
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2013 Accepted version Open Access

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of

the published version may differ .

PARAEXP: A Parallel Integrator for Linear Initial-Value Problems

Gander, Martin Jakob; Guettel, Stefan

How to cite

GANDER, Martin Jakob, GUETTEL, Stefan. PARAEXP: A Parallel Integrator for Linear Initial-Value

Problems. In: SIAM Journal on Scientific Computing, 2013, vol. 35, n° 2, p. C123–C142. doi:

10.1137/110856137

This publication URL: https://archive-ouverte.unige.ch/unige:171271

Publication DOI: 10.1137/110856137

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:171271
https://doi.org/10.1137/110856137

PARAEXP: A PARALLEL INTEGRATOR FOR LINEAR

INITIAL-VALUE PROBLEMS∗

MARTIN J. GANDER AND STEFAN GÜTTEL†

Abstract. A novel parallel algorithm for the integration of linear initial-value problems is pro-
posed. This algorithm is based on the simple observation that homogeneous problems can typically be
integrated much faster than inhomogeneous problems. An overlapping time-domain decomposition
is utilized to obtain decoupled inhomogeneous and homogeneous subproblems, and a near-optimal
Krylov method is used for the fast exponential integration of the homogeneous subproblems. We
present an error analysis and discuss the parallel scaling of our algorithm. The efficiency of this
approach is demonstrated with numerical examples.

Key words. parallelization, linear initial-value problem, rational Krylov, matrix exponential

AMS subject classifications. 65L05, 65Y05, 65F60

1. Introduction. We are interested in the parallel integration of a linear initial-
value problem

u′(t) = Au(t) + g(t), u(0) = u0, t ∈ [0, T], (1.1)

where A ∈ C
N×N is a square matrix, u(t) ∈ C

N is the sought function and g(t) ∈ C
N

is a source term which is possibly difficult to integrate numerically. For example,
g(t) could contain high-frequency oscillations, or it could be given in form of a time-
consuming computer subroutine. Problems of the form (1.1) arise often from the
space discretization (e.g., by finite differences or finite elements) of partial differential
equations, in which case A is large and sparse. While the algorithm we are going
to propose here is designed for large-scale problems by the use of rational Krylov
approximation, our overlapping time-domain decomposition can as well be applied
for the parallel integration of scalar or medium-sized initial-value problems.

The fast solution of initial-value problems is of practical interest in scientific com-
puting, and various parallelization techniques have been proposed in the literature.
A recent iterative approach for solving (not necessarily linear) initial-value problems
u′(t) = ϕ(t,u) in time-parallel fashion is the parareal method by Lions, Maday &
Turinici [38]. It is based on a time-domain partitioning and utilizes two integrators:
a coarse integrator for the fast propagation of information over the full time-interval
[0, T], and a fine integrator which solves initial-value problems to high accuracy on
disjoint time subdomains. The main goal of parareal is to reduce the time-to-solution
by making use of additional parallelism in the time direction when, for example, spa-
tial parallelization has been saturated. Parareal has not been designed to necessarily
achieve high parallel efficiency, and in fact its parallel efficiency is limited by the re-
ciprocal number of iterations required to achieve a desired accuracy. Typically, at
least two iterations are required, which is why it is often stated that the parallel effi-
ciency of parareal is at most 50% (see, e.g., the discussion in [40]). The convergence
behavior of parareal was analyzed in [25, 23]. For linear initial-value problems, it
was proposed in [21] to enhance the coarse integrator of parareal by projecting with

∗ This work was supported by the Swiss National Science Foundation grant no. 200020-131826/1.
†University of Geneva, Department of Mathematics, CH-1211 Geneva, Switzerland,

martin.gander@unige.ch, stefan.guettel@unige.ch. Current address of the second author: The
University of Manchester, School of Mathematics, M13 9PL Manchester, UK.

1

2 M.J. GANDER AND S. GÜTTEL

respect to a linear space spanned by the results of previous fine integrations, and this
enhancement was found to be crucial for solving certain second-order initial-value
problems and hyperbolic problems [24]. On the other hand, this modification does
not overcome the inherent limitation of the parallel efficiency of parareal, and also one
has to be aware of additional computational issues (such as maintaining the accuracy
of the involved projections for numerical stability, see [45]).

Various direct (i.e., non-iterative) parallel methods exploiting the linear struc-
ture of (1.1) have been proposed as well in the literature; for other parallelization
approaches we refer to the monograph by Burrage [8].

In 1989, Gallopoulos & Saad [22] considered the parallel solution of (1.1) with
symmetric A and autonomous source term g(t) = g = const. The authors utilize the
fact that the exact solution of this problem can be written in terms of the function
ϕ1(z) := (ez − 1)/z as

u(t) = exp(tA)u0 + tϕ1(tA)g

= u0 + tϕ1(tA)v, with v = Au0 + g.

The action of a matrix function ϕ1(tA) onto a vector v can be computed in parallel
either by a polynomial Krylov method, in which case matrix-vector products with A
are parallelized, or by a rational approximation r(z) of ϕ1(z) on the spectral interval
of (tA) in partial fraction form

ϕ1(z) ≈ r(z) =

p∑

j=1

wj

sj − z
. (1.2)

The evaluation of

u(t) ≈ u0 + t · r(tA)v = u0 +

p∑

j=1

t · wj · (sjI − tA)−1v

for a given time parameter t amounts to the solution of p complex shifted linear
systems (sjI − tA)xj = v, each of which can be assigned to another processor. Possi-
ble choices for the rational function r(z) include Padé approximants, Chebyshev (L∞)
approximations computed by the Remez algorithm, or near-best approximations com-
puted by the Caratheodory–Fejér method (see [10, 49]).

Another popular approach is to consider (1.1) in Laplace-transformed form (see
[51, 28])

sû(s)− u0 = Aû(s) + ĝ(s).

The solution u(t) may be represented as a contour integral of the inverse transform

u(t) =
1

2πi

∫

Γ

etsû(s) ds

with a suitable contour Γ enclosing all singularities of û(s) (which are the eigenvalues
of A and all singularities of ĝ(s)). The discretization of this integral by a quadrature
rule with nodes sj and weights wj again yields a rational function

u(t) ≈
p∑

j=1

wj(t)û(sj) =

p∑

j=1

wj(t)(sjI −A)−1(u0 + ĝ(sj)),

PARAEXP PARALLEL INTEGRATOR 3

which can be evaluated in parallel (cf. Talbot [53] for a related idea). Note that the
shifted systems to be solved are (sjI −A)û(sj) = u0 + ĝ(sj), and the dependency on
the parameter t is solely contained in the residues wj(t). This can be advantageous
when u(t) is to be computed for many t in a parameter range [tmin, tmax], but one has
to take into account that the accuracy of the approximation degrades as one moves
away from some optimal parameter topt (because an optimal choice of the contour
Γ would incorporate the influence of the time parameter t). Related approaches
for homogeneous problems (i.e., g ≡ 0) based on quadrature of the inverse Laplace
transform have been proposed by Sheen et al. [50], Gavrilyuk & Makarov [27], and
Trefethen et al. [55]. Another Laplace inversion method with real nodes sj has been
used by Davies et al. [12].

An interesting method for the fast implicit Runge–Kutta approximation of (1.1)
has been presented by López-Fernández et al. [39]. It uses a discrete variation-of-
constants formula and a quadrature rule to reduce the number of linear systems to
be solved. Banjai & Petersheim [3] proposed parallel linear multistep discretizations
of (1.1) based on the fast approximate inversion of Toeplitz matrices [7]. Although
this approach does not make direct use of inverse Laplace transforms, it also relies on
the parallel solution of complex shifted linear systems by a multigrid preconditioned
GMRES iteration. The Toeplitz representation of linear multistep methods used in [3]
seems to be possible only if equal time steps ∆T are taken, so that time adaptivity is
restricted by the number of restarts of the method.

Yet another approach, close in spirit to the one proposed here, is known as expo-
nential quadrature (see [34, 35]). It is based on the variation-of-constants formula

u(t) = exp(tA)u0 +

∫ t

0

exp((t− τ)A)g(τ) dτ,

and the approximation of the integrand by a quadrature rule with nodes τ1, . . . , τp.
This yields p+1 independent problems of the form exp((t−τj)A)g(τj) and exp(tA)u0.
These matrix functions could again be approximated by a Krylov method. Exponen-
tial quadrature, however, is impractical if the source term g(t) is “difficult enough”
so that too many quadrature nodes are needed to approximate the integral to a pre-
scribed accuracy.

To overcome these problems, we propose a decomposition of (1.1) into subprob-
lems on overlapping time intervals. The difficult inhomogeneous problems are inte-
grated over short time intervals, whereas exponential propagation is used to integrate
homogeneous problems over long time intervals. These subproblems are completely
decoupled and can be assigned to different processors. Our method, which we call
paraexp (for parallel exponential propagation), requires almost no communication or
synchronization between the processors, except a summation step at the end of the
algorithm. Paraexp allows any available serial integrator for (1.1) to be used in black-
box fashion, which can be a major advantage in its implementation. Because the
efficiency of our algorithm relies on the fast integration of homogeneous linear initial-
value problems, Section 3 contains a brief discussion of state-of-the-art polynomial
and rational Krylov methods for computing the matrix exponential. In Sections 4
and 5 we explore some practical aspects of our method, in particular, we show how to
tune the accuracy of the integrators for each of the subproblems and how to balance
the work load between the processors. We show that paraexp can achieve a high
parallel efficiency when the number of processors is moderate, while keeping commu-
nication and synchronization at a minimum. In Section 6 we discuss extensions to

4 M.J. GANDER AND S. GÜTTEL

more general problems of the form

M(t)u′(t) = K(t)u(t) + g(t), u(0) = u0, t ∈ [0, T],

where M(t),K(t) are matrices varying on a larger time scale than g(t) and M(t) may
even be singular, in which case we are solving a differential-algebraic equation. In
Section 7 we present results of some numerical experiments.

2. The paraexp algorithm. Our approach for the parallel solution of (1.1)
relies on two basic facts. First, the exact solution of an homogeneous initial-value
problem

w′(t) = Aw(t), w(0) = u0,

is given in terms if the matrix exponential as

w(t) = exp(tA)u0 := (I + (tA) + (tA)2/2! + · · ·)u0. (2.1)

Second, if we integrate an inhomogeneous problem with zero initial-value,

v′(t) = Av(t) + g(t), v(0) = 0, (2.2)

then the solution of the original problem (1.1) is given by superposition as

u(t) = v(t) +w(t).

The serial integration of (2.2) over the time interval [0, T] is as difficult as solving
(1.1) itself. To employ p processors with this task, we introduce a partitioning of
[0, T] into time intervals [Tj−1, Tj] with j = 1, . . . , p and 0 = T0 < T1 < · · · < Tp = T ,
and consider the following subproblems.

Type 1 : For j = 1, . . . , p solve

v′
j(t) = Avj(t) + g(t), vj(Tj−1) = 0, t ∈ [Tj−1, Tj],

using some serial integrator.

Type 2 : For j = 1, . . . , p solve

w′
j(t) = Awj(t), wj(Tj−1) = vj−1(Tj−1), t ∈ [Tj−1, T],

using a near-optimal exponential propagator (we set v0(T0) := u0).

What we mean by a near-optimal exponential propagator will be discussed in
Section 3. Note that the p subproblems of Type 1 for vj are completely decoupled
due to the zero initial values. Also the subproblems of Type 2 for wj are decoupled
and can be integrated once the initial value vj−1(Tj−1) is available:

wj(t) = exp((t− Tj−1)A)vj−1(Tj−1). (2.3)

Therefore it is natural to assign the integrations for vj−1(t) and wj(t) to the same
processor, so that there is no need for communication and synchronization between
the two types of subproblems. Note also that the time intervals [Tj−1, T] for the
wj are overlapping. In Figure 2.1 we illustrate this overlapping decomposition into
subproblems.

PARAEXP PARALLEL INTEGRATOR 5

�✁�✂ �✄ �☎�✆

✝✞

Fig. 2.1. Overlapping time decomposition of an initial-value problem into four inhomogeneous
problems with zero initial guess (Type 1, solid red curves) and four homogeneous problems (Type 2,
dashed blue curves), the latter of which are exponentially propagated. The solution of the original
problem is obtained by summation of all these curves.

By superposition, the solution of (1.1) is given by

u(t) = vk(t) +

k∑

j=1

wj(t) with k such that t ∈ [Tk−1, Tk].

This sum is the only communication point between the processors. Our parallel
algorithm, with generic name paraexp (parallel exponential propagation), is given by
simultaneously integrating the subproblems of Type 1 and Type 2, and finally forming
the sum for u(t) at the required time points t.

3. Near-optimal approximation of the matrix exponential. The overlap-
ping propagation of the linear homogeneous subproblems of Type 2 is redundant. To
obtain an efficient parallel method, we require that the computations of matrix expo-
nentials (2.3) in our algorithm are fast compared to integrating the inhomogeneous
subproblems of Type 1.

For scalar problems (N = 1) the computation of the exponential is a trivial
task. For computing the exponential of small to medium-sized dense matrices (say,
with N / 1000) there are various methods available, see the review by Moler &
Van Loan [41] and the monograph by Higham [32].

The computations become more challenging when the problem size N gets large,
in which case the matrix A is hopefully sparse. In this case we can make use of the
fact that not the matrix exponential exp(tA) itself is required, but the product of this
matrix with some vector v. Polynomial and rational Krylov methods have proven
to be efficient for this task (see [29, 30] and the references therein). These methods
can roughly be grouped into two categories: projection-based and expansion-based
methods.

3.1. Projection-based methods. We briefly describe a variant of the restricted-
denominator Arnoldi method by Moret & Novati [43] (see also van den Eshof &
Hochbruck [20]), which extracts an approximation an(t) ≈ exp(tA)v from a Krylov
space built with the matrix S := (I −A/σ)−1A,

Kn(S,v) = span{v, Sv, . . . , Sn−1v}.

The parameters n and σ ∈ C \ (Λ(A) ∪ {0}) need to be chosen such that the search
space Kn(S,v0) contains a good approximation to the exact solution exp(tA)v for
a given t. For σ = ∞ we obtain a standard Krylov space with the matrix A, i.e.,

6 M.J. GANDER AND S. GÜTTEL

Kn(S,v) = Kn(A,v). If Kn(S,v) is of full dimension n, as we assume in the follow-
ing, we can compute an orthonormal basis Vn ∈ CN×n by the well-known Arnoldi
orthogonalization process (see [25, §9.3.5]). The nth-order Arnoldi approximation of

exp(tA)v is then defined as

an(t) := Vn exp(t[S
−1
n + σ−1In]

−1)V ∗
n v, Sn := V ∗

n SVn. (3.1)

Provided that n is small, the computation of an(t) requires the evaluation of an n×n
matrix function, which is small compared to the original N ×N matrix exponential.
The entries of the matrix Sn are a by-result of the Arnoldi orthogonalization process
and no explicit projection of S with respect to Vn is required. Remarkably, one can
show that the Arnoldi approximation based on orthogonal projection is near-optimal

in the following sense: with W(A) := {x∗Ax : ‖x‖ = 1} denoting the numerical range
of A, there exists a universal constant C ≤ 11.08 such that

‖ exp(tA)v − an(t)‖2 ≤ 2C‖v‖2 min
p∈Pn−1

∥∥∥etz − p(z)

(1− z/σ)n−1

∥∥∥
W(A)

, (3.2)

where the norm on the right is the maximum norm over W(A) and Pn−1 denotes the
set of polynomials of degree ≤ n− 1 (see [43, 4, 29]). In practice, the Arnoldi method
performs even better than this bound suggests, and the approximations an(t) are
extremely close to the least squares approximation VnV

∗
n exp(tA)v (this observation

can also be made in Figure 3.1 below).

The near-optimality of the Arnoldi method has an important implication: it
is very unlikely that any polynomial (that is, explicit) time-stepping method for
u′ = Au, u(0) = v, can outperform the polynomial Arnoldi method (to which the
restricted-denominator Arnoldi method reduces when σ = ∞) in the sense of requiring
less matrix-vector products with A to achieve the same accuracy. For example, the
explicit Euler method (whose approximation of exp(tA)v is given by p(tA)v, where
p(z) = (1 + z/n)n and n is the number of time steps) or the classical Runge–Kutta
method (with p(z) = (1 + z/n + (z/n)2/2 + (z/n)3/6 + (z/n)4/24)n) typically do
not produce the same quality of spectrally adapted polynomials as does the Arnoldi
method, although all of these polynomials are approximations to the exponential
function.

If the numerical range of A extends far into the complex plane (i.e., the linear
term is “stiff”), polynomials of very high degree are required for approximating the
exponential function on this set. This means that polynomial Krylov spaces of very
large dimension need to be computed. Although various polynomial methods have
been proposed which prevent the dimension n of Kn(A,v) to grow above memory
limit (restarted Krylov methods [17, 1]), or which avoid the storage of a Krylov basis
(e.g., methods based on explicit interpolation [36, 9] or evaluation of expansions of
the exponential function [13, 5, 42]), it may be beneficial to use instead the above
restricted-denominator Arnoldi method with a finite shift σ. Of course, this amounts
to the solution of a linear system with a constant coefficient matrix I −A/σ in every
Arnoldi step. If the use of a direct solver is feasible, then a factorization of this matrix
needs to be computed only once.

In Figure 3.1 we compare the discussed methods for computing exp(tA)v, t = 1,
with the matrices

A1 = tridiag(30,−40, 10) ∈ R
199×199 and A2 = tridiag(60,−90, 30) ∈ R

299×299,

PARAEXP PARALLEL INTEGRATOR 7

which can be interpreted as finite-difference discretizations of the same 1D advection–
diffusion problem on the spatial interval [0, 1] with homogeneous boundary conditions.
The vector v is chosen randomly with normal-distributed entries. We also show the
error of the orthogonal projection of the exact solution exp(A)v onto Kn(A,v) and
Kn(S,v), respectively (in the latter case we have chosen σ = 40). Comparing the
number of matrix-vector products n required by each algorithm to achieve a certain
accuracy, we clearly find that it is beneficial to use the Arnoldi method rather than
a time-stepping method for the propagation of linear homogeneous problems. Note
that the difference between the projection and time-stepping methods gets larger for
higher accuracies. Moreover, we observe that the iteration number of the implicit
methods (in particular, the rational Arnoldi method) is almost constant when the
discretization becomes finer, i.e., the convergence is almost mesh-independent.

To estimate the error of rational Krylov approximations, one can make use of the
fast error decay (following an initial stagnation phase that may occur, cf. Figure 3.1).
It is often sufficient to use the difference of two consecutive Krylov iterates as an
estimate for the propagation error ‖ exp(tA)v − an(t)‖, that is

‖ exp(tA)v − an(t)‖∞ ≈ ‖an+ℓ(t)− an(t)‖∞, (3.3)

where ℓ ≥ 1. In our numerical tests in Section 7 we have always used ℓ = 1, yielding
sufficiently good estimates for our purposes. For the derivation of rigorous error
bounds we refer to the literature, e.g., [33, 4, 29] and the references therein.

0 50 100 150 200

10
−15

10
−10

10
−5

10
0

number of operations with A

2−
no

rm
 e

rr
or

expl Euler
expl RK4
poly Arnoldi (σ=∞)
projection
impl Euler
RD Arnoldi (σ=40)
projection

0 50 100 150 200 250 300

10
−15

10
−10

10
−5

10
0

number of operations with A

2−
no

rm
 e

rr
or

expl Euler
expl RK4
poly Arnoldi (σ=∞)
projection
impl Euler
RD Arnoldi (σ=40)
projection

Fig. 3.1. Comparison of various time-stepping methods and Krylov methods for computing the
solution u(1) of a linear homogeneous advection–diffusion problem u′ = Au, u(0) = random, with
199 (top) and 299 (bottom) finite-difference discretization points.

3.2. Expansion-based methods. Another class of methods for computing ap-
proximations to exp(tA)v is based on expansions of the form

exp(tz) ≈
n−1∑

j=0

βj(t)pj(z),

where the pj are polynomials or rational functions which possibly satisfy a short-term
recurrence. The approximations are then obtained as

exp(tA)v ≈
n−1∑

j=0

βj(t)pj(A)v. (3.4)

8 M.J. GANDER AND S. GÜTTEL

For example, if A is a normal-1 matrix (that is, normal with eigenvalues on a straight
line), then the pj(z) can be taken as Chebyshev polynomials Tj(z) = cos(j arccos(z))
transformed to the spectral interval of A, and the βj(t) can be taken as the coefficients
of the Chebyshev expansion of exp(tz) on this interval (see [13]). The well-known
three-term recurrence for Chebyshev polynomials then translates into a recurrence
for the vectors in (3.4):

[Tj+1(A)v] = 2αA[Tj(A)v] − β[Tj−1(z)v],

where α, β are constants depending on the spectral interval of A. This approach is
applicable if (an estimate for) the spectral interval of A is known, and if this interval
is not too wide such that not too many terms are needed to achieve a desired accuracy
in (3.4).

If the eigenvalues of A are not contained in some interval or A is not normal, then
exp(tz) is typically approximated on the numerical range W(A). For such problems,
expansions in Faber polynomials or methods based on polynomial or rational Newton
interpolation have proved to be efficient (see [36, 9, 29]), although knowledge of W(A)
may be a problematic requirement.

4. Error control. Many integrators for ordinary differential equations, for ex-
ample those in Matlab, use an error control criterion like

‖e(t)‖∞ ≤ max
{
reltol‖ũ(t)‖∞, abstol

}
, t ∈ [0, T],

where e(t) = u(t) − ũ(t) is the (estimated) error of the computed solution ũ(t).
Because the inhomogeneous subproblems of Type 1 for vj(t) are integrated with zero
initial guess, it is not advisable to use an error criterion which is relative to the norm
of the solution. Hence we assume that all of these subproblems are integrated with an
absolute error ‖ej(t)‖∞ = ‖vj(t)−ṽj(t)‖∞ ≤ abstol over the time interval [Tj−1, Tj].
This error is then propagated exponentially over the remaining interval [Tj, T], hence
we have to study the transient behavior of

‖ exp(tA)ej(Tj)‖∞ ≤ ‖ exp(tA)‖∞abstol (4.1)

for t ∈ [0, T − Tj]. Finally we will add the errors from all these exponential propaga-
tions to obtain the overall error produced by our algorithm.

It is well known that for a stable matrix A (i.e., all eigenvalues lie in the left
half of the complex plane) the limit limt→∞ ‖ exp(tA)‖∞ is finite. Unfortunately, the
norm may initially grow arbitrarily large before convergence sets in, a phenomenon
usually referred to as hump (see [41]). However, for a diagonally dominant matrix
A = [aij] with aii ≤ 0 this cannot happen, as one can show as follows (see [44]): Define
ρ = maxi{aii +

∑
j 6=i |aij |} ≤ 0. By the formula exp(tA) = limk→∞(I + tA/k)k we

have ‖ exp(tA)‖∞ ≤ limk→∞ ‖I + tA/k‖k∞. For k sufficiently large we have

‖I + tA/k‖∞ = max
i

{
1 + t

(
aii +

∑

j 6=i

|aij |
)
/k

}
= 1 + tρ/k,

hence

‖ exp(tA)‖∞ ≤ lim
k→∞

(1 + tρ/k)k = etρ ≤ 1 for all t ≥ 0. (4.2)

PARAEXP PARALLEL INTEGRATOR 9

A simple example for a diagonally dominant matrix A whose numerical range is not
contained in the left half of the complex plane, but ‖ exp(tA)‖∞ = 1 for all t ≥ 0, is

A =

−1 0 1
1 −1 0
1 0 −1

 .

An error estimate for not necessarily diagonally dominant matrices in the 2-norm
can be obtained by a theorem of Crouzeix [11]: there exists a universal constant
C ≤ 11.08 such that

‖ exp(tA)‖2 ≤ C max
z∈W(A)

| exp(tz)|, (4.3)

hence ‖ exp(tA)‖2 is bounded by C for all t ≥ 0 provided that W(A) is contained
in the left half of the complex plane, which includes the important special case of
sectorial operators. Clearly, if A is normal we can choose C = 1, and it is actually
conjectured that the constant “11.08” can be replaced by “2” for every square matrix
A (see [11]). Using the relation ‖A‖2 ≤

√
N‖A‖∞ (recall that A ∈ CN×N), we may

summarize our findings in the following theorem.
Theorem 4.1. Let the matrix A ∈ CN×N be stable. Assume that all exponential

propagations wj(t) are computed exactly and the absolute errors for all subproblems

vj(t) are bounded, that is ‖ej(t)‖∞ ≤ abstol for t ∈ [Tj−1, Tj]. Then in the following

cases there exists a constant C with

• C ≤ 11.08
√
N if W(A) is contained in the left half of the complex plane, or

• C ≤
√
N if A is normal, or

• C ≤ 1 if A is diagonally dominant with nonpositive diagonal entries,

such that the numerical solution ũ(t) of the paraexp algorithm satisfies

‖e(t)‖∞ = ‖u(t)− ũ(t)‖∞ ≤ (C(k − 1) + 1)abstol, (4.4)

where k is chosen such that t ∈ [Tk−1, Tk].
We remark that the error bound in Theorem 4.1 is universal, but typically it is

too pessimistic for practical computations because
1. it is based on (4.3) which may lead to crude overestimations in particular if

A is highly nonnormal,
2. the worst-case error is attainable only if all error vectors ej(Tj) are collinear,
3. the error vectors ej(Tj) may actually be damped when being exponentially

propagated. For example, if A is Hermitian with spectral interval [λmin, λmax]
and λmax < 0, then the propagated error in (4.1) will decay like etλmax < 1.

Note that there exist possibly sharper bounds on the norm of the matrix exponential
than (4.2) or (4.3), but we do not attempt to review them here and instead refer to
[56] or Chapter 14 and 15 in [54].

Remark 1. The exponential propagations wj(t) are assumed to be exact in Theo-

rem 4.1, which of course is impossible in a practical computation. However, in practice

it is only required that the computed exponential propagations w̃j(t) are sufficiently ac-

curate relative to the accuracy of the Type 1 integrations. For example, if all computed

exponential propagations w̃j(t) are guaranteed to satisfy ‖wj(t)−w̃j(t)‖∞ ≤ abstol/p
for all t ∈ [Tj−1, T] and j = 1, . . . , p, then

∑p
j=1 w̃j(t) will have an accuracy of abstol

and the right-hand side of the inequality (4.4) merely changes to (C(k−1)+2)abstol.
Remark 2. A more practical estimate of the error is obtained via probabilistic

considerations: If the elements in all vectors ej(Tj) are random variables following a

10 M.J. GANDER AND S. GÜTTEL

normal distribution with zero mean and standard deviation σ, then the sum of (k− 1)
such vectors has zero mean and standard deviation σ

√
k − 1. The expected maximum

error norm is therefore

E [‖e(t)‖∞] = (C
√
k − 1 + 1)abstol / C

√
p abstol,

where k ≤ p is chosen such that t ∈ [Tk−1, Tk]. In our numerical experiments in

Section 7 we will demonstrate how this serves as a realistic estimate for the expected

propagation error.

5. Load balancing. Load balancing aims at leveling the amount of computa-
tional work between p processors. In our algorithm we have essentially two means for
balancing the work distribution. First, we may adapt the time partitioning propor-
tional to the computation time that the time-stepping method of Type 1 spends on
a certain time slice. The adaptation of the time partitioning is recommended if an
adaptive time-stepping method is used because the stiffness of the source term g(t) in
(1.1) varies largely in time. Second, we may start from an equispaced time grid and
perturb it slightly by taking into account the scheduling of the exponential propaga-
tions of Type 2. This load balancing approach works well if (1.1) can be efficiently
integrated by a time-stepping method with constant step size. In the following we
outline both approaches.

5.1. Load balancing for adaptive time-stepping integrators. Assume we
have a serial time-stepping method that integrates (1.1) over [0, T] to some absolute
error tolerance abstol in τ0 units of computation time. In view of Remark 2, our
parallel algorithm with p processors requires the error tolerance of the time-stepping
method to be refined by a factor

√
p. If our time-stepping method is of order q and its

computation time is proportional to the number of time steps, then it is reasonable to
expect that the integration of (1.1) to the error tolerance abstol/

√
p requires

√
p1/q τ0

units of computation time. If the time partitioning 0 = T0 < T1 < · · · < Tp = T is
chosen such that on each time slice [Tj−1, Tj] the same computation time is spent by
the serial integrator (Type 1), then all processors will finish synchronously after

τ1 =

√
p1/q τ0

p
=

τ0
p1−1/(2q)

units of computation time with the Type 1 integrations. If the time-stepping method
is adaptive, such a balanced time partitioning could be obtained by a serial initial
integration of (1.1) with very crude error tolerance, and the partitioning of [0, T] into
p subintervals containing an equal number of time steps.

If the exponential propagations of Type 2 require τ2 units of computation time
on each processor, then the total parallel computation time of our algorithm is

τp = τ1 + τ2 =
τ0

p1−1/(2q)
+ τ2. (5.1)

Note that the parallel speedup given by

speedup =
τ0
τp

=
1

p1/(2q)−1 + τ2/τ0

gets larger with increasing order q of the time-stepping method and with smaller
computation time τ2 for the exponential propagations.

PARAEXP PARALLEL INTEGRATOR 11

5.2. Load balancing for constant time-stepping. If a nonadaptive time-
stepping method with constant step size is used, we may assume that the computation
time for a Type 1 integration only depends on the length ∆T of a time slice

τ̂1(∆T) =
∆T

T

√
p
1/q

τ0.

In this case we may still optimize the time partitioning if the solution vectors u(Tj)
are required at all time points Tj (j = 1, . . . , p), by taking into account the scheduling
of the exponential propagations. By the additivity of the exponential we have

wj(Tj+k) = exp((Tj+k − Tj+k−1)A) · · · exp((Tj − Tj−1)A)wj−1(Tj−1),

and therefore we can compute wj(Tp) by p−j+1 sequential exponential propagations.
If we denote by wj(Tk, Tℓ) the exponential propagation of wj(t) over the interval
[Tk, Tℓ], the simplest way of assigning the integrations to processors is (here illustrated
for p = 5):

processor 1 : w1(T0, T1) w1(T1, T2) w1(T2, T3) w1(T3, T4) w1(T4, T5)
processor 2 : w2(T1, T2) w2(T2, T3) w2(T3, T4) w2(T4, T5)
processor 3 : w3(T2, T3) w3(T3, T4) w3(T4, T5)
processor 4 : w4(T3, T4) w4(T4, T5)
processor 5 : w5(T4, T5)

(5.2)
Under the assumption that each of these exponential propagation steps requires the
same computation time τ̂2, processor number j requires τ̂2(p−j+1) units of time. This
unbalance can lead to idle processors. Fortunately, there are two simple strategies for
avoiding this problem.

1. Without processor communication (perturbed time grid) : Assume that pro-
cessor number 1 computes wp(t) and v1(t), and every other processor with
number j > 1 computes wj−1(t) and vj(t). Then for obtaining a balanced
work load, the intervals of the time partitioning should be chosen with in-
creasing length, except the last interval which should be the shortest among
all. Each component of the following equation equals the unknown total
parallel computation time τp

τ0
√
p1/q

T

Tp − Tp−1

Tp−1 − Tp−2

...
T1 − T0

+ τ2

p
1
...

p− 1

 = τp

1
1
...
1

 . (5.3)

Summation of all components yields an equation for τp (using T = Tp − T0),

τp =
τ0

√
p1/q

p
+

τ̂2(p+ 1)

2
,

which corresponds to (5.1) with τ2 = τ̂2(p+ 1)/2 and allows us to determine
the Tj recursively by (5.3).

2. With processor communication (equispaced time grid) : Assume that the
integrations for all vj(t) finish synchronously and that the number of pro-
cessors p is odd (for simplicity). In total there are p(p + 1)/2 exponential

12 M.J. GANDER AND S. GÜTTEL

propagation steps for the wj(t) to be computed. Instead of waiting for the
last processor with p propagation steps to finish, it is possible to distribute
(p+1)/2 exponential propagation steps to each of the processors if one allows
for larger time steps. For example, for p = 5 processors one could arrange
the computation in the following way:

processor 1 : w1(T0, T1) w1(T1, T2) w1(T2, T4)
processor 2 : w2(T1, T2) w2(T2, T3) w2(T3, T4)
processor 3 : w3(T2, T3) w3(T3, T4) w3(T4, T5)
processor 4 : w4(T3, T4) w4(T4, T5) w2(T3, T5)
processor 5 : w5(T4, T5) w1(T1, T3) w1(T3, T5)

Obviously there is need for communication of initial values from processor
1 → 5 and 2 → 4. Neglecting communication, the expected total parallel
computation time τp equals (5.1).

6. Incorporation of a mass matrix and problems of higher order. In this
section we briefly discuss various extensions of the paraexp algorithm.

1. Consider a problem

Mu′ = Ku(t) + g(t), u(0) = u0, (6.1)

which may arise from a finite-element discretization, in which caseM is called
a mass matrix. If M is invertible, we can formally define A := M−1K and ob-
tain a problem of the original form (1.1). Typically, mass-lumping techniques
are employed in explicit time-stepping methods to avoid the inversion of M .
If the restricted-denominator Arnoldi method described in Section 3 is used
for the exponential propagations, we have to solve linear systems anyway,
hence mass-lumping yields no computational savings. Note that we have

S = (I −A/σ)−1A = (M −K/σ)−1K, (6.2)

and if M and K have the same sparsity pattern, computing a factorization
of M −K/σ is just as expensive as computing a factorization of K alone.

2. If the matrix M is not invertible, (6.1) becomes a differential-algebraic equa-
tion and the solution u(t) is restricted to some manifold determined by
the nullspace of M . In this case M−1K is not defined, but the restricted-
denominator Arnoldi method is actually still applicable when S is employed
in the form (M − K/σ)−1K (and when σ is different from all generalized
eigenvalues λ satisfying Kx = λMx). Hence, our parallel algorithm can be
used to integrate differential-algebraic equations. In fact, the reformulation
(6.2) embodies a similar trick as is used for the derivation of time-stepping
methods for differential-algebraic equations Mu′ = ϕ(u): “assume that M is
regular, apply an ODE method to u′ = M−1ϕ(u) and multiply the resulting
formulas by M” (see [31, page 378]).

3. The treatment of higher-order linear problems, such as

Mu′′ +Du′(t) +Ku(t) = g(t), u(0) = u0, u′(0) = v0,

is trivially possible after rewriting the equation as a block-system of first
order, in this case

[
I O
O M

] [
u

v

]′
=

[
O I
−K −D

] [
u

v

]
+

[
0

g(t)

]
.

PARAEXP PARALLEL INTEGRATOR 13

Unfortunately, the problem size is doubled and possible symmetries in the
matrices K, D, or M are hard to exploit in this formulation. In the spe-
cial case where M is invertible and D = O, however, the solution of the
homogeneous problem is

u(t) = cos(t
√
M−1K)u0 + t sinc(t

√
M−1K)v0,

which is a problem of the original size and where the evaluation of the matrix
exponential has been replaced by two other functions of the same matrix
acting on different vectors. These could again be approximated from rational
Krylov spaces by the restricted-denominator Arnoldi method. As discussed
above, even if M is not invertible and D = O, that is we have a differential-
algebraic equation of order 2, the matrix M−K/σ is still invertible for almost
all σ ∈ C.

7. Numerical experiments. All computations were done in Matlab R2009b
on a Windows 7 notebook with Intel Core i5-450M processor running at 2.4 GHz.
For the finite-element discretization in the third example we have used Comsol 3.5
software with its Matlab integration (“Save as Model M-file”). All timings are
averages over 50 runs of our algorithm. Recall that the subproblems of Type 1 and 2
in paraexp are completely decoupled, hence it makes no difference whether we measure
their performance in a serial or parallel implementation.

7.1. A diffusive problem with oscillating source term. As a simple model
problem we consider the 1D heat equation

∂tu(t, x) = α∂xxu(t, x) + g(t, x) on x ∈ (0, 1),

u(t, 0) = u(t, 1) = 0,

u(0, x) = u0(x) = 4x(1− x),

g(t, x) = hmax{1− |c− x|/w, 0}, where c = .5 + (.5− w) sin(2πft).

The source term g(t, x) is a hat function centered at c with half-width w = 0.05 and
height h = 100α1/2, oscillating with frequency f . The finite-difference discretization
at N = 100 points xj = j/(N + 1) (j = 1, . . . , N) yields the initial-value problem
of the form (1.1), where A = α(N + 1)2 tridiag(1,−2, 1) ∈ RN×N and g(t) ∈ RN is
the spatial discretization of g(t, x). This problem is integrated over the time interval
[0, T = 1]. In Figure 7.1 we give a visualization of u(t, x). For the serial integration
we use the classical Runge–Kutta method of order q = 4 with a constant step size

∆t0 = min{5 · 10−5/α, 10−2/f},

where the first value is chosen to avoid instability of the time-stepping method caused
by the stiff linear term Au(t) and the second value is inverse proportional to the
frequency to capture the oscillations of g(t). As shown in Table 7.1, the absolute
error (∞-norm) of the serial integration is at most abstol = 5 · 10−4 for all diffusion
coefficients α ∈ {0.01, 0.1, 1} and frequencies f ∈ {1, 10, 100} of our test set. Note
that α and f determine the stiffness of the linear term Au(t) and the source term
g(t), respectively. The parameters in this problem are chosen such that the solutions
u(t, x) are of comparable magnitude over the whole time range [0, T] (cf. Figure 7.1),
so that comparing the absolute error tolerances is indeed meaningful. We have also
tabulated the serial integration times τ0 (as expected, these are roughly proportional
to 1/∆t0).

14 M.J. GANDER AND S. GÜTTEL

−1 −0.5 0 0.5 1
0

0.5

1

1.5
α = 0.01, f = 1

t = 0
t = 0.25
t = 0.5
t = 0.75
t = 1

−1 −0.5 0 0.5 1
0

0.5

1

1.5
α = 0.1, f = 10

t = 0
t = 0.25
t = 0.5
t = 0.75
t = 1

Fig. 7.1. Solutions u(t, x) of our heat equation example on the spatial domain [−1, 1], evaluated
at the employed time grid and for two different parameter combinations α and f .

For our paraexp algorithm we have partitioned the interval [0, T] into p = 4
subintervals of equal length ∆T = 1/p, and we have computed the solution u(t) at all
time points Tj = j∆T (j = 1, . . . , p). In view of Remark 2, we have chosen constant
Runge–Kutta time steps of size ∆t1 = ∆t0/p

1/q to achieve about the same absolute
error abstol as serial integration. In Table 7.1 we show the maximal computation
time max(τ1) for the subproblems of Type 1 among all processors.

For the subproblems of Type 2 we have used the restricted-denominator Arnoldi
method with shift σ = 5.3, in combination with the ∞-norm error estimate (3.3)
for an absolute accuracy of 10−4 (for more details on the selection of σ we refer to
van den Eshof & Hochbruck [20]) The time stepping was performed as illustrated
in the scheme (5.2). In Table 7.1 we list the maximal computation time max(τ2)
for all subproblems of Type 2 among all processors. Note that the computations of
Type 2 are relatively fast compared to the integration times τ1, and the computation
time is independent of the diffusion coefficient α (since the restricted-denominator
Arnoldi method can be viewed as an implicit integrator). We also remark that we
have not reused the Umfpack LU factorization of the matrix (I −∆T A/σ) among
all restricted-denominator Arnoldi iterations, because this is only possible (without
degradation of accuracy) if all time intervals have equal length ∆T .

The errors of the final solutions computed with our parallel algorithm are shown
in the second-last column of Table 7.1, and they are all below the errors for the serial
integration. This indicates that our choice for the step size ∆t1 is reasonable. As
an estimate for the parallel speedup and efficiency (neglecting the cost for the final
summation of the subproblems) we have used

speedup =
τ0

max(τ1 + τ2)
and efficiency =

speedup

p
.

Note how the parallel speedup of our algorithm increases with frequency f , because
smaller time steps are required to integrate the inhomogeneity accurately. Because
high parallel efficiencies of at least 50% are obtained for all nine tests, we have not
attempted to optimize the number of processors and the time partitioning.

PARAEXP PARALLEL INTEGRATOR 15

α f
serial parallel effi-

τ0 error max(τ1) max(τ2) error ciency
0.01 1 4.97e−02 3.01e−04 1.58e−02 9.30e−03 2.17e−04 50%
0.01 10 2.43e−01 4.14e−04 7.27e−02 9.28e−03 1.94e−04 74%
0.01 100 2.43e+00 1.73e−04 7.19e−01 9.26e−03 5.68e−05 83%
0.1 1 4.85e−01 2.24e−05 1.45e−01 9.31e−03 5.34e−06 79%
0.1 10 4.86e−01 1.03e−04 1.45e−01 9.32e−03 9.68e−05 79%
0.1 100 2.42e+00 1.29e−04 7.21e−01 9.24e−03 7.66e−05 83%
1 1 4.86e+00 7.65e−08 1.45e+00 9.34e−03 1.78e−08 83%
1 10 4.85e+00 8.15e−06 1.45e+00 9.33e−03 5.40e−07 83%
1 100 4.85e+00 3.26e−05 1.44e+00 9.34e−03 2.02e−05 84%

Table 7.1

Serial and parallel performance with p = 4 processors for the 1D heat equation with oscillating
source term when the diffusion coefficient α and the source frequency f are varied. The serial
integrator is classical Runge–Kutta, and the exponential propagator is the restricted-denominator
Arnoldi method.

7.2. A wave problem. We consider the following wave equation

∂ttu(t, x) = α2∂xxu(t, x) + g(t, x) on x ∈ (0, 1),

u(t, 0) = u(t, 1) = 0,

u(0, x) = 0,

u′(0, x) = 0,

g(t, x) = hmax{1− |c− x|/w, 0}, where c = .5 + (.5 − w) sin(2πft),

with the parameters {h, c, w} chosen as in the previous example. We discretize this
problem with N = 100 interior finite-difference nodes, resulting in a 200×200 problem
of the form (1.1) with

A =

[
O I
D O

]
and g(t) =

[
0

g̃(t)

]
,

where D = α2(N + 1)2 tridiag(1,−2, 1) ∈ RN×N and g̃(t) ∈ RN is the spatial dis-
cretization of g(t, x).

This problem is integrated over the time interval [0, T = 1]. For the serial inte-
gration we use the classical Runge–Kutta method of order q = 4 with a constant step
size

∆t0 = min{5 · 10−4/α, 1.5 · 10−3/f},

(note that, in contrast to the previous example, the spectral interval of A is now
on the imaginary axis and increases like α). As shown in Table 7.2, the absolute
error (∞-norm) of the serial integration is at most abstol = 5 · 10−4 for all squared
propagation speeds α2 ∈ {0.1, 1, 10} and frequencies f ∈ {1, 5, 25} of our test set.
Note that these parameters determine the stiffness of the linear term Au(t) and the
source term g(t), respectively. We have also tabulated the serial integration times τ0
(as expected, these are roughly proportional to 1/∆t0).

For our paraexp algorithm we have partitioned the interval [0, T] into p = 8
subintervals of equal length ∆T = 1/p, and we have computed the solution u(t) at
all time points Tj = j∆T (j = 1, . . . , p). As in the previous example, we have chosen

16 M.J. GANDER AND S. GÜTTEL

α2 f
serial parallel effi-

τ0 error max(τ1) max(τ2) error ciency
0.1 1 2.54e−01 3.64e−04 4.04e−02 1.48e−02 2.64e−04 58%
0.1 5 1.20e+00 1.31e−04 1.99e−01 1.39e−02 1.47e−04 71%
0.1 25 6.03e+00 4.70e−05 9.83e−01 1.38e−02 7.61e−05 76%
1 1 7.30e−01 1.56e−04 1.19e−01 2.70e−02 1.02e−04 63%
1 5 1.21e+00 4.09e−04 1.97e−01 2.70e−02 3.33e−04 68%
1 25 6.08e+00 1.76e−04 9.85e−01 2.68e−02 1.15e−04 75%
10 1 2.34e+00 6.12e−05 3.75e−01 6.31e−02 2.57e−05 67%
10 5 2.31e+00 4.27e−04 3.73e−01 6.29e−02 2.40e−04 66%
10 25 6.09e+00 4.98e−04 9.82e−01 6.22e−02 3.01e−04 73%

Table 7.2

Serial and parallel performance with p = 8 processors for the 1D wave equation with oscillating
source term when the propagation speed α and the source frequency f are varied. The serial integrator
is classical Runge–Kutta, and the exponential propagator is the polynomial Chebyshev method.

constant Runge–Kutta time steps of size ∆t1 = ∆t0/p
1/q. In Table 7.2 we show

the maximal computation time max(τ1) for the subproblems of Type 1 among all
processors.

For the subproblems of Type 2 we have used a polynomial Chebyshev expansion
of exp(tz) on the spectral interval of A, which we have bounded by

Λ(A) ⊂ 2α(N + 1) · [−i,+i].

The coefficients βj of the Chebyshev expansion were computed via FFT up to or-

der 1000 and then truncated to an index n such that
∑1000

j=n |βj | < 10−5. In Table 7.2
we list the maximal computation time max(τ2) for all subproblems of Type 2 among
all processors. Note how the computations of Type 2 are relatively fast compared
to the integration times τ1, but now the computation time τ2 is increasing with the
propagation speed α (as the spectral interval of A extends increasingly far along the
imaginary axis). Still, even with as many as 8 processors, very satisfactory speedups
are achieved. In particular, the parallel efficiency of paraexp is above 50% in all test
cases, and therefore exceeds the largest possible parallel efficiency of the algorithm
described in [21] when more than 1 iteration is required (as is typically the case in
practice).

7.3. An advection-dominated problem. We now consider the 2D advection–
diffusion equation

∂tu =
1

Pe
∆u− a · ∇u in Ω = (−1, 1)× (0, 1),

u = 1− tanh(Pe) on Γ0,

u = c(1 + tanh((2x+ 1)Pe)) with c = max{0, cos(2πft)}1/3 on Γin,

∂u

∂n
= 0 on Γout,

u(x, 0) = u0(x) in Ω,

PARAEXP PARALLEL INTEGRATOR 17

which is a popular benchmark for discretizations of advection-dominated problems
(cf. [52]). The advective field is given by

a(x, y) =

[
2y(1− x2)
−2x(1− y2)

]
, (x, y) ∈ Ω,

and the boundary Γ = ∂Ω is divided into the inflow boundary Γin := [−1, 0] × {0}
(the inflow is turned on and off periodically with frequency f), the outflow boundary
Γout := [0, 1]× {0} and the remaining portion Γ0, see Figure 7.2. The Péclet number
Pe is a non-dimensional parameter describing the strength of advection relative to
diffusion and therefore also how far the discrete operators are from symmetric. The
finite-element space discretization of the advection–diffusion operator with Pe = 100
yields the linear initial-value problem

Mu′(t) = Ku(t) + g(t), u(0) = u0,

with nonsymmetric matrices K, M ∈ R
N×N of size N = 4056 and a source term

g(t) ∈ RN resulting from the inflow boundary condition, for which we have set the
frequency f = 1.5.

The serial integration of this problem was performed by Matlab’s adaptive in-
tegrator ode15s with an absolute error tolerance abstol = 10−3. The computation
time τ0 required for this integration of this problem over the interval [0, T = 2] is
shown in Table 7.3. We have provided the integrator with the exact Jacobian K and
the constant mass matrix M . In this example we test the performance of our paraexp
algorithm for an equispaced and an optimized time grid consisting of p = 8 subinter-
vals. The time grid optimization was done by an initial serial integration with relaxed
absolute accuracy of 10−1, which required about 7 seconds.

The minimal and maximal computation times τ1 for the integrations of Type 1
in paraexp are compared in Table 7.3. Note that there is a large gap between min(τ1)
and max(τ1) for the equispaced time grid, which is caused by the fact that the source
term is only active on some of the intervals of the time partitioning. This causes a
large variation in computation time required by the adaptive time-stepping method,
and leads to idle processors.

For the exponential propagations we have used the restricted-denominator Arnoldi
method with rather arbitrary shift ξ = 50, and we require that the error estimate
(3.3) is below 10−4. In average, one of these propagations takes as few as mean(τ2) =
0.3 seconds. Although the optimized time grid obviously results in some improvement
of the parallel efficiency, the gap between min(τ1) and max(τ1) could still be improved
by also taking into account the scheduling of Type 2 propagations. However, a parallel
efficiency above 50% with 8 processors seems to be quite satisfactory already.

8. Summary. We have described and analyzed a new method for the parallel
integration of linear initial-value problems, called paraexp. Paraexp performs partic-
ularly well if the inhomogeneity is difficult enough to integrate, and it allows one to
reuse any existing serial integration method. For achieving a high parallel speedup
it is essential that the exponential propagations are fast compared to the serial in-
tegrations, and this can be achieved by using a near-optimal Krylov method for the
matrix exponential. We have shown that the parallel speedup also depends on the
order of the serial integrator. In our numerical experiments we have typically achieved
parallel efficiencies above 50% with a modest number of processors. This is above the
maximal achievable parallel efficiency of the (Krylov-enhanced) parareal algorithm, in

18 M.J. GANDER AND S. GÜTTEL

Fig. 7.2. Advective field (above) and solution at time t = 1.5 (below) of the advection–diffusion
problem with diffusion coefficient Pe−1 = 0.01 and frequency f = 1.5.

equispaced time with load balancing
τ0 24.1 s (23.7 + 7) s

serial error 1.2e−03 8.3e−04
min(τ1) 2.6 s 2.6 s
max(τ1) 7.7 s 4.9 s
mean(τ2) 0.3 s 0.3 s

parallel err. 4.7e−04 3.1e−04
efficiency 36.9% 58.3%

Table 7.3

Serial and parallel performance with p = 8 processors for the advection–diffusion equation. The
serial integrator is ode15s, the exponential propagator is the restricted-denominator Arnoldi method.
For computing the parallel efficiency, we have added the 7 seconds of integration time required for
computing an optimized time grid to the computation time of the serial integrator.

particular the algorithm in [21] for linear initial-value problems, under the condition
that these algorithms require more than 1 iteration (which is typically the case in prac-
tice). Note that paraexp is non-iterative and requires a single communication between
processors at the end of the algorithm only, thereby minimizing communication.

We would like to add that it is straightforward to make use of additional paral-
lelism that may be available within the Type 1 and 2 integrators of paraexp. Since the
parallel efficiency of paraexp degrades with the number of processors (though moder-
ately), additional parallel efficiency may be available by combining different levels of
parallelism. This will be subject of future work.

PARAEXP PARALLEL INTEGRATOR 19

An interesting class of linear problems involves slowly varying matrices, i.e.,

M(t)u′(t) = K(t)u(t) + g(t), u(0) = u0, t ∈ [0, T].

There exist exponential integrators for such problems (Magnus-type integrators, see
[35]), and it should be possible to use these methods as Type 2 integrators in paraexp.
The evaluation of the efficiency of this approach is subject of ongoing research.

Acknowledgments. We are grateful to the two anonymous referees for their
comments and suggestions that improved this paper considerably. We would like to
thank Marlis Hochbruck and Ernst Hairer for useful discussions. We are also grateful
to Kurt Janssens for his comments.

REFERENCES

[1] M. Afanasjew, M. Eiermann, O.G. Ernst and S. Güttel, Implementation of a restarted
Krylov subspace method for the evaluation of matrix functions, Linear Algebra Appl., 429
(2008), pp. 2293–2314.

[2] G. Bal, On the Convergence and the Stability of the Parareal Algorithm to Solve Partial Differ-
ential Equations, Domain Decomposition Methods in Science and Engineering XI, Lecture
Notes in Computational Science and Engineering 40, Springer-Verlag, 2005, pp. 425–432.

[3] L. Banjai and D. Petersheim, Parallel multistep methods for linear evolution problems, Tech-
nical Report 26, MPI for Mathematics in the Sciences, Leipzig, 2009.

[4] B. Beckermann and L. Reichel, Error estimation and evaluation of matrix functions via the
Faber transform, SIAM J. Numer. Anal., 47 (2009), pp. 3849–3883.

[5] L. Bergamaschi and M. Vianello, Efficient computation of the exponential operator for
large, sparse, symmetric matrices, Numer. Linear Algebra Appl., 7 (2000), pp. 27–45.

[6] H. Berland, B. Skaflestad and W.M. Wright EXPINT–A MATLAB package for expo-
nential integrators, ACM Trans. Math. Software, 33 (2007), pp. 1–17.

[7] D. Bini, Parallel solution of certain Toeplitz linear systems, SIAM J. Comput., 13 (1984), pp.
268–276.

[8] K. Burrage, Parallel and Sequential Methods for Ordinary Differential Equations, Oxford
University Press, USA, 1995.

[9] M. Caliari, M. Vianello and L. Bergamaschi, Interpolating discrete advection–diffusion
propagators at Leja sequences, J. Comput. Appl. Math., 172 (2004), pp. 79–99.

[10] W. J. Cody, G. Meinardus and R. S. Varga, Chebyshev rational approximations to e−x

in [0,+∞) and applications to heat-conduction problems, J. Approx. Theory, 2 (1969),
pp. 50–65.

[11] M. Crouzeix, Numerical range and functional calculus in Hilbert space, J. Funct. Anal., 244
(2007), pp. 668–690.

[12] A. J. Davies, J. Mushtaq and L. E. Radford, The numerical Laplace transform solution
method on a distributed memory architecture, Adv. High Perform. Comput., 3 (1997),
pp. 245–254.

[13] V.L. Druskin and L.A. Knizhnerman, Two polynomial methods of calculating functions of
symmetric matrices, USSR Comput. Maths. Math. Phys., 29 (1989), pp. 112–121.

[14] V.L. Druskin and L.A. Knizhnerman, Extended Krylov subspaces: Approximation of the
matrix square root and related functions, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 775–
771.

[15] V. Druskin, L. Knizhnerman and M. Zaslavsky, Solution of large scale evolutionary prob-
lems using rational Krylov subspaces with optimized shifts, SIAM J. Sci. Comp., 31 (2009),
pp. 3760–3780.

[16] V. Druskin, C. Lieberman and M. Zaslavsky, On adaptive choice of shifts in rational Krylov
subspace reduction of evolutionary problems, SIAM J. Sci. Comput., 32 (2010), pp. 2485–
2496.

[17] M. Eiermann and O.G. Ernst, A restarted Krylov subspace method for the evaluation of
matrix functions, SIAM J. Numer. Anal., 44 (2006), pp. 2481–2504.

[18] H.C. Elman, Iterative methods for large, sparse, nonsymmetric systems of linear equations,
Ph.D. thesis, Department of Computer Science, Yale University, New Haven, CT, 1982.

[19] T. Ericsson, Computing functions of matrices using Krylov subspace methods, Technical Re-
port, Chalmers University of Technology, Department of Computer Science, Göteborg,
Sweden, 1990.

20 M.J. GANDER AND S. GÜTTEL

[20] J. van den Eshof and M. Hochbruck, Preconditioning Lanczos approximations to the matrix
exponential, SIAM J. Sci. Comput., 27 (2006), pp. 1438–1457.

[21] C. Farhat, J. Cortial, C. Dastillung and H. Bavestrello, Time-parallel implicit integra-
tors for the near-real-time prediction of linear structural dynamic responses, Int. J. Numer.
Meth. Engng., 67 (2006), pp. 697–724.

[22] E. Gallopoulos and Y. Saad, On the parallel solution of parabolic equations, Proc. 1989
ACM Internat. Conf. on Supercomputing, Heraklion, Greece, 1989, pp. 17–28.

[23] M.J. Gander and E. Hairer, Nonlinear convergence analysis for the parareal algorithm,
Domain Decomposition Methods in Science and Engineering XVII, Lecture Notes in Com-
putational Science and Engineering 60, Springer-Verlag, 2007, pp. 45–56.

[24] M.J. Gander and M. Petcu, Analysis of a Krylov subspace enhanced parareal algorithm,
ESAIM Proc., 25 (2008), pp. 114–129.

[25] M. Gander and S. Vandewalle, On the superlinear and linear convergence of the parareal
algorithm, Domain Decomposition Methods in Science and Engineering XVI, Lecture Notes
in Computational Science and Engineering 55, Springer-Verlag, 2007, pp. 291–298.

[26] G.H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, USA, 1996.

[27] I. P. Gavrilyuk and V.L. Makarov, Exponentially convergent parallel discretization methods
for the first order evolution equations, Comput. Meth. Appl. Math., 1 (2001), pp. 333–355.

[28] I. P. Gavrilyuk and V. L. Makarov, Exponentially convergent algorithms for the operator ex-
ponential with applications to inhomogeneous problems in Banach spaces, SIAM J. Numer.
Anal., 43 (2005), pp. 2144–2171.

[29] S. Güttel, Rational Krylov Methods for Operator Functions, Ph.D. Thesis, Technische Uni-
versität Bergakademie Freiberg, Germany, 2010.

[30] S. Güttel, Rational Krylov approximation of matrix functions: Numerical methods and opti-
mal pole selection, To appear in GAMM Mitteilungen, 2013.

[31] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-
Algebraic Problems, Springer-Verlag, Second revised edition, 1996.

[32] N. J. Higham, Functions of Matrices. Theory and Computation, SIAM, Philadelphia, USA,
2008.

[33] M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential
operator, SIAM J. Numer. Anal., 34 (1997), pp. 1911–1925.

[34] M. Hochbruck and A. Ostermann, Explicit exponential Runge–Kutta methods for semilinear
parabolic problems, SIAM J. Numer. Anal., 43 (2005), pp. 1069–1090.

[35] M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numerica, 2010, pp. 209–
286.

[36] W. Huisinga, L. Pesce, R. Kosloff and P. Saalfrank, Faber and Newton polynomial inte-
grators for open-system density matrix propagation, J. Chem. Phys., 110 (1999), pp. 5538–
5547.

[37] L.A. Knizhnerman, Calculation of functions of unsymmetric matrices using Arnoldi’s method,
USSR Comput. Maths. Math. Phys., 31 (1991), pp. 1–9.

[38] J.-L. Lions and Y. Maday and G. Turinici, A parareal in time discretization of PDE’s, C.
R. Acad. Sci. Paris, 332 (2001), pp. 661–668.

[39] M. López-Fernández, C. Lubich, C. Palencia and A. Schädle, Fast Runge-Kutta approx-
imation of inhomogeneous parabolic equations, Numer. Math., 102 (2005), pp. 277–291.

[40] M.L. Minion, A Hybrid Parareal Spectral Deferred Corrections Method, Comm. App. Math.
and Comp. Sci., 5 (2011), pp. 265–301.

[41] C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later, SIAM Rev., 45 (2003), pp. 3–49.

[42] I. Moret and P. Novati, The computation of functions of matrices by truncated Faber series,
Numer. Funct. Anal. Optim., 22 (2001), pp. 697–719.

[43] I. Moret and P. Novati, RD-rational approximations of the matrix exponential, BIT, 44
(2004), pp. 595–615.

[44] D.L. Powers and R. Jeltsch, Problem 74-5: On the norm of a matrix exponential, SIAM
Rev., 17 (1975), pp. 174–176.

[45] D. Ruprecht and R. Krause, Explicit parallel-in-time integration of a linear acoustic-
advection system, ICS-Preprint No. 2011-05, Lugano, 2011.

[46] A. Ruhe, Rational Krylov sequence methods for eigenvalue computation, Linear Algebra Appl.,
58 (1984), pp. 391–405.

[47] A. Ruhe, Rational Krylov algorithms for nonsymmetric eigenvalue problems, IMA Vol. Math.
Appl., 60 (1994), pp. 149–164.

[48] Y. Saad, Analysis of some Krylov subspace approximations to the exponential operator, SIAM

PARAEXP PARALLEL INTEGRATOR 21

J. Numer. Anal., 29 (1992), pp. 209–228.
[49] T. Schmelzer and L.N. Trefethen, Evaluating matrix functions for exponential integra-

tors via Carathéodory–Fejér approximation and contour integrals, Electron. Trans. Numer.
Anal., 29 (2007), pp. 1–18.

[50] D. Sheen, I. H. Sloan and V. Thomée, A parallel method for time-discretization of parabolic
problems based on contour integral representation and quadrature, Mathematics of Com-
putation, 69 (1999), pp. 177–195.

[51] D. Sheen, I.H. Sloan and V. Thomée, A parallel method for time discretization of parabolic
equations based on Laplace transformation and quadrature, IMA Journal of Numerical
Analysis, 23 (2003), pp. 269–299.

[52] R.M. Smith and A.G. Hutton, The numerical treatment of advection: A performance com-
parison of current methods, Numer. Heat Transfer, 5 (1982), pp. 439–461.

[53] A. Talbot, The accurate numerical inversion of Laplace transforms, J. Inst. Math. Appl., 23
(1979), pp. 97–120.

[54] L.N. Trefethen and M. Embree, Spectra And Pseudospectra: The Behavior of Nonnormal
Matrices And Operators, Princeton University Press, 2005.

[55] L.N. Trefethen, J.A. C. Weideman and T. Schmelzer, Talbot quadratures and rational
approximations, BIT, 46 (2006), pp. 653–670.

[56] C. Van Loan, The sensitivity of the matrix exponential, SIAM J. Numer. Anal., 14 (1977),
pp. 971–981.

