. To obtain an approximate solution,
we solve the SDP in (3.7) with the minimum relaxation order d = 2 since the degree of the polynomial in
(3.14) is 4. The moment vectors yq, yx, and y for the measures µq and µx, and µ up to order four are

yT
q =

[

1, 0, 1
3 , 0, 1

5

]

, yT
x = [1, yx1, yx2 , yx3 , yx4 ] ,

yT = [y00 | y10, y01 | y20, y11, y02 | y30, y21, y12, y03 | y40, y31, y22, y13, y04] .

Given moment vectors yq, the moment vector ȳ for the measure µ = µx × µq has the form

ȳT = [1 | yx1 , yq1 | yx2 , yx1yq1 , yq2 | yx3 , yx2yq1 , yx1yq2 , yq3 | yx4 , yx3yq1 , yx2yq2 , yx1yq3 , yq4 ] ,

=
[

1 | yx1 , 0 | yx2 , 0, 1
3
| yx3 , 0, 1

3
yx1 , 0 | yx4 , 0, 1

3
yx2 , 0, 1

5

]

.

SDP in (3.7) with d = 2 is solved using SeDuMi [53], which is an interior-point solver add-on for Matlab,
and the following solution was obtained:

y∗T = [0.66, 0.3, 0.14, 0.16, 0.07, 0.1, 0.08, 0.03, 0.05, 0.04, 0.04, 0.02, 0.02, 0.02, 0.02] ,

y∗
x

T
= [1, 0.50, 0.25, 0.13, 0.85].
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Fig. 3.2: Pd, P
′
d, and P̃d for increasing relaxation order d

We approximate the solution to (1.2) with y∗x1
= 0.5 (in Section 3.3 we make a case for this approximation

under some simplifying assumptions), and estimate the optimal probability P∗ with P2 = y∗00 = 0.66. To test
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the accuracy of the results obtained, we used Monte Carlo simulation to estimate P∗ and an optimal solution
to (3.13). The details of the Monte Carlo simulation are discussed in Section 5.3.1. This computationally
intensive method estimated that x∗ = 0.5 with optimal probability of 0.25. To obtain better estimates of
the optimum probability, one needs to increase the relaxation order d.

Figure 3.2 displays the three sequences defined in Section 3.3: {Pd}d∈Z+, {P′
d}d∈Z+, and {P̃d}d∈Z+ ,

against the optimal probability P∗ = 0.25 denoted by the green dashed line. For increasing relaxation orders
d = 2, ..., 25, we adopted SeDuMi [53] to compute Pd and P′

d, the optimal values of the SDP in (3.7), and
of the SDP relaxation for the volume problem in (3.10) with relaxation order d, respectively; and also to
compute P̃d = (ỹd)0. Similar to the results in [24], Figure 3.2 shows a faster convergence to P∗ for the case
when

∫

Gd dµ̃ is maximized as in (3.12). Let IF(xd) denote the indicator function of F(xd), i.e., IF(xd)(q) = 1

if q ∈ F(xd), and 0 otherwise. As discussed in Section 3.3, Ud = max{Gd, 0} is a continuous function while
IF(xd) is discontinuous on the boundary of F(xd); and this might be a factor affecting the convergence speed.
Indeed, Figure 3.3.a displays the degree-100 polynomial approximation f∗ to IF(x∗), the indicator function of
the set F(x∗), i.e., f∗ is a minimizer to inff∈Rd[x]{

∫

f dµq : f ≥ 0 on Q, f ≥ 1 on F(x∗)} for d = 100. Note
that this problem is a restriction of the Lagrangian dual problem for sup{

∫

dµ′ : µ � µq, µ′ ∈ M(F(x∗))}
–indeed, dual variable f ∈ C is restricted to be in Rd[x]. On the other hand, Figure 3.3.b displays the
degree-100 polynomial approximation h∗ to the piecewise-polynomial function U = max{G, 0}, where G(q) =
P(x∗, q) and h∗ is a minimizer to infh∈Rd[x]{

∫

h dµq : h ≥ 0 on Q, h ≥ G on F(x∗)} for d = 100. Similarly,
this problem is a restriction of the Lagrangian dual problem for sup{

∫

G dµ̃ : µ̃ � µq, µ̃ ∈ M(F(x∗))}.
Note that Figure 3.3 shows that it is easier to approximate the continuous function U = max{G, 0} than the
discontinuous indicator function IF(x∗).
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Fig. 3.3: Comparison of supµ′∈M(F(x∗))

∫

dµ′ s.t. µ′ � µq and supµ̃∈M(F(x∗))

∫

G dµ̃ s.t. µ̃ � µq from the dual
perspective for G(q) = P(x∗, q)

Next, we considered a problem over a semialgebraic set defined by an intersection of two polynomials:

sup
x∈R

µq ({q ∈ R : P1(x, q) ≥ 0, P2(x, q) ≥ 0 }) , (3.15)

where P1 (x, q) = 0.1275 + 0.7x− x2 − q2, P2 (x, q) = −0.1225 + 0.7x+ q − x2 − q2. (3.16)

The uncertain parameter q ∈ R has a uniform distribution on [-1,1]. Against the optimal probability

P∗ = 0.25 denoted by the green dashed line, Figure 3.4 displays two other sequences, {P̃(1)
d }d∈Z+ and

{P̃(2)
d }d∈Z+ , in addition to the three sequences defined in Section 3.3: {Pd}d∈Z+ , {P′

d}d∈Z+ , and {P̃d}d∈Z+ .

Here, P̃
(1)
d and P̃

(2)
d are defined similarly to P̃d = (ỹd)0 by replacing Gd(q) = P1(x

d, q)P2(x
d, q) in (3.12)

with P1(x
d, q), and P2(x

d, q), respectively.
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3.5. Orthogonal Basis. In this paper, all polynomials are expanded in the usual monomial basis, and
the SDPs are therefore formulated as optimization problems over ordinary monomial moments. However,
one can improve the numerical performance as in [24] by employing an orthogonal basis of polynomials.
First, we redefine the moment and localization matrices represented in the given orthogonal basis. Recall
that the Sn,d × Sn,d-moment matrix represented in monomial basis can be written as Md(y) = Ly

(

BdBT
d

)

,

where BT
d =

[

xα(1)

, . . . , xα
(Sn,d)

]T

denotes the vector comprised of the elements of the monomial basis of

Rd[x], where Sn,d :=
(

d+n
n

)

and {α(i)}Sn,d

i=1 = Nn
d := {α ∈ Nn : ‖α‖1 ≤ d} such that 0 = α(1) <g . . . <g α(Sn,d)

are sorted in grevlex order. Similarly, given a polynomial P ∈ R[x] with coefficient vector p = {pγ}γ∈Nn

with respect to the monomial basis, its Sn,d × Sn,d-localizing matrix represented in the monomial basis can
be written as Md(y;p) = Ly

(

PBdBT
d

)

.
Let {bi}i∈N be an orthogonal basis of univariate polynomials on [−1, 1], i.e.,

∫

[−1,1]
bi(t)bj(t) dt = 0

for all i 6= j. Without loss of generality, suppose that the degree of bi is equal to i for all i ∈ N. Given
n ≥ 1, for all α ∈ Nn, define bα : Rn → R such that bα(x) :=

∏n
i=1 bαi

(xi), where αi and xi are the i-th
components of α ∈ Nn and x ∈ Rn, respectively. Clearly {bα : α ∈ Nn

d} is an orthogonal basis of multivariate
polynomials on [−1, 1]n with degree at most d, i.e.,

∫

[−1,1]n
bα(i)(x) bα(j)(x) dx = 0 for all 1 ≤ i 6= j ≤ Sn,d.

Let Bo
d denote the vector of polynomials in Rd[x] defined as Bo

d
T =

[

bα(1)(x), bα(2)(x), . . . , b
α

(Sn,d)(x)
]

; and

Td ∈ RSn,d×Sn,d denote the one-to-one correspondence such that Bo
d = TdBd. Moreover, for a given sequence

y = {yα}α∈Nn , let Lo
y : R[x] → R be a linear map defined as

P 7→ Lo
y(P) =

∑

α∈Nn

poαyα, where P(x) =
∑

α∈Nn

poαbα(x). (3.17)

Given y ∈ RSn,2d such that yT =
[

yα(1) , . . . , y
α

(Sn,2d)

]T
, define its extension y = {yα}α∈Nn such that yα = 0

for all α ∈ Nn with ‖α‖1 > 2d. For ȳ := T−1
2d y, define its extension ȳ similarly. Then for all P ∈ Rd[x],

we have Lo
y(P) = Lȳ(P). In the rest of the paper, we abuse the notation and write ȳ = T−1

2d y. Then the
moment matrix operator, Mo

d (y), for the given orthogonal basis is defined as

Mo
d (y) := Lo

y

(

Bo
d Bo

d
T
)

= LT
−1
2d y

(

TdBd Bd
TT T

d

)

= TdMd

(

T−1
2d y

)

T T
d . (3.18)
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For example for d = 2 and n = 2, the moment matrix under the orthogonal basis formed by Chebyshev
polynomials of the first kind can be written as follows

Mo
2 (y) =





















y00 y10 y01 y20 y11 y02

y10
y00+y20

2 y11
y10+y30

2
y01+y21

2 y12

y01 y11
y00+y02

2 y21
y10+y12

2
y01+y03

2

y20
y10+y30

2 y21
y00+y40

2
y11+y31

2 y22

y11
y01+y21

2
y10+y12

2
y11+y31

2
y00+y20+y02+y22

4
y11+y13

2

y02 y12
y01+y03

2 y22
y11+y13

2
y00+y04

2





















. (3.19)

Let P ∈ R[x] be a given polynomial with degree δ, and p = {pα}α∈Nn denote its coefficient sequence
with respect to the standard monomial basis, i.e., P(x) =

∑

α∈Nn pαx
α. For a given orthogonal basis, the

localization matrix operator is defined as

Mo
d (y;p) := Lo

y

(

PBo
d Bo

d
T
)

= LT
−1
2d+δ

y

(

TdPBd BT
d T

T
d

)

= TdMd

(

T−1
2d+δy;p

)

T T
d . (3.20)

Let r := ⌈ δ
2⌉. It is important to note that since T2d is invertible, {y : Mo

d (y) � 0, Mo
d−r(y;p) � 0} and

{y : Md(y) � 0, Md−r(y;p) � 0} are isomorphic. Hence, one can reformulate the SDP relaxation in (3.7)
using the new moment and localization matrix operators defined in (3.18) and (3.20), respectively; and the
resulting problem stated in the given orthogonal basis is equivalent to (3.7). In order to illustrate the effect
of orthogonal polynomial basis on the numerical behavior of the proposed method, we compared the two
formulations of the simple example in (3.13): the first formulation is given in (3.7) using monomial basis, and
the second formulation is obtained by replacing Md(.) and Md−rj(.;pj) in (3.7) with Mo

d (.) and Mo
d−rj

(.;pj),
i.e., moment and localizing matrices in Chebyshev polynomial basis representations. In order to avoid matrix
inversions as in (3.18) and in (3.20), we used Chebfun package [60], which can efficiently manipulate univariate
Chebyshev polynomials, to form Mo

d (.) and Mo
d−rj

(.;pj) that use multivariate Chebyshev polynomials in a
numerically stable way; and solved the resulting SDP problems represented in the Chebyshev polynomial
basis using SeDuMi. Figure 3.5 shows that the approximations to the optimal probability P∗ converge faster
when Chebyshev polynomial basis is used as opposed to the standard monomial basis as relaxation order
d increases. For the problems in Chebyshev basis, the approximation (xo)d to the optimal decision x∗ is
formed similarly as xd – see Section 3.3. For this example xd and (xo)d sequences were close.
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4. Chance Optimization over a Union of Sets. We now focus on the more general setting of the

chance optimization problem in (1.1). Given polynomials Pk
j : Rn×Rm → R with degree δ

(k)
j for j = 1, . . . , ℓk

and k = 1, . . . , N , the semi-algebraic set of interest is K = ∪N
k=1Kk, where

Kk =
{

(x, q) ∈ R
n × R

m : P(k)
j (x, q) ≥ 0, j = 1, . . . , ℓk

}

, k = 1, . . . , N. (4.1)

Similar to the previous section, we need Putinar’s property to hold for Kk for all k = 1, . . . , N . With
the following assumption, we can ensure this.

Assumption 2. K = ∪N
k=1Kk is bounded, where Kk is defined in (4.1).

Hence, as discussed in Remark 3.1, we can assume without loss of generality that K ⊆ χ × Q and the
probability measure µq ∈ M(Q), where χ = [−1, 1]n and Q = [−1, 1]m. Therefore, for all (x, q) ∈ K, we

have ‖x‖22 + ‖q‖22 ≤ m + n. Define P(k)
0 (x, q) := m + n −∑n

i=1 x
2
i −∑m

i=1 q
2
i for all k = 1, . . . , N . Kk

can be represented as Kk =
{

(x, q) : P(k)
j (x, q) ≥ 0, j = 0, . . . , ℓk

}

–note that index j starts from 0. Since

polynomials are continuous in (x, q), the new representation of Kk satisfies Putinar’s property for each k and
we still have K = ∪N

k=1Kk.
The objective of this section is to provide a sequence of SDP relaxations to the chance optimization

problem in (1.1) with N > 1, and show that the results presented in the previous sections can be easily
extended for this case. More precisely, we start by providing an equivalent problem in the measure space
and then develop relaxations based on moments of measures.

4.1. An Equivalent Problem. As an intermediate step in the development of convex relaxations of
(1.1), an equivalent problem in the measure space is provided below.

P∗
µq

:= sup
µk, µx

N
∑

k=1

∫

dµk, (4.2)

s.t.

N
∑

k=1

µk 4 µx × µq, (4.2a)

µx is a probability measure, (4.2b)

µx ∈ M(χ), µk ∈ M(Kk) k = 1, . . . , N. (4.2c)

This problem is equivalent to the problem addressed in this paper in the following sense.
Theorem 4.1. The optimization problems in (1.1) and (4.2) are equivalent in the following sense:

i) The optimal values are the same, i.e. P∗ = P∗
µq
.

ii) If an optimal solution to (4.2) exists, call it µ∗
x, then any x∗ ∈ supp(µ∗

x) is an optimal solution to (1.1).
iii) If an optimal solution to (1.1) exists, call it x∗, then Dirac measure at x∗, µx = δx∗ and µ = δx∗ × µq

is an optimal solution to (4.2).
Proof. Let P∗ denote the optimal value of (1.1), and K = ∪N

k=1Kk, where Kk is defined in (4.1). It can
be proven as in Theorem 3.1 that

P∗ = sup
µx∈M(χ)

sup
µ∈M(K)

∫

dµ s.t. µ 4 µx × µq, µx(χ) = 1. (4.3)

Let {µk}Nk=1 and µx be a feasible solution to (4.2) with objective value P . Since µk ∈ M(Kk) ⊂ M(K)

for all k = 1, . . . , N , we have
∑N

k=1 µk ∈ M(K). Hence,
(

∑N
k=1 µk, µx

)

is a feasible solution to (4.3) with

objective value P , as well. Clearly, this shows that P∗
µq

≤ P∗, where P∗
µq

denotes the optimal value of (4.2).

Suppose that (µ, µx) is a feasible solution to (4.3) with objective value P . Define {µk}Nk=1 as follows

µk(S) := µ



S ∩



Kk \
k−1
⋃

j=0

Kj







 , ∀S ∈ Σ(K), (4.4)

for all k = 1, . . . , N , where K0 := ∅ and Σ(K) denotes the Borel σ-algebra over K. Definition in (4.4) implies

that µk ∈ M(Kk) for all k = 1, . . . , N , and
∑N

k=1 µk(S) = µ(S) for all S ∈ Σ(K). Hence, {µk}Nk=1 and µx

form a feasible solution to (3.2) with objective value equal to P . Therefore, P∗
µq

= P∗.
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4.2. Semidefinite Relaxations. In this section, a sequence of semidefinite programs is provided which
can arbitrarily approximate the optimal solution of (4.2). As before, this is done by considering moments
of measures instead of the measures themselves. Define the following optimization problem indexed by the
relaxation order d.

Pd := sup
yk∈R

Sn+m,2d , yx∈R
Sn,2d

N
∑

k=1

(yk)0 , (4.5)

s.t. Md(yk) < 0, M
d−r

(k)
j

(

yk;p
(k)
j

)

< 0, j = 1, . . . , lk, k = 1, . . . , N (4.5a)

Md(yx) < 0, ‖yx‖∞ ≤ 1, (yx)0 = 1, (4.5b)

Md

(

Adyx −
N
∑

k=1

yk

)

< 0, (4.5c)

where δ
(k)
j is the degree of P(k)

j , r
(k)
j :=

⌈

δ
(k)
j

2

⌉

for all 1 ≤ j ≤ ℓk and 1 ≤ k ≤ N ; and Ad : RSn,2d → RSn+m,2d

is defined similarly to A in (3.6). Indeed, let yq := {yqβ}β∈Nm
2d

be the truncated moment sequence of µq.

Then for any given yx = {yxα
}α∈Nn

2d
, y = Adyx such that yθ = yqβyxα

for all θ = (β, α) ∈ N
n+m
2d .

Next, we show that the sequence of optimal solutions to the SDPs in (4.5) converges to the solution of
the infinite dimensional SDP in (4.2). More precisely, we have the following result.

Theorem 4.2. For all d ≥ 1, there exists an optimal solution
(

{yd
k}Nk=1,y

d
x

)

to (4.5) with the optimal
value Pd. Moreover,
i) limd∈Z+ Pd = P∗, the optimal value of (1.1).
ii) Let S :=

{(

{yd
k}Nk=1,y

d
x

)}

d∈Z+
such that each element is obtained by zero-padding yd and yd

k for 1 ≤ k ≤
N . There exists an accumulation point of S in the weak-⋆ topology of ℓ∞, and for every accumulation
point of S, there exists corresponding representing measures

(

{µ∗
k}Nk=1, µ

∗
x

)

that is optimal to (4.2) and
any x∗ ∈ supp(µ∗

x) is optimal to (1.1).
Proof. Let {yk}Nk=1 ⊂ R

Sn+m,2d and yx ∈ R
Sn,2d be a feasible solution to (4.5). As in Theorem 3.3, it

can be shown that

max

{

(y)0 , max
i=1,...,n+m

Ly

(

x2d
i

)

}

≤ 1, (4.6)

where y :=
∑N

k=1 yk. Note that Ly

(

x2d
i

)

=
∑N

k=1 Lyk

(

x2d
i

)

, and {Lyk

(

x2d
i

)

}n+m
i=1 is a subset of diagonal

elements of Md(yk) � 0 for each k ∈ {1, . . . , N}. Hence, Lyk

(

x2d
i

)

≥ 0 for all i ∈ {1, . . . , n +m} and k ∈
{1, . . . , N}. Therefore, (4.6) implies that max

{

(yk)0 ,maxi=1,...,n+m Lyk

(

x2d
i

)}

≤ 1 for all k ∈ {1, . . . , N}.
Lemma 2.3 implies that |(yk)α| ≤ 1 for all α ∈ N

n+m
2d . Therefore, the feasible region is bounded. The rest of

the proof is exactly the same as in Theorem 3.3.

5. Implementation and Numerical Results. In previous sections, we showed that chance optimiza-
tion problem in (1.1) can be relaxed to a sequence of SDPs. In this section, we go one step further to improve
approximation quality of the relaxed problems in practice and implement an efficient first-order algorithm
to solve the resulting SDP relaxations.

5.1. Regularized Chance Optimization Using Trace Norm. As shown in Theorem 3.1 and The-
orem 4.1, if the chance optimization problems in (1.2) and (1.1) have unique optimal solution x∗, then
the optimal distribution µ∗

x is a Dirac measure whose mass is concentrated on the single point x∗, i.e., its
support is the singleton {x∗}. Such distributions, have moment matrices with rank one. To improve the
solution quality of the algorithm, one can incorporate this observation in the formulation of the relaxed
problem. For the sake of notational simplicity, in this section we will consider the regularized version of
chance optimization problem (3.7) for presenting the algorithm:

min
y∈R

Sn+m,2d , yx∈R
Sn,2d

ωr Tr(Md(yx))− (y)0 subject to (3.7a), (3.7b), (3.7c) (5.1)
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for some ωr > 0, whereTr(.) denotes the trace function. Our objective is to achieve the maximum probability
with a low-rank moment matrix Md(y

∗
x), hopefully with rank 1. To this end, we regularize the objective

with trace norm. Since Md(y
∗
x) < 0, Tr(Md(y

∗
x)) is equal to sum of singular values of Md(y

∗
x), which is

called the nuclear norm of Md(y
∗
x). This is a well known approach for obtaining low-rank solutions. Indeed,

the nuclear norm is the convex envelope of the rank function and, in practice, produces good results; see [20]
and [51] for details.

To be able to solve the SDP in (5.1) involving large scale matrices in practice, one need to implement
an efficient convex optimization algorithm. Recently, a first-order augmented Lagrangian algorithm ALCC
has been proposed in [2] to deal with regularized conic convex problems. We will adapt this algorithm to
solve SDPs of the form in (5.1). In the following section, we briefly discuss the algorithm ALCC.

5.2. First-Order Augmented Lagrangian Algorithm. Consider the optimization problem:

(P ) : p∗ = min{ρ(x) + γ(x) : A(x)− b ∈ C}, (5.2)

where γ : Rn → R is a convex function such that ∇γ is Lipschitz continuous with constant Lγ , ρ : Rn →
R ∪ {+∞} is a closed convex function such that ∆ := dom(ρ) is convex compact set, A : Rn → Rm is a
linear map, and C ⊂ Rm is a closed convex cone. Let C∗ := {θ ∈ Rn : 〈z, θ〉 ≥ 0, ∀z ∈ C} denote the dual
cone of C, and B > 0 denote the diameter of ∆, i.e., B = max{‖x−y‖2 : x, y ∈ ∆}; and we assume that B is
given. Given a penalty parameter ν > 0 and Lagrangian dual multiplier θ ∈ C∗, the augmented Lagrangian
for (P) in (5.2) is given by

L(x; ν, θ) := 1
ν
(ρ(x) + γ(x)) + 1

2dC(A(x) − b− θ)2, (5.3)

where dC : Rm → R denotes the distance function to cone C, i.e., dC(z̄) := ‖z̄ − ΠC(z̄)‖2, and ΠC(z̄) :=
argmin{‖z− z̄‖2 : z ∈ C} denotes the Euclidean projection of z̄ onto C. Given νk > 0 and θk ∈ C∗, we define
Lk(x) := L(x; νk, θk) and L∗

k := minx Lk(x). Let fk : Rn → R such that fk(x) :=
1
νk
γ(x)+ 1

2dC(A(x)−b−θ)2;

hence, L∗
k = minx

1
νk
ρ(x) + fk(x). It is important to note that fk is a convex function with Lipschitz

continuous gradient ∇fk(x) =
1
νk
γ(x)−A∗ (ΠC∗(θk + b−A(x))); and the Lipschitz constant of ∇fk is equal

to Lk := 1
νk
Lγ + σ2

max(A), where A∗ : Rm → Rn denotes the adjoint operator of A : Rn → Rm, and σmax(A)
denotes the maximum singular value of the linear map A. Therefore, given ǫk > 0, an ǫk-optimal solution,
x̃k, to L∗

k := minx Lk(x) can be efficiently computed such that Lk(x̃k) − L∗
k ≤ ǫk using an Accelerated

Proximal Gradient (APG) algorithm [6, 40, 41, 56] within ℓmax
k (ǫk) := B

√

2Lk

ǫk
APG iterations. In each

APG iteration, ∇fk, ΠC∗ and proximal map of ρ are all evaluated once.
ALCC algorithm proposed in [2] can generate a minimizing sequence {xk} to (P) in (5.2) by inexactly

solving a sequence of subproblems minx Lk(x). In particular, given inexact computation parameters αk > 0
and ηk > 0, xk is computed such that either one of the following conditions holds:

Lk(xk)− L∗
k ≤ αk

νk
, (5.4)

∃sk ∈ ∂Lk(xk) such that ‖sk‖2 ≤ ηk

νk
, (5.5)

where ∂Lk(xk) denotes the subdifferential of Lk at xk – the inexact optimality criteria in (5.4) and (5.5)
have been successfully implemented in other first-order augmented Lagrangian algorithms in [3, 4, 5] as well.
Then dual Lagrangian multiplier is updated: θk+1 = νk

νk+1
ΠC∗(θk + b − A(xk)). For given c, β > 1, fix the

parameter sequence as follows: νk = βkν0, αk = 1
k2(1+c)βkα0, and ηk = 1

k2(1+c)βk η0 for all k ≥ 1; and let

{xk, θk} ⊂ ∆× C∗ be the primal-dual ALCC iterate sequence. Theorem 3.10 in [2] shows that limk θkνk
exists and it is an optimal solution to the dual problem. Moreover, Theorem 3.8 shows that for all ǫ > 0,
xk is ǫ-feasible, i.e., dC(Axk − b) ≤ ǫ, and ǫ-optimal, i.e., |ρ(xk) + γ(xk) − p∗| ≤ ǫ within log(1/ǫ) ALCC
iterations, i.e., k = O(log(1/ǫ)), which requires O(ǫ−1 log(ǫ−1)) APG iterations in total. Moreover, every
limit point of {xk} is optimal (when A ∈ Rm×n is surjective, the techniques used for proving Theorem 4

in [3] can be used to improve the rate result to O(1/ǫ)).
Now consider the following problem p∗ = minx∈∆{γ(x) : A(x) − b ∈ C}, where ∆ ⊂ Rn is a compact

convex set. Note that this problem can be written as a special case of (5.2) by setting ρ(x) = 1∆(x), the
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indicator function of the set ∆, i.e., 1∆(x) = 0, if x ∈ ∆, and equal to +∞, if x 6∈ ∆. In Figure 5.1, we
present the ALCC algorithm customized to solve p∗ = minx∈∆{γ(x) : A(x)− b ∈ C}. Note that Step 11 and
Step 12 in Figure 5.1 are the bottleneck steps (one ∇γ evaluation and two projections: one onto C∗, and one

onto ∆) – in Step 11 ∇fk is evaluated at x
(2)
ℓ , and then in Step 12 x

(1)
ℓ is computed via a projected gradient

step of length 1/Lk. In this customized version, ALCC iterate xk is set to x
(1)
ℓ whenever either ℓ > ℓmax

k or

‖x(1)
ℓ −x

(2)
ℓ ‖2 ≤ ηk

νk
. Note that ℓmax

k := k1+cβkB
√

2ν0Lk

α0
, which is equal to ℓmax

k (ǫk) when ǫk = αk

νk
. Therefore,

if ℓ > ℓmax
k , then Lk(xk) − L∗

k ≤ αk

νk
– this follows from the complexity of Accelerated Proximal Gradient

algorithm (lines 9-19 in Figure 5.1) running on minLk(x); next we’ll show that if ‖x(1)
ℓ −x

(2)
ℓ ‖2 ≤ 1

2Lk

ηk

νk
, then

(5.5) holds. For ρ(x) = 1∆(x), we have Lk(x) = ρ(x)+fk(x). Suppose that for some ℓ, ‖x(1)
ℓ −x

(2)
ℓ ‖2 ≤ 1

2Lk

ηk

νk

holds. Note that gℓ computed in Line 11 is equal to ∇fk(x
(2)
ℓ ); thus x

(1)
ℓ computed in Line 12 is equal

to Π∆(x
(2)
ℓ − ∇fk(x

(2)
ℓ )/Lk), where Lk := 1

νk
Lγ + σ2

max(A) is the Lipschitz constant of ∇fk. One can

easily show that x
(2)
ℓ − ∇fk(x

(2)
ℓ )/Lk − x

(1)
ℓ ∈ ∂ρ(x

(1)
ℓ ); and since ρ is the indicator function, we also have

Lk

(

x
(2)
ℓ − x

(1)
ℓ

)

−∇fk(x
(2)
ℓ ) ∈ ∂ρ(x

(1)
ℓ ). Hence, sk := Lk

(

x
(2)
ℓ − x

(1)
ℓ

)

+∇fk(x
(1)
ℓ )−∇fk(x

(2)
ℓ ) ∈ ∂Pk(x

(1)
ℓ ).

Since ∇fk is Lipschitz continuous, we have ‖∇fk(x
(1)
ℓ )−∇fk(x

(2)
ℓ )‖2 ≤ Lk‖x(2)

ℓ −x
(1)
ℓ ‖2. Therefore, we have

‖sk‖2 ≤ 2Lk‖x(2)
ℓ − x

(1)
ℓ ‖2 ≤ ηk

νk
.

Algorithm ALCC (x0, ν0, α0, Lγ , B)
1: k ← 1, θ1 ← 0
2: η0 ← 0.5 ‖∇γ (x0)− ν0A

∗ (ΠC∗ (b− A(x0))) ‖2
3: while k ≥ 1 do
4: ℓ← 0, t1 ← 1,
5: x

(1)
0 ← xk−1, x

(2)
1 ← xk−1

6: Lk ←
1
νk

Lγ + σ2
max(A), ℓmax

k ← k1+cβkB
√

2ν0Lk

α0

7: νk ← βkν0, αk ←
1

k2(1+c)βk
α0, ηk ←

1

k2(1+c)βk
η0

8: STOP← false
9: while STOP = false do

10: ℓ← ℓ+ 1

11: gℓ ←
1
νk
∇γ

(

x
(2)
ℓ

)

− A∗
(

ΠC∗

(

θk + b− A
(

x
(2)
ℓ

)))

12: x
(1)
ℓ ← Π∆

(

x
(2)
ℓ − gℓ/Lk

)

13: if ‖x
(1)
ℓ − x

(2)
ℓ ‖2 ≤

1

2Lk

ηk
νk

or ℓ > ℓmax
k then

14: STOP← true
15: xk ← x

(1)
ℓ

16: end if
17: tℓ+1 ←

(

1 +
√

1 + 4 t2ℓ

)

/2

18: x
(2)
ℓ+1 ← x

(1)
ℓ +

(

tℓ−1
tℓ+1

)(

x
(1)
ℓ − x

(1)
ℓ−1

)

19: end while
20: θk+1 ←

νk
νk+1

ΠC∗(θk + b− A(xk))

21: end while

Fig. 5.1: first-order Augmented Lagrangian algorithm for Conic Convex (ALCC) problems

Semidefinite program of (5.1) is a special case of the conic convex problem in (5.2), where γ(yx,y) =
cTr yx + cTp y for some cr ∈ R

Sn,2d and cp ∈ R
Sn+m,2d since the objective of (5.1) is linear in (y,yx); hence,

Lγ = 0, the conic constraint A(.) − b ∈ C in (5.2) is a linear matrix inequality (LMI), with C = C∗ being
the cone of positive semidefinite matrices S+, and the compact set ∆ = {(y,yx) : ‖y‖∞ ≤ 1, ‖yx‖∞ ≤
1, (yx)0 = 1}. Hence, ΠC(.) = ΠC∗(.) can be computed using one eigenvalue decomposition, and Π∆(.) is
very efficient and can be computed in linear time. In our numerical experiments in Section 5.3, we used
‖xk − xk−1‖2/(1 + ‖xk−1‖2) ≤ tol as the stopping condition for ALCC.
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5.3. Numerical Examples. In this section, four numerical examples are presented that illustrate the
performance of the proposed methodology, discussed in Sections 3 and 4. We compared the augmented
Lagrangian algorithm, ALCC, presented in Section 5.2 with GloptiPoly, which is a Matlab-based toolbox
aimed at optimizing moments of measures [23], to compute approximate solutions to the chance constrained
problems in (1.1) and (1.2). In all the tables, for problems of the form (1.2), i.e., N = 1, Pd, P

′
d, P̄d, and

P̃d denote the optimal probability estimates defined similarly as in Section 3.3 for xd obtained by solving
the regularized problem in (5.1); for problems of the form (1.1), i.e., N > 1, these estimates can be defined

naturally using (yd,yd
x) with yd :=

∑N
k=1 y

d
k; and d ∈ Z+ denotes the relaxation order. In order to compute

P∗ and P̄d, we used Monte Carlo simulation discussed in Section 5.3.1. In all the tables, iter denotes the
total number of algorithm iterations, and cpu denotes the computing time in seconds required for computing
Pd; nvar denotes the number of variables, i.e., total number of moments used. For ALCC iter is the total
number of APG iterations, and for GloptiPoly it denotes the total number of SeDuMi [53] iterations.

5.3.1. Monte Carlo Simulation. To test the accuracy of the results obtained using ALCC and
GloptiPoly, we used Monte Carlo integration to estimate an optimal solution and the corresponding optimal
probability. Let K ⊂ Rn×Rm be the given semialgebraic set such that Π1 := {x ∈ Rn : ∃q ∈ Rm s.t. (x, q) ∈
K} ⊂ χ := [−1, 1]n, and Π2 := {q ∈ Rm : ∃q ∈ Rm s.t. (x, q) ∈ K} ⊂ Q := [−1, 1]m. Define F : χ → Σq,

F(x) := {q ∈ Q : (x, q) ∈ K}. (5.6)

First, we uniformly grid χ into N̄ grid-points (N̄ depending on the desired precision). Let {x(i)}N̄i=1 ⊂ χ
denote the points in the uniform grid. Next, for each grid point x(i), we sample from the distribution
induced by the given finite Borel measure µq supported on Q. Let {q(i,k)}Ni

k=1 be Ni i.i.d. sample of random
parameter q. Then we approximate µq(F(x(i))) by

P
(i)
Ni

:=
1

Ni

Ni
∑

k=1

1K

(

x(i), q(i,k)
)

, where 1K (x, q) =

{

1, if (x, q) ∈ K;
0, otherwise.

Because of law of large numbers, limNiր∞ P
(i)
Ni

= µq(F(x(i))). For each x(i), we chose sample size Ni

such that P
(i)
Ni

becomes stagnant to further increase in Ni. Finally, we approximate x∗ by x(i∗), where

i∗ ∈ argmax{P (i)
Ni

: 1 ≤ i ≤ N̄}. It is clear that what we used is a naive method, and it can be made much
more efficient by using an adaptive gridding scheme on χ. On the other hand, as the dimensions n and m
are very small for the problems discussed in the numerical section, this naive method served its purpose.

5.3.2. Example 1: A Simple Semialgebraic Set. Consider the chance optimization problem

sup
x∈R5

µq

(

{q ∈ R
5 : P(x, q) ≥ 0 }

)

, (5.7)

where

P(x, q) = 0.185 + 0.5x1 − 0.5x2 + x3 − x4 + 0.5q1 − 0.5q2 + q3 − q4 − x2
1 − 2x1q1 − x2

2

−2x2q2 − x2
3 − 2x3q3 − x2

4 − 2x4q4 − x2
5 + 2x5q5 − q21 − q22 − q23 − q24 − q25 ,

and the uncertain parameters q1, q2, q3, q4, q5 have a uniform distribution: q1 ∼ U [−1, 0], q2 ∼ U [0, 1],
q3 ∼ U [−0.5, 1], q4 ∼ U [−1, 0.5], q5 ∼ U [0, 1] – U [a, b] denotes the uniform distribution between a and b. The

k-th moment of uniform distribution U[a,b] is (yq)k = bk+1−ak+1

(b−a)(k+1) . The optimum solution and corresponding

optimal probability are obtained by Monte Carlo method: x∗
1 = 0.75, x∗

2 = −0.75, x∗
3 = 0.25, x∗

4 = −0.25,
x∗
5 = 0.5, and P ∗ = 0.75. To obtain an approximate solution, we solve the SDP in (3.7) using GloptiPoly

and ALCC. For ALCC, we set ν0 to 1, 5 × 10−2 and 5 × 10−3 when d is equal to 1, 2, and 3, respectively,
and tol = 1 × 10−2. The results for relaxation order d = 1, 2, 3 are shown in Table 5.1. As in Figure 3.2,
when compared to Pd, P̃d approximates P∗ better, i.e., when max{

∫

P(xd, q) dµ̃ : µ̃ � µq, µ̃ ∈ M(F(xd))}
is solved instead of max{

∫

dµ′ : µ′ � µq, µ′ ∈ M(F(xd))}. We reported results up to order d = 3, because
for larger d, GloptiPoly did not terminate in 24 hours.
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ALCC

d 1 2 3

nvar 87 1127 8463

iter 169 624 1207

cpu 0.9 28.1 785.9

x1 0.742 0.745 0.757

x2 -0.777 -0.701 -0.721

x3 0.213 0.226 0.216

x4 -0.239 -0.250 0.236

x5 0.500 0.551 0.557

Pd 0.991 0.971 0.961

P′
d

1 1 1

P̃d 0.996 0.7739 0.6919

P̄d 0.7504 0.7459 0.7459

GloptiPoly

d 1 2 3

nvar 87 1127 8463

iter 18 25 41

cpu 0.5 12.3 15324.3

x1 0.467 0.710 0.742

x2 -0.467 -0.710 -0.742

x3 0.163 0.245 0.249

x4 -0.163 -0.245 -0.249

x5 0.319 0.475 0.495

Pd 1 1 1

P′
d

1 1 1

P̃d 0.9652 0.7768 0.7031

P̄d 0.5067 0.7484 0.7535

Table 5.1: ALCC and GloptiPoly results for Example 1

5.3.3. Example 2: Union of Simple Sets. Given the following polynomials

P(1)(x, q) =− 0.263 + 0.4x1 − 0.4x2 + 0.8x3 − 0.8x4 + 1.2x5 + 0.1q1 + 0.08q2 + 0.04q3

+ 0.4q4 + 0.6q5 − x2
1 − x2

2 − x2
3 − x2

4 − x2
5 − 0.5q21 − 0.4q22 − 0.1q23 − q24 − q25 ,

P(2)(x, q) =− 2.06 + 0.4x1 − 0.8x2 + 3.2x3 − 1.6x4 + 3.6x5 − 0.4q1 − 0.4q2 − 0.2q3

− 0.2q4 − 0.8q5 − x2
1 − 2x2

2 − 4x2
3 − 2x2

4 − 3x2
5 − q21 − q22 − q23 − q24 − q25 ,

consider the chance optimization problem

sup
x∈R5

µq





⋃

j=1,2

{

q ∈ R
5 : P(j)(x, q) ≥ 0

}



 , (5.8)

where qi ∼ U [−0.5, 0.5] for all i = 1, . . . , 5, i.e., the uncertain parameters qi are uniformly distributed
on [−0.5, 0.5]. The optimum solution and corresponding optimal probability are obtained by Monte Carlo
method: x∗

1 = 0.2, x∗
2 = −0.2, x∗

3 = 0.4, x∗
4 = −0.4, x∗

5 = 0.6, and P∗ = 0.80. To obtain an approximate
solution, we solve the SDP in (4.5) using ALCC, where we set ν0 to 1, 1 × 10−1 and 1 × 10−3 when d is
equal to 1, 2, and 3, respectively, and tol = 1 × 10−2. The results for relaxation order d = 1, 2, 3 are shown
in Table 5.2. Let F (k)(x) =: {q ∈ Q : P(k)(x, q) ≥ 0} for k = 1, 2. The probability estimates P̃d reported
in Table 5.2 are computed by solving the SDP relaxation for

max

{∫

P(1)(xd, q) dµ̃1 +

∫

P(2)(xd, q) dµ̃2 : µ̃1 + µ̃2 � µq, µ̃1 ∈ M(F (1)(xd)), µ̃2 ∈ M(F (2)(xd))

}

.

For this example, GloptiPoly fails to extract the optimum solution.

5.3.4. Example 3: Portfolio Selection Problem. We aim at selecting a portfolio of financial assets
to maximize the probability of achieving a return higher than a specified amount r∗. Suppose that for each
asset i = 1, ..., N , its uncertain rate of return is a random variable ξi(q); and let (Q,Σq, µq) denote the
underlying probability space. In this context xi denotes the percentage of money invested in asset i. More
precisely, we solve the following problem:

sup
x∈RN

µq

({

q ∈ R
N :

N
∑

i=1

ξi(q)xi ≥ r∗

})

s.t.

N
∑

i=1

xi ≤ 1, xi ≥ 0 ∀ i ∈ {1, . . . , N}. (5.9)
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ALCC

d 1 2 3

nvar 153 2128 16478

iter 979 1467 1875

cpu 6.5 102.2 434.7

x1 0.209 0.328 0.201

x2 -0.202 -0.174 -0.201

x3 0.397 0.466 0.430

x4 -0.400 -0.405 -0.401

x5 0.667 0.638 0.591

Pd 1 0.997 0.981

P′
d

1 1 1

P̃d 0.9973 0.8610 0.8926

P̄d 0.8937 0.8745 0.8984

Table 5.2: ALCC results for Example 2

In our example problem, r∗ = 1.5, N = 4, ξ1(q) = 1 + q1, ξ2(q) = 1 + q2, ξ3(q) = 0.9 + q3, ξ4(q) = 0.9 + q4,
where {qi}4i=1 are independent, and q1 ∼ Beta(3−

√
2, 3 +

√
2), q2 ∼ Beta(4, 4), q3 ∼ Beta(3 +

√
2, 3−

√
2),

q4 ∼ U [0.5, 1]. The k-th moment of Beta distribution Beta(α, β) over [0,1] is yk = α+k−1
(α+β+k−1)yk−1 and y0 = 1.

We will solve an equivalent problem in the form of (1.2) with ℓ = 7, where Pj(x, q) = xj for j = 1, . . . , 4,

P5(x, q) = 1 −∑4
i=1 xi, P6(x, q) = 8 −∑4

i=1 x
2
i −∑4

i=1 q
2
i , and P7(x, q) =

∑4
i=1 ξi(q)xi − r∗. Since any

(x, q) ∈ K satisfies x ∈ χ and q ∈ Q, we added polynomial P6(x, q) to assure that the resulting representation
of the semialgebraic set K satisfies Putinar’s property. The optimum solution and the corresponding optimal
probability are computed approximately by Monte Carlo method: x∗

1 = 0, x∗
2 = 0, x∗

3 = 0.3, x∗
4 = 0.7, and

P ∗ = 0.89. To obtain an approximate solution, we solve the SDP relaxation in (3.7) using GloptiPoly and
ALCC. For ALCC, we set ν0 to 1× 10−2, 1× 10−2 and 1× 10−3 when d is equal to 1, 2, and 3, respectively,
and tol = 1× 10−3. The results for relaxation order d = 1, 2, 3 are shown in Table 5.3. We reported results
up to order d = 3, because for larger d, GloptiPoly did not terminate in 24 hours.

ALCC

d 1 2 3

nvar 60 565 3213

iter 573 388 2227

cpu 3.625 16.426 756.798

x1 0.004 0.009 0.002

x2 0.012 0.009 0.006

x3 0.438 0.449 0.299

x4 0.5007 0.522 0.677

Pd 0.996 0.994 0.980

P′
d

1 1 0.9716

P̃d 0.7928 0.8177 0.8220

P̄d 0.7405 0.8655 0.8422

GloptiPoly

d 1 2 3

nvar 60 565 3213

iter 15 20 48

cpu 0.509 2.617 1025.045

x1 0.133 0.0462 0.003

x2 0.192 0.154 0.075

x3 0.295 0.297 0.210

x4 0.325 0.493 0.710

Pd 1 1 0.999

P′
d

0.9071 0.9997 0.9896

P̃d 0.3808 0.7753 0.8395

P̄d 0.3865 0.8267 0.8675

Table 5.3: ALCC and GloptiPoly results for Example 3

5.3.5. Example 4: Nonlinear Control Problem. In this example, we consider the controller design
problem for the following uncertain nonlinear dynamical system. For a given control parameter vector
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ALCC

d 2 3 4

nvar 365 1800 6600

iter 416 4300 5325

cpu 14.934 897.708 5318.387

K1 0 -0.244 -0.683

K2 0 0.468 0.476

K3 0 -0.868 -0.868

Pd 0.238 0.996 0.983

P′
d

0.65 0.9 0.982

P̄d 0.061 0.445 0.685

GloptiPoly

d 2 3 4

nvar 365 1800 6600

iter 19 26 36

cpu 1.3 99.2 10389.8

K1 0 -0.492 -0.796

K2 0 0.439 0.487

K3 0 -0.823 -0.891

Pd 1 1 1

P′
d

0.65 0.959 0.999

P̄d 0.061 0.508 0.766

Table 5.4: ALCC and GloptiPoly results for Example 4

K ∈ R3, let the system x(k)T = [x1(k), x2(k), x3(k)] ∈ R3 satisfy

u(k) = K1x1(k) +K2x2(k) +K3x3(k),
x1(k + 1) = ∆ x2(k),
x2(k + 1) = x1(k) x3(k),
x3(k + 1) = 1.2 x1(k)− 0.5 x2(k) + x3(k) + u(k),

(5.10)

for k = 0, 1, where x1(0) ∼ U [−1, 1], x2(0) ∼ U [−1, 1], x3(0) ∼ U [−1, 1], ∆ ∼ U [−0.4, 0.4], i.e., initial
state vector x(0), and model parameter ∆ are uncertain and uniformly distributed. The objective is to lead
the system using state feedback control u(k) to the cube centered at the origin with the edge length of 0.2
in at most 2 steps by properly choosing the control decision variables {Ki}3i=1 such that −1 ≤ Ki ≤ 1. The
equivalent chance problem is stated in (5.11), where eT = [1, 1, 1].

sup
K∈R3

µq

({(

x(0),∆
)

: −0.1e ≤ x(2) ≤ 0.1e
})

, (5.11)

s.t. {x(k), u(k)}2k=0 satisfy (5.10),

− e ≤ K ≤ e.

The following optimal solution and the corresponding optimal probability are computed by Monte Carlo
method: K∗

1 = −1, K∗
2 = 0.5, K∗

3 = −0.9, and P∗ = 0.84. To obtain an equivalent SDP formulation for
the chance constrained problem in (5.11), x(2) is explicitly written in terms of control vector K ∈ R3 and
uncertain parameters, x(0) and ∆, using the dynamic system given in (5.10):

x1(2) = ∆ x1(0)x3(0),

x2(2) = (1.2 +K1)∆ x1(0)x2(0) + (K2 − 0.5)∆ x2(0)
2 + (1 +K3)∆ x2(0)x3(0),

x3(2) = (1 + 2K3 +K2
3) x3(0) + (K2 − 0.5K3 − 0.5 + 1.2∆+K1∆+K2K3) x2(0)

+ (1.2 +K1 + 1.2K3 +K1K3) x1(0) + (K2 − 0.5) x1(0)x3(0).

Based on the obtained polynomials, the minimum relaxation order for this problem is 2. To obtain an
approximate solution, we solve the SDP in (3.7) using GloptiPoly and ALCC. For ALCC, we set ν0 to
5× 10−3, 5× 10−3 and 1× 10−3 when d is equal to 2, 3 and 4, respectively, and tol = 1× 10−3. The results
for relaxation order d = 2, 3, 4 are shown in Table 5.4.

5.3.6. Example 5: Run time. In this example, for fixed degree of the relaxation order d, we examined
how the run times of ALCC algorithm scale as the problem size increases. For this purpose, we consider the
following problem: Given n ≥ 1, we set P : Rn × Rn → R, P (x, q) = 0.81−∑n

i=1(xi − qi)
2; and solve

sup
x∈Rn

µq ({q ∈ Rn : P(x, q) ≥ 0 }) . (5.12)

The numerical results for increasing n and fixed relaxation order d = 1 are displayed in Table 5.5. For each
n, ALCC recovered the optimal decision value: x∗ = 0.
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ALCC

n 5 10 20 30 40 50 60 70 80
d 1 1 1 1 1 1 1 1 1
nvar 10 20 40 60 80 100 120 140 160
iter 82 140 97 182 201 175 191 186 208
cpu 0.3969 1.5349 3.5542 14.2899 27.7978 37.2624 60.4454 83.3669 122.7844

Table 5.5: ALCC for increasing problem in Example 5

6. Conclusion. In this paper, “chance optimization” problems are introduced, where one aims at
maximizing the probability of a set defined by polynomial inequalities. These problems are, in general,
nonconvex and computationally hard. A sequence of semidefinite relaxations is provided whose sequence of
optimal values is shown to converge to the optimal value of the original problem. To solve the semidefinite
programs of increasing size obtained by relaxing the original chance optimization problem, a first-order
augmented Lagrangian algorithm is implemented which enables us to solve much larger size semidefinite
programs that interior point methods can deal with. Numerical examples are provided that show that one
can obtains reasonable approximations to the optimal solution and the corresponding optimal probability
even for lower order relaxations.
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Appendix A. Sample GloptiPoly Code for Chance Optimization. In this section, we provide the
Gloptipoly code for solving the simple problem given in (3.13) and (3.14) of Section 3.4.

>> d=2; %relaxation order

>> % mu s: slack measure, mu s = mux muq - mu, y s: moments of mu s

>> mpol x s q s; mu s = meas([x s;q s]); y s=mom(mmon([x s;q s],2*d));

>> % mu: measure supported on p>=0, y: moments of mu

>> mpol x q; mu = meas([x;q]); y=mom(mmon([x;q],2*d));

>> p=0.5*q*(q^2+(x-0.5)^2)-(q^4+q^2*(x-0.5)^2+(x-0.5)^4);

>> % mux: measure, yx: moments of mux

>> mpol xm; mux= meas([xm]); yx=mom(mmon([xm],2*d));

>> % yq: moments of uniform distribution muq on [-1,1]

>> yq=[1;0;1/3;0;0.2];

>> % yxq : moments of upper bound measure mux muq

>> yxq = [yx(1)*yq(1);yx(2)*yq(1);yx(1)*yq(2);yx(3)*yq(1);yx(2)*yq(2);

>> yx(1)*yq(3);yx(4)*yq(1);yx(3)*yq(2);yx(2)*yq(3);yx(1)*yq(4);

>> yx(5)*yq(1);yx(4)*yq(2);yx(3)*yq(3);yx(2)*yq(4);yx(1)*yq(5)];

>> Pd=msdp(max(mass(mu)),mass(mux)==1,p>=0,y s==yxq - y,-1<=yx,yx<=1,d);msol(Pd);

>> y=double(mvec(mu)); yx=double(mvec(mux)); % results

>> Decision= yx(2)

>> Probability = y(1)

Fig. A.1: GloptiPoly Code in Matlab for Example 1
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