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ADAPTIVE FINITE ELEMENT APPROXIMATIONS FOR
KOHN-SHAM MODELS *

HUAJIE CHEN', XIAOYING DAIf, XINGAO GONG!, LIANHUA HEY, AND AIHUI ZHOU!

Abstract. The Kohn-Sham model is a powerful, widely used approach for computation of
ground state electronic energies and densities in chemistry, materials science, biology, and nanoscience.li
In this paper, we study adaptive finite element approximations for the Kohn-Sham model. Based on
the residual type a posteriori error estimators proposed in this paper, we introduce an adaptive finite
element algorithm with a quite general marking strategy and prove the convergence of the adaptive
finite element approximations. Using Dorfler’s marking strategy, we then get the convergence rate
and quasi-optimal complexity. We also carry out several typical numerical experiments that not
only support our theory, but also show the robustness and efficiency of the adaptive finite element
computations in electronic structure calculations.
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1. Introduction. The Kohn-Sham density functional model is a powerful, widelyll
used approach for computation of ground state electronic energies and densities in
chemistry, materials science, biology, and nanosciences. Consider a molecular system
consisting of M nuclei of charges {71, - - - , Zys } located at the positions {Ry, -+ ,Ras}
and N electrons in the non-relativistic and spin-unpolarized setting. By density func-
tional theorem (DFT) [35] [36], the ground state solutions of the system may be
obtained by solving the lowest IV eigenpairs of the following Kohn-Sham equation

(_%A'i_‘/ext + 3 f]RB z(y) dy+VxC )) ¢Z = Mz(bl in R3a i1=1,2,--- aNa
(1.1)
/ ¢1¢J = 5ij;

where Vix(z Z |x — Rk| is the electrostatic potential generated by the nuclei,

)= Z |s ()|? is the electron density, and Vi.(p) denotes the exchange-correlation
potentiai
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Since the core electrons do not participate in the chemical binding and remain
almost unchanged, a pseudopotential approximation is usually resorted to in practical
computations of the Kohn-Sham equation, which is to replace the Coulomb potential
of the nucleus and the effects of the core electrons by an effective ionic potential
acting on the valence electrons. Therefore, under the pseudopotential framework,
only valence electrons are involved. The pseudopotential consists of two terms: a
local component Vi, (whose associated operator is the multiplication by the function
Vioe) and a nonlocal component V4 (an operator whose expression is given in Section
). The resulted equation is still (LI) but Vext(z) = Viee(z) + Vai(z), N now being
the number of valence electrons, and {¢;}~ ; being the set of the pseudo-orbitals of
the valence electrons.

We understand that the Kohn-Sham approach achieves so far the best balance
between accuracy and efficiency among all the different formalisms of electronic struc-
ture theory, and simulations of large-scale material systems with Kohn-Sham DFT
are still computationally very demanding (say, thousands of electrons or more). As a
result, efficient numerical algorithms that can be scalable on parallel computing plat-
forms are desirable to enable DFT calculations at larger scale and for more complex
systems. We see that real-space techniques and methods for electronic structure cal-
culations have been derived much attention from scientific and engineering computing
communities and remarkably developed during the last two decades, among which the
finite element method possesses several significant advantages [0l [26], 46, 47, 56| 57].
Although the finite element method employs more degrees of freedom than that of
traditional methods like plane waves and Gaussians, it results in sparse algebraic
eigenvalue problems and thus it is scalable on parallel computing platforms due to
the strictly local basis functions, it is variational, and it is friendly to implement adap-
tive refinement approaches. Consequently, the computational accuracy and efficiency
of the finite element approximations can be well controlled.

We observe that even in the pseudopotential setting, the eigenfunctions of (L.II)
still vary rapidly around nuclei or chemical bonds [6] (I8, B2]. Hence it is also natural
to apply adaptive finite element (AFE) approaches to improve the approximation
accuracy and reduce the computational cost. Indeed, we see that AFE computations
have been quite successfully used in solving Kohn-Sham equations and electronic
structure calculations. Tsuchida and Tsukada combined the finite element method
with the adaptive curvilinear coordinate approach for electronic structure calculation
of some molecules [58 F9]; Shen and Zhang introduced some adaptive tetrahedral
finite element disretizations in their theses [5I] [63] and calculated several typical
molecular systems efficiently [32] 52] [64] [65]; Bylaska et.al used adaptive piecewise
linear finite element method on completely unstructured simplex meshes to resolve
the rapid variation electronic wave functions around atomic nuclei [I0]; Dai et.al
designed some parallel adaptive and localization based finite element algorithms for
typical quantum chemistry and nanometer material computations containing more
than one thousand atoms using tens of hundreds of processors on computer cluster
[I7, I8, 20, 22]; Gavini et.al constructed a finite element mesh using unstructured
coarse-graining technique and computed materials systems [44] [55]; Yang successfully
scaled their AFE simulations to over 6000 CPU cores on the Tianhe-1A supercomputer
in his thesis [6I]. The AFE simulations carried out in this paper also show the
robustness and efficiency of the AFE computations in electronic structure calculations.
We may refer to [27, 56] and references cited therein for other interesting discussions
on adaptive finite element method (AFEM).
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We see that it is significant to understand the mechanism of AFE computations,
analyze the AFE approximations of Kohn-Sham equations, and give a mathematical
justification of the AFE algorithm. We note that the AFE computations are based on
some a posteriori error estimators and there are a little work concerning analysis of
the a posteriori error estimators and convergence of AFE approximations for DET. In
[14L[15], the authors of this paper considered the nonlinear eigenvalue problems derived
from the orbital-free DFT and obtained the convergence and optimal complexity of the
AFE algorithm. We understand that the orbital-free DET is viewed as a simplification
of the Kohn-Sham DFT, in which only one eigenpair is involved. In this paper, we
shall propose and analyze two AFE algorithms for Kohn-Sham DFT calculations and
study the associated convergence and quasi-optimal complexity.

Let us now give an informal description of the main results of this paper. We
propose and analyze two AFE algorithms: Algorithm Bl and Algorithm [£1] which
are based on the residual type a posteriori error estimators. We show the a posteriori
error estimates (see Theorem [4)) and prove that

e Under some reasonable assumptions, all limit points of the AFE approxima-
tions of the ground state solutions are ground state solutions (see Theorem
B3).

e Under other reasonable assumptions, some eigenpairs (in particular, ground
state solutions) can be well approximated by AFE approximations with some
convergence rate (see Theorem [T0).

In addition, we also study quasi-optimal complexity of AFE approximations (see

Theorem [.13).

We mention that Algorithm B and Algorithm [ Tlmay be viewed as some exten-
sions of associated existing algorithms for linear elliptic partial differential equations
of second order and have been in fact used for years, for instance, in package Re-
alSPACES (Real Space Parallel Adaptive Calculation of Electronic Structure) of the
State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of
Sciences. As we see, the numerical analysis for AFE approximation has been also
derived much attention from the mathematical community. Since Babuska and Vo-
gelius [4] gave an analysis of an AFEM for linear symmetric elliptic problems in one
dimension, there has been much investigation on the convergence and complexity of
AFEMs in literature (see, e.g., [9, 12} 211 23] 30, 53] and the references cited therein).
In the context of the finite element approximations of linear eigenvalue problems, in
particular, we see that there are a number of works concerning a posteriori error esti-

mates |8, [19] 24 34, 371 [39. [60], AFEM convergence [211 29] [30] 31 33] and complexity
19, 211 29, (33].

However, there are several crucial difficulties in numerical analysis of the Kohn-
Sham equation: it is a nonlinear eigenvalue problem whose eigenvalues may be de-
generate, and a number of eigenpairs must be involved; the associated energy func-
tional is nonconvex with respect to density p, as a result, there is no uniqueness
result for the ground state solutions; the energy functional is invariance under uni-
tary transforms, which also induces redundancy of the ground state solutions. To
handle these difficulties arising from the Kohn-Sham equations, we shall present some
sophisticated arguments and consider the convergence under the distance between
solution sets; investigate the convergence rate and optimal complexity under certain
inf-sup assumption; and exploit the relationship between the finite element nonlinear
eigenvalue approximations and the associated finite element boundary value approx-

imations. Thanks to our previous works [13, [T4], 15, 19, 2T], B33l [66] 67] where the
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perturbation argument was introduced for analyzing AFEM of eigenvalue problems
and the compact approach was specialized for handling the nonlinear effects, com-
bining the crucial technical results proposed also in this paper, we are then able to
analyze our adaptive finite element algorithms for Kohn-Sham equations, prove the
convergence and get the complexity.

The rest of this paper is organized as follows. In Section ] we provide some
preliminaries for Kohn-Sham DFT problem setting and residual type a posteriori error
estimator based AFE methods. We prove the convergence of AFE approximations
in Section [3] and analyze the convergence rate and optimal complexity of an AFE
algorithm in Section @ In Section Bl we present some numerical experiments that
support the theory. Finally, we give some concluding remarks.

2. Preliminaries. Physically, the Kohn-Sham model is set in R3. However,
due to the exponential decay of the ground state wavefunction of the Schrodinger
equation (c.f., e.g., [2,[62]) and the fact that Kohn-Sham model is an approximation
of Schrédinger equation, R? is usually replaced by some polyhedral domain  C R?
in practical computations for Kohn-Sham equation.

For k € R¥*N  we denote its Frobenius norm by |k|. For p > 1 and s > 0,

we denote by W*P(Q) the standard Sobolev spaces with the induced norm || - |5 p.0
(see, e.g. [IL [d6]). For p = 2, we denote by H*(Q2) = W*?(Q) with the norm
|- ls.2a =1 - lls2.0, and HY(Q) = {v € HYQ) : v |sgg= 0}, where v |go= 0 is

understood in the sense of trace. The space H~1(Q2), the dual of HE (), will also be
used. Let H = (H}(2))" be the Hilbert space with H; inner product

N
((I)a\p):Z/(z(blwl fOI'(I):((bl,"' ;QﬁN);\II:(wl;"' awN)EH
i=1

Let Q be a subspace with orthonormality constraints:

Q={PcH:dTd=1"N}

where 70 = (/ qﬁiz/zj) e RV*N For ® € H# and a subdomain w C , we shall
Q i

)

N
denote by pg = Z |¢;]* and (sometimes abuse the notation for simplicity) by
i=1

N 1/2 N 1/p
@l = (Z [l ?,w> s =01 [[®flopw = (Z ||¢z-|]8,p,w> 1 <p<6.
i=1 i=1

In our discussions, we shall use the following sets:

SNXN:{MERNXN:MT:M}, ANXN:{MERNXNMT:—M}

For any ® € Q, we may decompose H into a direct sum of three subspaces (see, e.g.,

[25]):
HZS@@A‘P@B)

Where&p:@SNXN,A@:(I)ANXN,andB:{\IIE’H:\IITCI):OERNXN}.
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For convenience, the symbol < will be used throughout this paper, and A < B
means that A < CB for some constant C that is independent of mesh parameters.
We use Z(p, (c1,c2)) to denote a class of functions satisfying some growth conditions:

P(p,(c1,¢2)) = {f : Ja1,as € R such that c1tP +a; < f(t) < cot? +ag VE > 0}

with ¢; € R and ¢a,p € [0, 00).

2.1. Problem setting. Consider the following general form of Kohn-Sham en-
ergy functional

L N
E(®) = /Q <§ Z Vil + Vieepas + Z¢iVn1¢i + exc(/)<1>)>
i—1

i=1

5000 p3) (2.1)

for ® = (¢1,02, - ,¢n) € H, which includes the cases of Coulomb potentials
and pseudopotential approximations. For the Coulomb potential setting, Vi, =
*ZkMﬂ ‘I—_ZKRTl and Vi1 = 0. While for the pseudopotential approximations, Vi
is the local part of pseudopotential and Vi is a nonlocal pseudopotential operator
(see, e.g., [40]) given by

j=1

with ¢; € L*(Q)(j = 1,2,--- ,n), n € N. D(ps, ps) is the electron-electron Coulomb
energy defined by

= T ! T
Dif.g) = [ faxr) = [ [ o) =—daay,

and ex.(t) is some real function over [0,00). In our analysis, we require Vio. belongs
to L2(2). We point out that Vi € L?(2) is a very mild condition, which is satisfied

by both the Coulomb potential Voyt(z) = — Z]szl W_Z—ﬁk‘ and the local part of pseu-

dopotential. Since ey : [0,00) — R does not have a simple analytical expression, we
shall use some approximations and assume throughout this paper that

exc(t) € P(3,(c1,c2)) with ¢; >0 or ex(t) € P2(4/3,(c1,c2)), (2.2)

which is satisfied by almost all the LDAs.
The ground state of the system is obtained by solving the minimization problem

inf {E(®) : & € Q}, (2.3)

and we refer to [3 [I1, [13] for the discussion of existence of a minimizer. Note that
the energy functional () is invariant with respect to any unitary transform, i.e.

N
E(®) = B(®U) = E((D_uijé))iLs) VU = (ui)j—y € OVN, (2.4)
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where OV*N is the set of orthogonal matrices. It follows from (Z4) that if ® is a
minimizer of ([Z3]), then ®U is also a minimizer for any orthogonal matrix U. For any
U € H, we define the equivalence class

U] = {QU, VU € ON*NY,

We see that any minimizer ® = (¢, -+, ¢n) of [23) satisfies the following weak
form (i.e. the Euler-Lagrange equation associated with the minimization problem):

N
(H@(bi,v) = (Z)\ij(bj,v) Voe H&(Q), 1=1,2,---, N,
J=1 (2.5)
/ bip; = Oy,
Q
where Hg is the Kohn-Sham Hamiltonian operator as
1
Hy = =5 A+ Viee + Vi +/ |p‘1’(yy)| dy + € (pa) (2.6)
ol —
and
N
A=) = (/ ¢qu>¢i) (2.7)
Q i,j=1

is the Lagrange multiplier. Since the uniqueness of the ground state solution is un-
known even up to a unitary transform, we define the set of ground states by

0= {(A, ®) c RV*N xQ: E(®) = gleiaE(\Il) and (A, ®) solves (12:5])} . (2.8)

Note that the electron density pg and the operator Hg are also invariant under any
unitary transform, we may diagonalize the matrix of Lagrange multipliers A. More
precisely, there exists a U € OV >N such that the Lagrange multiplier is diagonal for
U =oU = (¢1, -+ ,¥n), e,

/( i Hg); = 1305
)

Consequently, instead of (Z3H]), we may consider a form with diagonal multiplier as
follows:

(H‘Iﬂ/}iav) = (Mﬂ/}lvv) V’UGH&(Q)a 2:1527 7N7

/Q iy = Oy,

which is the standard Kohn-Sham equation.

Note that any solution of (23] can be obtained from a unitary transform of some
solution of ([Z9). That is, once we get all solution of (Z.9]), we then obtain all solution
of ([Z3). Consequently, we also call (2.5) Kohn-Sham equation.

It is well known that the ground state has one electron in each of the N orbitals
with the lowest N eigenvalues [40]. Therefore, the ground state solutions in (Z.J)) can
be obtained by solving the lowest N eigenpairs of ([2.9]).

6
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For convenience, define F : RN*N x H — H* by

<]:(Aa (I))’F> = Z (H<I>¢z - Z)‘ijqﬁj’%) vI= ('Vi)i]\il EH.

i=1 j=1

The Fréchet derivative of F with respect to ® at (A, @) is denoted by F5(A, @) : H —
H* as follows

(Fo(h, @)0,T) = LE"@)(,T) — 3 (v, )

1,j=1

i=1

N N N N
=Y (Hothi =Y Aty i) +4 > (elelpa)dithi, 6575) + D AD(¢itds, d575)-
j=1

i,j=1 1,5=1

To study the convergence and complexity, we need the following assumptions [I3]

Al el (1) + [tei(t)] € P(p1, (c1, c2)) for some py € [0,2].
A2 There exists a constant a € (0, 1] such that |e” ()| +[te’”(t)| < 1+t271 Vi >

XC

0.
A3 (A, ®) is a solution of () and there exists a constant 5 > 0 depending on
(A, ®) such that

/A
inf sup (Fa (A, ©)W,T)

il bl 2.10
A A T T (2.10)

REMARK 2.1. We see that Assumption A2 implies Assumption A1 and the com-
monly used X, and LDA exchange-correlation energy functionals satisfy Assumption
A2.

Assumption A3 is equivalent to that Fi (A, ®) is an isomorphism from Ty to
To. We observe that if Assumption A3 is satisfied for ® € Q, then Assumption A3
is satisfied for any ® € [®] with the same constant B, too. We see that a stronger
condition than (ZI0) that

(Fo(A, )T, T) >3 VIETs

is used in [I1), [50], which is satisfied for a linear self-adjoint operator when there is a
gap between the lowest Nth eigenvalue and (N + 1)th eigenvalue [50].

2.2. Adaptive finite element approximations. Let d, be the diameter of
0 and {7} be a shape regular family of nested conforming meshes over 2 with size
h € (0,d,): there exists a constant v* such that

he
Ly Vre (2.11)

where h, is the diameter of 7 for each 7 € Ty, p, is the diameter of the biggest ball
contained in 7, and h = max{h, : 7 € Tp}. Let &, denote the set of interior faces
(edges or sides) of Ty,.

Let S™*(Q) be a subspace of continuous functions on € such that

ShEQ)={veC(Q): v, € P VTeT},
7



where PF is the space of polynomials of degree no greater than k over 7. Let Sg’k(Q) =
ShE(Q) N HE (). We shall denote Si"(Q) by S(Q) for simplification of notation
afterwards and let Vj, = (S&(Q))V

We consider the following finite element approximations of ([23):

inf{E(®,) : &, € V, NQ}. (2.12)

We see from [3] [I3] that the minimizer of ([2.12) exists under condition ([Z2]) Note that
any minimizer ®), = (¢1,4, -+, ¢n,5) of (ZI2) solves the Euler-Lagrange equation

N
(H¢h¢i,h;v> = (Z)\ij,hgbj,hav) VUGS&(Q% 1:1527 7N7

‘7_
/¢i,h¢j,h = 0y
Q

with the Lagrange multiplier

N
Ap = ()\ij,h)f\,[jﬂ = </Q ¢j,hH<1>h¢i,h> .
-

]

(2.13)

Define the set of finite dimensional ground state solutions:

0, = {(Ah,@h) eRVN QN B(®)) = ‘ygl@igv E(¥) and (Ap, ®p) solves (m)}
h

We have from [I3] that the finite dimensional approximations are uniformly bounded,
i.e., there exists a constant C' such that

sup (1®n]l1,0 + [An]) < C. (2.14)
(Ah,¢h)€@h,h€(0,dn)

Using a unitary transform, we can diagonalize Aj and obtain a discrete Kohn-
Sham equation

quﬁ/hha ) = (Hi,h7/1i,h,v) VUGS(})l(Q); 7::1527"'7]\]7
/%h%h = 0y

with pin = (Hw, Vi,h, Yih)-
Similar to the continuous case, we have that any solution of (2.I3]) can be obtained
from a unitary transform of some solution of (ZI3]). That is,

(2.15)

On = {(Ap, @) e RVN x (QNV}) : @), € [Uy) and Ay = f He, @1, YUy, with (pn, ¥r) € Ep ),

where

=, = {(ﬂJh,‘I’h) ERMN 5 (QNVL) : E(¥y,) = @31@1%1‘/ E(U) and (pp, ¥y) solves (M)} .
h

Since (Z.I3)) is solvable, to get Oy, we always resort to solving (2.IH) in practice.
An adaptive mesh-refining algorithm usually consists of the following loop [12} 21]:

Solve — Estimate — Mark — Refine.
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Solve. This step computes the piecewise polynomial finite element approximation
with respect to a given mesh. To simplify the analysis and do as the most work on
numerical study of convergence of AFE approximations, we shall assume throughout
this paper that we have the exact solutions of discretized problemsEI.

Estimate. Given a partition 7;, and the corresponding output (Ap, ) from the
“Solve” step, “Estimate” computes the a posteriori error estimator {n,(®n,7)}reT
which is defined as follows. Define the element residual R, (®;,) and the jump J.(Py)
by

N
N .
Ro(®n) = (Ho,dih — Y Aigndin)ie, 7 €T
j=1
N

) . 1 1
Je(Pr) = (]e(¢i,h>) E Je(Gin) = §V¢z‘,h|n -1+ §V¢i,h|m -3,

where e is the common face of elements 71 and 7 with unit outward normals 771> and
ns, respectively. Let wp(e) be the union of elements that share the face e, and wy (1)
be the union of elements that share an edge with 7. For 7 € T}, we define local error
indicator 0, (P, 7) and the oscillation oscy, (®p, 7) by

Mh(@n,7) = 2| RA®W5.+ D hellJe(@n)]5
e€&y,eCOT

1=

OSCh(‘I)h, T) = hTHRT((I)h) - RT((I)}L)”O,Ta

where W is the L?-projection of w € L?() to polynomials of some degree on 7 or
e. Given a subset w C Q, we define the error estimator 7, (®p,w) and the oscillation
oscy (P, w) by

M (@nw) = > np(Ph,7) and osci (Pp,w)= > 0sc;(®p, 7).

TETH,TCw TETH, TCw

Mark. We shall replace the subscript h (or ) by an iteration counter k whenever
convenient afterwards. Based on the a posteriori error indicators {ng(®,7)}reT,
“Mark” gives a strategy to choose a subset of elements M, of Ty for refinement. One
of the most widely used marking strategy to enforce error reduction is the so-called
Dorfler strategy.

Dorfler Strategy. Given a parameter 0 < 0 < 1 :
1. Construct a subset My, of Tj by selecting some elements in 7T such that

D (@) =0 ni(Pk, 7). (2.16)
TEMy, TETk
2. Mark all the elements in M.
A weaker strategy, which is called “Maximum Strategy”, only requires that the set
of marked elements M, contains at least one element of 7; holding the largest value
estimator [29] (30]. Namely, there exists at least one element 7;"** € My, such that

Nk (Pg, ™) = max g (Pr, 7). (2.17)
TETE
I Similar conclusion can be expected for the case where the errors of numerical integrations and

nonlinear algebraic solvers are included (see Section [6). And we understand that the assumption is
indeed a very important practical issue.



It is easy to check that the most commonly used marking strategies, e.g., Dorfler’s
strategy and Equidistribution strategy, fulfill this condition.

Refine. Given the partition 7; and the set of marked elements My, “Refine”
produces a new partition Txy1 by refining all elements in My, at least one time. We
restrict ourself to a shape-regular bisection for the refinement. Define

RTk—>Tk+1 = ﬁ\(ﬁ N 77€+1)

as the set of refined elements, we have M, C Ry, 7., Note that usually more than
the marked elements in M, are refined in order to keep the mesh conforming.

3. Convergence of adaptive finite element approximations. In this sec-
tion, we propose and investigate an AFE algorithm with Maximum Strategy for Kohn-
Sham equations as follows:

ArLGoORrITHM 3.1. AFE algorithm with Maximum Strategy
1. Pick an initial mesh Ty, and let k = 0.
2. Solve ZIH) on Ty, to get discrete solutions (w;x,¥ik)(i=1,---,N) and then
O.
Compute local error indictors ni(Vi, ) for all T € Tg.
Construct My, C T by Mazimum Strategy.
Refine Ty to get a new conforming mesh Tri1.
. Let k=k+1 and go to 2.

We shall prove that all the limit points of the AFE approximations generated by
Algorithm BJ] are ground state solutions of (23]), for which we shall use the similar
arguments in [14, B0, [66] [67]. Given an initial mesh 7y, Algorithm Bl generates a
sequence of meshes 77,75, -+, and associated discrete subspaces

S T o

S6°() € 531 () S+ C SR € S THR) G € Seel) € HG(O),
—————H;(Q)
where So. () = U, 5:%(2) . Similar to the definition for Vj,, we set Voo =
(S (2))N. We have that V, is a Hilbert space with the inner product inherited from
‘H and

lim  inf [0 — Ul =0 V ¥e € Vie. (3.1)
k— oo \PkGth

Using a direct calculation (see [I3]), we derive that

Cinf U U] S inf [T —Uslia V¥ €VenQ
Uy, €Vy, NQ Wi € Vi

for any k£ € N, and hence

lim _ inf O - Uolio=0 V¥, ecVnQ. (3.2)
k=00, evy, NQ
From [3, [13], we know that if Assumption A2 is satisfied, then the minimizer of
energy functional [2.1) in Voo N Q exists.
We see that any minimizer ®o; = (P1,00,** s PN,00) € Voo NQ solves the following
Euler-Lagrange equation

N

(Z)\ij,oo%‘,oo,v) VoeSe(), i=1,2,---,N,
=t (3.3)

/ ¢i,oo¢j,oo = 5ij
Q

(I{<I>OO ¢i,ooa U)
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with the Lagrange multiplier

N

Ao = (Nijoo)ijm1 = (/Q ¢j,ooH<1>ao¢z',oo> : (3.4)

i,j=1
Define
= {(A P RNXN - E(® _ . E(T
O = {(Ae; @) € X (Vo NQ) (Poo) \Ifenl}ioan (D)
and (Ao, Poy) solves (B3)}.

Using similar arguments to those in the proof of Theorem 4.1 in [I4], we can prove
that the AFE approximations for the Kohn-Shan equation converge to some limiting
pair in ©4.
LEMMA 3.1. Let {O}ren be the sequence obtained by Algorithm [Z1l We have
lim E, = min FE(P),
k—o0 VeV NQ

lim dy (O, Ou) = 0,
k—o00

where By, = E(®)((A,®) € ©k) and the distance between sets X, Y C RV*N x H is
defined by
dy(X,Y) = sup inf (JA—p|+[[®—¥10)
(A,P)eX (LY)EY

Proof. Let (A, @) € O for k =1,2,---, and {(Ag, , Pk, ) }men be any subse-
quence of {(Akh(pk)}kGN with 1 <kj <ko < - <kp <---.

First, following [66] [67] (see also [14]), we have from (2I4) and the Eberlein-
Smulian Theorem that there exists a weakly convergent subsequence {CIkaj }jen and
P, € Vo satisfying

‘I’kmj —~ &, inH, (3.5)
thus it is sufficient to prove
E(dy) = in FE(V .
(Do) =, min  E(Y), (3.6)
lim ([|®k,, — Pooll1,0 + |Ak,., — Asc]) = 0. (3.7)
j—o0 J J

Since Hg(Q) is compactly imbedded in LP(2) for p € [2,6), we have that Py, = Poo
strongly in (LP(Q))" as j — co. Hence, we obtain that

lim Vioc(x)pd)km, :/Vioc(-r)plbooa
Q ! Q

j—o0

N N
lim /Z¢i,kmvvnl¢i,km~ :/Zfbi,oovnlﬁbi,ooa
J—00 9] i1 J 7 Q i=1

lim exc(pmm.):/exc(ﬁ@w)v
J 9]

Jj—o0 Jo
lim D(ps,, ,ps,, )= D(pa.,ps.),
j—oo i i

11



where (22)) is used for the third equality. Besides, from ([B.E) we have

liminf [V®, 0. > [|[VPxllo.0-
Jj—o0 J

Thus,

lim inf E(®y

Jj—o0

) > B(®..). (3.8)

mj

Let ¥, be a minimizer of the energy functional in Voo NQ. ([B2) implies that there
exists a sequence {W; };en such that ¥; € Vi, NQ and ¥; — Vo in H. Therefore,

E(V..) = lim E(T;). (3.9)

J—00

Note that {(I)kmj} converge to @, strongly in (L2(Q))" leads to @, € Voo N Q, we
have

E(®y) > E(Vy). (3.10)
Since ®p,, is a minimizer of the energy functional in Vj,, N Q, we obtain
E(V)) > E(®y,,),

which together with (B.8)), (39) and BI0) leads to

liminf B(®y,, ) > E(®o) > E(Vs) = lim E(¥;) > liminf B(®y,, ).
j—oo 7 Jj—o0 J

Jj—o0
This implies

lim E(®;,, )=E(®.,)= min E(U)

: 0o
j—oo J VeVeNQ

and thus (Aeo, Poo) € O
Therefore, we get that each term of E(®) converges and in particular

lim ||V, llo,0 =[V®sllo,0- (3.11)
j—o0 J

Since (HY(Q))YN is a Hilbert space under norm ||V - ||g.q, we conclude from and
0 ;

BII) that
lim [|V(¢,, — ®oo)lo.o =0,

j—o0

which together with (27), (34) and 38) implies ). This completes the proof. O

To show that the limit in Voo NQ is indeed a ground state solution, we turn to the
convergence of the a posteriori error estimators. Following the ideas in [14] 29] [30] 43],
we split the partition 75 into two sets ’7? and T2, where

T r={r€Te:7€T,VIi>k} and nozﬁ\n+.

Actually, 7? is the set of elements that are not refined any more, and 7, consists of
those elements that will eventually be refined. We denote by

Qf = U errwi(r) and Q) = UreTowk(T).
12



Since the mesh size function hy, = hy(z) associated with Ty, is monotonically decreasing
and bounded from below by 0, we have that

hoo(z) = lim hy(z)

is well-defined for almost all z € Q and hence defines a function in L>°(§2). Moreover,
the convergence is uniform (see [43]), more precisely, if {hx}ren is the sequence of
mesh size functions generated by Algorithm Bl then

lim Hhk - hoo”O,oo,Q =0 (3.12)
k—o0
and
lim ||y xao ”070079 =0, (3.13)
k— o0 k

where X is the characteristic function of Q9.

LEMMA 3.2. Let (Ap, ®p) € Op. If Assumption Al is satisfied, then there exists
a constant C, > 0 depending only on the mesh regularity, such that nn(®n,Q) < C,
and

Mm(Pn, 7) S NPrlloswn ) T 1Prll1,wnr) V7 € The

Proof. Using ([2.I4), the inverse inequality, the Holder inequality, the trace in-
equality and Assumption A1, we have

N N
1
B[R (@n)llor = B (D2 = D Aiginbin = 58010 + ViocBion + Vardion
i=1 j=1

1/2
ke, )bin + (7 5 pa )0l )

n
S 3 he(Iinllor + 180inlor + Visctinllor + DGR -Idinllor
i=1 j=1
Hlee(pe)Binllo.r + 1107+ pay )dinllo.r )
S 1®@nllo,6.wn(r) + [1Pnll1,w, ()

and

[

s
Il
—

1/2
1 1
B2 T (@) o.c = bl ( I5V%inl,, 21+ 5V0inl,, ~77%||%,e>

M=

1/2
< he'? ( (IV@inlnlls.e + |V¢¢,h|m|3,e)>
1=1

N 1/2
Shi? (hel > |V¢i,h”g,wh(r)>

i=1
S (19|

L,wn(7)*
13



Hence we obtain

M (Pr, 7) S ®Prllo6wnr) + 1 Prll1wnir) VT E Ty

which together with the Sobolev inequality implies 1, (P, Q) < C,, where the con-
stant C, > 0 depends only on the data and the mesh regularity. This completes the
proof. O

Using similar procedure as in [14] [30], we can prove that the maximal error indi-
cator max e am,, (P, 7) tends to zero.

LEMMA 3.3. Let {®y }ren be the sequence produced by Algorithm 31l If Assump-
tion A1 is satisfied, then

li Py, 7) = 0.
Jim max N (Ppe, 7)

Proof. We see from Lemma B] that for any subsequence {®g, } of {®}, there
exist a convergent subsequence {CIkaj} and @ satisfying (A, Poo) € Ooo such that

‘I)km]. - &, in H. (3.14)
Hence it is only necessary for us to prove that

lim max P 7)=0.
j—o0 TEMkmj nkmj ( kmj’ )

For simplicity, we denote the subsequence {tl)kmj }ien by {®x}ren, and {Emj }ien by
{7k} ken. We obtain from Lemma that

nk(q)kaTk) 5 H(I)kHO,G,wk(Tk) + H(I)kHLWk(Tk)
S Pk — Pooll,0 + [[Pooll0,6,w () + 1 PEI1,05(r) 5 (3.15)

where 7. € M} be such that
@ = @ .
(P, Tk) TIgManT]k( ks T)

Note that (BI4]) implies that the first term on the right-hand side of (BIH) goes to
zero. Since 7, € My C T, we have from BI3) that

wi ()| S R, < ||thQg||g,oo,Q —0 as k— oo,

which implies that the other two terms on the right-hand side of (B3] go to zero,
too. This completes the proof. O
Define a global residual Ry, (®p,) € H* by

N N
(Ra(®n),T) =Y (Hao,din — Y Nijndjn.vi) VI = (1), €H. (3.16)

i=1 j=1

We see that

(Rp(®n),T) = > | (Ro(@n),T) 4+ D> (Je(®n),T), | VI eH(3.17)

-
TE€Th e€&p,eCOT

14



Thus

(R (@1), D) < D (@, Ty VT €H. (3.18)
TETH

Thanks to Lemma B2 and Lemma B3] by carrying out the similar procedure as the
proof for Lemma 4.3 of [I4], we can obtain a weak convergence of Ry (®y) as follows.

LEMMA 3.4. Let {®y}ren be the sequence produced by Algorithm 31 If Assump-
tion A1 is satisfied, then

lim (R (®4),1) =0 VI eH. (3.19)

k—o0

Now we turn to prove the main result of this section, that is, the limit of the AFE
approximations for the Kohn-Shan equation is a ground state solution.

THEOREM 3.5. (convergence) Let {O}ren be the sequence generated by Algo-
rithm [31. If the initial mesh Tq is sufficiently fine and Assumption A1l is satisfied,
then

lim Fj; = min F(¥ 2
Jim By = min B(V), (3.20)
lim dy (O, ©) = 0. (3.21)
k—o00

Proof. Let {(Ag, ) tren be the sequence generated by Algorithm Bl We know
from LemmaB.Jlthat for any subsequence {(Ay,,, Pk, ) }men, there exists a convergent
subsequence {(Ag,, Pk, )}jen and (Ao, Poc) € Ooo such that

)
’VTLJ

(I)kmj — d in H,

RNXN

Ak — Aoo in

m;

Consequently, it is only necessary for us to prove (A, Ps) € O, which implies
B20) and B21) directly. For simplicity, we denote by {(Ax,®i)}ren the conver-
gent subsequence { (Akmj @k, )}jen, and by {7 }ren the corresponding subsequence

i
{IEWLJ' }JEN :

We first show that the limiting eigenpair (Ao, Poo) is also an eigenpair of (Z3]).
We have from (B.I0) that for any I' € H

(thooq)oo - AOO(I)oan) = (Hd)ocq)oo - Aooq)ooal—‘) - <Rk(q)k)ar> + <Rk(q)k)’r>
= (H@ P — H@k(l)k,r> — (AOO(I)OO — Akfbk,r)
+(Ry(Pg),T). (3.22)

oo

By a direct calculation using Assumption A1, we get

(H‘I)ooq)oo - H‘bkq)kal—‘) 5 H(I)OO - (I)k|

1.ollT'[1,0,

which together with (8:22)) leads to

(Ho. Poo = AooPoo, I') S ([[Poo — Prll1.0 + [Aco = ATl + (Ri(Pk), T). (3.23)
15



We get from Ay — A and @ — P, in H that the first term on the right-hand side
of (B23) goes to zero when k goes to infinity. We obtain from Lemma B4 that the
other term on the right-hand side of [323]) goes to zero, and hence

(Ho oo, I') = (Ac o0, I') VI €H.

Then we shall show that for a sufficiently fine initial mesh, the limiting eigenpair
(Ao, Do) is a ground state solution in ©. Similar to [14], we set

W= {(A,®) € RN x # : (A, ®) solves [ZT)}.
Note that © C W. Using the fact

lim mf [ — @1 o=0 VPecH,

h—0 ¥eV,

we can choose an initial mesh 7o such that

Ep = in  FE(®) < in  E(V),
0 @horéléﬁ)n@ (®ho) (M,\ffr)ne?/v\@ ()

Due to 7o C Tg, we have E < Ejy and hence (A, Po) € ©. This completes the
proof. O

4. Quasi-optimality of adaptive finite element methods. In this section
we propose and analyze the following AFE algorithm using Dorfler’s marking strategy.

ALGORITHM 4.1. AFE algorithm with Dorfler Strategy
1. Pick a given mesh Ty, and let k = 0.
2. Solve 218 on Ty to get discrete solutions (fi g, Yix)(@ = 1,---,N), and
then ©y.
Compute local error indictors ni(Vi, ) for all T € Tg.
Construct My, C T by Dérfler Strategy and parameter 6.
Refine Ty to get a new conforming mesh Tri1.
Let k=k+1 and go to 2

We shall study the convergence rate and quasi-optimal complexity of Algorithm
[T for which we shall apply the perturbation arguments (c.f., e.g., [15 21, [33])
and certain relationship between nonlinear problem (Z3) and its associated linear
boundary value problem (see (AT])).

To establish the relationship, we define

N
i=1

One sees that there exists a constant ¢, > 0 such that

S Srds o

VQﬁz, V'Vz Vo= (Qﬁi)i]\;la I'= (%)i]\il €H.

l\D|>—‘

o(0,T) > calTg ¥ T €. (4.1)
Let £:H — H* be the operator defined by
(L(D),T) =a(®,T") VI €H,
and K : H* — H be the inverse operator of £ such that

a(K®,T)=(®,I) VI eH.
16



Note that (@I implies that K is well defined and there holds

1,05 P10 VO EH (4.2)
Let Py : H — Vj, be the H'-projection defined by
a(® — P, T)=0 Y®ecH, el (4.3)

For any ® € H, there hold

lim ||® — P,®||1.0 = 0. (4.4)
h—0

4.1. Basic estimate. First we recall an a priori error estimate, whose proof is
referred to [13]. Define
Xop = SNXN (Vh n (Sq> & 7&))

)

THEOREM 4.1. Let (A, ®) be a solution of (Z1). If Assumptions A2 and A3 are
satisfied, then there exists 6 > 0 such that for sufficiently small h, @I3) has a unique
local solution (Ap, ®p) € Xon N Bs((A, @)). Moreover, there hold

| (4.5)
|An — Al S [|@h — @IF o + 1 — @00 (4.6)
| Sr(h)e = @nlle (4.7)

with r(h) — 0 as h — 0.
Using Theorem [l we can denote afterwards by (An, ®p) € Xo.n N Bs((A, ®))
the unique local discrete approximation of (A, ®) € ©.
pa(y)

For simplicity, we denote by V' = Vi + Vi and N (pg) = / = |dy + ege(pa).

LEMMA 4.2. Let (A, ®) be a solution of (Z3) and hg € (0,1) be the mesh size of
the initial mesh To. If Assumptions A2 and A3 are satisfied, then there exists i (h)
such that kK(h) = 0 as h = 0 and

V(®n = ®)l-1.0 + [N(pe,)®n — N(pe)®ll-1.0 S B[P = Palio.  (4.8)

Proof. For any U € H, by using the Holder inequality and the Young’s inequality,
we have that for any € > 0, there holds

1/3 2/3 — 1/3 2/3
[¥los.0 < ||W|| e = (723wl 23w )

e~ 2e
<—\Il
S Sl ¥lloa + 5

which together with (7)) implies that there exists a positive constant C' independent
of h and ¢ such that

1 — ®pllos < C (e 2r(h) +¢) [ — Bplio ¥ he (0,h.
17



Therefore, by the Holder inequality, we get
(Vioc(q)h - (I)), F)
ITl1.0
< (6_27“(]1) +¢)[|® — ®pl1,0. (4.9)

[Vioe(® — @p)|-1,0 = sup < [Viocllo,o[[® = @allo,s,0
TeH

For the nonlocal pseudopotential operator, we derive
(Va(®1, — @),T) < |2 — @pllo,lTlloe VT €H

from the fact that

n

(Z(ij¢i,h - )G, v) S N din — dilloallvlloe VveHy(Q), i=1,---,N.

j=1

Therefore, we have

(Val(®, — @),T)
1T+,

For the exchange-correlation part, we have that there exists £ = (&1, -, &n) with
& = 6i¢i,h + (1 — 6z)¢z and §; € [0, 1] (Z =1, --- ,N), such that

[Var(®n — @)[|-1,0 = sup SN® = @ulloo S7(h)||P — Pall1,0-(4.10)
I'eH

N

(e;{c(pq’h)q)h - e;{c(p@)q)a F) = Z /Q(e;c(pf) + 26126;:(:(pf))(¢17h - (bz)'Yz

This together with Assumption A2 leads to

N
(€le(pwn ) — elolpa)®,T) S 3 /Q (Pe + 0D\ bin — 1] - 1l
=1

N

S (18 los/aelldin — dilloallvillos/3—20).0 + locllosalléin — dillo.allvillo.s.e)
=1

S®n — @lloellllie  VIeH, (4.11)

where the Holder inequality and the fact

llpello,3.0 < ||§||(2),6,Q < |||

are used. For the Coulomb potential, we obtain from the Young’s inequality and the
Uncertainty Principle [49] that

st ®ullgsa<C

N
Ir=" % (pe = pa, lo.cer S D IIV(@i + din)lloglléi — dinllon S 12 = alloo-

=1

Therefore, we have that for any v € H}(Q2) and 1 < i < N, there holds
/Q ((r=" % pa, )i — (™" pa) i)
= /9(7“_1 * pa, ) (i — i)v +/ % (ps, — pa)piv

Q
Sl % pay, llo,co,2ll@in — dillocllvlloq + Ir™ = (ps, — pa)l
S lgi — dinlloallvfloe + |2 — Prllo.allvloe,

18
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which implies
(7" % p )@ — (7 % pe)®,T) S @ — DuloalTloa YT EH.  (412)

Consequently, we obtain from (£I1]), (Z.I2) and the definition of N that

N (pa, )®h — N (pa)®| 1.0 = sup (N(pa, )Pr — N(ps)®,T)
reH 171,

S[® — @Puloo- (4.13)

Taking, ¢ = 7(h)'/3 and setting #(h) = r(h)'/?, we have that #(h) — 0 as h — 0.
Combining ([@7), (£9), @I0) and @I3]), we complete the proof of (LF]). O

We now exploit the relationship between the nonlinear eigenvalue problem and
its associated linear boundary value problem, which will be employed in our analysis.

We rewrite (Z3) and (Z13) as
B = K(PA — VD — N(pa)®),

(I)h = PhK(q)hAh — Vq)h *N(pq:.h)q)h), (414)
respectively. Set Wh = K (®,A; — V&, — N(pa,, )®r), we have &), = P,Wh.
THEOREM 4.3. Let (A, ®) be a solution of (Z3). If Assumptions A2 and A3 are
satisfied, then there exists k(h) € (0,1) such that k(h) — 0 as h — 0 and

1@~ ®lla = [W" — B |ia + OR()II® ~ B4l (415)

Proof. By the definition of W", we have
- Wh = K(®A — BpAy) + KV() — ®) + K (N(pa, )@, — N(pa)®). (4.16)
For the first term on the right-hand side of ([@I6]), we obtain from ([£2) and {1 that

[K(PA — @pAL)[[1,0 < |PA = PpALfl0.0 S [[(P — Prn)Allo,0 + [Pa(A = Ar)llo.0
S — @rllo,eAl + [A = Ap| Sr(h)||® — Ppll10. (4.17)

Using Lemma 2] we can estimate the second term on the right-hand side of (16l
as follows
[EV(® = @)l S IV(®—Pn)l-10 S AA)[® = Palie.  (418)

~ ~

Using (£2), [@T) and (@8], we obtain for the last term of ([I6) that
KN (p2,)Pn = N(p2)®)ll1.o S IV (pe,)Ph — N(pe)®ll-1.0 S 7(A) | — Pnll1.0.
Set k(h) = r(h) + &(h), we derive from [@I6), (£I7), and (LIS that
1@ = W10 < Cr(B)||® — @all10, (4.19)
with C' being some constant. Note that ({I14) implies
O— O =W"—PW"+&-W"

which together with (T3] leads to ([@I]). This completes the proof. O
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4.2. A posteriori error estimates. Define

R(ho) = sup k(h) (4.20)
ReE(0,ho]

and note that £(hg) < 1if hg < 1. Based on the relevant results for linear boundary
value problems (see Appendix), we have the following estimates for AFE approxima-
tions.

THEOREM 4.4. Let (A, ®) be a solution of ), ho < 1 and h € (0,hg]. If
Assumptions A2 and A3 are satisfied, then there exist positive constants Cy,Cy and
C3 depending on the coercivity constant ¢, (in (1)) and the shape regqularity constant

~* (in ZII) ), such that
@ — ®nl[% o < Crirjy(@n, ), (4.21)

Comp (1, ) < [|® — @413 o + Cs0s¢i (P, Q). (4.22)

Proof. Due to LW" = &, A, — V&), — N (pa, )P, we obtain from (A7) and (AF)
that

”Wh - PhWh”%,Q < élﬁ}%(PhWh’ Q)a (4'23)
Coiif (P,W", Q) < |W" — PW" |3, + Cs05¢, (P W, Q), (4.24)

where the constants C;, Cy and C3 are given in Theorem [AT] 77 (P,W", Q) and
03¢, (PoW" Q) are defined by (A5) and (A.0) with T being replaced by P,W". It
is easy to see that 7, (P,W", Q) = (@5, Q) and oscy, (P, W, Q) = oscp, (@, Q) from
their definitions and the fact that &, = P,W".

We have from ([@I5H) and @20) that
|@ = ®pll1,0 < (14 Ca(ho) [W" = PuW" (|10,
which together with (£23)) leads to (21 by taking the constant
C1 = C1 (14 Ci(ho))% (4.25)

Similarly, we get [@22) from (@I4), (@I5) and (@24). In particular, we may
choose Cy and C3 by

Cy = Co(1 — Ci(ho))?, Cs = Cs(1 — Cr(hg))>. (4.26)

This completes the proof. O
We shall now present the following property that will be used in our analysis.
LEMMA 4.5. Let (Ap, ¥y,) be solution of (Z13). For any ¥}, = U, U with U being
some orthogonal matriz, there hold

1
L (W) < (7)< NoR(W7), Ve e T (@.27)
and
1
Nosci(\lfﬁl,r) < osci(Vy,,7) < Nosci (9}, 7), V1€ Th. (4.28)
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. . . N
Proof. We write U = (am)i\[j:l. Since U is orthogonal, we have " | a0, =

Zi\;l Q0 5 = 61']‘ fori,j=1,---,N.
On the one hand, we obtain from ¥} = ¥, U that

N
w;,h = Zaj,iwj}h’ i=1--,N.
—

Denote the Lagrange multiplier corresponding to ¥}, by Aj,. Since U} = ¥, U implies
Hy, = Hy,, we get

= (V},)" Hy, ¥}, = (W4U)" Hy, WU = UT W} Hy, W, U = UTALU.

Therefore,
LA = U, UUT AU = WAL U,
that is,
N N
ZA;j,h ;‘,h = Z 1N R, t =1, N.
J=1 1j=1

Consequently, for any 7 € 7y,
(V) = BIRA(Ue- + Y hellJe(W)I5

eEEh,eCBT

>~ (h2 1wy SRy hellie@l)I3.)
Jj=1

ec&y,eCOT

I
] =

N
Il
-

I
M=

(h |Hy, Zal Win — Z oM a5

1 =1 l,j=1

3

N
+ Z he HJe(Z i) ||%e) -
=1

e€&p,eCOT

Thus, by triangle inequality and Hoélder inequality, we may estimate as follows

N N N
<> (hf(zaz,illH@mz,h -> Mjntinllor)’
=1 j=1

N
Y Z awillie(un)lo.e)”)

ec&y,eCOT

(Za“ h22|\H@h¢lh ZAzme,
1
+Z > heHje('l/Jl,h)Hg,e))

=1 e€&p,eCOT

N
Z(Zhnﬂwh szjhw]huoﬁz S hellgeunli)
=1

1=1 =1 e€&,eCOT

Mz

S

Nnh(\Ilh,T), V71 € Th,
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where the fact Zf\il aii = 11is used. That is,
(W, 7) < Nijt(Un, 7), V7 € Th (4.29)

On the other hand, ¥} = W, U implies ¥}, = ¥}, UT. Hence,

N
Yin=y i, i=1-- N

j=1
By the similar process we obtain that
n (¥, 7) < Npp(9},,7), V7 € Th. (4.30)
Similarly, there have
o0sci (U}, 7) < Nosci(Vy,7), V7 €T (4.31)
and
0sci (U, 7) < Nosci (W), 7), V1 €Th. (4.32)

We obtain (LZ17) from [{29) and [E30), and get [@2]) from @3T) and [@E32).

This completes the proof. O

Thanks to Lemma L5 we can get the bounds of ||® — @1, by computable
terms 77 (¥, Q) and osc? (¥p, Q), other than the uncomputable term 77 (®p,, Q) and
osci (®p, ) as in Theorem 4] and then get the a posteriori error estimate for distance
between the ground states and its approximation as follows.

THEOREM 4.6. (a posteriori error estimate) Suppose hg < 1 and h € (0, ho]. Let
(M, ¥r) be solution of (Z14), if Assumptions A2 and A3 are satisfied, then there
hold

77;21(‘1’}“ Q) < d%(@h, o)+ osc%(\lfh, Q), (4.34)

here O = {(An, 1) € RVN x (QN V) : @ € [4], and A, = O] He,, @1} C O,
Our analysis is based on the following crucial technical result, which can be obtain
directly from Lemma 5
LEMMA 4.7. Let (Ap, ®p) be any solution of (Z13). If there exists constant
0 € (0,1) satisfying

PR AC I BT AC IR VR (4.35)
TEMy,

then for any ®}, = ©,U with U being some orthogonal matriz, there exists a constant

0" €(0,1), such that

> (@, 7) = 003 (D),9). (4.36)
TEMh

In further, we have 6’ = %.
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4.3. Convergence rate. Now we turn to analyze the convergence rate of Algo-
rithm 1] Similar to [I5] 21], we shall first establish some relationships between two
level finite element approximations. We use Ty to denote a coarse mesh and Tj to
denote a refined mesh of Tg.

LEMMA 4.8. Let h, H € (0, ho] and (A, ®) be a solution of 2. If Assumptions
A2 and A3 are satisfied, then

1® — @ullio = [WH = PaW |10 + O(F(ho)) (|© — rll1.0 + @ — Prll10) (4.37)
oscn(®n, Q) = o5 (B W, Q) + OR(ho)) (|12 — @allie + [ — Pull10) (4.38)

and

0 (@, Q) = iin(PLWH, Q) + O(F(ho)) (| — P

Lo+ |®—Pull10). (4.39)

Proof. First, we obtain ([£31) from (£4]), (£I9) and the identity
-0, =WH —pWH +P,WH —W"+o-WwH,
For the estimate of ([A38), we get from &), = P,W + P, (W" — WH) that
oscn (PaWh, Q) < osen(PuWH Q) 4 oscp, (P (Wh — W) Q), (4.40)

where osc is given in Appendix. Using ([@I4]) and the fact oscy (P, Q) = oscp (Pp, ),
we know that it is only necessary to estimate oscy, (P, (W" — WH), Q).
Since ﬁWh = q)hAh*V(I)h*N(pcph >(I)h and EWH = @HAH*V(I)H*N([).@H )@H,

we obtain
E(Wh — WH) = &N\ — PyAy + V((I)H — (I)h) +N(p<I>H)(I)H —N(pzph)q)h.

Let G = P,(W" — W) and R.(G) be defined by ([(A4) with I being replaced by G.
We have

7?,7((” =®,Ap —PyAy + V((I)H — q)h) +N(pq>H)(I)H *N(pq%)q)h — LG

and
oSy (P(W" = WH),0) = >~ 0563 (G,7) = > 12| RA(G) = R+ (G5,
TETH TETH
< D RRAG) + LG = (RA(G) + L) G, + > W2|LG - LG5, (4.41)
TETH TETH

Using the inverse inequality, and the fact that ®,A; and @y Ay are piecewise
polynomials vectors over T, and Tp respectively, [@7), and (L8], we may estimate
as follows

(3 W2RA(G) + LG ~ (R+(G) + LG)3,)""?

TETH
S Z he(IV(@1 — ®n)llo.r + IN (por )®r — N (pa, )®nllo,r)
TETH
SEh) (|2 —Pnllio+ 12— Pullie)- (4.42)
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Combining the inverse inequality, (4] and [I9), we arrive at

(> m2ca-2G)2)"7 S (Y n21LG)E) " S 1G e

TETH T€TH
= [ Pa(W" = W)l 0 < &(ho) (|1® = Prllio+ | — Pule)- (4.43)

Taking (£41), (E22)) and (£43) into account, we have
osch (P (W" = W), Q) S &(ho) (|® = @rlio + |2~ rlie),  (444)

which together with (£40) leads to ([E38).
Finally, we shall prove ([£39). We obtain from (Ag]), (£I9) and (£44) that

in(Pa(W" = W), Q) S |(W" = WH) — P,(W" = W) 0
to5¢, (P (Wh — W) Q)
S Fho) (|2 = @allio 4+ [[@ — Pallie)

This together with the fact
iin(PaW", Q) = i (PuWH + P,(WH — W), Q)
leads to
Tn(PaW", Q) = i (Pa W, Q) + O(R(ho)) (| @ — @ullre + [ — Prl10),

which is nothing but (£39)). This completes the proof. O

For the convenience of the statement of the following results, we need some def-
inition. For (A, ®) € © and @), € V},, we say the equivalence class [®},] approximate
the equivalence class [®] if

Dy ([®1], [®]) < Dy ([®4],[D]), V(A, @) € © and [@] # [@],
the distance between sets X,Y C H is defined by

Dy (X,Y) = inf ||®— U q.
1(X,Y) ;gg@gyll 1.0

Thanks to Theorem [A.2] Lemma 7, and Lemma 8 by using the similar argu-
ment in [I5] 19, 21], we get the following theorem.

THEOREM 4.9. (error reduction) Let 6 € (0,1) and ho < 1. Let {¥y}ren, be a
sequence of finite element solutions corresponding to a sequence of mested finite ele-
ment spaces {Vi}ren, produced by Algorithm[.1] Assume [Uy,] is an approzimation
of some [®] with ® being one solution of (Z3), denote ki11(> ki) the minimal index
among all indexes k(> k;) which satisfy that [V] approzimates [®]. If Assumption
A2 is true and (A, ®) satisfies Assumption A3, then

”q) - (I)ki+1 ||%,Q + 77713141 (q)ki+1 ) 77€i+1) < 52 (”@ - (I)ki

with @y, € Xok,,, and Oy, € Xo i, satisfying the a priori error estimates (D)
and @) when h is replaced by hy,,, and hy,, respectively, v > 0 and § € (0,1) some
constants depending only on the coercivity constant c,, the shape regularity constant

v*, and the marking parameter 6.
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Proof. For convenience, we use &5, &z to denote @y, ,
Then it is sufficient to prove that for ®; and ®y, there holds,

[® — @4lT 0 + 07 (@r, Q) < E(|® — Pullf o +v0h (Pu, Q).

Note that @5 and Uy are solutions of (213)) and ([ZI3), respectively. From the
relationship of 2I3) and [2I5), we have that if [P y] and [P 5] approximate the same
[®], then @y = Uy Uy with Uy being some unitary transform. Therefore, we obtain
from Lemma 7] that Dorfler Marking strategy in Algorithm 1] implies that there
exists a constant 6’ = % € (0,1), such that

and ®y,, respectively.

ST nE (@) = 003 (@n,9).
TEMH

Thus, from WH = K(®gAyg —V®y — N(ps, )®Px) and g = PgWH | we have that

Dérfler strategy is satisfied for W with 6 = -&. So we conclude from Theorem [A2]

that there exist constants ¥ > 0 and §~ € (0,1) satistying

IWH — PV g+ 57 (P, 9) < 2 (IWH — @2+ 502 (@17, 2)), (4.46)
where the fact 7z (PpWH,Q) = ng (@, Q) is used.

From (£I9), we get that there exists constant C; > 0 such that
(1+ Cai(ho) ) 1@ = @12 0 + Ty (P, Q) = [WH = PuWH |3 g + iy (@11, 2)(4.47)

We obtain from Lemma and the Young’s inequality that there exists constant
C5 > 0 such that

1@ = @ull} o + 303 (1, @) < (1 + DIV = PaW | g + (1+ 805 (PaW ™, Q)
+ Co(1+ 7R (ho) (19 — @ul3 g + |10 — u2 g). (4.48)
where 01 € (0,1) satisfies (1 +d1)¢ < 1.
Combining ([A46), (£4717) with ([£4]]), we have that
(1= Co(1 4+ 0772 (ho) ) 19 = @n3 0 + 573 (@, )
< (L4608 + (14 6)€Cri(ho) + Ca(1 + 677 (ho) ) 1@ — D3
+(1+61))E 7 (@1, Q).

Since ho < 1 implies k(hg) < 1, there holds

B 2
D — P2 o+ - P, Q
[ rli0 170351_%2(}10)%( hs )

- A
< (1 + 5126 -i; Cgli(ho) H(I) B (I)H|
1= Coor 2 (ho)

£25
(14 61)€2 + Csi(ho)

2
1071

HJQLI(‘I’H, Q)) )

with C3 some constant depending on € and Cy. Note that hg < 1 implies l;(ho) < 1,
we see that the constant & defined by

¢ (14 61)€2 + Csi(ho) 1z
o\ 1= G567 R2(ho)
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satisfies £ € (0,1) when hg < 1.
Finally, we arrive at ([LZ3]) by using the fact that
-~ ~
~§7A~ <~ with ~= ~ Y1~ .
(1 +61)&* + Csf(ho) 1 — C367 R2(ho)

(4.49)

This completes the proof. O

We have from Theorem B.5l that if {¥}} is obtained by Algorithm [4.1] then there
exists a subsequence {[¥y,]} that converge to some equivalent class [®], where ® is a
solution of (23). Here, a sequence {[¥y,]} converges to a equivalent class [®] means
that there exist unitary matrices Uy, € ON*¥  such that

lim \IlkiUki = .
11— 00

Therefore, combining Theorem .9 we have the following theorem.

THEOREM 4.10. (convergence rate) Let 0 € (0,1) and ho < 1. Let {¥j}ren,
be a sequence of finite element approximations obtained by Algorithm[{-1] and {[¥,]}
be the subsequence that converges to some [®], where ® is a solution of (23). If
Assumptions A2 and A3 are satisfied, then there holds

H(I) - (I)ki+1 ”iﬂ + 77713i+1 ((I)ki+1 ) 77€i+1) < 52 (H(I) - (I)ki H%,Q + ’777131- ((I)kz”ﬁ%)) ) (450)

where @y, € Xo k., and O, € Xo i, satisfy the a priori error estimates (4.5) and
7)) with h being replaced by hy,,, and hy,, respectively, v > 0 and £ € (0,1) are
constants depending only on the coercivity constant c,, the shape regularity constant
~* and the marking parameter 6. Therefore, the k,,-th iteration solution of Algorithm

[41] satisfies
1@ = P, 1T + vk, (Pr,, Thy) < E™ (19 = iy 170 + 107, (P Tho)) (4.51)
and
A= Ay, | S €™ (4.52)
In further, we have

dy(O,,,0) < ™. (4.53)

4.4. Complexity. Finally, we study the complexity of Algorithm 4.1 in a class
of functions. Following [12, 2], define

A ={V e H: [¥[s, < oo},
where v > 0 is some constant and

|U|s, =supe inf (#T — #76)5
e>0 {TCTo: infupevy (IT—T7|3 o+ (y+1)osc (¥7,T))/2<e}
and 7 C 7o means 7 is a refinement of 75. We see that, for all v > 0, A5 = Aj.
For simplicity, we use A° to stand for A7, and use |¥|, to denote |¥|, .. So A° is the
class of functions that can be approximated within a given tolerance € by continuous
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piecewise polynomial functions over a partition 7 with number of degrees of freedom
satisfying #7. — #70 < 5*1/S|\Il|i/s.

LEMMA 4.11. Suppose 0 € (0,1) and hg < 1. Let ¥y and Uy, be the solutions
of ZIH) over a conforming mesh Ty and its refinement Tp,, and [Vg] and [Uy)
approzimate the same solution class [®], where ® is a solution of (ZZ). Suppose
Assumption A2 is true. If for some ® € [®] satisfying 2I0)), we have

1@ — @117 0 + ye08c, (Pn, Q) < BI(|® — Prll7 o + vw0sc (P, Q) (4.54)

with @, € Xon and @y € Xo g satisfying the a priori error estimates ([@3) and

ET) when h is replaced by h and H, respectively, v. > 0 and B, € (0, %) Then,

the set R = Ry, -7, satisfies the following inequality

ZU%I((I)H’T) Zé Z U%{(‘I)Hﬁ)a

TER TETH

A Cs(1—252) o A5 - . .
here 6 = Bo Gt (1120205 with Cy, B«, Cx and v, being constants defined in the
Proof.

Proof. For WH = K(Q)HAH —Voy *N(p-@H)q)H), we observe from Lemma 8
that

[ — @410 = W' = PW |10
+0(&(ho)) (IWH = PuWH |1 o+ [[WH — P,WH|10),
oscy (®p, Q) = osen (PLWH Q) + O(&(ho)) (|WH — PpWH |10 + |[WH — PuWH |1 q).

Proceeding the similar procedure as in the proof of Theorem L9 we have

IWH = PaWH |2 o + Fuoscy (P, )

< B(|WH = PaWH |2 o + F.05¢k (PaW ™, Q) (4.55)
with
201 4 61) + Cuii(ho) |
jo— (UL L GRh)) s e (45
1-— 04(51 HQ(ho) 1— 04(51 HQ(ho)

where Cy is some positive constant and &, € (0,1) is some constant as shown in the
proof of Theorem

Set Cyp = max{1, %}, we get from (A) that

~2 o~ ~ 2 ~

(1= 28.°)Coiify (PuW™,0) < (1= 28.7) (IWH = PuW™ |2 o + Cyoscly (PuW ™, )
~ ~ 2 ~ —~—

< Co(1 = 28.7) (IWH = PuW™ |2 o + 5,654 (PuW ™, 0))

which together with (£55]) produces
Cy o
&= 28.7) 3 itk (PaW ™ 1) < (|WH = PuW |2 o + .05 (Pu W™, )
TETH
—|WH - P,WH|2 o, — 27.05¢; (P, W, Q). (4.57)
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Thus using equality
IWH — PpWH|[Z o — W = PWH|Z o = [|PaW ™ — P,WH |2
and Theorem [A.3] we obtain that
IWH = PyWH 2 o = [WH = PWH(2 o < Cr Y iy (PuW ™, 7). (4.58)
TER
By the triangle inequality, the inverse inequality, and the Young’s inequality, we get
S osc(PaW ry <2 Y osen(PaW T, 7) + 202 [Py W — PWH 2
TETHNThL TETuNThL

where C is a positive constant depending on the shape regularity constant v*. Hence,
using the fact

osco (PeWH 1) < 34 (PuWH . 7) V7€ Tu,
we may estimate as follows
o8cH (PyWH Q) — 265¢; (P,WH Q)
< in(PeW o+ > oseh(PaWH m) -2 Y ose (PaWH7)
TER TE€ETaNTh TETuNTh

< ia(PaWH 1) 4202 | Py — PWH 2
TER

< (142C2C) Y i (P, 7)., (4.59)
TER

Combining ([@57), (£58) and (.59), we then arrive at

Cs
c (1-24.°) > i (PeWH 1) < (Cr+ (1+202C)%) Y i (PaW ™, 7),
TETH TER

that is,
> (@, 7) Z (®s1,7)
TER ETu
with
~ ~2
Ca(1—28,")

6= —— . .
Co(Cl + (1 —l—QCECl)’?*)

This completes the proof. O
Similar for the boundary value problem [I2] and the linear eigenvalue problems
[19], to analyze the complexity of Algorithm Bl we need more requirements than for
the convergence rate.
ASSUMPTION 4.1.
1. The marking parameter 6 satisfies 0 € (0,0.), with

1 Cay
N2 Cg(cl + (1 + 20301)’)/)
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2. The marked My, satisfy (Z16) with minimal cardinality.
3. The distribution of refinement edges on Ty, satisfies condition (b) of section

We mention that Dorfler Marking Strategy selects the marked set M}, with min-
imal cardinality.

LEMMA 4.12. Let 0 € (0,1) and ho < 1, {Ur}ren, be a sequence of finite
element solutions corresponding to a sequence of nested finite element spaces { Vi } ken,
produced by Algorithm [} Suppose Assumption A2 is true. If [¥y] approzimates the
solution class [®], where ® is a solution of (Z3), then for any ® € [P]N.A® satisfying

@I0), we have

—1/2s

#My S (19 — Brll2 o + vosci(Pr, Q) @[3/, (4.60)

where ®y, € Xgj satisfies the a priori error estimates @) and @) with h be-
ing replaced by hy,, and the hidden constant depends on the discrepancy between the
marking parameter # CB(CI‘F(?‘?”;CECI)'}/) and 0.

Proof. Let a, 1 € (0,1) satisfy oy € (0, ) and

- 1 Coy
N2 03(01 + (1 + 20301)’}/)

0

(1—a?).

We choose 6, € (0,1) to satisfy (1 +6;)€2 < 1 and
(146)%f <a?, (4.61)
which implies
(1+61)ad < 1. (4.62)
Define
1/2

1
e=—=ay([|® — Bll2 o + yosci(Pr, Q)

V2

and let 7Tz be a refinement of Ty with minimal degrees of freedom satisfying
|® — ‘I)aHi,Q + (7 + 1)osc2(®., Q) < &% (4.63)
We get from ® € A that
#T. —#To S '@,

Let T. be the smallest common refinement of 7, and 7:. Since W& = K(® A, —
V@, — N(ps.)®:), we obtain from the triangle inequality, the inverse inequality, and
the Young’s inequality that

os5¢; (P.W*,Q) < 205 (P.W*, Q) + 2C2 | P-W* — P.W#|2 o,

where P. and P, are Galerkin projections on 7: and 7. defined by ([@3]). Note that
[We = PW#|2 g = W5 = P.WF |2 — [PWE — PWF|2 0,

we have

1 1
IWe = PaWe|2 g + 5052 (P, Q) <[5 = P2 0 + —osc2 (P, 9).
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Since (AJ) implies 7 < 52z, we get that

IWe = P.W*|2 o + 305¢2(PWS, Q) < WS — PWE|[2 o + —50s¢2(P-WV*,9)

02
<|IWe = PWE|2 o + (5 + 0)osc (P-W*, ),

where 0 = % —4 € (0,1). We may conclude from using the similar argument as that
in proof of Theorem that

1@ = ul7 o +v05¢3 (s, Q) < 0 ([ — Rell7 0 + (v + 0)oscZ (P.W*, Q)

2
0
<o (@ — @ell2 o + (v + 1)osc2(P-WF,9Q)) , (4.64)

where

(14 61) + Cai(ho)
1— C367R2(ho)

2
Qp

and Cs is the constant appearing in the proof of Theorem FZ0l We derive from #83)

and ([A64) that
H(I) (I) ||aQ +7050 ((I)*aTk) (H(I) (I)kHaQ +7030k((1)ka77c))

with & = \/L—aoal. Using ([f62), we obtain & € (0, 1) when hy < 1. Set 6 =

Cy(1—24%) _ _ Cs ~2 _ (1481)a&*+Cai(ho)
Gt (17202607 | = TGas w2 (i) Co = max(1, §%), and &” = 1-Cad; T72(ho)
Denote R = R, 1. the reﬁned elements from Ty to 7., we obtain from Lemma [£T17]

that 7. satisfies
Z Uﬁ(q’kaﬂ > é Z nl%(q)va)
TER TET

Similar to the illustration in proof of [£9] from the relationship of (2I3) and
[2I3), we also have that ¥, = ®,Uj, with Uy, being some unitary matrix. Therefore,

from Lemma 7] we have that there exists ' = NQ, such that
> np(W,7) > 6 Z (Ty,7) (4.65)
TER €Tk

We obtain from the definition of  (see (£49)) and 7 (see (A9)) that % > C5C2.
Note that C and C., are constants appeared in upper bound, without loss of generality,
we can assume C3 > 1 and C, > 1. Hence we have Cy = % Since hg < 1, we get

that 4 > v and & € (0, %a) from ([@6T)). We observe from ([@25), (£26) and 4 > v
that

ol CUowm L G (1-a?)
N2 Ca(Cy 4+ (1+20201)5) N2 Cs(S +1+20200)

1 e

(1-C#(ho))? 2

— 1—a%)

2 C C 2 (
N2 ety Garsraom T 1+ 20 gty
> L Ca (1-a?) = 1 Cay
TN 03(%+(1+20301)) N2 C5(C1 + (14 2C2Ch)v)
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when hy < 1.
Therefore, from (LGH), we deduce

SO T) =0 ni(Wk, 7). (4.66)

TER TETL

Since M, satisfies ([A66]) with minimal cardinality, we arrive at

H#Mr S H#R1. o7 S H# T — #Te < #Te — #To

< (o) (18 — @y 4 osch (@0, Te) I,

V2
which is nothing but ([{60) with an explicit dependence on the discrepancy between
0 and CS(Cl‘i’(?j”éCfCl)'}/) via 1. This completes the proof. O

THEOREM 4.13. (optimal complexity) Let 6 € (0,1) and hg < 1. Assume that
Assumption A2 is satisfied and (Z3) has m solutions (up to the invariance of unitary
transform,), which are denoted as [®W](1 = 1,--- ,m) where m can be chosen to be co.
Let { ¥k }ren, be a sequence of finite element solutions corresponding to a sequence of
nested finite element spaces {Vi }ren, produced by Algorithm [{.1 Then the following
quasi-optimal bound is valid

m

—1/2s
#T0 - #T0 5> (100 = @, [2g+70scd, (@h, . 9) . (467)

=1

where ® € [®W]N A satisfies 210), ‘I)gcnl € Xt 1, satisfies the a priori error esti-

mates @LI) and [@T) with h being replaced by hy,, , and the hidden constant depends
% 03(01"1‘(?1’;0301)’7) :
Here, n; and ky, are the total number and the maximal index of iteration which ap-
prozimate [PW](1 = 1,--- ,m) among the n iteration, respectively.

Proof. Assume that among the iterate solution spaces {[¥;]}™ , there are n;
approximations for [®®](I = 1,--- ,m), which are denoted by [¥,] (i = 1,---,ny).
Here, >°", n; = n, and n; can be 0. Recall that (see Theorem 6.1 in [54])

on the exact solution ®' and the discrepancy between 6 and

m  n

#To = #T0 S DY # M,

=1 i=1
we obtain from ([@60) that

ny

—1/2s
(|B" — L ||2.0, + yosc?, (B}, Q) 7 (@t [1/*).

NE

#Tn —#T0 S

N
Il
i
-
i

Note that ([@22) implies

o' — @,

1o+, (2,.Q) < (|2 — @,

%,Q + ’yOSC%i (q)gcl ) Q))a

i

Y — o Cs
where ' = max(1 + &, %), we conclude

ng

#T—#To S D> (19" — @,

=1 i=1

T et e).

1o+, (2,.9))
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Since ([ELA0) yields
[0 = B, 20 +02, (@h, ) <€) (81— 8} |2+ (@, ).

we arrive at

ny
s —1/2s np =t
(1012 (10" — @}, 13+ 2, (@), ,9) /=S ")

1 i=1

s —1/2s
(1012 (10t = @ 13 +m2,, (@, ) 7).

NIE

#Tn —#T0 S

NE

S

=1

where the fact £ < 1 is used.
Thus we obtain from oscy (P!, Q) < (L, Q) that

m —1/2s
4T - #To <Y (1190 = @) 20+ 0t (@), .9)

=1
This completes the proof. O

5. Numerical examples. In this section, we shall present some numerical sim-
ulations for three typical molecular systems: CyHgO4(Aspirin), C5HgO3 N (o amino
acid), and Cgg(fullerene), which support our theory. Due to the length limitation for
the paper, we only show the results for pseudopotential approximations for illustra-
tion.

Our numerical experiments are carried out on LSSC-III in the State Key Labo-
ratory of Scientific and Engineering Computing, Chinese Academy of Sciences, and
our package RealSPACES (Real Space Parallel Adaptive Calculation of Electronic
Structure) that are based on the toolbox PHG [68] of the State Key Laboratory of
Scientific and Engineering Computing, Chinese Academy of Sciences.

In our computations, we use the norm-conserving pseudopotential obtained by
thi98PP software and the LDA exchange-correlation potential. We use Algorithm 4.1
and apply the standard quadratic finite element discretizations. Since the analytic
solutions are not known even for the simplest systems, we only show the convergence
curve of the a posteriori error estimator 17 (¥, (2) in our figures. The mesh and
density illustrations are drawn using ParaView.

Example 1: Aspirin CogHgOy.

The ground state energy obtained by SIESTA is —119.621 a.u.. In our computa-
tions, we choose the computational domain to be Q = [—~20.0,20.0]3.

The atomic configuration, the calculated ground state charge density and the
associated computational mesh are shown in Figure 5.l First, comparing the config-
uration figure (the left one of Figure B.l) and the charge density figure (the middle
one of Figure BI), we can see qualitatively that our calculations are correct, the
carbon-hydrogen bonds, carbon-oxygen bonds, and the oxygen-hydrogen bonds are
preserved very well. If we take a detailed look at the charge density figure, we can
further see that the charge is more concentrative around the oxygen than around the
carbon. We also see from the mesh figure (the right one of Figure[5.]) and the charge
density figure that our error estimator can catch the oscillations of the charge density
very well, which qualitatively confirms that our error estimator is efficient.

We now turn to analyze some quantitative behavior of our calculations. The
convergence curve of the ground state energy is shown in the left of Figure We
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Fig. 5.1: C9gHgOy: configuration, charge density and mesh on plane z = 0.

observe that the ground state energy approximations converge to —119.918 a.u., which
is very close to the value given by SIESTA. This result validates our calculations
quantitatively. We see from the right of Figure that the convergence curve of
the a posteriori error estimator is parallel to the line with slope —%, which means
that it reaches the optimal convergence rate. From the analysis result for the a
posteriori error estimator(Theorem 4.3) the optimal convergence of the a posteriori
error estimator also indicates that the approximation of the eigenfunction space have
reached the optimal convergence rate, which coincides with our theory in Section 4.

C9H8O4 C9H8O4
100

total energy —— My (¥ Q) ——
y=-1.199187e+05 line with slope -2/3 ———

total energy
@
3

-100 |

L L L L 01 L L L L
100 1000 10000 100000 1406 1e+07 100 1000 10000 100000 1e+06 1e+07

degrees of freedom degrees of freedom

(a) ground state energy (b) 7 (¥p, )

Fig. 5.2: The convergence curves of the ground state energy and n, (¥, Q).

Example 2: « amino acid C5 HgO3N.

The ground state energy obtained by SIESTA is —75.494 a.u.. In our computa-
tions, we choose the computational domain to be Q = [-10.0, 10.0]3.

The atomic configuration, the calculated ground state charge density and the
associated computational mesh are shown in Figure We have to point out that
for C5H9O5 N, not more than 2 atoms stay in the same plane. Therefore, it is very
difficult to find a plane where the configuration and the charge density coincide very
well with each other as Example 1. Similar to Example 1, we also choose the plane
z = 0 as our viewpoint. Anyway, we can see from the figure for charge density and the
figure for the adaptive mesh that our error indicator is very efficient. These results
can validate our computations.

The convergence curves of the ground state energy and the a posteriori error
estimator 7, (P, Q) obtained by the quadratic finite elements are shown in Figure
B4 from which we observe that the ground state energy approximations converge to
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Fig. 5.3: Cs HgO3aN: configuration, charge density and mesh on plane z = 0.

—75.494 a.u., and the a posteriori error estimator decays with a rate —%. This implies
the similar conclusions as those for Example 1.

C5HIO2N C5H902N

total energy —— M, (¥ Q) ——
y=-7735726 - line with slope -2/3 -

total energy

L L L L 01 L L L
100 1000 10000 100000 1e+06 1e+07 1000 10000 100000 1e+06 1e+07
degrees of freedom degrees of freedom

(a) ground state energy (b) nn(¥p, Q)

Fig. 5.4: The convergence curves of the ground state energy and ny, (¥, Q).

Example 3: Fullerene Cgp.

The ground state energy obtained by SIESTA is —341.340 a.u.. In our computa-
tions, we choose = [—30.0,16.0] x [—23.0,22.0] x [—24.0,21.0] to be the computa-
tional domain.

We can see the preservation of carbon-hydrogen bonds in Figure B3] which val-
idates our calculations. Figure B3] Figure and Figure 0.7 show that more mesh
points are placed around the atoms.

Fig. 5.5: Cgo: configuration and charge density on a sphere.
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Fig. 5.7: Cgo: charge density and mesh on plane z = 0.

The convergence curve of the ground state energy approximations is shown in the
right of Figure [0.8 from which we observe a convergence to —342.722 a.u., which is
very close to the reference energy. The convergence curve of the a posteriori error
estimator obtained by the quadratic finite element is shown in the left of Figure B8]
from which we see that it reaches the optimal convergence rate.

c60 c60

T T
Ny (¥h, Q) ——
180 - y=.3427220 - b line with slope 213 % -

total energy
B8
3
T

the a posterrori error estimator

L L L L " L L L L
100 1000 10000 100000 1e+06 1e+07 100 1000 10000 100000 1e+06 1e+07
degrees of freedom degrees of freedom

(a) ground state energy () 1 (¥r, Q)

Fig. 5.8: The convergence curves of the ground state energy and n, (¥, Q).

6. Concluding remarks. In this paper, we have studied the AFE approxima-
tions of Kohn-Sham models. We have obtained the convergence and quasi-optimal
complexity of the AFE approximations. We have also curried out some typical numer-
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ical simulations that not only support our theory, but also show the robustness and
efficiency of the adaptive finite element method in electronic structure calculations.

In our analysis of convergence rate and complexity of AFE approximations, for
convenience, we have assumed that the numerical integration was exact and the non-
linear algebraic eigenvalue problem was exactly solved. Indeed, the same conclusion
can be expected when the error resulting from the inexact solving of the nonlinear
algebraic eigenvalue problem and the error coming from the inexact numerical inte-
gration are taken into account.

Suppose that (A, ®) € O, the associated exact solution over mesh Ty, is (Ap, Pp),
and the inexact numerical solution is (Ap, ®5,). If the numerical errors resulting from
the solution of (nonlinear) algebraic system and the numerical integration are small
enough, say, satisfy

1®n — @l 0 + [An — An| S 7(ho)i (Pn, Q)
with 7(hg) < 1 for hg < 1, then we have from the following triangle inequality

@ — @plle < |® — Ppllio + | h — D4
A — An] < JA = Ap|+ [Ap — Al

1,9,

and the similar perturbation arguments that the same convergence rate and quasi-
optimal complexity can be derived.

Finally, we point out that, in this paper, we have not given the convergence rate
and complexity for the AFE approximations for the Lagrange multipliers A. Indeed,
the related optimal results for Lagrange multipliers are not so obvious, and we need do
some more detailed analysis, which increase the length of this paper. We will report
elsewhere.

Appendix: A boundary value problem. In this appendix, we shall provide
some basic results for the AFE approximations of a model problem that was used in
our previous analysis. Consider a homogeneous boundary value problem:

® = 0 on 09, (A1)

{ LO = F in Q,
where F = (f;)¥; € (L?(Q))". Note that (A1) is equal to: Find ® € H such that
a(®,T) = (F,T) VI eH. (A.2)
A standard finite element scheme for (A2)) is: Find &, € V}, satisfying
a(®p,T) = (F,T) VI eV, (A.3)

Let T denote the class of all conforming refinements by bisections of 7o. For
Tn € Tand any I' = (7)., € Vi, we define the element residual R, (I') and the jump
Je(T) by

N
~ 1
R, (T) = (fl + §A%) inTteTh, (A.4)
i=1
- 1 1 \Y
Je(F) = §V’7i|7—1 ‘ni + §V’7i|7—2 N2 on e ¢ 5}“
i=1
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where e is the common face of elements 71 and 7 with unit outward normals n_1> and
775, respectively. For 7 € Ty, we define the local error indicator 7, (T, 7) by

T, = RARMOI5 -+ Y hell D), (A.5)

ec&y,eCOT

and the oscillation oscy (T', 7) by

osep (I, 7) = h.,-||7§,7-(1—‘) - ﬁT(F)HO,T- (A.6)

Given 7' C Ty, we define the error estimator 7, (I", 7') and the oscillation oscy, (T, 77)
by

@, T) = #@,7) and oscp (I, T) =Y osc(T,7),

TET! TET'

respectively. We see that a similar a posteriori error estimate to that for Poisson
equation can be expected for (AJ)) (c.f. [4Il 42, [60]).

THEOREM A.1l. Let ® € H be the solution of (A.3) and ®j, € V}, be the solution
of (A3). Then there exist constants Cy, Cy and Cs > 0 depending only on cq in @)
and ~* in @I1) such that

1® — @4} o < Cuy (@1, ), (A7)

oy (Bn, Q) < [|B — @113 o + Cy05¢, (@, Q). (A.8)

An AFE algorithm for (A2)) is designed as follows (c.f. [12]):

ALGORITHM A.1.

Pick a given mesh Ty, and let k = 0.

Solve ([(A3) on Ti, to get discrete solution ®y.

Compute local error indictors (P, ) for all 7 € Ty,.
Construct My, C T by Dérfler Strategy and parameter 6.
Refine Ty to get a new conforming mesh Tri1.

Let k=k+1 and go to 2.

Using the similar arguments to those for scalar linear elliptic boundary value
problem (see, e.g, [12]), we have the following result for Algorithm [AT]

THEOREM A.2. If {®k}ren, s a sequence of finite element solutions produced by
Algorithm [A1], then there exist constants ¥ > 0 and «,E € (0,1) depending only on the
shape reqularity v* and the marking parameter 0, such that for any two consecutive
iterations

S G o o~

1 = Ppia|lf g+ Fiar (Prs1, Q) < E(I® = V41T 0 + A7 (D1, ).
Indeed, the constant v has the following form

5 1
LTI Yor (A9

with C, > 0 depending on the regularity constant v* and § € (0,1).
For the distance between two nested solutions of (A3]), we have (c.f. [12])
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THEOREM A.3. Let @y € Vi and @y, € Vi, be solutions of (A.3) respectively. If
Tr is a refinement of Tg by marked element My and refined elements R = Ry, -5,
then

1@ —@nllf o < Cr D> 5 (@u, 7).
TER
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