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Abstract. In this article we argue that when an image is corrupted by additive noise, its
curvature image is less affected by it, i.e. the PSNR of the curvature image is larger. We speculate
that, given a denoising method, we may obtain better results by applying it to the curvature image
and then reconstructing from it a clean image, rather than denoising the original image directly.
Numerical experiments confirm this for several PDE-based and patch-based denoising algorithms.

1. Introduction. We start this work trying to answer the following question:
when we add noise of standard deviation σ to an image, what happens to its curvature
image? Is it altered in the same way?

Let’s consider a grayscale image I, the result of corrupting an image a with
additive noise n of zero mean and standard deviation σ,

I = a+ n. (1.1)

We will denote the curvature image of I by κ(I) = ∇ ·
(
∇I
|∇I|

)
. For each pixel x,

κ(I)(x) is the value of the curvature of the level line of I passing through x. Figure
1.1(a) shows the standard lena image a and figure 1.1(b) its corresponding curvature
image κ(a); in figures 1.1(c) and (d) we see I and κ(I), where I has been obtained
by adding Gaussian noise of σ = 25 to a. Notice that it’s nearly impossible to tell
the curvature images apart because they look mostly gray, which shows that their
values lie mainly close to zero (which corresponds to the middle-gray value in these
pictures). We have performed a non-linear scaling in figure 1.2 in order to highlight
the differences, and now some structures of the grayscale images become apparent,
such as the outline of her face and the textures in her hat. However, when treating the
curvature images as images in the usual way, they appear less noisy than the images
that originated them; that is, the difference in noise between a and I is much more
striking than that between κ(a) and κ(I).

(a) (b) (c) (d)

Fig. 1.1. (a), (b): image and its curvature. (c), (d): after adding noise.

This last observation is corroborated in figure 1.3 which shows, for Gaussian
noise and different values of σ, the noise histograms of I and κ(I), i.e. the histograms
of I − a and of κ(I) − κ(a). We can see that, while the noise in I is N(0, σ2) as
expected, the curvature image is corrupted by noise that, if we model as additive, has
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Fig. 1.2. Close-ups of the clean curvature (left) and noisy curvature (right) from figures 1.1(b)
and 1.1(d) respectively, with non-linear scaling to highlight the differences.

a distribution resembling the Laplace distribution, with standard deviation smaller
than σ. Consistently, in terms of Peak Signal to Noise Ratio (PSNR) the curvature
image is better (higher PSNR, less noisy) than I, as is noted in the figure plots.

Fig. 1.3. Noise histograms for I (top) and κ(I) (bottom). From left to right: σ = 5, 15, 25.

Another important observation is the following. All geometric information of an
image is contained in its curvature, so we can fully recover the former if having the
latter, up to a change in contrast. This notion was introduced as early as 1954 by
Attneave [1], as Ciomaga et al. point out in a recent paper [2]. Thus, if we have the
clean curvature κ(a) and the given noisy data I (which should have the same average
contrast along level lines as a), then we should be able to recover the clean image a
almost perfectly. One such approach for doing this could be to solve for the steady
state of

ut = κ(u)− κ(a) + λ(I − u), u(0, ·) = I (1.2)

where λ > 0 is a Lagrange multiplier that depends on the noise level. As t→∞, one
can expect that u(t, ·) reaches a steady state û (this is discussed further in section 3).
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In this case, κ(û) should be close to κ(a) and the average value of û (along each level
line) stays close to that of a. In section 3 we discuss related models, and in section
4.6 we suggest an alternative to equation (1.2).

Figure 1.4 shows, on the left, the noisy image I, in the middle the result u, the
solution of (1.2) using the stopping criteria described later in (3.4)-(3.5), and on the
right the original clean image a. The images u and a look very much alike, although
there are slight numerical differences among them (the Mean Squared Error, MSE,
between both images is 3.7).

Fig. 1.4. Left: noisy image I. Middle: the result u obtained with (1.2). Right: original clean
image a.

In addition to the above observations, in [3] the authors proposed a variational
approach for fusing a set of exposure bracketed images (a set of images of the same
scene taken in rapid succession with different exposure times) that had a related,
and initially somewhat perplexing, denoising effect. The energy functional fuses the
colors of a long exposure image, ILE , with the details from a short exposure image,
ISE , while attenuating noise from the latter. The denoising effect is surprisingly
similar to that produced by state-of-the-art techniques directly applied to ISE , such
as Non-Local Means [4]. The term in the energy functional that generates this effect
is
∫ (
|∇u| − ∇u · ∇ISE

|∇ISE |

)
which was initially intended to preserve the details (i.e.

gradient direction) of ISE . The flow of the corresponding Euler-Lagrange equation for
this term, ut = κ(u)−κε(ISE), is very similar to (1.2). Here κε(ISE) is the curvature
of ISE which is computed using a small positive constant ε to avoid division by zero,
and hence we could say that it has a regularizing effect on the actual curvature κ(ISE);
we found that as ε increases the final output of the fusion process becomes less noisy,
therefore κε(ISE) appears to be playing the role of the curvature of the clean image.

Motivated by the preceding observations, we propose the following general de-
noising framework. Given a noisy image I = a + n, instead of directly denoising I
with some algorithm F to obtain a denoised image IF = F(I), do the following:

• Denoise the curvature image κ(I) with method F to obtain κF = F(κ(I)).
• Generate an image ÎF that satisfies the following criteria:

1. κ(ÎF ) ' κF ; that is, the level lines of ÎF are well described by κF .
2. The overall contrast of ÎF matches that of the given data I = a + n in

the sense that the intensity of any given level line of ÎF is close to the
average value of I along that contour.
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The resulting image ÎF described above will be a clean version of I, and one that
we claim will generally have a higher PSNR and Q-index [5] than IF . It is important
to point out that what we propose here is not necessarily a PDE-based denoising
method, but rather a general denoising framework.

This approach is closely related to the body of work inspired by Lysaker et. al. [6]
in which the authors proposed a two step denoising process. In the first step, instead
of smoothing a noisy image, they smooth its unit normals. They use the Rudin-Osher-
Fatemi functional [7] for this smoothing process, but in a sense this could be thought
of more generally as computing F(−→η (I)) where −→η (I) is the unit normal vector field of
I and F is the approach from [7]. In the second step, they compute a new (denoised)
image whose unit normals match those found in the first step. This approach led to
the work of Osher et.al. [8] which was motivated by using a different mechanism for
denoising the unit normals. They smooth the noisy image I using the Rudin-Osher-
Fatemi functional [7] and then compute the unit normals before doing the matching.
In a sense, their first step was to compute −→η (F(I)) and then match unit normals.
This led to the interesting (and now much studied) Bregman iterative approach for
image processing. We discuss these works in more detail as well as their connection
with our proposed approach in the subsequent sections. This also begs the question
of whether we should be computing κF using κ(F(I)) instead of F(κ(I)). There is
ample motivation for doing the former, but we found that in practice this leads to
over smoothing. We discuss this further in section 4.5.

The organization of the paper is as follows. In section 2 we argue that along con-
tours the curvature of a noisy image, κ(I) = ∇·

(
∇I
|∇I|

)
, generally has a higher PSNR

than both the unit normal field of the noisy image, −→η (I) = ∇I
|∇I| , and the noisy image

itself, I. Section 3 formally proposes our framework and discusses its relationship
with previous work. To illustrate the broad applicability of our approach, in section 4
we provide experimental results demonstrating that the regularizer F can come from
vastly different schools for denoising, including variational methods as well as patch-
based approaches. We also consider several different approaches for reconstructing
the image from κF . Our experiments corroborate the hypothesis that if one uses the
same approach for denoising the curvature image to obtain an approximation κF of
κ(a) and then solves for a function whose curvature is approximated by κF and whose
average value along level lines matches that of a, a better result is obtained than if
the denoising algorithm was applied directly to the noisy image. In sections 5 and 6
we discuss some open questions and future work.

2. Comparing the noise power in I and in its curvature image κ(I).

2.1. PSNR along image contours. From (1.1) and basic calculus, the curva-
ture of I can be written

κ(I) = ∇ ·
(
∇I
|∇I|

)
= κ(a)

|∇a|
|∇I|

+
∇a
|∇a|

· ∇
(
|∇a|
|∇I|

)
+∇ ·

(
∇n
|∇I|

)
. (2.1)

First we consider the situation where

|∇a| � |∇n|, (2.2)

which is likely the case at image contours. At an edge, where (2.2) holds, we have
that |∇a||∇I| ' 1 and so the first term of the right-hand side of equation (2.1) can be

approximated by κ(a), the second term ∇a
|∇a| · ∇

(
|∇a|
|∇I|

)
' 0 so it can be discarded
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(except in the case where the image contour separates perfectly flat regions, a scenario
we discuss in section 2.2), and finally the third term ∇ ·

(
∇n
|∇I|

)
remains unchanged

and is the main source of noise in the curvature image. So for now we approximate

κ(I) ' κ(a) +∇ ·
(
∇n
|∇I|

)
, (2.3)

and consider the difference between the curvatures of the original and observed images
in (2.3) as “curvature noise”

nκ = ∇ ·
(
∇n
|∇I|

)
. (2.4)

In what follows, we approximate the curvature κ(I) and unit normal field η(I) =
(η1, η2) of the image I using forward-backward differences, so

κ(I(x, y)) ' ∆x
−

(
∆x

+I(x, y)
|∇I(x, y)|

)
+ ∆y

−

(
∆y

+I(x, y)
|∇I(x, y)|

)
(2.5)

and

~η(I(x, y)) = (η1(x, y), η2(x, y)) '
(

∆x
+I(x, y)
|∇I(x, y)|

,
∆y

+I(x, y)
|∇I(x, y)|

)
, (2.6)

where

∆x
±I(x, y) = ± (I(x± 1, y)− I(x, y)) , ∆y

±I(x, y) = ± (I(x, y ± 1)− I(x, y))

and where the discrete gradient is implied we use forward differences, so

|∇I(x, y)| =
√

(∆x
+I(x, y))2 + (∆y

+I(x, y))2 + ε2

for a small ε > 0. In this setting, we have the following.

Proposition 2.1. At locations in the image domain where I = a + n satis-
fies (2.2) and (2.3) (likely the case at contours of I), and where the noise standard
deviation satisfies σ > |∇I|

10.32 , if the curvature κ(I) is approximated by (2.5), then

PSNR(I) < PSNR(κ).

Furthemore, if the unit normal field η(I) = (η1, η2) is approximated by (2.6) and
σ > |∇I|

3.64 , then for i = 1, 2 we also have

PSNR(I) < PSNR(ηi) < PSNR(κ).

Proof. First we approximate the Peak Signal to Noise Ratio (PSNR) of κ(I).
Assuming I lies in the range [0, 255] and that κ(I) is computed using directional
differences as described in (2.5), we have that |κ| ≤ 2+

√
2 and therefore the amplitude

of the signal κ(I) is 4 + 2
√

2.
To compute V ar(nκ), first observe that

nκ = ∇ · ( nx
|∇I|

,
ny
|∇I|

) = (
nx
|∇I|

)x + (
ny
|∇I|

)y. (2.7)
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Using forward-backward differences as described in (2.5) we have that(
nx
|∇I|

)
x

' ∆x
−

(
∆x

+(n(x, y))
|∇I(x, y)|

)
(2.8)

=
∆x

+(n(x, y))
|∇I(x, y)|

−
∆x

+(n(x− 1, y))
|∇I(x− 1, y)|

=
∆x

+(n(x, y))|∇I(x− 1, y)| −∆x
+(n(x− 1, y))|∇I(x, y)|

|∇I(x, y)||∇I(x− 1, y)|

=
∆x
−(∆x

+(n(x, y)))
|∇I(x, y)|

−
∆x

+(n(x− 1, y))∆x
−|∇I(x, y)|

|∇I(x, y)||∇I(x− 1, y)|
Without loss of generality, assume the edge is vertical, so Iy ' 0. If the edge discon-
tinuity occurs between x and x+ 1, then

|∇I(x− 1, y)| ' |∆x
+I(x− 1, y)| ' |∆x

+n(x− 1, y)|

and thus

∆x
−|∇I(x, y)| = |∇I(x, y)| − |∇I(x− 1, y)| ' |∇I(x, y)| − |∆x

+n(x− 1, y)|.

From the above calculations, the second term on the right hand side of (2.8) satisfies

∆x
+(n(x− 1, y))∆x

−|∇I(x, y)|
|∇I(x, y)||∇I(x− 1, y)|

' ±
|∇I(x, y)| − |∆x

+n(x− 1, y)|
|∇I(x, y)|

(2.9)

which is bounded above by 1 due to (2.2). Since an upper bound is sufficient for our
argument, by (2.8) an (2.9) we can approximate(

nx
|∇I|

)
x

'
∆x
−(∆x

+(n(x, y)))
|∇I(x, y)|

+ Tx, where Tx ∈ [0, 1]. (2.10)

Similar to (2.8),(
ny
|∇I|

)
y

'
∆y
−(∆y

+(n(x, y)))
|∇I(x, y)|

−
∆y

+(n(x, y − 1))∆y
−|∇I(x, y)|

|∇I(x, y)||∇I(x, y − 1)|
.

At a vertical edge we would expect that |∇I(x, y)| ' |∇I(x, y−1)| >> ∆y
+(n(x, y−1))

and ∆y
−|∇I(x, y)| ' 0. Therefore(

ny
|∇I|

)
y

'
∆y
−(∆y

+(n(x, y)))
|∇I(x, y)|

. (2.11)

By (2.7), (2.10), and (2.11) we have that

nκ '
∆x
−(∆x

+(n(x, y)))
|∇I(x, y)|

+
∆y
−(∆y

+(n(x, y)))
|∇I(x, y)|

+ Tx (2.12)

=
1
|∇I|

(n(x+ 1, y) + n(x− 1, y) + n(x, y + 1) + n(x, y − 1)− 4n(x, y)) + Tx.

Assuming n ∼ N (0, σ2), the (numerical) variance of nκ is then

V ar(nκ)

' V ar(n(x+ 1, y) + n(x− 1, y) + n(x, y + 1) + n(x, y − 1)) + 16V ar(n(x, y))
|∇I|2

+ V ar(Tx)

=
1
|∇I|2

(4V ar(n) + 16V ar(n)) + V ar(Tx) =
1
|∇I|2

20V ar(n) + V ar(Tx) =
20
|∇I|2

σ2 + V ar(Tx).
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Therefore, we typically have that

V ar(nκ) ' 20
|∇I|2

σ2 + V ar(Tx) where V ar(Tx) ∈ [0, 0.25]. (2.13)

Now we can compute the PSNR of κ(I), as the peak amplitude of the curvature signal
is 4 + 2

√
2 and the variance of the noise is given by (2.13), so

PSNR(κ(I)) ' 20log10

 4 + 2
√

2√
20σ2

|∇I|2 + V ar(Tx)

 . (2.14)

Since V ar(Tx) ∈ [0, 0.25], at locations where σ > |∇I|
10.32 we have that

PSNR(κ(I)) ∈
(

20log10

(
|∇I|
σ

)
, 20log10

(
1.53
|∇I|
σ

)]
(2.15)

If we go to the original grayscale image I and compute locally its PSNR, we get that
the amplitude is approximately |∇I| (because the local amplitude is the magnitude of
the jump at the boundary, and using directional differences |∇I| is the value of this
jump) and the standard deviation of the noise is just σ, therefore

PSNR(I) = 20log10

(
|∇I|
σ

)
. (2.16)

This would be saying that, along the contours of a, the curvature image κ(I) will
be up to 3.7dB less noisy than the image I.

What happens if we want to denoise the normals, as in Lysaker et al. [6]? Let ~η
be the normal vector

~η = (η1, η2) =
∇I
|∇I|

=
∇a
|∇I|

+
∇n
|∇I|

. (2.17)

Let’s compute the PSNR for any of the components of ~η, say η1. Its amplitude is
2, since η1 ∈ [−1, 1]. Using similar arguments as before, we can approximate the
variance of the “noise” in η1 as

V ar(
nx
|∇I|

) ' 1
|∇I|2

V ar(nx), (2.18)

and, using directional differences

nx(x, y) = n(x+ 1, y)− n(x, y), (2.19)

so

V ar

(
nx
|∇I|

)
' 1
|∇I|2

2V ar(n) =
1
|∇I|2

2σ2. (2.20)

Therefore, the PSNR of the first component of the normal field is

PSNR(η1) = 20log10

(
2√

2 σ
|∇I|

)
= 20log10

(
1.41
|∇I|
σ

)
. (2.21)
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If σ > |∇I|
3.64 then

PSNR(κ(I)) ∈
(

20log10

(
1.41|∇I|

σ

)
, 20log10

(
1.53
|∇I|
σ

)]
(2.22)

From (2.16), (2.21) and (2.22) we get PSNR(I) < PSNR(ηi) < PSNR(κ).

Remark 2.2. The restrictions on σ in Proposition 2.1 are fairly conservative
given the experimental results that follow in section 2.3 and section 4 (e.g. see fig-
ures 2.1 and 2.2). But the overall conclusion is still the same, so we included these
hypotheses for ease of argument.

Remark 2.3. Note that if instead of using forward-backward differences to com-
pute κ we had used central differences and the formula

κ =
I2
xIyy + I2

yIxx − 2IxIyIxy
(I2
x + I2

y )
3
2

,

then the amplitude of κ would be much larger than 4+2
√

2 and hence the difference in
PSNR with respect to I would also be much larger. But we have preferred to consider
the case of directional differences, because in practice the curvature is usually com-
puted this way, for numerical stability reasons (see Ciomaga et al. [2] for alternate
ways of estimating the curvature).

The above conclusions suggest that, given any denoising method, for best results
on the contours it may be better to denoise the curvature rather than directly denoise
I (or the normal field).

2.2. Correction for contours separating flat regions. As we mentioned
earlier, if we have an image contour that separates perfectly flat regions then the
second term of the right-hand side of equation (2.1) cannot be discarded. The reason
is that while |∇a||∇I| ' 1 holds on the contour, we also have |∇a||∇I| ' 0 on its sides
because these regions are flat (and hence |∇a| ' 0). Consequently, we can no longer
approximate the term ∇a

|∇a| · ∇
(
|∇a|
|∇I|

)
by zero, but we can bound its variance.

Consider a 100×100 square image a with value 0 for all pixels in the columns 0−49
and value 255 for all pixels in the columns 50− 99. Image a then has a vertical edge
that separates flat regions. Using backward differences, the term |∇a|

|∇I| ' 0 everywhere

except at column 50, where |∇a||∇I| ' 1. Therefore, the term ∇
(
|∇a|
|∇I|

)
is close to (0, 0)

everywhere except at column 50, where it is (1, 0), and column 51, where it is (−1, 0)
(always approximately). So the second term of the right-hand side of equation (2.1),
∇a
|∇a| · ∇

(
|∇a|
|∇I|

)
, is close to zero everywhere except at column 50, where it is close to

1. Exactly the same result holds if the image a is flipped and takes the value 255 on
the left and 0 on the right, because now ∇

(
|∇a|
|∇I|

)
is approximately (−1, 0) at column

50 but there the normalized gradient ∇a
|∇a| ' (−1, 0) as well.

The conclusion is that, in practice, the second term of the right-hand side of
equation (2.1) is in the range [0, 1], so we may bound its variance by 0.25. This leads
to a correction of equation (2.13) for this type of contour

V ar(nκ) ' 20
|∇I|2

σ2 + T ′x where T ′x ∈ [0, 0.5]. (2.23)
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2.3. PSNR along contours: numerical experiments. We have performed
tests on two very simple synthetic images, one binary and the other textured, where
we add noise with different σ values to them and compute the PSNR of the image,
curvature and normal field along the central circumference (for the normal we average
PSNR values of the vertical and horizontal components).

Figure 2.1 shows the results for the textured image, where we can see that the
PSNR values are consistent with our estimates.

Fig. 2.1. Left: test image. Right: PSNR values of image, curvature and normal along contour.

Figure 2.2 shows the results for the binary image, which are also consistent with
our estimates once we introduce the correction term of equation (2.23). As the equa-
tion predicts, for this case we see that if σ is small then the PSNR along the contours
of the image may be larger than that of the curvature. Nonetheless, this does not
affect the results of our denoising framework, which we will detail in section 3: with
our approach we obtain denoised results with higher PSNR, computed over the whole
image, even for binary images and small values of σ. In particular, for the binary circle
image of fig. 2.2, for noise of standard deviation σ = 5 and for total variation (TV)
based denoising with F = ROF [7] we obtain, with our proposed framework (i.e. by
applying TV denoising to the curvature), a denoised image result with PSNR=47.85,
whereas direct TV denoising on the image yields PSNR=46.77. The influence of
homogeneous regions on the PSNR is discussed next.

Fig. 2.2. Left: test image. Right: PSNR values of image, curvature and normal along contour.

2.4. PSNR in homogeneous regions. On homogeneous or slowly varying
regions, (2.2) is no longer valid and we have instead

|∇a| � |∇n|, (2.24)
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so now

κ(I) ' κ(n) +∇ · ( ∇a
|∇I|

). (2.25)

In this case κ(I) cannot be expressed as the original curvature κ(a) plus some cur-
vature noise, unlike in (2.3). So in homogeneous regions κ(I) is a poor estimation of
κ(a), but we can argue that this is not a crucial issue, with the following reasoning.

From (2.24) and (2.25) we see that κ(I) behaves like κ(n) plus a perturbation.
Since n is random noise with mean zero, so is κ(n) and thus so is κ(I). Therefore,
any simple denoising method applied to κ(I) will result in values of κF close to zero
in homogeneous or slowly varying regions. So after running Step 2 of the proposed
approach below in Algorithm 2 (for e.g. we could use (1.2)), the reconstructed (de-
noised) image ÎF will have, in these homogeneous regions, curvature close to zero,
which means that these regions will be approximated by planes (not necessarily hor-
izontal). This is not a bad approximation given that these regions are, precisely,
homogeneous or slowly varying.

3. Proposed Algorithm.

3.1. The Model. The observations in the previous sections have motivated us
to perform a number of experiments comparing the following two Algorithms.

Algorithm 1 Direct approach
Apply a denoising approach F to directly smooth an image I, obtaining a denoised
image IF = F(I).

Algorithm 2 Proposed approach
Step 1: Given a noisy image, I, denoise κ(I) with method F to obtain κF = F(κ(I)).
Step 2: Generate an image ÎF that satisfies the following criteria:

1. κ(ÎF ) ' κF ; that is, the level lines of ÎF are well described by κF .
2. The overall contrast of ÎF matches that of the given data I = a + n in the

sense that the intensity of any given level line of ÎF is close to the average
value of I along that contour.

We have tested both variational and patch based approaches for the denoising
method F . So κF has been generated from fairly diverse methods in Step 1.

The precise method of reconstruction for Step 2 should potentially be related to
the nature of the smoothed curvature κF from Step 1, and thus the choice of denoising
method F as well as the discretization of κ(I). For simplicity, for all of the tests in
this paper we have performed Step 2 by solving

ut = κ(u)− κF + 2λ(I − u), (3.1)

with initial data u(0, ·) = I or u(0, ·) = IF where λ is a positive parameter depending
on the noise level (and possibly depending on time). This is just one choice and in
section 4.6 we discuss other alternatives. But we chose to use (3.1) as a baseline for
our experiments since its behavior is well-understood. In particular, (3.1) is the flow
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of the Euler-Lagrange equation associated with minimization problem

û = arg min
u∈BV (Ω)∩L2(Ω)

∫
(|∇u|+ κFu) + λ

∫
(I − u)2 (3.2)

= arg min
u∈BV (Ω)∩L2(Ω)

∫
|∇u|+ λ

∫ ((
I − 1

2λ
κF

)
− u
)2

=: arg min
u∈BV (Ω)∩L2(Ω)

Φ(u)

which is the well known problem proposed by Rudin-Osher-Fatemi [7], with I− 1
2λκF

used in the data fidelity term instead of the noisy data I. If I, κF ∈ L2(Ω), the
above functional has a unique minimizer [9]. Furthermore, extending the definition
of Φ in (3.2) to all of L2(Ω) by setting Φ(u) := +∞ for u ∈ L2(Ω)\BV (Ω), the
functional is proper, convex and lower semi-continuous and thus by the theory of
maximal monotone operators ([10] Theorem 3.1) there exists a unique solution u(t, ·)
in the semigroup sense to (3.1) for a.e. t ∈ (0,∞). The argument in Vese [11], Theorem
5.4 guarantees that at t→∞, u(t, ·) converges strongly in L2(Ω) and weakly in L1(Ω)
to the minimizer û of (3.2), that satisfies 0 ∈ ∂Φ(û) where ∂Φ(u) := {p ∈ L2|Φ(v) ≥
Φ(u)+ < p, v − u > ∀v ∈ L2} is the subdifferential of Φ at û.

We solve (3.1) by iterating for m = 1, 2, 3, ...

um = um−1 + ∆t (κ(um−1)− κF + 2λ(I − um−1)) (3.3)

where κ(u) = κ(u(x, y)) is computed using the classical numerical scheme of [7],
with forward-backward differences and the minmod operator to ensure stability. Our
initial condition is either u(0, ·) = I or u(0, ·) = IF , each leading to slightly different
solutions since in practice we don’t necessarily solve for the minimizer û. Rather, we
stop the iterations when the mean squared error at iteration m,

MSE(m) =
1
|Ω|

∑
x∈Ω

(I(x)− u(t = m,x))2, (3.4)

or root mean squared error RMSE(m) =
√
MSE(m) satisfies

MSE(m) ≥ σ2 or ε(m) := |RMSE(m+ 1)−RMSE(m)| ≤ 0.0005, (3.5)

whichever happens first. Therefore, the solution of Algorithm 2 is ÎF = u(Tσ, ·)
where Tσ = min{t > 0 | MSE(t) ≥ σ2 or ε(t) ≤ 0.0005}. The curvature κ(ÎF ) will
not precisely be equal κF , but at this steady state described above it will be a good
approximation.

But for now we wish to emphasize that equation (3.1) is just one option to use for
Algorithm 2, which we have chosen given its simplicity and its well understood be-
havior. In section 4.6 we discuss an alternate reconstruction equation that also yields
a solution ÎF satisfying properties 1 and 2 in Step 2 Algorithm 2 and may potentially
work better. We also discuss some future work related to Step 2 in section (5.2).

3.2. Relationship with Previous Work. Lysaker et.al. [6] proposed a two
step denoising algorithm in which they first approximate a smooth normal field, −→η1,
to the noisy image, I, using

−→η1 = arg min
|−→η |=1

∫
|∇−→η |+ λ

∫ (
∇I
|∇I|

− −→η
)2

(3.6)
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and then obtain the denoised image via the minimization problem

u2 = arg min
u∈BV

∫
(|∇u| − −→η1 · ∇u) + λ

∫
(I − u)2. (3.7)

Note that (3.2) only differs from (3.7) in that (3.2) uses denoised curvature, while (3.7)
uses denoised unit normals. The functionals in (3.7) and (3.2) are directly related to
the one introduced in Ballester et.al. [12] for the purpose of image inpainting, and
in particular, for propagating the level lines of the known parts of an image into the
inpainting region. The functional they use is

F (u) =
∫
|∇u| − θ · ∇u (3.8)

where θ is a gradient field that determines the direction of the level lines. Intuitively,
when considering the denoising problem, if one starts with a noisy image for which
the noise has mean zero and propagates the level lines of the clean image (ideally
using θ = ∇a

|∇a| ) while smoothing with a total variation based regularizer, one would
expect a relatively accurate reconstruction of the original clean image, a.

The authors in [13] proposed a similar algorithm to the one in [6], but first they
solve for a divergence-free, noise-free approximate unit tangent field,

−→
ξ = (ξ1, ξ2) (a

more mathematically sound minimization problem than (3.6)), use this to compute
−→η1 = (−ξ2, ξ1), and then solve for the clean image using (3.7). Other works have
built on this model. For example, the authors in [14] suggest replacing (3.7) with a
more direct feature orientation-matching functional. From our argument in section
2, the denoised curvature should be easier to obtain than the denoised unit normals
(similarly, the denoised unit tangents) given it generally has a higher PSNR at the
edges. We should point out that another key difference between the proposed approach
and the others described here is that we are suggesting one should be able to modify
any denoising algorithm to obtain κF , not only variational approaches.

The results in [6] inspired several other works that are related to our proposed
approach. One of them, the Bregman iterative algorithm of Osher et. al. [8], has
made a particular impact on the field of variational based image processing. The
motivation was to replace (3.6) with −→η1 = ∇u1

|∇u1| where u1 is the denoised image
obtained from minimizing the Rudin-Osher-Fatemi (ROF) functional [7], then solve
(3.7). The authors observed that the same solution could be obtained by minimizing
the ROF functional to obtain u1, computing the residual noise v1 = f−u1, and finally
minimizing the ROF functional again but with data f+v1. They also discovered that
better results could be obtained by starting with an image of all zeros and iteratively
repeating this process until the solution was within a distance of σ from the noisy
image. This process can be formulated in terms of the Bregman distance [15], and
a more efficient version, the linearized Bregman method [16], was proposed several
years later. Its formulation and connection with the reconstruction equation (3.1) is
as follows.

Given a convex functional J(·) defined on BV , its subdifferential is defined to
be ∂J(u) = {p ∈ BV ∗|J(v) ≥ J(u)+ < p, v − u > ∀v ∈ BV }, and for p ∈ ∂J(v),
the Bregman distance between u and v is Dp

J(u, v) := J(u) − J(v)− < p, u − v >.
Then starting with u0 = 0 and p0 = 0 ∈ ∂J(u0), the linearized Bregman method [16]
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iterates for k = 0, 1, 2, ...

uk+1 = arg min
u∈BV

{Dpk

J (u, uk) +
1
2δ
||u− (uk − δ(uk − I))||2L2} (3.9)

pk+1 = pk − 1
δ

(uk+1 − uk)− (uk+1 − I). (3.10)

Writing (3.10) as

1
δ

(uk+1 − uk) = −pk+1 + pk + (I − uk+1), (3.11)

and noting that if J(u) is the total variation of u then ∂J(v) = −κ(v), (3.11) can
be interpreted as a discretized version of (3.1) (with λ = 1

2 and ∆t = δ) with one
seemingly small, yet critical, difference. The ’denoised’ curvature −κF = −F(κ(I)) (a
smoothed version of the curvature of I) in (3.1) plays the role of pk ∈ ∂J(uk) = −κ(uk)
(the curvature of a smoothed version of I, in a sense, κ(F(I))) in (3.11). We discuss
the difference between using F(κ(I)) and κ(F(I)) in section 4.5.

In summary, the proposed approach described in Algorithm 2 is closely related
to the work in [6, 8, 13, 14] but with two main differences. First, in our first step
we denoise the curvature instead of the unit normals or the image itself. Second, the
approaches in e.g. [6, 8, 13, 14] provide precise algorithms, while our approach is
intended to be quite general. This is due to our speculation that if it is possible to
modify an image denoising approach so it is applicable to curvature images, Algorithm
2 should yield better results than Algorithm 1. We demonstrate in the next section
that the type of denoising approaches that can be used include (but are not necessarily
limited to) variational approaches and patch-based methods.

4. Experiments. The image database used in our experiments is the set of
grayscale images (range [0, 255]) obtained by computing the luminance channel of
the images in the Kodak database [17] (at half-resolution). We tested five denoising
methods: TV denoising [7], the Bregman iterative algorithm [8], orientation matching
using smoothed unit tangents [14], Non-local Means [4], and Block-matching and
3D filtering (BM3D) [18]. Our experiments show that for all of these algorithms,
we obtain better results by denoising the curvature image κ(I) rather than directly
denoising the image I.

To compute κ(u) in the reconstruction equation (3.1) we have used the classical
numerical scheme of [7], with forward-backward differences and the minmod operator,
to ensure stability. Therefore, we also use this for the initialization of the noisy
curvature κ(I).

4.1. TV denoising with ROF. We have compared with the Rudin-Osher-
Fatemi (ROF) TV denoising method [7]:

ut = ∇(
∇u
|∇u|

) + 2λ(t)(I − u), u(0, ·) = I (4.1)

where λ(t) is estimated at each iteration, knowing the value σ of the standard devi-
ation of the noise. The stopping criterion is based on MSE(I, u(t)) as described in
(3.4)-(3.5), and thus IROF = u(Tσ, ·) where Tσ = min{t > 0 | MSE(I(x), u(t, x)) ≥
σ2 or ε(t) ≤ 0.0005}.

To fit this into our framework, we do the following:
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Step 1: Perform TV denoising of κ(I)

κt = ∇(
∇κ
|∇κ|

), κ(0, ·) = div

(
∇I
|∇I|

)
(4.2)

which we iterate for a fixed number of steps, obtaining κROF . The parameter
values are: time step ∆t = 0.025, number of steps T = 25 for noise value σ = 5,
T = 15 for noise values σ = 10, 15, 20, 25.

Step 2: Iterate the equation

ut = κ(u)− κROF + 2λ(t)(I − u), u(0, ·) = I, (4.3)

where λ(t) is estimated at each iteration with time step ∆t = 0.1, finally ob-
taining ÎROF = u(Tσ, ·), the solution satisfying the stopping criteria described in
(3.5).

Fig. 4.1. Left: noisy image. Middle: result obtained with TV denoising of the image
(PSNR=29.20 and PIQ=82.45). Right: result obtained with TV denoising of the curvature im-
age (PSNR=29.36 and PIQ=95.64).

Figure 4.1 shows one example comparing the outputs of TV denoising of I and
κ(I) for the Lena image and noise with σ = 25. It is useful to employ for image
quality assessment, apart from the PSNR, the Q-index of [5], which is reported as
having higher perceptual correlation than PSNR and SNR-based metrics [19]; in our
case we use the percentage increase in Q,

PIQ(IROF ) = 100×Q(IROF )−Q(I)
Q(I)

and PIQ(ÎROF ) = 100×Q(ÎROF )−Q(I)
Q(I)

.

In this image we obtain PSNR=29.36 and PIQ=95.64 for TV denoising of the cur-
vature, while the values are PSNR=29.20 and PIQ=82.45 for TV denoising of the
image.

In fig. 4.1 it’s important to note that when using the proposed approach, while
the PNSR and Q-index are both higher, details are better preserved (e.g. in the
feathers of the hat), and edges have higher contrast than with TV (e.g. in the middle
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close-up), smooth regions look worse than denoising I directly. We believe this is
partly due to the fact that TV denoising is good at smoothing piecewise constant
images, and κ(I) certainly does not fall in that class as one can see in figure 1.2. We
will see in subsequent sections that this is typically not an issue when using patch
based approaches. Also, in figure 4.7 we demonstrate that better visual results can
be obtained by an alternate reconstruction equation, which yields a much smoother
reconstruction of uniform regions.

Figure 4.2 compares, on the left, the average increase in PSNR, computed over
the entire Kodak database, obtained with both approaches: PSNR(IROF )-PSNR(I)
(in magenta), PSNR(ÎROF )-PSNR(I) (in blue). On the right, we plot the average
percentage increase in Q-index.

Both plots in figure 4.2 show that TV denoising of the curvature allows us to
obtain a denoised image ÎROF which is better in terms of PSNR and Q-index than
IROF , the image obtained by directly applying TV denoising to the original noisy
image.

Fig. 4.2. Comparison of TV denoising of κ(I) (blue), smoothing unit tangents [14] (green), TV
denoising of I (ROF) (magenta), the Bregman iterative approach [20] (red). Left: PSNR increase
for each method. Right: percentage increase on Q-index [5]. Values averaged over Kodak database
(only luminance channel, images reduced to half-resolution).

4.2. Smoothing unit normals and the Bregman iterative approach.
Since the approach (4.2)-(4.3) is closely related to the approaches (3.6)-(3.7) and
(3.9)-(3.10), given our discussion in section 2, a comparison with smoothing unit nor-
mals, F(−→η (I)), as well the Bregman iterative approach, which in a sense performs
−→η (F(I)), is particularly relevant here. We showed in section 2 that, although better
than direct denoising of I, denoising of the normalized-gradient field −→η (I) would not
perform as well as the denoising of κ(I), at least on the image contours. Comparisons
in term of PSNR and Q-index can be seen in figure 4.2. This figure shows that the
Bregman iterative approach fares better than ROF in terms of Q-index, although not
in PSNR, and that TV denoising of κ(I) outperforms both the Bregman iterative
approach and ROF, as predicted, and it does so both in terms of PSNR and Q-index.

The implementation details are as follows. We have compared with the original
Bregman iteration method of [8]; the values used for λ : 0.033, 0.013, 0.009, 0.005, 0.00425,
corresponding to σ : 5, 10, 15, 20, 25 respectively, have been chosen following the sug-
gestions given in [8] in order to obtain optimum results. The time step is ∆t = 0.1.

We also compared with one of the newer algorithms for matching unit normals,
in which the unit tangents

−→
ξ = (ξ1, ξ2) are smoothed before matching unit normals
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−→η = (−ξ2, ξ1) [14]. Comparisons with this approach are also included in figure 4.2.
Smoothing unit tangents before matching unit normals produces results whose PSNR
lie directly in between those for which I was smoothed before matching (Bregman)
and our approach, which corresponds to our discussion in section 2. However the
Q-measure was very similar between [14] and the proposed method, and were slightly
better for the results in [14] at lower noise levels.

4.3. Non-Local Means. To illustrate a comparison with patch-based methods,
we incorporated Non-Local Means denoising [4] into our general framework as follows.
First we performed Non-local Means denoising on the original noisy image I using the
code from [21] (with their choice of parameters) obtaining the denoised image INLM .

For our method, we have done the following:

Step 1: Apply NLM to κ(I), but with the following two modifications.
1. Compute the weights from I instead of κ(I) (i.e. compare image patches, not

curvature patches).
2. Use σκ = σ + 5 as the standard deviation.

We obtain the denoised curvature κNLM .

Step 2: Starting with u(0, ·) = INLM , solve

ut = κ(u)− κNLM + 2λ(I − u),

to obtain ÎNLM , the solution satisfying the stopping criterion described in (3.5).
The values used for λ : 0.2, 0.075, 0.05, 0.04, 0.03, correspond to σ : 5, 10, 15, 20, 25
respectively.

Note that in Step 1 we perform a weighted average of the curvature patches but
compute the weights by comparing image, not curvature, patches. This is due to the
nature of curvature patches, in which the curvature of a noisy but homogeneous patch
takes random, large values. Therefore, comparing curvature patches directly would
not be the best representation of the contours because the noise would be attributed
equal importance. However, averaging curvature patches in the spirit of NLM, but
with a different criterion for computing the weights, is quite effective. So the nature
of the NLM algorithm in which ’similar’ patches are averaged is still preserved with
this adjustment.

Figure 4.3 shows one example comparing the outputs of NLM denoising of I and
κ(I). Figure 4.4 (left) compares the average increase in PSNR over the entire Kodak
database of the denoised image over the original noisy image, obtained with both
approaches: NLM applied to I (in magenta) and NLM applied K with different initial
conditions (blue and green).

Note that if the starting condition were u(0, ·) = I as usual then denoising the
curvature performs worse, in terms of PSNR, than denoising the image. A starting
condition closer to the solution, such as u(0, ·) = INLM , provides a better result and
this highlights a limitation of the specific reconstruction method (3.1) chosen for Step
2. Although now it could be argued that what we are doing may just be TV denoising
of INLM (in fact, if we over-process κ(I) we obtain κNLM ∼= 0 and in that case we
would actually be applying ROF denoising to INLM ). But this is not the case. If we
apply ROF to INLM as explained in section 4.1 (with variable λ(t) and the stopping
criteria mentioned there), the outputs have lower PSNR and Q-index (see figure 4.4).
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Fig. 4.3. Left: noisy image. Middle: result obtained with NLM denoising of the image. Right:
result obtained with NLM denoising of the curvature image.

Fig. 4.4. Comparison of NLM denoising on I and NLM denoising on κ(I). Left: PSNR
increase for each method; also pictured: PSNR increase for ROF applied to the output of NLM on
I. Right: percentage increase on Q-index [5]. Values averaged over Kodak database (only luminance
channel, images reduced to half-resolution).

Figure 4.4 (right) compares the average percent increase in Q-index of the de-
noised image over the original noisy image, obtained with both approaches. Note
that applying NLM to the curvature gives a better result, regardless of the initial
condition.

Both plots in figure 4.4 show that NLM denoising of the curvature allows us to
obtain a denoised image ÎNLM which is better in terms of PSNR and Q-index than
the image INLM , obtained directly by applying NLM to the original noisy image.

4.4. BM3D. We’ve also applied our framework to the BM3D denoising algo-
rithm [18], which is arguably the best denoising method available. As with Non-local
Means, first we applied BM3D to the original noisy image I using the code from [20]
(with their choice of parameters) obtaining the denoised image IBM3D.

For our method, we have done the following:

Step 1: Apply BM3D to κ(I) (actually to κ(I) + 127.5 to ensure positive values),
but with these three modifications:
1. Compute the weights from I instead of κ(I) (i.e. compare image patches, not

17



curvature patches; this is for the same reason as described for NLM in section
4.3).

2. Use the threshold value λ3D = 1.0 (instead of the suggested value λ3D = 2.7).
3. Run only the first step (basic estimate), omitting the collaborative Wiener

filtering stage (this was done for simplicity).
We obtain the denoised curvature κBM3D.

Step 2: Starting with u(0, ·) = IBM3D, solve

ut = κ(u)− κBM3D + 2λ(I − u),

to obtain ÎBM3D, the solution satisfying the stopping criterion described in (3.5).

We have used two sets of values for λ, depending on the image content. For images
with more texture and significant variation, λ : 0.3, 0.15, 0.1, 0.07, 0.045, corresponding
to σ : 5, 10, 15, 20, 25 respectively. For images with large homogeneous regions, λ :
0.2, 0.075, 0.05, 0.04, 0.03, corresponding to σ : 5, 10, 15, 20, 25 respectively.

Figure 4.5 (left) compares the average increase in PSNR of the denoised image
over the original noisy image, obtained with both approaches: BM3D applied to I
(in magenta) and BM3D applied to κ(I) (in blue). We checked two cases. In the
first, we did the same experiment as in the other comparisons where we averaged
over the entire database. These results are the solid lines. The PSNR was almost
identical, but we did see a slight increase in Q-index using our approach. We then
considered the images in the Kodak database that were more heavily textured. For
both measures the increments in quality with our approach are modest, although we
perform consistently better than direct BM3D denoising of I. Moreover, our very
modest improvement is consistent with the bound on optimal denoising of Levin and
Nadler [22] and Levin et al. [23], although Lebrun et al. [24] point out that the
actual bound might be larger, because the performace bounds in [22] are computed
considering a generic class of patch-based algorithms with stronger assumptions than
those corresponding to BM3D.

Fig. 4.5. Comparison of BM3D denoising on I and BM3D denoising on κ(I), using both the
entire database as well as focusing on just the highly textured images. Left: PSNR increase for
each method. Right: percentage increase on Q-index [5]. The solid lines represent the results from
averaging over the entire 24 image Kodak database. The dotted lines represent the results from
averaging over images 1, 2, 5, 11-14, 18, 22 and 24 from the Kodak database. In both cases only
the luminance channel was used and the images were reduced to half-resolution.
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4.5. Computing F(κ(I)) -vs- κ(F(I)). Computing κ(F(I)) in Step 1 of the
proposed approach seems more reasonable than what we suggest to do, which is to
compute F(κ(I)), for a number of reasons. To start, because I is noisy, one typically
would want to regularize I before computing its curvature [2]. Furthermore, the
denoising approaches we use here were developed for denoising image data, not for
denoising curvature data. We performed the experiment of comparing the results
when we use different choices for κF , and some examples can be found in figure 4.6.

(a) (b) (c) (d)

Fig. 4.6. Reconstructions using different choices for κF in Step 1 of the proposed approach
for the noisy image in figure 1.4. (a) κROF = κ(ROF (I)), PSNR=29.39, PIQ=69. (b) κROF =
ROF (κ(I)) (proposed approach), PSNR=29.41, PIQ=92. (c) κNLM = κ(NLM(I)), PSNR=30.32,
PIQ=80. (d) κNLM = NLM(κ(I)) (proposed approach), PSNR=30.86, PIQ=103.

All the images in figure 4.6 were generated using Algorithm 2, but whereas images
(a) and (c) used κF = κ(F(I)) in Step 1, images (b) and (d) were generated using
κF = F(κ(I)). We can see that for both denoising using the Rudin-Osher-Fatemi
functional and denoising with Non-local Means, the results have higher quality when
we use the proposed approach of κF = F(κ(I)). This also reflects the comparisons
we found between computing F(−→η (I)) and −→η (F(I)) reported in section 4.2.

4.6. Alternate reconstruction equations. We have also tried alternate re-
construction equations and have found some improvements over (3.1). For example,
given the denoised curvature κF = F(κ(I)), one could solve for

ÎF = arg min
u

∫
Ω

|κ(u)− κF |+
λ

2

∫
Ω

(I − u)2 (4.4)

in Step 2 of the proposed approach. A minimizer of (4.4) should satisfy that both
κ(ÎF ) should be close to κF and the average value of ÎF (along level lines) should be
close to the average value of I, and thus the average value of a. So both clean level
lines and contrast should be preserved. This is related to the model for denoising an
image by directly minimizing its mean curvature proposed by Zhu and Chan [25] in
which the authors minimize ∫

Ω

|H(u)|+ λ

2

∫
Ω

(I − u)2

where H(u) = div
(

∇u√
ε+|∇u|2

)
with ε = 1. A fast multigrid algorithm for computing

the above equation was proposed in Brito and Chen [26] that works for small values
of ε, making it close to κ(u).
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Brito and Chen modified their algorithm to solve (4.4), and using this as our
reconstruction equation for the Lena image with noise σ = 10 showed a clear improve-
ment when choosing F = ROF (as in section 4.1), and a smaller but still notable
improvement when F = NLM (as in section 4.3). These results can be seen in figure
4.7. Performing extensive tests with other images and different noise levels requires
a more careful study of Brito and Chen’s algorithm, with an adequate selection of
parameters, and it will be the subject of further work.

(a) (b) (c) (d)

Fig. 4.7. Reconstruction of Lena image with additive noise of σ = 10, using different recon-
struction equations. (a) TV denoising of curvature, Step 2 using (3.1), PSNR=32.74, PIQ=28.
(b) TV denoising of curvature, Step 2 using (4.4), PSNR=33.94, PIQ=35. (c) NLM denoising of
curvature, Step 2 using (3.1), PSNR=34.20, PIQ=33. (d) NLM denoising of curvature, Step 2
using (4.4), PSNR=34.55, PIQ=37.

5. Discussion.

5.1. Computing the curvature. Kovalevsky shows in [27] that it is difficult
to compute the curvature with errors smaller than 40% without subpixel accuracy
and numerical optimization, even in high resolution images. The reason is that small
errors require very long curves. Utcke [28] points out that the smaller the curvature,
the larger the error in estimating it. Ciomaga et al. [2] propose a method to increase
the accuracy in estimating a curvature image by decomposing the image in its level
lines and computing the curvature at each of these curves with subpixel accuracy.

All the tests in this article have been performed using very simple numerical
schemes for the computation of the curvature hence the error must be very significant,
but this does not seem to affect the final result dramatically as figure 1.4 and our
other experiments show. We would like to test other computational techniques for
the curvature, and their impact in the quality of the results. This is non-trivial, as
the numerical approximation of κ(u) in the reconstruction equations (3.1) and (4.4)
is directly related to the stability of the algorithm.

5.2. The reconstruction equation. The equations we have tested for recon-
structing an image from a clean curvature image, equations (3.1) and (4.4), show
promise for this general approach, but there are still a number of questions. For
instance, if one set λ = 0 in (3.1) and assumed the initial data was in L1(Ω), the
reconstruction equation is similar to one in which Andreu et al. [29] established the
well-posedness and characterized the long time behavior of the solutions. This might
be another approach which could ensure a more accurate and quantifiable depiction of
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κF in κ(u), although one would need to add a different mechanism to ensure contrast
of the level lines is preserved.

However, even with some improvement there is the inherent challenge of study-
ing a reconstruction equation in the continuous domain since curvature is incredibly
poorly behaved in this setting. It takes on infinite values at corners and cusps of
the level lines of the image data, and is highly oscillatory at noise. However, in the
discrete domain, κ(I) is bounded (e.g. using directional differences as we have done
here, κ(I) ∈ [−(2 +

√
2), 2 +

√
2]) and quite manageable. The ability of a number

of image denoising algorithms to be adapted for denoising curvature images in prac-
tice is some evidence of this. But now this also begs the question of computing the
curvature more accurately than (2.5), such as using the curvature microscope work
of Ciomaga et.al. [2]. The challenge here is that we do not currently know of a way
of reconstructing an image from this discretized curvature information; the approach
must be quite different than what we proposed if we compute the curvature along level
lines, such as in [2], rather than using finite differences, as we do here. Thus there
is some balance between the accuracy of the discretization of κ(I) and the ability to
easily reconstruct u from this information.

So although in practice we obtained promising results, finding a solid, mathe-
matically sound methodology that fits into our approach would preferably require
that the method F of smoothing κ(I) to obtain κF in Step 1 should be intimately
related to the method of reconstructing ÎF from κF in Step 2. And both depend
on the discretization of κ(I). The numerical approach proposed here is intended to
illustrate the principle we derived is section 2, although we plan to explore some of
these questions in future work.

5.3. Real curvature images. After we apply a given denoising method F to
the curvature image κ(I) we obtain an image κF = F(κ(I)) which we call (and treat
as) “denoised curvature”, i.e. as being the curvature of some given image. Indeed, if
λ = 0 in (3.1) and the equation were run to convergence, the steady state solution ÎF
should satisfy κF = κ(ÎF ). However, we don’t expect this to be true when λ > 0 and
the stopping criteria (3.5) is used. So in that case we cannot formally say that κF is
actually a curvature image, or at least that it is the curvature image of ÎF . This does
not seem to hinder the approach from improving on denoising methods in general, but
we are still exploring more precisely what effect this has on our solution. This also
further begs the question from section 5.2 of whether a method other than equations
(3.1) or (4.4) would yield a more optimal reconstruction. In the case that we can
guarantee that κF is the curvature of some image, there may be some interesting
connections with a Bregman type approach.

6. Conclusions and future work. In this article we have shown that when an
image is corrupted by additive noise, its curvature image is less affected. This has led
us to speculate that, given a denoising method, we may obtain better results applying
it to the curvature image and then reconstructing a clean image from it, rather than
denoising the original image directly. Numerical experiments confirm this for several
PDE-based and patch-based denoising algorithms. Many open questions remain, con-
cerning the accuracy in the computation of the curvature, the reconstruction method
used and the nature of the denoised curvature image, which will be the subject of
further work.
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