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TIME-INCONSISTENT STOCHASTIC LINEAR-QUADRATIC
CONTROL

YING HU*, HANQING JINT, AND XUN YU ZHOU?!

Abstract. In this paper, we formulate a general time-inconsistent stochastic linear—quadratic
(LQ) control problem. The time-inconsistency arises from the presence of a quadratic term of the
expected state as well as a state-dependent term in the objective functional. We define an equilibrium,
instead of optimal, solution within the class of open-loop controls, and derive a sufficient condition
for equilibrium controls via a flow of forward—backward stochastic differential equations. When the
state is one dimensional and the coefficients in the problem are all deterministic, we find an explicit
equilibrium control. As an application, we then consider a mean-variance portfolio selection model
in a complete financial market where the risk-free rate is a deterministic function of time but all the
other market parameters are possibly stochastic processes. Applying the general sufficient condition,
we obtain explicit equilibrium strategies when the risk premium is both deterministic and stochastic.

Key words. time inconsistency, stochastic LQ control, equilibrium control, forward-backward
stochastic differential equation, mean—variance portfolio selection.
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1. Introduction. Stochastic control is now a mature and well established sub-
ject of study [8, [9]. Though not explicitly stated at most of the times, a standing
assumption in the study of stochastic control is the time consistency, a fundamental
property of conditional expectation with respect to a progressive filtration. As a re-
sult, an optimal control viewed from today will remain optimal viewed from tomorrow.
Time-consistency provides the theoretical foundation of the dynamic programming ap-
proach including the resulting HJB equation, which is in turn a pillar of the modern
stochastic control theory.

However, there are overwhelmingly more time-inconsistent problems than their
time-consistent counterparts. Hyperbolic discounting [I, [14] and continuous-time
mean—variance portfolio selection model [20] 2] provide two well-known examples of
time-inconsistency. Probability distortion, as in behavioral finance models [I1], is yet
another distinctive source of time-inconsistency.

One way to get around the time-inconsistency issue is to consider only pre-
committed controls (i.e., the controls are optimal only when viewed at the initial
time); see, e.g., [20] and all the follow-up works to date on the Markowitz problem,
as well as [I1] on the behavioral portfolio choice problem. While these controls are of
practical and theoretical value, they have not really addressed the time-inconsistency
nor provided solutions in a dynamic sense.

Motivated by practical applications especially in mathematical finance, time-
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inconsistent control problems have recently attracted considerable research interest
and efforts attempting to seek equilibrium, instead of optimal, controls. At a concep-
tual level, the idea is that a decision the controller makes at every instant of time is
considered as a game against all the decisions the future incarnations of the controller
are going to make. An “equilibrium” control is therefore one such that any deviation
from it at any time instant will be worse off. Taking this game perspective, Eke-
land and Lazrak [6] approach the (deterministic) time-inconsistent optimal control,
and Bjork and Murgoci [4] and Bjork, Murgoci and Zhou [5] extend the idea to the
stochastic setting, derive an (albeit very complicated) HIB equation, and apply the
theory to a dynamic Markowitz problem. Yong [I8] investigate a time-inconsistent de-
terministic linear—quadratic control problem and derive equilibrium controls via some
integral equations. However, study of time-inconsistent control is, in general, still in
its infancy.

In this paper we formulate a general stochastic linear—quadratic (LQ) control
problem, where the objective functional includes both a quadratic term of the expected
state and a state-dependent term. These non-standard terms each introduces time-
inconsistency into the problem in somewhat different ways. Different from most of the
existing literature [0l [4, [5 [I8] where an equilibrium control is defined within the class
of feedback controls, we define our equilibrium via open-loop controls[] Then we derive
a general sufficient condition for equilibriums through a system of forward—backward
stochastic differential equations (FBSDEs). A intriguing feature of these FBSDEs is
that a time parameter is involved; so these form a flow of FBSDEs. When the state
process is scalar valued and all the coefficients are deterministic functions of time,
we are able to reduce this flow of FBSDESs into several Riccati-like ODEs, and hence
obtain explicitly an equilibrium control, which turns out to be a linear feedback.

In the latter part of the paper, we study a continuous-time mean—variance port-
folio selection model with state dependent trade-off between mean and variance. A
similar problem was first considered in [5] in the framework of feedback controls and
its solution derived via a very complicated (generalized) HJB equation. Here we allow
random market parameters (hence the model and approach of [5] will not work) and
consider open-loop equilibriums. Applying the general sufficient condition and work-
ing through a delicate analysis, we will solve the corresponding FBSDEs and obtain
equilibrium strategies. Again, these strategies happen to be linear feedbacks. We
also compare our strategies with the ones in [5] when all the market coefficients are
deterministic, and find that they are generally different. This suggests that how we
define equilibrium controls is critical in studying time inconsistent control problems.

The remainder of the paper is organized as follows. The next section is devoted to
the formulation of our problem and the definition of equilibrium control. In Section
Bl we apply the spike variation technique to derive a flow of FBSDEs and a sufficient
condition of equilibrium controls. Based on this general result, we solve in Section E
the case when the state is one dimensional and all the coefficients are deterministic.
In Section Bl we formulate a continuous-time mean—variance portfolio selection model
which is a special case of the general LQ model investigated, and derive explicitly its
solution. Finally, some concluding remarks are given in Section 6.

2. Problem Setting. Let 7' > 0 be the end of a finite time horizon and
(Wi)o<i<r = (W, -+, Wo)o<i<r a d-dimensional Brownian motion on a probability

1Recall the class of feedback controls is a subset of that of open-loop ones. In standard (time-
consistent) stochastic control theory, an optimal control is usually defined in the whole class of

open-loops [8] [19].
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space (2, F,P). Denote by (F;) the augmented filtration generated by (W;).
Throughout this paper, we use the following notation with [ being a generic
integer:

St the set of symmetric I x [ real matrices.
L%(Q; R'):  the set of random variables ¢ : (Q,G) — (R, B(R"))
with E [|£[?] < +o0.
LF (S RY):  the set of essentially bounded random variables
€:(Q,6) = (RY, B(RY)).
L?j(t, T; RY):  the set of {Gs} s, m-adapted processes
f=Afoit <s<Thwith B[ [£2ds| < oo
LE(t, T, R!):  the set of essentially bounded {Gs}sept, m-adapted processes.
L%(Q; C(t, T; RY)):  the set of continuous {G;} e, 71-adapted processes
f={fs:t <5 ST} with E [sup,cqoq Il | < oo

We will often use vectors and matrices in this paper, where all vectors are column
vectors. For a matrix M, define
M': Transpose of a matrix M.

M| = />, ; mfj: Frobenius norm of a matrix M.

For a square matrix M, we define S(M) = £(M + M’) as the symmetrization of M,
and tr(M) =), M;; as the trace of M. For a symmetric matrix M, we write M > 0
if M is positive semi-definite, and M > 0 if M is positive definite.

We consider a continuous-time, n-dimensional non-homogeneous linear controlled
system

d
dX, = [A; X + Blus + byds + Y [CIX, + Dlus+ o)]dWi; Xo=mo.  (2.1)

j=1

Here A is a bounded deterministic function on [0, 7] with value in R™*™. The other pa-
rameters B, C7, D7 are all essentially bounded adapted processes on [0, T'] with values
in R Rxn R™XU yespectively; b and o7 are stochastic processes in L%(0,T;R™).
The process u € L%(0, T; R!) is the control, and X is the state process valued in R".
Finally zo € R" is the initial state. It is obvious that for any control u € L2(0, T; R?),
there exists a unique solution X € L%(Q; C(0, T'; R™)).

As time evolves, we need to consider the controlled system starting from time
t € [0,T] and state z; € L%, (Q; R™):

d
dX, = [A X, + Blus +bJJds + Y [CIX, + Diug + ol)ldWl; Xy =z (22)

J=1

For any control u € L%(t, T;R!), there exists a unique solution X**+% € LZ(Q; C(t, T; R™)).
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At any time ¢ with the system state X; = x4, our aim is to minimize

T
J(tvxt; u) é %Et/ [<QSXSa Xs> + <RSU57US>]dS + %EtKGXTvXTH
t

— P (X7 B [Xa]) — (e + o B [ X)) (2.3)

over u € L%(t, T; R'), where X = X% and E,[] = E[/|F]. Here Q and R are
both given essentially bounded adapted processes on [0,7T] with values in S™ and
St respectively, G, h, i1, 2 are all constants in S, S, R"*™ and R™ respectively.
Throughout this paper, we assume that @@ = 0, R > 0 a.s.,a.e., and G = 0.

The first two terms in the cost functional ([Z3]) are standard in a classical LQ
control problem, whereas the last two are unconventional. Specifically, the term
— 3 (hE[X7], B, [X7]) is motivated by the variance term in a mean-variance portfolio
choice model [9] 20], and the last term, —(ui2¢ + po, B¢ [X7]), which depends on the
state x; at time ¢, stems from a state-dependent utility function in economics [5].

Each of these two terms introduces time-inconsistency of the underlying model
in somewhat different ways. With the time-inconsistency, the notion “optimality”
needs to be defined in an appropriate way. Here we adopt the concept of equilibrium
solution, which is, for any ¢ € [0,7T'), optimal only for spike variation in an infinitesimal
way.

Given a control u*. For any t € [0,T), e > 0 and v € L% (©; R'), define
t,e

ug® =ul +vlepiqe), s€LT] (2.4)

DEFINITION 2.1. Let u* € L%(0, T; R!) be a given control and X* be the state
process corresponding to u*. The control u* is called an equilibrium if

i LB AT U = It X7 )
el0 £

>0

)

where u= is defined by (24), for any t € [0,T) and v € L% (€ RY).

Notice that an equilibrium control here is defined in the class of open-loop controls,
which is different from the one in [2], [4], [5],[6] and [7] where only feedback controls
are considered. In our definition, the perturbation of the control in [t, ¢ + ) will
not change the control process in [t 4 €, T], whereas it is not the case with feedback
controls.

In this paper, we will characterize equilibriums in general case and identify them
in some special cases including that of the mean—variance portfolio selection.

3. Sufficient Condition of Equilibrium Controls. In this section we present
a general sufficient condition for equilibriums. We derive this condition by the second-
order expansion in the spike variation, in the same spirit of proving the stochastic
Pontryagin’s maximum principle [16] [19].

Let u* be a fixed control and X* be the corresponding state process. For any
t € [0,T), define in the time interval [t,T] the processes (p(:;t), (k?(:;t))j=1.... a) €
L34, T5RY) x (L3 (8, T R7) and (P(1), (K7 (58)) o1, a) € L3 (8, T3 8" x (L2 (¢, T:S™))¢
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as the solutions to the following equations:

dp(s; t) = —[ALp(s; t) + X5, (CI)'KI (s; 1) + QX ]ds
+ 00 K (s5t)dW, s € [t,T], (3.1)
p(T5t) = GXJ — hE¢ [X7] — pa Xy — po;
dP(s;1) = _{A;p(s;t) + P(s;)Ay
+ X [(CE) P(sit)CE + (CIY K (551) + K (5:)Ci] + Qs fds
+ 30 K (s;t)dWY, s € [t, T,
P(T:t) = G.

(3.2)

Note that for each fixed ¢ € [0,T], the above equations are backward stochastic
differential equations (BSDEs). So these essentially form a flow of BSDEs. From the
assumption that @ = 0 and G * 0, it follows that P(s;t) = 0.

PROPOSITION 3.1. For any t € [0,T), e >0 and v € L% (Q; RY), define u"=" by

(24). Then
t+e
J(t, X[ ube) — J(t, X[ u*) = Et/t {(A(s;t), v) + %(H(s; t)v, v}} ds + 0(€3.3)

where A(s;t) 2 Bgp(s; t)—l—Z?:l(Dg)’kj(s; t)+Rsu’ and H(s;t) 2 Rs—i-Z;l:l(Dg)’P(s; t)DI.

Proof. Let X%V be the state process corresponding to u>$Y. Then by the
standard perturbation approach (see, e.g., [19]), we have

Xoo0 = X3+ Y20+ 2050, s e [T,

where Y = Y*5? and Z = Z%% 7 satisfy

dYs = AsYsds + Zj:l[cgifs + ng]—se[t,t—i-a)]dwsjv s € [th]a

dZ; = [AsZs + Bivlygpppie)lds + S0 C1Z,dWY, s € [t,T],
Z; = 0.

Moreover

E:[Ys] =0, E, =0(e), B | sup |Z,*| = O(e?).

se(t,T]

sup |Y;[?
set,T]
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By these estimates, we can calculate
2[‘](ta X;Eka ut,&,v) - J(tv Xt*a U*)]
T
= Et/ [(Qs(2X: + Yo+ Z),Ys + Zs) + (Rs(2u} +v),0) Lyl 40)| ds
t

+2IE; [<GX;, Yr + ZT>] + E; [<G(YT + ZT), Yr + ZT>]
—2hEy [X5] + 1 X[ + po, By [Yr + Zr]) — (hEy Y7 + Z7] By [Y + Z7))

T
_ Et/ [(Qu2XT + Y+ Z2), Y + Z2) + (Ra(2u% + ), 0)Lycipisn] ds
t
+E; [2<GX3: — hEt[X;«] — /LlXt* — 2, Yr + ZT> + <G(YT + ZT), Yr + ZT>] + 0(8).

Recalling that (p(;t),k(-;t)) and (P(:t), K(-;t)) solve respectively (BI) and
B2), we have

E: [(GX7 — KE¢ [X}] — X} — iz, Yo + Zr)

T
~E, / [(p(s:8), Au(Ya + Z2) + BioLocpine))
t

M&

—(Aip(sit) + > (CI'F (sit) + Qs X, Yy + Z)
Jj=1
d . . .
+ Z<kj(3? t), CL(Ys + Zs) + Divlsepriye)) bds
=1

T d
— / (—Qs X1, Ys+ Zs) 4+ (Bsp(s;t) —I—Z DJ kJ (s;t) vlse[tt_,_g)}]d'
¢

j=1
and

E,[(G(Yr + Zr),Yr + Z7)]

T d
= Et/ —(Qs(Ys + Zs),Ys + Zs) + Z (5;1)Dsv,v)Lsept 14¢) | ds + o(e).
0 e

This proves (3.3). O

It follows from R > 0 and P(s;t) = 0 that H(s;t) = 0. In view of B3], a
sufficient condition for an equilibrium is

T
Et/ [A(s;t)|ds < 400, HﬁlEt [A(s;t)] =0, as., Vt € [0,T]. (3.4)
t S
Under some condition, the second equality in (B4 is ensured by

d
Ryuj + Bip(t:t) + Y _(D})'k (t:;t) = 0, ass., Vt € [0, 7). (3.5)
j=1

The following is the main general result for the time-inconsistent stochastic LQ
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control.
THEOREM 3.2. If the following system of stochastic differential equations

dX: =[As X+ Blu® + bslds + Z?zl[Cng* + Diut +od]dW?, s € [0,T),
XE; = 2o,
d . . * d . .
dp(sit) = —[Aip(sit) + 3251 (C)'K (i) + Qs X]ds + > 25 K (s;t)dWY, s € [t,T7,
p(Tst) = GX7 — hEy [XT] — m X7 — po
(3.6)
admits a solution (u*, X* p, k), for any t € [0,T), such that A(-;t) 2 Bp(t) +
Z;l:l(D.J)’k(-;t)j + R.u? satisfies condition (34), and u* € L%(0,T;R!), then u* is
an equilibrium control.

Proof. Given (u*, X* p, k) satisfying the conditions in this theorem, at any time
t, for any v € L%—t (;RY), define A and H as in Proposition Bl Then

I, Xisut) = I X)L B S (A1), 0) + 5 (H(s:t)v,0) } ds

lim
el0 g el0 g
t+
© b J; (B [A(s;t)] ,v)ds
~ elo €
>0,

proving the result. O

Theorem involves the existence of solutions to a flow of FBSDEs along with
other conditions. Proving the general existence remains an outstanding open problem.
In the rest of this paper we will focus on the case when n = 1. This case is important
especially in financial applications, as will be demonstrated by the mean-variance
portfolio selection model.

When n = 1, the state process X is a scalar-valued process evolving by the
dynamics
dXs = [AsXs + Blus + bs|ds + [Cs X5 + Dsus + o5)'dWs;  Xo = o, (3.7)

where A is a bounded deterministic scalar function on [0,7]. The other parameters
B,C, D are all essentially bounded and F;-adapted processes on [0, T] with values in
R!, RY, RIXL respectively. Moreover, b € L%(0,T;R) and o € L%(0,T; R?).

In this case, the two adjoint equations for the equilibrium become

dp(s;t) = —[Asp(s;t) + Cek(s;t) + Qs XJ|ds + k(s; 1)/ dWs, s € [t, T,

(3.8)
p(Tit) = GX7 — hEy[X}] — 1 X[ — po;
dP(s;t) = —[(24s + |Cs|2) P(s5t) + 2CL K (s5t) + Qs]ds
SR (stYdW,, s € [T, (39)

P(T;t) =G.

For reader’s convenience, we state here the n = 1 version of Theorem
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THEOREM 3.3. If the following system of stochastic differential equations

dX* = [A, X7 + Bl +bylds + [C.X? + Dy’ + o)/ dW,, s € 0,T],
Xy = o,

dp(s;t) = —[Asp(s;t) + Clk(s;t) + Qs X¥]ds + k(s;t) dWs, s € [t,T],
p(T;t) = GX7 = hEYXT] — mX{ — po, ¢ € [0, 7]

(3.10)

admits a solution (u*, X*,p, k), for any t € [0,T), such that A(-;t) 2 p(;t)B. +
D'k(-t) + R.u* satisfies the condition (34), and u* € L%(0,T;R!), then u* is an

equilibrium control.

4. Equilibrium When Coefficients Are Deterministic. Theorem [3.3]shows
that one can obtain equilibrium controls by solving the system of FBSDEs (B.10).
However, the FBSDEs in (310) are not standard since a “flow” of unknowns (p(-;t), k(-;t))
is involved. Moreover, there is an additional constraint (8:)), which under some con-
dition boils down to an algebraic constraint (3.1 that acts on the “diagonal” (i.e.
when s = t) of the flow. The unique solvability of this type of equations remains
a challenging open problem even for the case n = 1. However, we are able to solve
quite thoroughly this problem when the parameters A, B,C, D,b,0,Q and R are all
deterministic functions.

Throughout this section we assume all the parameters are deterministic functions
of t. In this case, the BSDE (B3] turns out to be an ODE with solution K = 0 and
P(s:t) = Gel @AutICul)du 4 fsT el CAHICDdugy gy

4.1. An Ansatz. As in the classical LQ control (see, e.g. [19]), we attempt to
look for a linear feedback equilibrium. For this, given any ¢ € [0, 7], we consider the
following Ansatz:

p(s;t) = M X! — NJE[X] -TWX +d,, 0<t<s<T, (4.1)

where M, N,F(l),q) are deterministic differentiable functions with M = m, N =
n, M =~M and & = ¢.
For any fixed ¢, applying Ito’s formula to (£1)) in the time variable s , we get

dp(s;t)

= {M(As X! + BluX +bs) + ms X — N E; [As X + Blu® + bs] — nsEy [X7]

AV X} + ¢ Yds + My(Cs X7 + Dyul + o) dW,.
(4.2)
Comparing the dW; term with the dW; term of dp(s;t) in BI0), we obtain

k(s;t) = Ms|Cs X} 4+ Dsul + os], s € [t,T). (4.3)

Notice that k(s;t) turns out to be independent of t.
Now we ignore the difference between the conditions [B4]) and (B3, and put the
above expressions of p(s;t) and k(s;t) into [B.35]). Then we have

(M, — N, = TU)XF + & B, + M,D.L[C,XF + Dou® + 04 + Reu =0, s€[0,T),
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from which we formally deduce

= @ X+ B, (4.4)
where
00 £ —(Ro + M. D, D) [(M, — Ny — TV) B, + M, D,C.],
Bs é _(Rs + MSD/SDS)_l((I)SBS + MSD/SUS)'

Next, comparing the ds term in (£2) with the one in (BI0) (we suppress the
argument s here), we obtain

0 =mX* 4+ M(AX* + B'u* 4 b) — nE[X*] — N(AE,[X*] + B'E,[u*] + b) — vV X[ + ¢
+AMX* — ANE,[X*] - ATW X + A® + MC'[CX* + Du* + o] + QX"
=[m+2MA+ M|C]*+Q+ (MB' + MC'D)a]X* — [n+2NA + NB'o|E; [X*]
—(yV + AT XS+ [(M — N)(B'B+b) + ¢+ AD + MC'(DS + o).

Notice in the above X* = X} and E, [X*] = E; [X] due to the omission of s. This
leads to the following equations for M, N, T & (again the argument s is suppressed):

M+ (2A+|CP)M +Q
~M(B'"4+C'D)Y(R+MD'D)"'[(M -N-TO)B4+ MD'C] =0, sc[0,T),

MT = G;
(4.5)

N +2AN — NB'(R+ MD'D)"'[(M —N —TMW)B4+ MD'C] =0, sel0,T],

NT = h;
(4.6)
M = —Ar®, se0,7],
@ (4.7)
FT = H1;

®+{A~ (M~ N)B' + MC'D|(R+ MD'D)"'B}® + (M — N)b+ C'Mo
~[(M — N)B'+ MC'D)(R+ MD'D)"*MD'c =0, s€0,T],

‘I)T = —H2.
(4.8)

The solution to equation (A1) is ) = el At Bquations D) and (L86)
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form a system of coupled Riccati equationsﬁ for (M, N)

M =-[24+|C?+TWB(R+MD'D)"(B+D'C)| M - Q
+(B+D'C)(R+MD'D)"Y(B+D'C)M? — B (R+MD'D)" (B + D'C)MN,
Mr=G;
N =-[24+TWB(R+MD'D)"'B| N + B'(R+ MD'D)" (B + D'C)MN
—B'(R+ MD'D)"'BN?,

Np =h.
(4.9)

Finally, once we get the solution for (M, N), equation (8] is a simple ODE.
Therefore, it is crucial to solve ([@3]), which will be carried out in the next subsection.

4.2. Solution to Riccati System (@.9). Formally, we define J = &, and
study the following equation for (M, J):

M =-[24+|C2P+TWB(R+MD'D)"(B+D'C)| M - Q
+(B+ D'CY(R+MD'D)" (B +D'C)M? — B'(R+ MD'D)""(B + D'C) M-
Mr =G,
J =—[|C)? - C'D(R+MD'D)" B+ D'C)M +TWB'(R+ MD'D)~"'D'C + £]J
—B'(R+ MD'D)"'D'CM,
Jr =£.

(4.10)
PROPOSITION 4.1. If the system [{-10) admits a positive solution pair (M,J),
then the system [{-9) admits a positive solution pair (M, %)
Proof. The proof is straightforward. 0
In the following two subsections, we will study the system (EI0) for two cases
respectively. The main technique is the truncation method. This method involves

“truncation functions” - V ¢ for a small number ¢ > 0, and - A K for a large number
K.

4.2.1. Standard case. We first consider the standard case where R — §1 = 0
for some 6 > 0.
THEOREM 4.2. Assume that R — 61 > 0 for some 6 > 0 and G > h > 0. Then
’ 2
(#10) and (4.9) admit unique positive solution pairs if w—kf(l)S(chB’) =
0, and either (i) there exists a constant A > 0 such that B = AD'C, or (ii) D'D—461I »
0 for some 6 > 0.

2Strictly speaking, these are not Riccati equations in the usual sense as they are not symmetric.
However, we still use the term so as to see the connection and difference between time-inconsistent
and time-consistent L.Q control problems.
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Proof. For fixed ¢ > 0 and K > 0, consider the following truncated system of

M = —[2A+|C?P+TWB(R+M*D'D)" (B+ D'C)| M - Q
+(B+D'CY(R+M*D'D)"Y(B+ D'C)M(M* ANK)

—B'(R+ M*+D'D)~ (B + D'C)MALAK)

(4.11)
MT: G;
J = -AOJ-B(R+MtD'D)"'D'C(M* NK),
Jr= ¢

R
where M = max{M,0} and

Q
MVe

Since R — 01 = 0, the above system is locally Lipschitz with linear growth, hence
it admits a unique solution (M<X J¢K). We omit the superscript (¢, K) when no
confusion might arise.

We are going to prove that J > 1, and M € [n, L] for some n > 0 and L > 0
independent of ¢ and K appearing in the truncation functions. To this end, denote

AL 2102~ D(R+M* D' D) (B+D'C) (M AK)+T W B/ (R+M*D'D) ' D'C+

A® = 2A+|CP+TWB(R+ M*D'D)"Y(B+ D'C))
—~(B+D'CY(R+M*D'D)""(B+D'C)(M* AK)

MTANK
+B(R+M"TD'D)"Y(B+D'C)————
JVe
Then A? is bounded, and M satisfies
M+ XPM+Q=0, My =G. (4.12)

Hence M > 0. As a result, the terms R + MTD'D and M can be replaced by
R+ MD'D and M respectively in ([£I1)) without changing their values.

Now we prove J > 1. Denote J = J — 1, then J satisfies the ODE
J=-A\0j_ [M” + B'(R+MD'D)"*D'C(M A K)}
— M j_ @
where

o =XV 4 B(R+MD'D)"'D'C(M A K)

=|C?-C'D(R+MD'D)'D'C(MAK)+TWB (R+ MD'D)"'D'C + MQV
C
> |C)?-=C'D(R+ MD'D)'D'C)M +TWB (R+ MD'D)"'D'C + MQV
C

L]CP+Q/(M V)
I
—~tr{(R+ MD'D)"'D'CC'DM} + tr{(R+ MD'D)"'TV D'CB'}
=tr{(R+MD'D)"'H}

:tr{(R—i—MD’D) (R—i—MD’D)}
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with H £ [CEXQ/OIVe) (p 4 v p/D) — D'CC'DM + TWS(D'CB').
When c is small enough such that R — c¢D’D = 0, we have

M% c(R +MD'D) > QD'D.
Furthermore,
gD'D -D'CC'D = 0.
Hence,

_ QD'D+|CIPR

H
l

+IVS(D'CB) =0,

and consequently a(¥ > tr{(R + MD'D)~'H} > 0@ We deduce that J > 0, or
equivalently J > 1.

Next we prove M is bounded above by a constant L > 0 independent of the
truncation. Choosing ¢ small enough, the equation for M turns out to be

~M = (2A+|C?P+TWB(R+ MD'D) " (B+D'C)) M +Q — kM(M ANK),
Mr =G
where
k=(B+D'C)Y(R+MD'D)"Y(B+ D'C) - B'(R+ MD'D)"*(B + D’C)%
=B'(R+MD'D)"'B (1 - %) + B (R+MD'D)"'D'C (2 - %)
+C'D(R+MD'D)"'D'C

> B'(R+MD'D)"'D'C (2 - %) .

If B = AD'C for some A > 0, then we have kK > 0. Hence M admits an upper
bound L independent of ¢ and K.

If D'D — 61 = 0, then |kM| admits a bound independent of ¢ and K; hence once
again M admits an upper bound L independent of ¢ and K.

Choosing K = L and examining again equation ([@I2]) we deduce that there exists
n > 0 independent of ¢ such that M > n. It now suffices to take ¢ = 7 to finish the
proof. O

4.2.2. Singular case. Let us now consider the singular case R = 0. We suppose
here that D'D — 61 = 0 for some ¢ > 0 in this subsection. Then the system of (M, J)

3Here we used the inequality that tr(AB) > 0 for any positive semi-definite matrices A, B.
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is

(4.13)
This system is even easier than the previous one. We will use the same truncation
argument to prove the existence of a solution.

THEOREM 4.3. Given G > h >0, R=0 and D'D — 61 = 0 for some § > 0. If
Q+TWB(D'D)"Y(B+D'C) >0 and Q+TWB(D'D)~"*D'C > 0, then {{-13) and
(#-9) admit positive solution pairs.

Proof. For a fixed ¢ > 0, consider the following truncated system:

(4.14)

This system is locally Lipschitz with linear growth, hence it admits a unique solution
pair (M, J) depending on c.
Define J = J — 1. Then

J= -\ ] q®

with \®) = |C|? — ¢'D(D'D)"Y(B + D'C) + (TWB'(D'D)~'D'C + Q)+~
bounded, and

Trve being

a® =X\® 4+ B (D'D)"'D'C
1

= |C*>-C'D(D'D)'D'C+ (TWB(D'D)"'D'C + Ly
1
MV c

> (VB (D'D)™'D'C + Q)
0.

Y

Hence J > 1. Now we choose ¢ < 1.

Denote A\ = 24 +|C|?> — (B + D'C)(D'D)"Y(B + D'C) + B'(D'D)"*(B +
D'C)7-, @ = Q+TWB(D'D)"Y(B + D'C) > 0. Then [\ admits a bound
independent of ¢, and

M+ XYM +Q =0, My =G.

M = —[24+|C]?—(B+D'C)(D'D)"(B+D'C)+ B'(D'D)""(B+D'C)5-
-Q-TWB/(D'D)"YB+ D'C),

Mr= G,

J = —[CP2-c'D(D'D)"(B+ D'C)+ (TMB(D'D)"'D'C + Q) 1-]J
—B’(D’D)*lD’C,

Jr = £

M = —[24+|CP2 = (B+ D'C)(D'D)~ (B + D'C) + B'(D'D)"{(B + D'C):] M
-Q-TWB/(D'D)"Y(B+D'C)

Mr= G;

J = —[CP-C'D(D'D)"Y(B+ D'C)+ (T VB (D'D)"'D'C + Q)7
—B/(D'D)"'D'C,

Jr = $.

| M
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Hence there exists some 1 > 0 (independent of ¢) such that M > 7. Choosing ¢ = 7,
we conclude the proof. O

4.3. Equilibrium Controls. We now present the main result of this section.
THEOREM 4.4. Suppose G > h > 0, The system of the Riccati equations ({{.9)
admits a unique positive solution pair (M, N) in the following three cases:
’ 2
(i) R—681 =0 for some § >0, YZLHCIE | p(US(D'CB') = 0 and B = AD'C
for some A > 0;
’ 2
(ii) R—61 = 0 for some § > 0, LLLHEIE L\ p()S(D'CB') = 0 and D'D—61 = 0
for some § > 0;
(iii)) R = 0, D'D — 61 = 0 for some § > 0, Q + TWB/(D'D)"YB + D'C) >
0, Q+TWB(D'D)"'D'C > 0.
Moreover, let ® be a solution of ODE (4.8). Then u*(-) given by (£4) is an equilib-
TIUM.
Proof. Define p(+;-) and k(-;-) by {@I) and (3] respectively. It is straightforward
to check that (u*, X*,p(-;-),k(;-)) satisfies the system of SDEs (B10).
In all the three cases, we can check that a, and B¢ in (4] are both uniformly
bounded, hence u* € L%(0,T;R!) and X} € L*(Q; C(0, T; R)).
Finally, denote A(s;t) = Rsuf + p(s;t)B + DLk(s;t). By plug p, k,u* defined in
(@), @3) and (@4 into A, we have
A(s;t) = Roul + (M X} — N,E[X7] - T X] + @,)B, + M,D.[Cs X} + Dyl + 0]
= (Rs + M D' D)u’ + (Bs + D.C)M, X} — N,E, [X!] B, - TM X} B,
+(®sBs + MsD'og)
= —[(M; — Ny = T")B, + M,D,C] X} — ®,B, — M,D’,0,
+(Bs + D.Cy)M, X} — NJE,[X]] B, — TV X[ B, + (®,B, + M, Do)
= (N, +TM)X*B, — N,E, [X?] B, - TWX/B,
= No[X] = E: [XJ]]Bs + TV (X - X[)Bs.

Clearly A satisfies the first condition in (84]). Furthermore, we have

lim By 17 B (X)) =0, and T, X2 - X;[) = 0

hence A satisfies the second condition in (34).
By Theorem B3] u* is an equilibrium. O
REMARK 4.5. If 3 > 0 (e.g. in the mean—variance model to be studied sub-
sequently), then I‘gl) = uleftT Asds > (0. With this condition, the first case and the
third case in Theorem [£4] can be simplified as
(i’) R—6I = 0 for some 6 > 0, and B = AD’C for some A > 0;
(iii’) R =0, D'D — I = 0 for some § > 0, and Q + TV B (D'D)~'D'C > 0.

5. Mean-Variance Equilibrium Strategies in Complete Market. In this
section, we study the continuous-time Markowitz’s mean—variance portfolio selection
model in a complete market. The problem is inherently time inconsistent due to the
variance term. Moreover, as in [5] we consider a state-dependent mean expectation.
Hence there are two different sources of time inconsistency. The definition of equilib-
rium strategies is in the sense of open-loop, which is different from the feedback one
in [ [5].

The model is mathematically a special case of the general LQ problem formulated
earlier in this paper, with n = 1 naturally. However, some coefficients are allowed to
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be random; so it is not a direct application of the previous section. Indeed the analysis
in this section is much more involved due to the randomness of the coefficients.

For each t € [0,T), consider a wealth-portfolio process (X, m;) satisfying the
wealth equation

dXs =rsXeds + (s — r51)' 7sds + whos dWs, s€e[t,T], (5.1)

Xt = Tt,

where r € L¥(0,T;R) is the interest rate process, p € L¥(0,T;RY) and o €
L}O(O,T;RdXd) are the drift rate vector and volatility processes of risky assets re-
spectively. We assume throughout that oso — eI »= 0 for some € > 0 to ensure the
completeness of the market .

Denote 0; = o, 1(/% —r41),u; = ojm¢. Then the wealth equation is equivalent to
the equation of (X, u;)

dXs =rs Xeds + O0lugds + ul.dWs, s € t,T], (5.2)
Xt = Tt. '

We interchangeably call 7 and u as (trading) strategies. It follows from our
assumptions on 6 that m € L%(0,T;R) if and only if u € L%(0,T;R). The objective
of a mean-variance portfolio choice model at time ¢ € [0,7") is to achieve a balance
between conditional variance and conditional expectation of terminal wealth; namely,
to choose a strategy u so as to minimize

J(t,me;u) 2 %Vart(XT) — (e + po)Ee[ X 7] (5.3)

(Ee[X7] — (Ee[X7])?) — (p1we + p2)Ee[ X7

N~

with 1 > 0. Here we insist that the weight between the conditional variance (as a
risk measure) and the conditional expectation should depend on the current wealth
level, the reason having been elaborated in [5].

When the market parameters r and 6 are both deterministic, the problem is a
special case of the one studied in Section[l In this section, we will find the equilibrium
strategies for the model where the interest rate r is deterministic but 6 is allowed to
be random.

The problem (1)) — (53) is clearly a special case of LQ problem (2.2) — (2.3)
with n = 1. The FBSDE (BI0) specializes to

dX? = [rs X5+ 0Lut]ds + (ul)'dWs, X§ = xo,
dp(s;t) = —rsp(s;t)ds + k(s;t) dWs, (5.4)
p(T51) = Xgp = By [X7] = pn X7 — poo,

and the process A(s;t) in condition (34 is

A(s;t) = p(s;6)05 + k(s;t).
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5.1. Formal Derivation. As before, let us look for a solution in the form
plsit) = MX; —TX; +TE — B [NX] + T8, (5.5)

where (M,U), (N,V), (TM 410 (T®) ~2)) and (I'®),~3)) are solutions of the
following BSDEs:

AM, = —Fuyyds+UldW,, Mp=1;

AN, = —Fyyds+V/dW, Np=1;

ar) = —FWds+ (Mydw,, TV = u; (5.6)
dr? = —F@ds+ (EYaw,, TP = —p;

ar® = —F®ds+ (Pyaw,, 18 =o.

It is an easy exercise to obtain
d[Ns X! =[rNX* + NO'u* — X*Fy v + V'u*|ds + [Nu* + X*V]'dW;,
dEN; X} =ErNX* + NO'u* — X*Fn v + V'u*]ds,
dM; X} = [rMX* + M0'v* — X*Fyrp + U'v®]ds + [Mu* + X U] dW5.

Applying Tto’s formula to p(s;t) = M X + 1 _E, [N X5 + 1"23)] - l"gl)Xt* and
comparing the dWs term in the second equation of ([&.4]), we get

Ksi) = XU, + Mot 41 —4(0X; (5.7)
Putting the expressions of p and k into the formal condition A(s;s) = 0, we obtain

wp= =M [(0(M = No = T) 4+ Us = 0) X7 46,00 1) 4]
= CYSX: + B,

where

0 2 =M (0(Me = N =TW) + U= 9D)) - 805 =M (6,08 =T +42)

Applying again Ito’s formula to p and using the above expression of u, we deduce

dp(s;t) = [~ Faru X! +raMX? + (0, M, + U (aX? + B5) — FP + X7 FW]ds
+E[FyvX: —rsNo X — (0N, 4 Vo) (aX, + Bs) + FOds + k(s, t) dW,

while the second equation in (B.4]) gives
dp(s;t) = {—re M, X} +r DO X7 —r T3 4 r B[N X + T3 ds + k(s;t) dWs.

S

Comparing the corresponding terms, we obtain (again we supress the subscripts s €
[t,T]):
Fuu=2rM+ (M +U) «
Fnyyv =2rN+ (0N +V) a;
FO =@,
F® =@ 4 (9M +U)'B;
F® =T 4 (9N + V)8,
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5.2. Solution to the BSDEs (5.6]) . It now suffices to solve the BSDEs (G.6]).
Its third equation can be easily solved, whose solution is

1-\1(61) _ uleffT reds %gl) —0.
Noting that the first two equations are identical, we conclude that
M=N, U=V
Then
2 _ pB — T(F(2) _ F(3)).
By the last two equations in (5.6l), we have
r® _r® = —uzefsT redt & r..

To proceed, let us recall some facts about BMO martingales; see Kazamaki [12].

The process Z - W 2 fo Z'dWy is a BMO martingale if and only if there exists a
constant C' > 0 such that
T
/ |Zs|2ds‘}'7

for all stopping times 7 < T'. For every such Z, the stochastic exponential of Z - W
denoted by £(Z-W) is a positive martingale; and for any p > 1, there exists a constant
Cp > 0 such that E [(fTT |ZS|2ds)p ’]—'T} < () for any stopping time 7 < T'. Moreover,
if Z-W and V - W are both BMO martingales, then under the probability measure
Q defined by % =& (V-W), W2 2 Wy — fg Vids is a standard Brownian motion,
and Z - W@ is a BMO martingale.

Now plug the definition of « into the first equation in (&), we get the BSDE
satisfied by (M, U):

E <C

dM, = —(2r,M, — U'0, + TV10,2 — MU, 12 + T8 MU0, ds + ULdW,

S
My = 1.
(5.8)

This is a type of indefinite stochastic Riccati equation due to the presence of M !
in the driver; however it is different from the one studied in [10].

PROPOSITION 5.1. BSDE (5.8) admits a unique solution (M,U) € L¥(0,T;R) x
L%_—(O,T;Rd) satisfying M > ¢ for some constant ¢ > 0. Moreover, U - W is a BMO
martingale.

Proof. Once again, we will prove the existence by a truncation argument. Let
¢ > 0 be a given number to be chosen later. Consider the following quadratic BSDE:

dM, = — |20, M, — U0, +T|6,2 — = TV Agggc} ds + U'dW,,

(5.9)
My =1.

This BSDE is a standard quadratic BSDE. Hence there exists a solution (M€, U¢) €
LE(0,T;R) x L%(0,T;RY) and U¢ - W is a BMO martingale; see [I3] and [I5].
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We can rewrite the above BSDE as:

dM, = —(2r, M, + TV10,2)ds + U [dW, — (T -1 -0, — 0, — —1—U,)ds],

MsVe - MsVe

Mpr=1.
(5.10)
As (I‘(l)M}VCH -0 — MEVCUC) - W is a BMO martingale, there exists a new
probability measure Q such that

t
1 1
W2 =w, — rv 0,— 0, — ———US | d
' ! /O(SMC\/C Meve =) %

S

is a Brownian motion under Q.
Hence,

M =E2

T
e2fSTrtdt +/ Fg}l)ezfsv ”dt|91,|2dv] ,

from which we deduce that there exists a constant 17 > 0 independent of ¢ such that
M > n. Taking ¢ = 7, we obtain a solution.

Let us now prove the uniqueness. First we note that if (M,U) € L¥(0,T;R) x
LZ(0,T;RY) is a solution and there exists ¢ > 0 such that M > ¢, then U - W is a
BMO martingale. Let us define

Y,=M;', Z,=-M;?U,.

Then (Y, Z) is a solution in LF(0,T;R) x L%(0,T;R?) of the following BSDE

dY, = —[~2rY, — Z.0, — TV|6,2Y2 + TVY, Z16)ds + ZLdW, .10
Yr=1.

Moreover, Z - W is a BMO martingale.

It suffices to prove uniqueness of solution to BSDE (EI)). For this, let (Y1), Z(1))
and (Y2, Z®?) be two solutions in L5(0, T;R) x L%(0, T; R%) such that Z(M) - W and
Z®2) . W are BMO martingales. Set

Yy=y®_y® Zz=z0_702),

(5.12)
Applying Ito’s formula to |Y;|? and taking conditional expectation, we deduce
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(where C' > 0 is a constant which may change from line to line).

T —
/ |Z,|?dr

[ T
< CE, / A ARST ARV O AP
T —
/ |Z,|2dr
T —
/ |ZT|2dr

Let us assume that s € [T — 6, 7. Then by setting

|Y,]? +E,

+C, | Eg Es

T —
/ |V |4dr

T
/ 1z 2dr

T —
[

Vi sr = HYHL;"(T—zS,T;R)v

o ,
< CE; / AR + 5K

+C, | Eg

o
< CE, / |V, 2 dr

1
~E,
+ 2

we obtain

V? < @+ 82 Y7_s 0
Hence,

[Y7_srl* < C51/2|YT*75,T|2'

By taking 0 sufficiently small, we deduce that 17;_ s = 0. We conclude the proof of
uniqueness by continuing on [T — 25,7 — 4], ..., until time 0 is reached. O
Then we consider the BSDE satisfied by (T'(?), v(2):

/ ’
ar® = - [rtl"§2) —(0c+ &) 9P - (102 + 52) Ft] dt + (42 dws,

(5.13)
PROPOSITION 5.2. BSDE (513) admits a unique solution (T, +2) € L (0, T;R)x
LZ(0, T;R%). Moreover, v*) - W is a BMO martingale.
Proof. As —(0 + %) - W) is a BMO martingale, it suffices to apply the result of
Section 3 in [3] to deduce that BSDE (5.I3) admits a unique solution (I'?) y(2))
L%(0,T;R) x L%(0,T;R?). Let Q be the probability measure defined by % =

Er(—(0+ &) - W). Then under Q,

t
w2 =w, +/ (0 + MU, )ds
0

is a Brownian motion and U - W@ is a BMO martingale. Furthermore,

Ule
ar{? = — [rtr?) - (|9t|2 + X/) Ft] dt+(nyaw?, TP = .

t

Hence

(2) Q T d T s d U’Hs
I = B2 |—ele 7vdvy, —/ el rvdvp, (|6‘S|2 + = ) ds| .
t s



20 Ying Hu, Hanging Jin and Xun Yu Zhou

From this we deduce that T'®) is a bounded process. Moreover, from (G.13),

T [ .7 2
B | [ @ Pds| =2 || [ G2yaws
t t
[ T U'e ?
=E® r§ﬁ>_r§2>+/ {rsrgm—rs (I95|2+A}—S)] ds
t s

Hence from the last equality, v - W@ is a BMO martingale under Q and then v . W
is a BMO martingale under P. 00

With M, U,~® obtained, we can construct a (feedback) strategy
uy = s X+ Bs (5.14)
where

2 M6, — U, s T, +~7
s = A , Bs= A .
In order to confirm that the above is indeed an admissible feedback strategy, we
need to prove the following technical result. Its proof is intriguing in its own right.
PROPOSITION 5.3. Let X* be the solution to the first equation of ([5-4)) where u*
is substituted by [.14). Then X* € L%(0,T;C(0,T;R)) and u* € L%(0,T;R?).
Proof. Plug the feedback strategy u* into the wealth equation ([2.2]), we get

t t
X; = pi(wn = [ ptapds s [ pigaw?), (5.15)
0 0

with W/ = W, + fot fsds and p; = elo redsgy (o - W),
On the one hand,

ot ag|?
gt(a . We) = e J(: %dSJ’»f[f a;(dWS+05dS)

a2 y Ul oo pe DED 0g(2 B
X fo“ 2‘ ds_f(; Wsdws ""fot 1\/‘15\‘ ds"‘f(; Mg dWs

=€

g5ty (el ) e gy w0
o (S0 w).

Applying Tto’s formula to In(M), we get

U'e 0,2 1|U,2 U'e U’
— [ s’/s (1) 1Ys - s _ (1) ZsYs s
dIn(M,) = [—2r, + i r¢ AR e r( e lds + MSdWS
2
o> 1[T0 1 106 g
= |—2r, _ - —rw_—=_14d —5.d .
e v s o | T A

Combining the above equations, we obtain

M e ‘
Et(a~W9)—ﬁ05t< 7 W> e 2Jorsds
t
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or

M, re ‘
pt = —Ogt (7 . W> e fo Tst.

P
By the fact that M and ;; are both bounded and E [Supte[O,T] ‘Et (% . W)‘ } <

~+oo for any p € R, we have E [supte[oﬂ pf} < +oo for any p € R.
Now we validate X* € L%(Q,C(0,T;R)) using (EI5). For any p > 1,
E l sup

t
/ py ol Beds
tel0, 7] 1J0

T T P
<E| sup p ” / |a5|2ds+/ |Bs|?ds
t€[0,7) 0 0
T 2p T p
E </ |a5|2ds> VE (/ |/35|2ds>
0 0

P
Similarly we have E [supte[oﬂ ‘fot p;19265d8‘ ] < 400. Also we have

2p T P
]S%E ( / p;2lﬁsl2d8>]

0

T p
sup p; ( / Iﬂsl2d8> ]
te[0,T] 0

where ¢, ¢, are both constants only depending on p. These two inequalities lead to
X* e L%2(Q;C(0,T;R)).
Finally, regarding (X*, u*) as the solution to the BSDE

p

<e¢, |E| sup p;
t€[0,T]

< +o00.

E | sup

te[0,7)

t
/ Py BsdW,
0

< 400,

dXs = rs Xeds + 0iusds + ul.dWs, s €[0,T],
(5.16)
X7 = X

By the standard estimates for Lipschitz BSDE, u* € L%(0,T;R?) as soon as X* €
L%(Q,C(0,T;R)). O

5.3. Equilibrium Strategy. Summarizing the preceding analysis, we obtain
finally the main result of this section.

THEOREM 5.4. Let (M,U) and (I'®,~®2)) be the solutions to BSDEs [5.8) and
(E13) respectively, and T'y = —poels ™4t Then
up = =M (U, = Ol 7o)X 4 T,0, 44

S

is an equilibrium strategy.
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Proof. Define p, k by (B5) and (&) (recall that N = M and V = U). It is easy
to check that u*, X*, p, k satisfies (5.4]). Furthermore, A in the condition ([3.4) is
A(s;t) = p(s;t)0s + k(s t)
AMXS = TOX; +TO — e [MX]+T0))0, + XU, + Mo +42) =40 x;

S

= (M,X*+T® _E, [Msxz T rgﬂ )0, + TW(X* — X7)0,.

Since M,0,T®) T are all essentially bounded, E; [supse[tﬂ (X;‘)ﬂ < 400, we de-
duce that A meets condition ([34). It follows from Theorem B3] that «* is an equilib-
rium. O

5.4. Examples. Equilibrium strategies for mean—variance models have been
studied in [2, 4, 5] among others in different frameworks. In this subsection, we
will compare our results with some existing ones in literature.

5.4.1. Deterministic risk premium. Let us first consider the case when the
risk premium is deterministic function of time. Then U = 0, 4(?) = 0, and

T
Mt _ e2ftTrudv (1+N1/ efsTrvdv|95|2d8> )
t

The equilibrium strategy is given by

rydv

MzeffT
M

rydv

* M1 eftT

s T o

0;.
Case 1: pp =0.
When py = 0, the objective is exactly the same as in [2] and [4], in which the

equilibrium is however defined within the class of (deterministic) feedback controls.
By Theorem [(.4],

U: —=e ftT T”dU'[LQHt

is a mean-variance equilibrium strategy. This equilibrium coincides with the one
obtained in [2] and [4] although the definitions of equilibrium are different. The ex-
post reason is that the feedback part of our equilibrium is absent, and so is the gap

between the two definitions.

Case 2: pup =0.
When ps = 0, the objective is equivalent to the one in [5]. In this case, our
equilibrium is, explicitly,

eftT rydv
In [5], the equilibrium is defined for the class of feedback controls as in [4]. Therein
the equilibrium strategy is derived in a linear feedback form u} = ¢;X; with ¢
uniquely determined by an integral equation (whose unique solvability is established).
We can easily show that the linear coefficient of our equilibrium above does not satisfy
the integral equation in [B]. This, in turn, indicates the difference between the two
definitions of equilibriums (open-loop and feedback).
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5.4.2. Stochastic risk premium. When the risk premium of the market is a
stochastic process, the PDE (HJB equation) approach employed by [] or [5], where
the definition of equilibrium is in the class of feedback controls, does no longer work.
To our best knowledge, our result is the first attempt to formulate and find equilibrium
with random market parameters.

Case 1: pp =0.
When p; =0, U =0, M; = e? I "4V and our equilibrium is

_[r — T 2
u;ﬁ —e ft rvdvu29t_e 2ft rud'u,yg )

This strategy consists of two parts. The first part is in the same form as that in
the deterministic risk premium case, and the second part is to hedge the uncertainty
arising from the randomness of 6.

Case 2: puz =0.
When o = 0, v =0, and our equilibrium is

T
uleft rydv Ut

— ) X
M, VA

Uy =

The linear feedback coefficient in this equilibrium also consists of two parts. The
first part is formally the same as its deterministic counterpart, whereas the second
part is for the randomness of the parameter 6.

6. Concluding Remarks. This paper, we believe, has posed more questions
than answers. The flow of FBSDEs (B.0]) is an interesting class of equations, whose
general solvability begs for systematic investigations. How to adapt the general-
ized HJB approach of [4 [5] to our open-loop control framework, even when all the
coefficients are deterministic, warrants a careful study (but notice the fundamental
difference in the definitions of equilibrium). Extension beyond the realm of LQ may
open up an entirely new avenue for stochastic control. Finally, how our game theoretic
formulation may be extended to other types of time-inconsistency, e.g., that caused by
probability distortion, promises to be an equally exciting research topic. The research
on the last problem is in progress and will appear in a forthcoming paper.
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