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Abstract

In this paper, we propose a new fast and robust recursive algorithm for near-separable nonnega-
tive matrix factorization, a particular nonnegative blind source separation problem. This algorithm,
which we refer to as the successive nonnegative projection algorithm (SNPA), is closely related to
the popular successive projection algorithm (SPA), but takes advantage of the nonnegativity con-
straint in the decomposition. We prove that SNPA is more robust than SPA and can be applied to
a broader class of nonnegative matrices. This is illustrated on some synthetic data sets, and on a
real-world hyperspectral image.

Keywords. Nonnegative matrix factorization, nonnegative blind source separation, separability,
robustness to noise, hyperspectral unmixing, pure-pixel assumption.

1 Introduction

Nonnegative matrix factorization (NMF) has become a widely used tool for analysis of high-dimensional
data. NMF decomposes approximately a nonnegative input data matrix M ∈ R

m×n
+ into the product

of two nonnegative matrices W ∈ R
m×r
+ and H ∈ R

r×n
+ so that M ≈ WH. Although NMF is NP-hard

in general [33] and ill-posed (see [15] and the references therein), it has been used in many different
areas such as image processing [26], document classification [32], hyperspectral unmixing [30], com-
munity detection [34], and computational biology [10]. Recently, Arora et al. [4] introduced a subclass
of nonnegative matrices, referred to as separable, for which NMF can be solved efficiently (that is,
in polynomial time), even in the presence of noise. This subclass of NMF problems are referred to
as near-separable NMF, and has been shown to be useful in several applications such as document
classification [5, 3, 25, 11], blind source separation [9], video summarization and image classification
[12], and hyperspectral unmixing (see Section 1.1 below).

1.1 Near-Separable NMF

A matrix M is r-separable if there exists an index set K of cardinality r and a nonnegative matrix
H ∈ R

r×n
+ with M = M(:,K)H . Equivalently, M is r-separable if

M = W [Ir, H
′] Π,
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where Ir is the r-by-r identity matrix, H ′ is a nonnegative matrix and Π is a permutation. Given
a separable matrix, the goal is to identify the r columns of M allowing to reconstruct it perfectly,
that is, to identify the columns of M corresponding the columns of W . In the presence of noise, the
problem is referred to as near-separable NMF and can be stated as follows.

Near-Separable NMF: Given the noisy r-separable matrix M̃ = WH +N ∈ R
m×n where N is the

noise, W ∈ R
m×r
+ , H = [Ir,H

′]Π with H ′ ≥ 0 and Π is a permutation, recover approximately the

columns of W among the columns of M̃ .

An important application of near-separable NMF is blind hyperspectral unmixing in the presence of
pure pixels [21, 27]: A hyperspectral image is a set of images taken at different wavelengths. It can
be associated with a nonnegative matrix M ∈ R

m×n
+ where m is the number of wavelengths and n

the number of pixels. Each column of M is equal to the spectral signature of a given pixel, that is,
M(i, j) is the fraction of incident light reflected by the jth pixel at the ith wavelength. Under the
linear mixing model, the spectral signature of a pixel is equal to a linear combination of the spectral
signatures of the constitutive materials present in the image, referred to as endmembers. The weights
in that linear combination are nonnegative and sum to one, and correspond to the abundances of the
endmembers in that pixel. If for each endmember, there exists a pixel in the image containing only
that endmember, then the pure-pixel assumption is satisfied. This assumption is equivalent to the
separability assumption: each column of W is the spectral signature of an endmember and is equal to
a column of M corresponding to a pure pixel; see the survey [6] for more details.

Several provably robust algorithms have been proposed to solve the near-separable NMF problem
using, e.g., geometric constructions [4, 3], linear programming [13, 7, 16, 19], or semidefinite program-
ming [28, 20]. In the next section, we briefly describe the successive projection algorithm (SPA) which
is closely related to the algorithm we propose in this paper.

1.2 Successive Projection Algorithm

The successive projection algorithm is a simple but fast and robust recursive algorithm for solving
near-separable NMF; see Algorithm SPA. At each step of the algorithm, the column of the input
matrix M̃ with maximum ℓ2 norm is selected, and then M̃ is updated by projecting each column onto
the orthogonal complement of the columns selected so far. It was first introduced in [2], and later
proved to be robust in [21].

Theorem 1 ([21], Th. 3). Let M̃ = WH+N be a near-separable matrix (see Assumption 1) where W

has full column rank and maxi ||N(:, i)||2 ≤ ǫ. If ǫ ≤ O
(

σmin(W )√
rκ2(W )

)

, then SPA identifies the columns

of W up to error O
(

ǫ κ2(W )
)

, that is, the index set K identified by SPA satisfies

max
1≤j≤r

min
k∈K

∥

∥

∥
W (:, j) − M̃(:, k)

∥

∥

∥

2
≤ O

(

ǫ κ2(W )
)

,

where κ(W ) = σmax(W )
σmin(W ) is the condition number of W .

Moreover, SPA can be generalized by replacing the ℓ2 norm (step 2 of Algorithm SPA) with any
strongly convex function with a Lipschitz continuous gradient [21].

SPA is closely related to several hyperspectral unmixing algorithms such as the automatic target
generation process (ATGP) [31] and the successive volume maximization algorithm (SVMAX) [8].
It is also closely related to older techniques from other fields of research, in particular the modified
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Algorithm SPA Successive Projection Algorithm [2, 21]

Input: Near-separable matrix M̃ = WH + N ∈ R
m×n satisfying Ass. 1 where W has full column

rank, the number r of columns to be extracted.
Output: Set of indices K such that M(:,K) ≈ W (up to permutation).

1: Let R = M̃ , K = {}, k = 1.
2: while R 6= 0 and k ≤ r do
3: p = argmaxj ||R:j||2. †

4: R =
(

I − R:pRT
:p

||R:p||22

)

R.

5: K = K ∪ {p}.
6: k = k + 1.
7: end while

† In case of a tie, the index j whose corresponding column of the original matrix M̃ maximizes f is
selected. In case of another tie, one of these columns is picked randomly.

Gram-Schmidt with column pivoting; see, e.g., [21, 27, 14, 17] and the references therein. Although
SPA has many advantages (in particular, it is very fast and rather effective in practice), a drawback
is that it requires the matrix W to have rank r. In fact, if M is r-separable with r < rank(M),
then SPA cannot extract enough columns even in noiseless conditions. Moreover, if the matrix W is
ill-conditioned, SPA will most likely fail even for very small noise levels (see Theorem 1).

1.3 Contribution and Outline of the Paper

The main contributions of this paper are

• The introduction of a new fast and robust recursive algorithm for near-separable NMF, referred
to as the successive nonnegative projection algorithm (SNPA), which overcomes the drawback
of SPA that the matrix W has to be full column rank (Section 2).

• The robustness analysis of SNPA (Section 3). First, we show that Theorem 1 applies to SNPA
as well, that is, we show that SNPA is robust to noise when W has full column rank. Second,
given a matrix W , we define a new parameter β(W ) ≥ σr(W ) which is in general positive even

if W has not full column rank. We also define κβ(W ) = maxi ||W (:,i)||2
β(W ) and show that

Theorem 7. Let M̃ be a near-separable matrix satisfying Assumption 1 with β(W ) > 0.

If ǫ ≤ O
(

β(W )
κ3
β(W )

)

, then SNPA with f(.) = ||.||22 identifies the columns of W up to

error O
(

ǫ κ3β(W )
)

.

This proves that SNPA applies to a broader class of matrices (W does not need to have full
column rank). It also proves that SNPA is more robust than SPA: in fact, even when W has

rank r, if σmin(W )√
rκ2(W )

≪ β(W )
κ3
β(W )

, then SNPA will outperform SPA as the noise level allowed by SNPA

can be much larger.

We illustrate the effectiveness of SNPA on several synthetic data sets and a real-world hyperspectral
image in Section 4.
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1.4 Notations

The unit simplex is defined as ∆m =
{

x ∈ R
m
∣

∣

∣
x ≥ 0,

∑m
i=1 xi ≤ 1

}

, and the dimension m will be

dropped when it is clear from the context. Given a matrix W ∈ R
m×r, W (:, j), W:j or wj denotes

its jth column. The zero vector is denoted 0, its dimension will be clear from the context. We also
denote ||W ||1,2 = maxx,||x||1≤1 ||Wx||2 = maxi ||W (:, i)||2. A matrix W ∈ R

m×r is said to have full
column rank if rank(W ) = r.

2 Successive Nonnegative Projection Algorithm

In this paper, we propose a new family of fast and robust recursive algorithms to solve near-separable
NMF problems; see Algorithm SNPA. At each step of the algorithm, the column of the input matrix
M̃ maximizing the function f is selected, and then each column of M̃ is projected onto the convex
hull of the columns extracted so far and the origin using the semi-metric induced by f . (A natural
choice for the function f in SNPA is f(x) = ||x||22.) Hence the difference with SPA is the way the
projection is performed. In this work, we perform the projections at step 5 of SNPA (which are

Algorithm SNPA Successive Nonnegative Projection Algorithm

Input: Near-separable matrix M̃ = WH +N ∈ R
m×n satisfying Ass. 1 with β(W ) > 0, the number

r of columns to be extracted, and a strongly convex function f satisfying Ass. 2.
Output: Set of indices K such that M̃(:,K) ≈ W up to permutation.

1: Let R = M̃ , K = {}, k = 1.
2: while R 6= 0 and k ≤ r do
3: p = argmaxj f(R:j).

†

4: K = K ∪ {p}.
5: R(:, j) = M̃(:, j) − M̃ (:,K)H∗(:, j) for all j, where

H∗(:, j) = argminx∈∆ f
(

M̃(:, j) − M̃(:,K)x
)

; see Appendix A.

6: k = k + 1.
7: end while

† In case of a tie, the index j whose corresponding column of the original matrix M̃ maximizes f is
selected. In case of another tie, one of these columns is picked randomly.

convex optimization problems) using a fast gradient method, which is an optimal first-order method
for minimizing convex functions with a Lipschitz continuous gradient [29]; see Appendix A for the
implementation details. Although SNPA is computationally more expensive than SPA, it has the same
asymptotic complexity, requiring a total of O(mnr) operations.

SNPA is also closely related to the fast canonical hull algorithm, referred to as XRAY, from [25].
XRAY is a recursive algorithm for near-separable NMF and projects, at each step, the data points
onto the convex cone of the columns extracted so far. The main differences between XRAY and SNPA
are that

(i) XRAY uses another criterion to select a column of M at each step. This is a crucial difference
between SNPA and XRAY. In fact, it was discussed in [25] that in some cases (e.g., when a data
point belongs to the cone spanned by two columns of W and these two columns maximize the
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criterion simultaneously), XRAY may fail to identify a column of W even in noiseless conditions;
see the remarks on page 5 of [25]. This will be illustrated in Section 4. (Note that there actually
exists several variants of XRAY with different but closely related criteria for the selection step;
however, they all share this undesirable property.)

(ii) At each step, XRAY projects the data matrix onto the convex cone of the columns extracted so
far while SNPA projects onto their convex hull (with the origin). In this paper, we will assume
that the entries of each column of the matrix H sum to at most one (equivalently that the
columns of the data matrix belongs to the convex hull of the columns of W and the origin);
see Assumption 1 (and the ensuing discussion). Hence, performing the projection onto the
convex hull allows to take this prior information into account. However, a variant of SNPA with
projections onto the convex cone of the columns extracted so far is also possible although we
have observed1 that, under Assumption 1, it is less robust. It would be an interesting direction
for further research to analyze this variant in details2. (Note that a variant of XRAY with
projections onto convex hull does not work because the criterion used by XRAY in the selection
step relies on the projections being performed onto the convex cone.)

(iii) XRAY performs the projection step with respect to the ℓ2 norm, while SNPA performs the
projection with respect to the function f .

3 Robustness of SNPA

In this section, we prove robustness of SNPA for any sufficiently small noise. The proofs are closely
related to the robustness analysis of SPA developed in [21].

In Section 3.1, we give the assumptions and definitions needed throughout the paper. In Section 3.2,
we prove that SNPA identifies the columns of W among the columns of M exactly in the noiseless
case, which explains the intuition behind SNPA. In Section 3.3, we derive our key lemmas which allow
us to show that the robustness analysis of SPA from Theorem 1 (which requires W to be full column
rank) also applies to SNPA; see Theorems 4 and 5. In Section 3.5, we generalize the analysis to a
broader class of matrices for which W is not required to be full column rank; see Theorems 6 and 7.

In Sections 3.6 and 3.7, we briefly discuss some possible improvements of SNPA, and the choice of
the function f , respectively.

3.1 Assumptions and Definitions

In this section, we describe the assumptions and definitions useful to prove robustness of SNPA.
Without loss of generality, we will assume throughout the paper that the input matrix has the

following form:

1We performed numerical experiments similar to that of Section 4 and the variant of SNPA with projection onto the
convex cones was less robust than SNPA, while being slightly more robust than XRAY (because of the difference in the
selection criterion).

2Under Assumption 1, the robustness analysis with projections onto the convex hull is made easier, and allowed us to
derive better error bounds. The reason is that the columns of H∗ (see step 5 of Algorithm SNPA) are normalized while
an additional constant would be needed in the analysis (if we would follow exactly the same steps) to bound the norm
of these columns if the projection was onto the convex cone.
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Assumption 1 (Near-Separable Matrix). The separable matrix M ∈ R
m×n can be written as

M = WH = W [Ir,H
′],

where W ∈ R
m×r, H ∈ R

r×n
+ , and H(:, j) ∈ ∆ for all j. The near-separable matrix M̃ is given by

M̃ = M +N where N is the noise with ||N ||1,2 ≤ ǫ.

Any nonnegative near-separable matrix M = WH = W [Ir,H
′]Π (with W,H ′ ≥ 0 and Π a permu-

tation) can be put in this form by proper permutation and normalization of its columns. In fact,
permuting the columns of M and H so that the first r columns of M correspond to the columns of
W , we have M = W [Ir,H

′] = WH. The permutation does not affect our analysis because SNPA is
not sensitive to permutation, while it makes the presentation nicer (the permutation matrix Π can be
discarded). For the scaling, we (i) divide each column of M by its ℓ1 norm (unless it is an all-zero
column in which case we discard it) and divide the corresponding column of H by the same constant
(hence we still have M = WH), and (ii) divide each column of W by its ℓ1 norm and multiply the
corresponding row of H by the same constant (hence WH is unchanged). Since the entries of each
column of the normalized matrices M and W sum to one, and M(:, j) = WH(:, j) for all j, the entries
of each column of H must also sum to one: for all j,

1 =
∑

i

M(i, j) =
∑

i

∑

k

W (i, k)H(k, j) =
∑

k

H(k, j)
∑

i

W (i, k) =
∑

k

H(k, j);

see also the discussion in [21]. Column normalization also makes the presentation nicer: in fact,
otherwise the noise that can be tolerated on each column of M̃ = M +N will have to be proportional
to the norm of the corresponding column of the matrix H (for example, an all-zero column cannot
tolerate any noise because it can be made an extreme ray of the cone spanned by the columns of M
for any positive noise level).

Note that Assumption 1 does not require W to be nonnegative hence our result will apply to a
broader class than the nonnegative near-separable matrices. It is also interesting to note that data
matrices corresponding to hyperspectral images are naturally scaled since the columns of H correspond
to abundances and their entries sum to one (see Section 1.1 for more details, and Section 4.2 for some
numerical experiments).

We will also assume that, in SNPA,

Assumption 2. The function f : Rm → R+ is strongly convex with parameter µ > 0, its gradient is
Lipschitz continuous with constant L, and its global minimizer is the all-zero vector with f(0) = 0.

A function f is strongly convex with parameter µ if and only if it is convex and for any x, y ∈ dom(f)
and for all δ ∈ [0, 1]

f(δx+ (1− δ)y) ≤ δf(x) + (1− δ)f(y)− µ

2
δ(1 − δ)||x − y||22. (1)

Moreover, its gradient is Lipschitz continuous with constant L if and only if for any x, y ∈ dom(f), we
have ||∇f(x) −∇f(y)||2 ≤ L||x − y||2. Convex analysis also tells us that if f satisfies Assumption 2
then, for any x, y,

f(x) +∇f(x)T (y − x) +
µ

2
||x− y||22 ≤ f(y) ≤ f(x) +∇f(x)T (y − x) +

L

2
||x− y||22.
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In particular, taking x = 0, we have, for any y ∈ R
m,

µ

2
||y||22 ≤ f(y) ≤ L

2
||y||22, (2)

since f(0) = 0 and ∇f(0) = 0 (because zero is the global minimizer of f); see, e.g., [23]. Note that
this implies f(x) > 0 for any x 6= 0 hence f induces a semi-metric; the distance between two points x
and y being defined by f(x− y).

We will use the following notation for the residual computed at step 5 of Algorithm SNPA.

Definiton (Projection and Residual) Given B ∈ R
m×s and a function f satisfying Assumption 2,

we define the projection Pf
B(x) of x onto the convex hull of the columns of B with respect to the semi-

metric induced by f(.) as follows:

Pf
B(x) : R

m → R
m : x → Pf

B(x) = By∗, where y∗ = argminy∈∆ f(x−By).

We also define the residual Rf
B of the projection Pf

B as follows:

Rf
B : Rm → R

m : x → Rf
B(x) = x−Pf

B(x).

For a matrix A ∈ R
m×r, we will denote Pf

B(A) the matrix whose columns are the projections of the

columns of A, that is,
(

Pf
B(A)

)

:i
= Pf

B(A:i) for all i, and Rf
B(A) = A− Pf

B(A).

Given a matrix W ∈ R
m×r, we introduce the following notations:

α(W ) = min
1≤j≤r,x∈∆

‖W (:, j) −W (:,J )x‖2 where J = {1, 2, . . . , r}\{j},

ν(W ) = min
i

||wi||2,

γ(W ) = min
i 6=j

||wi −wj ||2,

ω(W ) = min

{

ν(W ),
1√
2
γ(W )

}

,

K(W ) = ||W ||1,2 = max
i

||wi||2, and

σ(W ) =

{

σr(W ) = σmin(W ) if m ≥ r,
0 if m < r.

The parameter α(W ) is the minimum distance between a column of W and the convex hull of the
other columns of W and the origin. It is interesting to notice that, under Assumption 1, α(W ) > 0 is
a necessary condition to being able to identify the columns of W among the columns of M (in fact,
α(W ) = 0 means that a column of W belongs to the convex hull of the other columns of W and the
origin hence cannot be distinguished from the other data points). It is also a sufficient condition as
some algorithms are guaranteed to identify the columns of W when α(W ) > 0 even in the presence of
noise [4, 16, 19].
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3.2 Recovery in the Noiseless Case

In this section, we show that, in the noiseless case, SNPA is able to perfectly identify the columns of
W among the columns of M . Although this result is implied by our analysis in the noisy case (see
Section 3.4), it gives the intuition behind the working of SNPA.

Lemma 1. Let B ∈ R
m×s, A ∈ R

m×k, z ∈ ∆k, and f satisfy Assumption 2. Then

f
(

Rf
B(Az)

)

≤ f
(

Rf
B(A)z

)

.

Proof. Let us denote Y (:, j) = argminy∈∆ f(A(:, j) − By) for all j, that is, Rf
B(A) = A − BY . We

have

f
(

Rf
B(Az)

)

= min
y∈∆

f (Az −By) ≤ f (Az −BY z) = f
(

Rf
B(A)z

)

.

The inequality follows from Y z ∈ ∆, since Y (:, j) ∈ ∆ ∀j and z ∈ ∆.

Theorem 2. Let M = W [Ir, H
′] = WH be a separable matrix satisfying Assumption 1 where W has

full column rank, and let f satisfy Assumption 2. Then SNPA applied on matrix M identifies a set of
indices K such that, up to permutation, M(:,K) = W .

Proof. We prove the result by induction.
First step. Since the columns of M belong to the convex hull of the columns of W and the origin (the
entries of each column of H are nonnegative and sum to at most one), and since a strongly convex
function is always maximized at a vertex of a polytope, a column of W will be identified at the first
step of SNPA (the origin cannot be extracted since, by assumption, it minimizes f). More formally,
let h ∈ ∆r, we have

f (Wh) = f

(

r
∑

k=1

W (:, k)h(k) +

(

1−
r
∑

k=1

h(k)

)

0

)

≤
r
∑

k=1

h(k)f (W (:, k))

≤ max
k

f (W (:, k)) .

The first inequality follows from convexity of f and the fact that f(0) = 0. By strong convexity, see
Equation (1), the first inequality is always strict unless h = ej for some j (where ej is the jth column
of the identity matrix). The second inequality follows from h ∈ ∆ and the fact that f(x) > 0 for any
x 6= 0. Since all columns of M can be written as Wh for some h ∈ ∆r, this implies that, at the first
step, SNPA extracts the index corresponding to the column of W maximizing f .
Induction step. Assume SNPA has extracted some indices K corresponding to columns of W , that is,
M(:,K) = W (:,I) for some I. We have for any h ∈ ∆r that

f
(

Rf
W (:,I)(Wh)

)

≤
(Lemma 1)

f
(

Rf
W (:,I)(W )h

)

≤
(Ass. 2)

r
∑

k=1

h(k)f
(

Rf
W (:,I)(W (:, k))

)

≤
(h∈∆r ,f(x)>0∀x 6=0)

max
k

f
(

Rf
W (:,I)(W (:, k))

)

.

8



Finally, noting that the residual R in SNPA is equal to RW (:,I)(M) and since

• Rf
W (:,I)(W (:, k)) = 0 for all k ∈ I,

• Rf
W (:,I)(W (:, k)) 6= 0 for all k /∈ I because W has full column rank, and

• the second inequality is strict unless h 6= ej for some j by strong convexity of f ,

SNPA identifies a column of W not extracted yet.

Note that the proof does not needW to be full column rank, but only requires thatRf
W (:,I)(W (:, k)) 6= 0

for all k /∈ I for any subset I of {1, 2, . . . , r}. This observation will be exploited in Section 3.5 to show
robustness of SNPA when W is not full column rank.

3.3 Key Lemmas

In the following, we derive the key lemmas to prove robustness of SNPA.
More precisely, we subdivide the columns of W into two subsets as follows W = [A,B]. The

columns of the matrix B represent the columns of W which have already been approximately identified
by SNPA while the columns of A are the columns of W yet to be identified. The columns of the
matrix B̃ correspond to the columns of matrix M̃ already extracted by SNPA, and we will assume

that ||B − B̃||1,2 ≤ ǭ for some constant ǭ. Lemmas 2 to 9 lead to a lower bound for ω
(

Rf

B̃
(A)
)

using σ([A,B]); see Corollary 2. Combined with Lemmas 10 to 12, these lemmas will imply that if
W has full column rank then a column of W not extracted yet (that is, a column of A) is identified
approximately at the next step of SNPA; see Theorem 3. Finally, using that result inductively leads
to the robustness of SNPA; see Theorem 4.

Lemma 2. For any B ∈ R
m×s, x ∈ R

m, and f satisfying Assumption 2, we have

∥

∥

∥
Rf

B(x)
∥

∥

∥

2
≤
√

L

µ
‖x‖2 .

Proof. Using Equation (2), we have
∥

∥

∥
Rf

B(x)
∥

∥

∥

2

2
≤ 2

µ
f
(

Rf
B(x)

)

=
2

µ
min
y∈∆

f(x−By) ≤ L

µ
min
y∈∆

||x−By||22 ≤
L

µ
||x||22,

since 0 ∈ ∆.

Lemma 3. Let B ∈ R
m×s and B = B̃ +N with ||N ||1,2 ≤ ǭ, and let f satisfy Assumption 2. Then,

max
j

∥

∥

∥
Rf

B̃
(bj)

∥

∥

∥

2
≤
√

L

µ
ǭ.

Proof. Using Equation (2), we have, for all j,
∥

∥

∥
Rf

B̃
(bj)

∥

∥

∥

2

2
≤ 2

µ
f
(

Rf

B̃
(bj)

)

=
2

µ
min
x∈∆

f(bj − B̃x)

≤ 2

µ
f(bj − b̃j) =

2

µ
f(nj)

≤ L

µ
||nj||22 ≤

L

µ
ǭ2.
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Lemma 4. Let A ∈ R
m×k, B ∈ R

m×s, and f satisfy Assumption 2. Then,

ν
(

Rf
B(A)

)

≥ α([A,B]).

Proof. This follows directly from the definitions of α and Rf
B : in fact,

ν
(

Rf
B(A)

)

≥ min
j

min
y∈∆

||A(:, j) −By||2 ≥ α([A,B]).

Lemma 5. Let Z and Z̃ ∈ R
m×r satisfy ||Z − Z̃||1,2 ≤ ǭ. Then,

α(Z̃) ≥ α(Z)− 2ǭ.

Proof. Denoting N = Z − Z̃ and J = {1, 2, . . . , k}\{j}, we have

α(Z̃) = min
1≤j≤k,x∈∆

||z̃j − Z̃(:,J )x||2

= min
1≤j≤k,x∈∆

||zj − nj − Z(:,J )x+N(:,J )x||2

≥ min
1≤j≤k,x∈∆

||zj − Z(:,J )x||2 − ||nj ||2 − ||N(:,J )x||2

≥ min
1≤j≤k,x∈∆

||zj − Z(:,J )x||2 − 2ǭ

= α(Z)− 2ǭ,

since maxx∈∆ ||N(:,J )x||2 ≤ max||x||1≤1 ||N(:,J )x||2 = ||N(:,J )||1,2 ≤ ǭ.

Corollary 1. Let A ∈ R
m×k, B and B̃ ∈ R

m×s satisfy ||B − B̃||1,2 ≤ ǭ, and f satisfy Assumption 2.
Then,

ν
(

Rf

B̃
(A)
)

≥
(

α ([A,B]) −min(s, 2)ǭ
)

.

Proof. If s = 0, the result follows from Lemma 4 (B is an empty matrix). If s = 1, then it is
easily derived using the same steps as in the proof of Lemma 5 (B only has one column). Otherwise,
Lemmas 4 and 5 imply that

ν
(

Rf

B̃
(A)
)

≥ α
(

[A, B̃]
)

≥ α ([A,B])− 2ǭ.

Lemma 6. For any W ∈ R
m×r, α(W ) ≥ σ(W ).

Proof. We have

α(W ) = min
1≤j≤r

min
x∈∆

||W (:, j) −W (:,J )x||2

≥ min
1≤j≤r

min
z∈Rr,z(j)=1

||Wz||2

≥ min
z∈Rr,||z||2≥1

||Wz||2 = σ(W ).

10



Lemma 7. Let x, y ∈ R
m, B ∈ R

m×s, and f satisfy Assumption 2. Then
∥

∥

∥
Rf

B(x)
∥

∥

∥

2
≥ σ([B,x]) and

∥

∥

∥
Rf

B(x)−Rf
B(y)

∥

∥

∥

2
≥

√
2 σ([B,x, y]).

Proof. Let us denote zx = argminz∈∆ f(x−Bz) and zy = argminz∈∆ f(y −Bz), we have

||Rf
B(x)||2 = ||x−Bzx||2 ≥ min

z∈Rp
||x+Bz||2 = min

z∈Rp+1,z(1)=1
||[x,B]z||2

≥ min
||z||2≥1

||[x,B]z||2 ≥ σ([x,B]),

and

||Rf
B(x)−Rf

B(y)||2 = ||(x−Bzx)− (y −Bzy)||2
≥ min

z∈Rp
||x− y +Bz||2

= min
z∈Rp+2,z(1)=1,z(2)=−1

||[x, y,B]z||2

≥ min
||z||2≥

√
2
||[x, y,B]z||2 =

√
2σ([x, y,B]).

Lemma 8 (Singular Value Perturbation [22], Cor. 8.6.2). Let B̃ = B+N ∈ R
m×s with s ≤ m. Then,

for all 1 ≤ i ≤ s,
∣

∣

∣
σi(B)− σi(B̃)

∣

∣

∣
≤ σmax(N) = ||N ||2 ≤ √

s ||N ||1,2.

Lemma 9. Let x, y ∈ R
m, B and B̃ ∈ R

m×s be such that ||B̃−B||1,2 ≤ ǭ, and f satisfy Assumption 2.
Then

∥

∥

∥
Rf

B̃
(x)−Rf

B̃
(y)
∥

∥

∥

2
≥

√
2
(

σ([B,x, y]) −√
s ǭ
)

.

Proof. This follows from Lemmas 7 and 8.

Corollary 2. Let A ∈ R
m×k, B and B̃ ∈ R

m×s satisfy ||B̃ −B||1,2 ≤ ǭ, and f satisfy Assumption 2.
Then,

ω
(

Rf

B̃
(A)
)

≥
(

σ ([A,B])−
√
2s ǭ

)

,

Proof. Using Lemma 9, we have

1√
2
γ
(

Rf

B̃
(A)
)

=
1√
2
min
i 6=j

||Rf

B̃
(ai)−Rf

B̃
(aj)||2 ≥ σ([B, ai, aj ])−

√
s ǭ ≥ σ([A,B]) −√

s ǭ.

Using Corollary 1 and Lemma 6, we have

ν
(

Rf

B̃
(A)
)

= min
i

∥

∥

∥
Rf

B̃
(ai)

∥

∥

∥

2
≥ α ([A,B])−min(s, 2)ǭ ≥ σ ([A,B])−min(s, 2)ǭ.

Since
√
2s ≥ min(s, 2) for any s ≥ 0, the proof is complete.

Lemma 10. Let B ∈ R
m×s, A ∈ R

m×k, n ∈ R
m, z ∈ ∆k, and f satisfy Assumption 2. Then

f
(

Rf
B(Az + n)

)

≤ f
(

Rf
B(Az) + n

)

and f
(

Rf
B(Az + n)

)

≤ f
(

Rf
B(A)z + n

)

.

11



Proof. Let us denote y∗ = argminy∈∆ f(Az − By) and Y (:, j) = argminy∈∆ f(A(:, j) − By) for all j,

that is, Rf
B(A) = A−BY . We have

f
(

Rf
B(Az + n)

)

= min
y∈∆

f (Az + n−By) ≤ f (Az −By∗ + n) = f
(

Rf
B(Az) + n

)

,

and

f
(

Rf
B(Az + n)

)

= min
y∈∆

f (Az + n−By) ≤ f (Az −BY z + n) = f
(

Rf
B(A)z + n

)

,

where the inequality follows from y = Y z ∈ ∆, since Y (:, j) ∈ ∆ ∀j and z ∈ ∆.

Let us also recall two useful lemmas from [21].

Lemma 11 ([21], Lemma 3). Let the function f satisfy Assumption 2. Then, for any ||x||2 ≤ K and
||n||2 ≤ ǫ ≤ K, we have

f(x)− ǫKL ≤ f(x+ n) ≤ f(x) +
3

2
ǫKL.

Lemma 12 ([21], Lemma 2). Let Z = [P,Q] where P ∈ R
m×k and Q ∈ R

m×s, and let f satisfy

Assumption 2. If ν(P ) > 2
√

L
µK(Q), then, for any 0 ≤ δ ≤ 1

2 ,

f∗ = max
x∈∆

f(Zx) such that xi ≤ 1− δ for 1 ≤ i ≤ k,

satisfies

f∗ ≤ max
i

f(pi)−
1

2
µ (1− δ) δ ω(P )2.

Moreover, the maximum is attained only at point x such that xi = 1− δ for some 1 ≤ i ≤ k.

3.4 Robustness of SNPA when W has Full Column Rank

Theorem 3 below shows that if SNPA has already extracted some columns of W up to error ǭ, then
the next extracted column of M̃ will be close to a column of W not extracted yet. This will allow us
to prove inductively that SNPA is robust to noise; see Theorem 4.

Theorem 3. Let

• f satisfy Assumption 2, with strong convexity parameter µ, and its gradient have Lipschitz
constant L.

• M̃ satisfy Assumption 1 with M̃ = M + N = WH + N , W = [A, B], A ∈ R
m×k, B ∈ R

m×s,
||N ||1,2 ≤ ǫ, and H = [Ir,H

′] ∈ R
r×n
+ where H(:, j) ∈ ∆ for all j.

• B̃ ∈ R
m×s satisfy

||B − B̃||1,2 ≤ ǭ = Cǫ, for some C ≥ 0.

• W = [A,B] be such that σ(W ) = σ > 0. We denote α = α(W ), and K = K(W ).

12



• ǫ be sufficiently small so that

ǫ < min

(

σ2µ3/2

144KL3/2
,
αµ

4LC
,

σ

2C
√
2s

)

.

Then the index i corresponding to a column m̃i of M̃ that maximizes the function f
(

Rf

B̃
(.)
)

satisfies

mi = Whi = [A,B]hi, where hi(ℓ) ≥ 1− δ with 1 ≤ ℓ ≤ k, (3)

and δ = 72ǫKL3/2

σ2µ3/2 , which implies

||m̃i − wℓ||2 = ||m̃i − aℓ||2 ≤ ǫ+ 2Kδ = ǫ

(

1 + 144
K2

σ2

L3/2

µ3/2

)

. (4)

Proof. First note that ǫ ≤ σ2µ3/2

144KL3/2 implies δ ≤ 1
2 . Then, let us show that

ν
(

Rf

B̃
(A)
)

> 2

√

L

µ
K
(

Rf

B̃
(B)

)

,

so that Lemma 12 will apply to P = Rf

B̃
(A) and Q = Rf

B̃
(B). Since ||B − B̃||1,2 ≤ ǭ, by Lemma 3,

we have K
(

Rf

B̃
(B)

)

≤
√

L
µ ǭ. Therefore,

ν
(

Rf

B̃
(A)
)

≥
(Corollary 1)

α− 2ǭ

>
(ǭ=Cǫ<αµ

4L
,L≥µ)

2
L

µ
ǭ

≥
(Lemma 3)

2

√

L

µ
K
(

Rf

B̃
(B)

)

.

Let us also show that ω
(

Rf

B̃
(A)
)

≥ σ
2 . By Corollary 2 and the assumption that ǭ = Cǫ ≤ σ

2
√
2s
, we

have
ω
(

Rf

B̃
(A)
)

≥ σ −
√
2sǭ ≥ σ

2
. (5)

We can now prove Equation (3) by contradiction. Assume the extracted index, say the ith, which

maximizes f
(

Rf

B̃
(.)
)

among the columns of M̃ , satisfies m̃i = mi + ni = Whi +ni with hi(ℓ) < 1− δ

13



for 1 ≤ ℓ ≤ k. We have

f
(

Rf

B̃
(m̃i)

)

≤
(Lemma 10)

f
(

Rf

B̃
(W )hi + ni

)

≤
(Lemma 11)

f
(

Rf

B̃
(W )hi

)

+
3

2
ǫK
(

Rf

B̃
(A)
)

L

<
(Ass. 2)

max
x∈∆r,x(ℓ)≤1−δ 1≤ℓ≤k

f
(

Rf

B̃
(W )x

)

+
3

2
ǫK

√

L

µ
L

≤
(Lemma 12)

max
j

f
(

Rf

B̃
(aj)

)

− 1

2
µδ(1 − δ)ω

(

Rf

B̃
(A)
)2

+
3

2
ǫK

L3/2

µ1/2

≤
(Lem. 10, Eq. 5)

max
j

f
(

Rf

B̃
(ãj)− nj

)

− 1

8
µδ(1− δ)σ2 +

3

2
ǫK

L3/2

µ1/2
,

≤
(Lemma 11)

max
j

f
(

Rf

B̃
(ãj)

)

− 1

8
µδ(1 − δ)σ2 +

9

2
ǫK

L3/2

µ1/2
, (6)

where ãj is the perturbed column of M corresponding to wj (that is, ãj = wj + nj). The second
inequality follows from Lemma 11 since, by convexity of ||.||2 and by Lemma 2, we have

∥

∥

∥
Rf

B̃
(W )hi

∥

∥

∥

2
≤ max

i

∥

∥

∥
Rf

B̃
(wi)

∥

∥

∥

2
≤
√

L

µ
K.

The third inequality is strict since, by strong convexity of f , the maximum is attained at a vertex
with x(ℓ) = 1− δ for some 1 ≤ ℓ ≤ k at optimality while we assumed hi(ℓ) < 1− δ for 1 ≤ ℓ ≤ k. The
last inequality follows from Lemma 11 since

∥

∥

∥
Rf

B̃
(ãj)

∥

∥

∥

2
≤
√

L

µ
||ãj ||2 ≤

√

L

µ
(K + ǫ) ≤ 2

√

L

µ
K.

As δ ≤ 1
2 , we have

1

8
µδ(1− δ)σ2 ≥ 1

16
µσ2δ =

1

16
µσ2

(

72ǫKL3/2

σ2µ3/2

)

=
9

2
ǫK

L3/2

µ3/2
.

Combining this inequality with Equation (6), we obtain f
(

Rf

B̃
(m̃i)

)

< maxj f
(

Rf

B̃
(ãj)

)

, a contra-

diction since m̃i should maximize f
(

Rf

B̃
(.)
)

among the columns of M̃ and the ãj ’s are among the

columns of M̃ .
To prove Equation (4), we use Equation (3) and observe that

mi = (1− δ′)wℓ +
∑

k 6=ℓ

βkwk for some ℓ and 1− δ′ ≥ 1− δ,

so that
∑

k 6=ℓ βk ≤ δ′ ≤ δ. Therefore,

‖mi −wℓ‖2 =

∥

∥

∥

∥

∥

∥

−δ′wℓ +
∑

k 6=ℓ

βkwk

∥

∥

∥

∥

∥

∥

2

≤ 2δ′ max
j

||wj ||2 ≤ 2δ′K ≤ 2Kδ,
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which gives
||m̃i − wℓ||2 ≤ ||(m̃i −mi) + (mi − wℓ)||2 ≤ ǫ+ 2Kδ,

for some 1 ≤ ℓ ≤ k.

We can now prove robustness of SNPA when W has full column rank.

Theorem 4. Let M̃ = WH + N ∈ R
m×n satisfy Assumption 1 with m ≥ r, and let f satisfy

Assumption 2 with strong convexity parameter µ and its gradient with Lipschitz constant L. Let us
denote K = K(W ), σ = σ(W ), and let ||N ||1,2 ≤ ǫ with

ǫ < min

(

αµ

4L
,

σ

2
√
2r

)

(

1 + 144
K2

σ2

L3/2

µ3/2

)−1

. (7)

Let also K be the index set of cardinality r extracted by Algorithm SNPA. Then there exists a permu-
tation π of {1, 2, . . . , r} such that

max
1≤j≤r

||m̃K(j) − wπ(j)||2 ≤ ǭ = ǫ

(

1 + 144
K2

σ2

L3/2

µ3/2

)

.

Proof. The result follows using Theorem 3 inductively with

C =

(

1 + 144
K2

σ2

L3/2

µ3/2

)

.

The matrix B in Theorem 3 corresponds to the columns of W extracted so far by SNPA (note that
at the first step B is the empty matrix) while the columns of A correspond to the columns of W not
extracted yet. By Theorem 3, if the columns of B are at distance at most ǭ = Cǫ of some columns of
W , then the next extracted column will be a column of the matrix A and be at distance at most ǭ of
another column of W . The results therefore follows by induction.

Note that ǫ < σ
2C

√
2r

implies ǫ < σ2µ3/2

144KL3/2 since σ ≤ K and

ǫ <
σ

C
=

σ

1 + 144K2

σ2
L3/2

µ3/2

≤ σ3µ3/2

144K2L3/2
≤ σ2µ3/2

144KL3/2
.

Finally, SNPA with f(.) = ||.||22 satisfies the same error bound as SPA when W has full column
rank:

Theorem 5. Let M̃ be a near-separable matrix satisfying Assumption 1 where W has full column

rank. If ǫ ≤ O
(

σmin(W )√
rκ2(W )

)

, then Algorithm SNPA with f(.) = ||.||22 identifies all the columns of W up

to error O
(

ǫ κ2(W )
)

.

Proof. This follows directly from K(W ) ≤ σmax(W ), α(W ) ≥ σ(W ) (Lemma 6), Theorem 3 and the
fact that µ = L = 2 for f(x) = ||x||22.
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3.5 Generalization to Column-Rank-Deficient W

SNPA can be applied to a broader class of near-separable matrices: in fact, the assumption that W
must be full column rank in Theorem 5 is not necessary for SNPA to be robust to noise. We now
define the parameter β(W ), which will replace σ(W ) in the robustness analysis of SNPA.

Definition (Parameter β) Given W ∈ R
m×r and f satisfying Assumption 2, we define

νβ(W ) = min
j

∥

∥

∥
Rf

W (:,J )(wj)
∥

∥

∥

2
with J = {1, 2, . . . , r}\{j},

γβ(W ) = min
i 6=j

∥

∥

∥
Rf

W (:,J )(wi)−Rf
W (:,J )(wj)

∥

∥

∥

2
with J ⊆ {1, 2, . . . , r}\{i, j},

and

β(W ) = min

(

νβ(W ),
1√
2
γβ(W )

)

.

The quantity β(W ) is the minimum between

• the norms of the residuals of the projections of the columns of W onto the convex hull of the
other columns of W , and

• the distances between these residuals.

For example, if the columns of W are the vertices of a triangle in the plane (W ∈ R
2×3), SPA can only

extract two columns (the residual will be equal to zero after two steps because rank(W ) = 2) while,
in most cases, β(W ) > 0 and SNPA is able to identify correctly the three vertices even in the presence
of noise. In particular, β(W ) is larger than σ(W ) hence is positive for matrices with full column rank:

Lemma 13. For any W ∈ R
m×r, β(W ) ≥ σ(W ).

Proof. This follows directly from Lemma 7.

However, the condition β(W ) > 0 is not necessarily satisfied for any set of vertices wi’s hence
SNPA is not robust to noise for any matrix W with α(W ) > 0. For example, in case of a triangle
in the plane, β(W ) = 0 if and only if the residuals of the projections of two columns of W onto the
segment joining the origin and the last column of W are equal to one another (this requires that they
are on the same side and at the same distant of that segment). It is the case for example for the
following matrix

W =

(

4 1 3
0 1 1

)

with β(W ) = 0 while α(W ) > 0, and any data point on the segment [W (:, 2),W (:, 3)] could be
extracted at the second step of SNPA. In fact, we have

Rf
W (:,1)

(

W (:, 2)
)

= Rf
W (:,1)

(

W (:, 3)
)

=

(

0
1

)

.

We can link β(W ) and α(W ) as follows.

Lemma 14. For any W ∈ R
m×r, α(W ) ≥

√

µ
Lβ(W ).
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Proof. Denoting J = {1, 2, . . . , r}\{j}, we have

α(W ) = min
1≤j≤r

min
x∈∆

||wj −W (:,J )x||2

≥
√

2

L
min
1≤j≤r

min
x∈∆

f (wj −W (:,J )x)

=

√

2

L
min
1≤j≤r

f
(

Rf
W (:,J )(wj)

)

≥
√

µ

L
min
1≤j≤r

∥

∥

∥
Rf

W (:,J )(wj)
∥

∥

∥

2
≥
√

µ

L
β(W ).

In the following, we get rid of σ(W ) in the robustness analysis of SNPA to replace it with β(W ).

In Theorems 3 and 4, σ(W ) was used to lower bound ω
(

Rf

B̃
(A)
)

; see in particular Equation (5).

Hence we need to lower bound ω
(

Rf

B̃
(A)
)

using β(W ). The remaining of the proofs follows exactly

the same steps as the proofs of Theorem 3 and 4, and we do not repeat them here.

Theorem 6. Let M̃ = WH +N ∈ R
m×n be a near-separable matrix satisfying Assumption 1, and let

f satisfy Assumption 2 with strong convexity parameter µ and its gradient with Lipschitz constant L.
Let us denote K = K(W ), β = β(W ), and let ||N ||1,2 ≤ ǫ with

ǫ < min

(

β2µ3/2

144KL3/2
,
αµ

4LC
,

β2µ

128KLC

)

, (8)

with C =
(

1 + 144K2

β2
L3/2

µ3/2

)

. Let also K be the index set of cardinality r extracted by Algorithm SNPA.

Then there exists a permutation π of {1, 2, . . . , r} such that

max
1≤j≤r

||m̃K(j) − wπ(j)||2 ≤ ǭ = Cǫ.

Proof. Using the first four assumptions of Theorem 3 (that is, all assumptions of Theorem 3 but the
upper bound on ǫ) and denoting β = β(W ), we show in Appendix B that

ω
(

Rf

B̃
(A)
)

≥ β − 2

√

6KLǭ

µ
.

Therefore, if

2

√

6KLǭ

µ
≤ β

2
⇐⇒ ǭ = Cǫ ≤ β2µ

96KL
,

then ω
(

Rf

B̃
(A)
)

≥ β
2 . Hence σ(W ) can be replaced with β(W ) in Equations (5), (6) and in the

following derivations, and Theorem 3 applies under the same conditions except for δ = 72ǫKL3/2

β2µ3/2 , and

the condition on ǫ given by Equation (8).

Let us denote 1 ≤ κβ(W ) = K(W )
β(W ) ≤ κ(W ).
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Theorem 7. Let M̃ be a near-separable matrix (see Assumption 1) where W satisfies β(W ) > 0.

If ǫ ≤ O
(

β(W )
κ3
β(W )

)

, then Algorithm SNPA with f(.) = ||.||22 identifies all the columns of W up to error

O
(

ǫ κ3β(W )
)

.

Proof. This follows from Theorem 6, Lemma 14 and µ = L = 2 for f(.) = ||.||22.

Note that the bounds are cubic in κβ(W ) while they were quadratic in κ(W ). The reason is that

the lower bound on ω
(

Rf

B̃
(A)
)

based on β(W ) is of the form β(W )−O(
√
ǭ), while the one based on

σ(W ) was of the form σ(W )−O(
√
rǭ). However the dependence on

√
r has disappeared.

Remark 1. Because SNPA extracts the columns of W in a specific order, the parameter β(W ) could
be replaced by the following larger parameter. Assume without loss of generality that the columns of
W are ordered in such a way that the kth column of W is extracted at the kth step of SNPA. Then,
β(W ) in the robustness analysis of SNPA can be replaced with the larger

β′(W ) =
(

min
i<k

∥

∥

∥
Rf

W (:,1:i)(wk)
∥

∥

∥

2
,
1√
2

min
1≤i≤r−2,i<k 6=l

∥

∥

∥
Rf

W (:,1:i)(wk)−Rf
W (:,1:i)(wl)

∥

∥

∥

2

)

.

It is also interesting to notice that β(W ) could be equal to zero for some function f while being positive
for others. Hence, ideally, the function f should be chosen such that β(W ) is maximized. Note however
that W is unknown and β(W ) is expensive to compute (although β′(W ) could be used instead) so the
problem seems rather challenging. This is a topic for further research.

3.6 Improvements using Post-Processing, Pre-Conditioning and Outlier Detection

It is possible to improve the performance of SNPA, the same way it was done for SPA:

• A first possibility is to use post-processing [3, Alg. 4]. Let K be the set of indices extracted by
SNPA, and denote K(k) the index extracted at step k. For k = 1, 2, . . . r, the post-processing

– Projects each column of the data matrix onto the convex hull of M(:,K\{K(k)}).
– Identifies the column of the corresponding projected matrix maximizing f(.) (say the k′th),

– Updates K = K\{K(k)} ∪ {k′}.

This allows to improve the bound on the error of Theorem 1 from O
(

ǫ κ2(W )
)

to O (ǫ κ(W )).

• A second possibility is to pre-condition the input near-separable matrix [20], making the condi-
tion number of W constant, while multiplying the error by a factor of at most σ−1

min(W ). This al-

lows to improve the bound on the noise of Theorem 1 from ǫ ≤ O
(

σmin(W )√
rκ2(W )

)

to ǫ ≤ O
(

σmin(W )
r
√
r

)

and the bound on the error from O
(

ǫ κ2(W )
)

to O (ǫ κ(W )).

• A third possibility for improvement is to deal with outliers. They will be identified by SNPA along
with the columns of W , and can be discarded in a second step by computing the optimal weights
needed to reconstruct all columns of the input matrix with the extracted columns [12, 21, 19].

We do not focus in this paper on these improvements as they are straightforward applications
of existing techniques. Our focus in Section 4 is rather to show the better performance of SNPA
compared to the original SPA.
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3.7 Choice of the Function f

According to our theoretical analysis (see Theorems 4 and 6), the best possible case for the function
f is to have µ = L in which case f(x) = ||x||22. However, our analysis considers a worst-case scenario
and, in some cases, it might be beneficial to use other functions f . For example, if the noise is sparse
(that is, only a few entries of the data matrix are perturbed), it was shown that it is better to use
ℓp-norms with 1 < p < 2 (that is, use f(x) = ||x||pp); see the discussion in [21, Section 4], and [1]
for more numerical experiments. More generally, it would be particularly interesting to analyze good
choices for the function f depending on the noise model. Note also that the assumptions on the
function f can be relaxed to the condition that the gradient of f is continuously differentiable and
that f is locally strongly convex, hence our result for example applies to ℓp norms for 1 < p < +∞;
see [21, Remark 3].

4 Numerical Experiments

In this section, we compare the following algorithms

• SPA: the successive projection algorithm; see Algorithm SPA.

• SNPA: the successive nonnegative projection algorithm; see Algorithm SNPA with f(x) = ||x||22.

• XRAY: recursive algorithm similar to SNPA [25]. It extracts columns recursively, and projects
the data points onto the convex cone generated by the columns extracted so far. (We use in this
paper the variant referred to as max.)

Our goal is two-fold:

1. Illustrate our theoretical result, namely that SNPA applies to a broader class of nonnegative
matrices and is more robust than SPA; see Section 4.1.

2. Show that SNPA can be used successfully on real-world hyperspectral images; see Section 4.2
where the popular Urban data set is used for comparison.

We also show that SNPA is more robust to noise than XRAY (in some cases significantly).
The Matlab code is available at https://sites.google.com/site/nicolasgillis/. All tests

are preformed using Matlab on a laptop Intel CORE i5-3210M CPU @2.5GHz 2.5GHz 6Go RAM.

Remark 2 (Comparison with Standard NMF Algorithms). We do not compare the near-separable
NMF algorithms to standard NMF algorithms whose goal is to solve

min
U≥0,V≥0

||M − UV ||2F . (9)

In fact, we believe these two classes of algorithms, although closely related, are difficult to compare. In
particular, the solution of (9) is in general non-unique3, even for a separable matrix M = W [Ir,H

′]Π.
This is case for example if the support (the set of non-zero entries) of a column of W contains the
support of another column [15, Remark 7]; in particular, most hyperspectral images have a dense

3A solution (U ′, V ′) is considered to be different from (U,V ) if it cannot be obtained by permutation and scaling of
the columns of U and rows of V ; see [15] for more details on non-uniqueness issues for NMF.
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endmember matrix W hence have a non-unique NMF decomposition. (More generally, it will be
the case if and only if the NMF of W is non-unique.) Therefore, without regularization, standard
NMF algorithms will in general fail to identify the matrix W from a near-separable matrix M̃ =
W [Ir,H

′]Π + N . However, it is likely they will generate a solution with smaller error ||M̃ − UV ||2F
than near-separable NMF algorithms because they have more degrees of freedom.

It is interesting to note that near-separable NMF algorithms can be used as good initialization
strategies for standard NMF algorithms (which usually require some initial guess for U and V ); see
the discussion in [17] and the references therein.

4.1 Synthetic Data Sets

For well-conditioned matrices, β(W ) and σ(W ) are close to one another (in fact, β(Ir) = σ(Ir) = 1), in
which case we observed that SPA and SNPA provide very similar results (in most cases, they extract
the same index set). Therefore, in this section, our focus will be on

(i) near-separable matrices for which W does not have full column rank (rank(W ) < r) to illustrate
the fact that SNPA applies to a broader class of nonnegative matrices. We will refer to this case
as the ‘rank-deficient’ case; see Section 4.1.1.

(ii) ill-conditioned matrices to illustrate the fact that SNPA is more tolerant to noise than SPA; in
fact, our analysis suggests it is the case when σ(W ) ≪ β(W ). We will refer to this case as the
‘ill-conditioned’ case; see Section 4.1.2.

In both the rank-deficient and ill-conditioned cases, we take r = 20 and generate the matrices H and
N (to obtain near-separable matrices M̃ = WH + N = W [Ir,H

′] + N) in two different ways (as in
[21]):

1. Dirichlet. H = [Ir, Ir,H
′] so that each column of W is repeated twice while H ′ has 200 columns

(hence n = 240) generated at random following a Dirichlet distribution with parameters drawn
uniformly at random in the interval [0, 1]. The repetition of the columns of the identity matrix
allows to check whether algorithms are sensitive to duplicated columns ofW (some near-separable
NMF algorithms are, e.g., [13, 12, 7]). Each entry of the noise N is drawn following a normal
distribution N (0, 1) and then multiplied by the parameter δ.

2. Middle Points. H = [Ir,H
′] where each column of H ′ has exactly two nonzero entries equal to

0.5 (hence n = r +
(r
2

)

= 210). The columns of W are not perturbed (that is, N(:, 1 : r) = 0)
while the remaining ones are perturbed towards the outside of the convex hull of the columns of
W , that is, N(:, j) = δ(M(:, j) − w̄) for all j where w̄ = 1

r

∑r
k=1wk and δ is a parameter.

4.1.1 Rank-Deficient Case

To generate near-separable matrices with rank(W ) < r, we take m = 10 (since r = 20, these matrices
cannot have full column rank) while each entry of the matrix W ∈ [0, 1]m×r is drawn uniformly at
random in the interval [0,1]. Moreover, we check that each column of W is not too close to the convex
cone generated by the other columns of W by making sure that for all j

min
x≥0

||W (:, j) −W (:,J )x||2 ≥ 0.01||W (:, j)||2 with J = {1, 2, . . . , r}\{j}.
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If this condition is not met (which occurs very rarely), we generate another matrix until it is. Hence,
we have that rank(W ) = rank(M) = 10 while M = WH is 20-separable with α(W ) > 0. (By a slight
abuse of language, we refer to this case as the ‘rank-deficient case’ although the matrix M actually
has full (row) rank–to be more precise, we should refer to it as the ‘column-rank-deficient case’.) It is
interesting to point out that, in average, β′(W ) ≈ 0.2 (see Remark 1 for the definition of β′(W ) which

can replace β(W ) in the analysis of SNPA) while κβ′(W ) =
maxj ||W (:,j)||2

β′(W ) ≈ 10.

For hundred different values of the noise parameter δ (using logspace(-3,0,100)), we generate
25 matrices of each type: Figure 1 (resp. Figure 2) displays the fraction of columns of W correctly
identified by the different algorithms for the experiment ‘Dirichlet’ (resp. ‘Middle points’).

Figure 1: Comparison of the different near-separable NMF algorithms on rank-deficient data sets
(‘Dirichlet’ type).

Table 1 and Table 2 give the robustness and the average running time for both experiments.

Table 1: Robustness for the rank-deficient ‘Dirichlet’ experiment, that is, largest value of δ for which
all (resp. 95% of the) columns of W are correctly identified, and average running time in seconds of
the different near-separable NMF algorithms.

SPA SNPA XRAY

Robustness (100%) 0 1.7∗10-2 7.6∗10−3

Robustness (95%) 0 8.9∗10-2 6.1∗10-2

Time (s.) < 0.01 7.67 1.16

SPA is significantly faster than XRAY and SNPA since the projection at each step simply amounts
to a matrix-vector product while, for SNPA and XRAY, the projection requires solving n linearly
constrained least squares problems in r variables. XRAY is faster than SNPA because the projections
are simpler to compute. (Also, a different algorithm was used: XRAY requires to solve least squares
problems in the nonnegative orthant, which is solved with an efficient coordinate descent method
from [18].)
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Figure 2: Comparison of the different near-separable NMF algorithms on rank-deficient data sets
(‘Middle points’ type).

Table 2: Robustness and average running time for the rank-deficient ‘Middle Points’ experiment.
SPA SNPA XRAY

Robustness (100%) 0 2.3∗10-2 10−3

Robustness (95%) 0 10-1 5.5∗10-2

Time (s.) < 0.01 7.83 1.05

For both experiments (‘Dirichlet’ and ‘Middle points’), SPA cannot extract more than 10 columns.
In fact, the input matrix has only 10 rows hence the residual computed by SPA is equal to zero after 10
steps. SNPA is able to identify correctly the 20 columns of W , and it does for larger noise levels than
XRAY. In particular, for the ‘Middle points’ experiment, XRAY performs rather poorly (in terms of
robustness) because it does not deal very well with data points on the faces of the convex hull of the
columns of W (in this case, on the middle of the segment joining two vertices); see the discussion in
[25]. For example, for δ = 0.1, SNPA identifies more than 95% of the columns of W , while XRAY
identifies less than 90%.

4.1.2 Ill-Conditioned Case

In this section, we perform an experiment very similar to the third and fourth experiment in [21] to
assess the robustness to noise of the different algorithms on ill-conditioned matrices. We take m = 20,
while each entry of the matrix W ∈ [0, 1]m×r is drawn uniformly at random in the interval [0,1]
(as in the rank-deficient case). Then the compact singular value decomposition (U,S, V T ) of W is
computed (using the function svds(M,r) of Matlab), and W is replaced with UΣV T where Σ is a
diagonal matrix with Σ(i, i) = αi−1 (1 ≤ i ≤ r) where αr−1 = 1000 so that κ(W ) = 1000. Finally,
to obtain a nonnegative matrix W , we replace W with max(W, 0) (this step is necessary because
XRAY only applies to nonnegative input matrices). Note that this changes the conditioning, with the
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average of κ(W ) being equal to 5000. It is interesting to point out that for these matrices β′(W ) is
usually much smaller than σ(W ): the order of magnitudes are β′(W ) ≈ 10−2 ≪ σmin(W ) ≈ 10−3 while
κβ′(W ) ≈ 10 ≪ κ(W ) ≈ 103.

For hundred different values of the noise parameter δ (using logspace(-4,-0.5,100)), we generate
25 matrices of the two types: Figure 3 (resp. Figure 4) displays the fraction of columns of W correctly
identified by the different algorithms for the experiment ‘Dirichlet’ (resp. ‘Middle points’). Table 3

Figure 3: Comparison of the different near-separable NMF algorithms on ill-conditioned data sets
(‘Dirichlet’ type).

Figure 4: Comparison of the different near-separable NMF algorithms on ill-conditioned data sets
(‘Middle points’ type).
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and Table 4 give the robustness and the average running time for both experiments.

Table 3: Robustness and average running time for the ill-conditioned ‘Dirichlet’ experiment.
SPA SNPA XRAY

Robustness (100%) 10−4 3.1∗10-3 3.1∗10−3

Robustness (95%) 1.44∗10−3 9.45∗10-3 9.45∗10-3

Time (s.) < 0.01 7.43 1.08

Table 4: Robustness and average running time for the ill-conditioned ‘Middle points’ experiment.
SPA SNPA XRAY

Robustness (100%) 1.1∗10−4 1.6∗10-2 1.6∗10−4

Robustness (95%) 7.4∗10−2 7.3∗10−2 8.2∗10-2

Time (s.) < 0.01 9.22 1.32

For the same reasons as before, SPA is significantly faster than XRAY which is faster than SNPA.
For both experiments (‘Dirichlet’ and ‘Middle points’), SNPA outperforms SPA in terms of robust-

ness, as expected by our theoretical findings. In fact, SNPA is about ten (resp. hundred) times more
robust than SPA for the experiment ‘Dirichlet’ (resp. ‘Middle points’), that is, it identifies correctly
all columns of W for the noise parameter δ ten (resp. hundred) times larger; see Tables 3 and 4.
Moreover, for the ‘Dirichlet’ experiment, SNPA identifies significantly more columns of W , even for
larger noise levels (which fall outside the scope of our analysis); for example, for δ = 0.01, SNPA
identifies correctly about 95% of the columns of W while SPA identifies about 75%.

For the ‘Dirichlet’ experiment, SNPA is as robust as XRAY while, for the ‘Middle points’ experi-
ment, it is significantly more robust (for the same reason as in the rank-deficient case) as it extracts
correctly all columns of W for δ hundred times larger. However, the three algorithms overall perform
similarly on the ‘Middle points’ experiment in the sense that the fraction of columns of W correctly
identified do not differ by more than about five percent for all δ ≤ 0.1.

4.2 Real-World Hyperspectral Image

In this section, we analyze the Urban data set4 with m = 162 and n = 307×307 = 94249. It is mainly
constituted of grass, trees, dirt, road and different roof and metallic surfaces; see Figure 5.

We run the near-separable NMF algorithms to extract r = 8 endmembers. As mentioned in
Section 3.1, Assumption 1 is naturally satisfied by hyperspectral images (up to permutation) hence
no normalization of the data is necessary. On this data set, SPA took less than half a second to run,
SNPA about one minute and XRAY about half a minute.

Figure 6 displays the extracted spectral signatures, and Figure 7 displays the corresponding abun-
dance maps, that is, the rows of

H∗ = argminH≥0 ||M −M(: K)H||F
where K is the set of extracted indices by a given algorithm. SPA and SNPA extract six common
indices (out of the eight, the first one being different is the fourth).

4Available at http://www.agc.army.mil/.
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Figure 5: Urban data set taken from an aircraft (army geospatial center) with road surfaces (1),
roofs 1 (2), dirt (3), grass (4), trees (5) and roofs 2 (6).
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Figure 6: Spectral signatures of the extracted endmembers.

SNPA performs better than both SPA and XRAY as it is the only algorithm able to distinguish
the grass and trees (3rd and 8th extracted endmembers), while identifying the road surfaces (1st), the
dirt (6th) and roof tops (7th). In particular, the relative error in percent, that is,

100 ∗ minH≥0 ||M −M(:,K)H||F
||M ||F

∈ [0, 100]

for SPA is 9.45, for XRAY 6.82 and for SNPA 5.64. In other words, SNPA is able to identify eight
columns of M which can reconstruct M better. (Note that, as opposed to SPA and SNPA that
looks for endmembers with large norms, XRAY focuses on extracting extreme rays of the convex cone
generated by the columns of M . Hence it is likely for XRAY to identify columns with smaller norms.
This explains the different scaling of the extracted endmembers in Figure 6.)

Further research includes the comparison of SNPA with other endmember extraction algorithms,
and its incorporation in more sophisticated techniques, e.g., where pre-processing is used to remove
outliers and noise, or where pure-pixel search algorithms (that is, near-separable NMF algorithms)
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Figure 7: Abundances maps corresponding to the extracted indices. From top to bottom: SPA, SNPA
and XRAY.

are used as an initialization for more sophisticated (iterative) methods not relying on the pure-pixel
assumption; see, e.g., [8] where SPA is used.

4.3 Document Data Sets

Because, as for SPA, SNPA requires to normalize the input near-separable matrices not satisfying
Assumption 1 (that is, near-separable matrices for which the columns of H do not belong to ∆), it
may introduce distortion in the data set [25]. In particular, the normalization amplifies the noise of
the columns of M with small norm (see the discussion in [19]).

In document data set, the columns of the matrix H are usually not assumed to belong to the unit
simplex hence normalization is necessary for applying SNPA. Therefore, XRAY should be preferred
and it has been observed that, for document data sets, SNPA and SPA perform similarly while XRAY
performs better [24]; see also [25].

5 Conclusion and Further Research

In this paper, we have proposed a new fast and robust recursive algorithm for near-separable NMF,
which we referred to as the successive nonnegative projection algorithm (SNPA). Although computa-
tionally more expensive than the successive projection algorithm (SPA), SNPA can be used to solve
large-scale problems, running in O(mnr) operations, while being more robust and applicable to a
broader class of nonnegative matrices. In particular, SNPA seems to be a good alternative to SPA for
real-world hyperspectral images.

There exists several algorithms robust for any near-separable matrix requiring only that α(W ) > 0
[4, 15, 19] which are therefore more general than SNPA which requires β(W ) > 0. In fact, under
Assumption 1, α(W ) > 0 is a necessary condition for being able to identify the columns of W among
the columns of M̃ . However, these algorithms are computationally much more expensive (n linear
programs in O(n) variables or a single linear program in O(n2) variables have to be solved). Therefore,
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it would be an interesting direction for further research to develop, if possible, faster (recursive?)
algorithms provably robust for any near-separable matrix M̃ = W [Ir,H

′] +N with α(W ) > 0.
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A Fast Gradient Method for Least Squares on the Simplex

Algorithm FGM is a fast gradient method to solve

min
x∈∆r

f(Ax− y), (10)

where y ∈ R
m and A ∈ R

m×r. To achieve an accuracy of ǫ in the objective function, the algorithm

requires O
(

1√
ǫ

)

iterations. In other words, the objective function converges to the optimal value at

rate O
(

1
k2

)

where k is the iteration number.

Algorithm FGM Fast Gradient Method for Solving (10); see [29, p.90]

Input: A point y ∈ R
m, a matrix A ∈ R

m×r, a function f whose gradient is Lipschitz continuous
with constant Lf , and an initial guess x ∈ ∆r.

Output: An approximate solution x ≈ argminz∈∆ f(Az − y) so that Ax ≈ Pf
A(y).

1: α0 ∈ (0, 1); z = x; L = Lfσmax(A)
2 .

2: for k = 1 : maxiter do
3: x† = x. % Keep the previous iterate in memory.

4: x = P∆

(

z − 1
L∇f(Az − y)

)

. % P∆ is the projection on ∆; see Appendix A.1.

5: z = x+ βk
(

x− x†
)

, where βk = αk(1−αk)
α2
k+αk+1

with αk+1 ≥ 0 s.t. α2
k+1 = (1− αk+1)α

2
k.

6: end for

Remark 3. Note that the function g(x) = f(Ax− b) is not necessarily strongly convex, even if f is.
This would require A to be full column rank, which we we do not assume here. If it were the case, then
even faster methods could be used although the convergence of Algorithm FGM becomes linear [29].

Remark 4 (Stopping Condition). For the numerical experiments in Section 4, we used maxiter =
500 and combined it with a stopping condition based on the evolution of the iterates; see the online
code for more details.
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A.1 Projection on the Unit Simplex ∆

In Algorithm FGM, the projection onto the unit simplex ∆ needs to be computed, that is, given
y ∈ R

r, we have to compute

P∆(y) = x∗ = argminx
1

2
||x− y||2 such that x ∈ ∆.

Let us construct the Lagrangian dual corresponding to the sum-to-one constraint (since the problem
above has a Slater point, there is no duality gap):

max
µ≥0

min
x≥0

1

2
||x− y||2 − µ(1− eTx),

where e is the all-one vector and µ ≥ 0 the Lagrangian multiplier. For µ fixed, the optimal solution
in x is given by

x∗ = max(0, y − µe).

If the sum-to-one constraint is not active, that is,
∑

i x
∗
i < 1 , we must have µ = 0 hence x∗ = max(0, y)

(hence this happens if and only if max(0, y) ∈ ∆). Otherwise the value of µ can computed by solving the
system

∑

i x
∗
i = 1 and x∗ = max(0, y−µe), equivalent to finding µ satisfying

∑n
i=1max(0, yi −µ) = 1

(µ can be found easily after having sorted the entries of y).

B Lower Bound for ω
(

Rf

B̃
(A)
)

depending on β ([A,B])

In this appendix, we derive a lower bound on ω
(

Rf

B̃
(A)
)

based on β([A,B]).

Lemma 15. Let x ∈ R
m, B and B̃ ∈ R

m×s be such that ||B − B̃||1,2 ≤ ǭ ≤ ||B||1,2, and f satisfy
Assumption 2. Then

∥

∥

∥
Rf

B(x)−Rf

B̃
(x)
∥

∥

∥

2

2
≤ 12

L

µ
ǭ ||B||1,2.

Proof. Let us denote z = Pf
B(x), z̃ = Pf

B̃
(x), and z∗ = Pf

[B,B̃]
(x). We have

∥

∥

∥
Rf

B(x)−Rf

B̃
(x)
∥

∥

∥

2
=
∥

∥

∥
(x− Pf

B(x)) − (x− Pf

B̃
(x))

∥

∥

∥

2
=
∥

∥

∥
Pf
B(x)− Pf

B̃
(x)
∥

∥

∥

2
= ‖z − z̃‖2 .

Since z∗ = [B, B̃]w∗ for some w∗ ∈ ∆, there exists y = Bw and ỹ = B̃w̃ with w, w̃ ∈ ∆ such that
||z∗ − y||2 ≤ ǭ and ||z∗ − ỹ||2 ≤ ǭ. In fact, it suffices to take w = w̃ = w∗(1:r) + w∗(r + 1:2r) since

||z∗ − y||2 = ||[B, B̃]w∗ −Bw||2
= ||Bw∗(1 : r) + B̃w∗(r + 1 : 2r)−Bw∗(1 : r)−Bw∗(r + 1 : 2r)||2
= ||(B̃ −B)w∗(r + 1 : 2r)||2 ≤ ||B − B̃||1,2 ≤ ǭ,

and similarly for ỹ. Therefore, there exists some n, ñ such that z∗ = y+n = ỹ+ ñ with ||n||2, ||ñ||2 ≤ ǭ.
By Lemma 11 and the fact that ||y||2 ≤ ||B||1,2 and ||ỹ||2 ≤ ||B̃||1,2 ≤ ||B||1,2 + ǭ ≤ 2||B||1,2, we have

f(z∗) = f(y + n) ≥ f(y)− ||B||1,2Lǭ and f(z∗) = f(ỹ + ñ) ≥ f(ỹ)− 2||B||1,2Lǭ.
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Therefore, by definition of z and z̃,

f(z∗) ≥ 1

2
f(y) +

1

2
f(ỹ)− 3

2
||B||1,2Lǭ ≥

1

2
f(z) +

1

2
f(z̃)− 3

2
||B||1,2Lǭ.

Moreover, by definition of z∗ and strong convexity of f , we obtain

f(z∗) ≤ f

(

1

2
z +

1

2
z̃

)

≤ 1

2
f(z) +

1

2
f(z̃)− µ

8
||z − z̃||22.

Hence, combining the above two inequalities, ||z − z̃||22 ≤ 12L
µ ||B||1,2ǭ.

Lemma 16. Let x, y ∈ R
m, B and B̃ ∈ R

m×s be such that ||B − B̃||1,2 ≤ ǭ ≤ ||B||1,2, and f satisfy
Assumption 2. Then

∥

∥

∥
Rf

B̃
(x)−Rf

B̃
(y)
∥

∥

∥

2
≥
∥

∥

∥
Rf

B(x)−Rf
B(y)

∥

∥

∥

2
− 4

√

3KL

µ
ǭ.

Proof. This follows directly from Lemma 15:

∥

∥

∥
Rf

B̃
(x)−Rf

B̃
(y)
∥

∥

∥

2
=
∥

∥

∥
Rf

B̃
(x)−Rf

B(x) +Rf
B(x)−Rf

B̃
(y) +Rf

B(y)−Rf
B(y)

∥

∥

∥

2

≥
∥

∥

∥
Rf

B(x)−Rf
B(y)

∥

∥

∥

2
− 2

√

12||B||1,2Lǭ
µ

.

Lemma 17. Let A ∈ R
m×k, B and B̃ ∈ R

m×s be such that ||B − B̃||1,2 ≤ ǭ ≤ ||B||1,2, and f satisfy
Assumption 2. Then

ω
(

Rf

B̃
(A)
)

≥ β([A,B]) − 2

√

6
L

µ
||B||1,2ǭ.

Proof. This follows directly from Lemmas 15 and 16. In fact, for all i,

β([A,B]) −
∥

∥

∥
Rf

B̃
(ai)

∥

∥

∥

2
≤
∥

∥

∥
Rf

B(ai)
∥

∥

∥

2
−
∥

∥

∥
Rf

B̃
(ai)

∥

∥

∥

2
≤
∥

∥

∥
Rf

B(ai)−Rf

B̃
(ai)

∥

∥

∥

2
≤
√

12
L

µ
ǭ ||B||1,2,

while, for all i, j,

1√
2

∥

∥

∥
Rf

B̃
(ai)−Rf

B̃
(aj)

∥

∥

∥

2
≥ 1√

2

∥

∥

∥
Rf

B(ai)−Rf
B(aj)

∥

∥

∥

2
− 4√

2

√

3||B||1,2L
µ

ǭ

≥ β([A,B])− 2

√

6||B||1,2L
µ

ǭ.
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