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Abstract

We present a new simulation algorithm that allows for dynamic switching between a
mesoscopic and a microscopic modeling framework for stochastic reaction-diffusion kinetics.
The more expensive and more accurate microscopic model is used only for those species
and in those regions in space where there is reason to believe that a microscopic model
is needed to capture the dynamics correctly. The microscopic algorithm is extended to
simulation on curved surfaces in order to model reaction and diffusion on membranes. The
accuracy of the method on and near a spherical membrane is analyzed and evaluated in
a numerical experiment. Two biologically motivated examples are simulated in which the
need for microscopic simulation of parts of the system arises for different reasons. First,
we apply the method to a model of the phosphorylation reactions in a MAPK signaling
cascade where microscale methods are necessary to resolve fast rebinding events. Then a
model is considered for transport of a species over a membrane coupled to reactions in the
bulk. The new algorithm attains an accuracy similar to a full microscopic simulation by
handling critical interactions on the microscale, but at a significantly reduced cost by using
the mesoscale framework for most parts of the biological model.
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1 Introduction

A recurring topic in theoretical studies of the dynamic behavior of gene regulatory networks
in biological cells is their robustness and response to stochastic fluctuations in the number of
proteins or other macromolecules [21, 46, 47]. Small copy numbers of a majority of the key
components in such networks render the classical deterministic, macroscopic description of the
process unsuitable. Instead, intrinsic noise is incorporated in the models by the description of
the reaction network as a stochastic process. Even though the majority of work in this area
of molecular systems biology is staged in a coarse grained, well-stirred setting, there are recent
examples where the interplay between reactions and molecular transport are important for the
model’s dynamics [25, 48]. Advances in experimental techniques are making it possible to study
not only the total copy number of proteins or mRNA in a cell, but also their position in the cell
with single molecule resolution [20, 41]. As such techniques develop further, simulation meth-
ods capable of accurate and efficient stochastic simulation of spatially heterogeneous stochastic
systems will continue to grow in importance.

*To whom correspondence should be addressed.



The most frequently used stochastic model in the context of modeling biochemical reaction
networks in single cells is posed on the so called mesoscopic scale. It is based on a continuous time
discrete space Markov process and a realization of the system can be obtained by the Stochastic
Simulation Algorithm (SSA) [27]. In the generalization of the well-stirred mesoscopic model to
the spatially dependent case, the cellular domain is subdivided into voxels or subvolumes. The
state of the system is given by the number of molecules of each species in every voxel. The
molecules in a voxel can react with each other and diffuse to adjacent voxels. Realizations of
this process can be efficiently generated by adaptation of the SSA to space dependent problems
as in [16, 22, 28].

In some cases the mesoscopic model is, being limited in spatial resolution to the mesh size,
not capable of capturing critical features of the model [48] unless the mesh is extremely fine and
special corrections and modifications of the model are made [24]. In such cases, a higher modeling
accuracy is obtained by considering stochastic microscopic models where the positions of the
particles are tracked continuously in space. In the microscopic model, individual molecules move
by Brownian motion and when they are close they can react with each other. The molecules
diffuse in the simulation either by taking small time steps in a solution of a Langevin equation [5,
32] or by sampling a probability distribution for the new position [29, 40, 52]. Such microscopic
models are much more computationally demanding than a corresponding mesoscopic simulation,
at least for reasonable mesh resolutions. On a macroscale, the model is deterministic and the
evolution of the concentrations of the species is governed by a system of partial differential
equations.

Many realistic models of biochemical reaction networks in a spatially resolved setting can
be expected to display multiscale properties. Depending on the values of the reaction and
diffusion constants and the copy number of partaking species, some reactions may require a
microscopic simulation [48] while others can be modeled accurately on the mesoscale. The
computational geometry may contain areas with fine scaled structures, e.g. near membranes,
forcing a mesoscopic solver to use a very fine mesh. In both those cases, a purely microscopic
simulation can be very expensive. Even if a purely mesoscopic model could be formulated
despite the problems that arise due to small voxels [23, 24, 30], its simulation would require a
very fine resolution dictated by the microscale features of the model, leaving degrees of freedom
modeled accurately on the mesoscale grossly over-resolved, thereby causing unnecessarily costly
simulations.

To address this problem, the mesoscopic and the microscopic levels of modeling are coupled
in this paper by following the critical species as single molecules in critical regions of the domain,
letting them react with the mesoscopic molecules when they are in the same voxel. In this way,
species with high copy numbers can be treated mesoscopically. Another advantage with a micro-
meso model is that for parts of the model, a mesoscopic description of the processes may not
be known in detail and the solution is then to use a more basic microscopic model selectively.
This is how binding, diffusion, unbinding, and reactions on a membrane are simulated in the
computational results in Section 6.

The partitioning of the species is determined a priori. The microscopic description should
be used with care only for those species and in those voxels were it is necessary. As it is
now, the partitioning must be based on biological experience. More work is needed to derive
computationally useful criteria for an automatic and dynamic partitioning.

There are a number of software packages for mesoscopic simulation e.g. [2, 22, 28, 50] and
for microscopic simulation e.g. [4, 32, 48, 52] of cell biochemistry and diffusion. Some of them
are compared in [14], but only a few integrate single molecule models with a meso or macro
level model [6, 42]. Species are modeled microscopically or mesoscopically in Spatiocyte [6] in a
Cartesian mesh or lattice. The molecules at the micro level diffuse in discrete jumps between the



voxels in the mesh. The molecules of some species are simulated with Brownian dynamics and the
motion of the remaining species is modeled by a macroscopic diffusion equation in Cell++ [42].
Our contribution differs from these two methods in the following respects: Firstly, the mesoscopic
mesh is unstructured as in [22] where a voxel shares faces with a variable number of other voxels.
Secondly, assuming Brownian dynamics the microscopic part is based on Smoluchowski theory
for diffusion and reactions [45] and is simulated by an efficient version from [29] of the GFRD
algorithm [52] allowing longer microscopic time steps. Thirdly, the simulation in time is split in
a time step such that the meso level is treated first with a frozen micro level and then the micro
level is advanced with a frozen meso level.

The method we propose is made sufficiently general to simulate complex biochemical models
in mixed dimensions by extending the method in [29] to handle an arbitrary 2D boundary.
Our microscopic method simulates Brownian motion and reactions on any smooth 2D surface
embedded in 3D by a locally planar approximation determined by the triangulation of the
surface. A probability distribution is sampled for the next position of the molecule on the
membrane. In this way, the randomness of the motion and reactions of single molecules bound
to a membrane is modeled. Other software packages for microscopic simulations on membranes,
such as Smoldyn [3-5] and MCell [32] are available. They are also based on the Smoluchowski
model but differ from our approach. In both MCell and Smoldyn, a fixed discrete time step is
used and the temporal accuracy in the time until reactions occur is limited by this time step.
Consequently, the spatial resolution is not higher than the mean distance a molecule travels
during a time step. Thus, to simulate a system as in [48] for which a high resolution is indeed
needed, accuracy would require a very small time step making these methods inefficient. In
GFRD the idea is to solve the Smoluchowski equation for pairs of molecules. Then the time for
the next reaction in the system is sampled with arbitrary precision. We show that by using the
techniques developed in [29] also in two dimensions we obtain an accurate and efficient algorithm
for simulating diffusion and reactions on surfaces. The accuracy of the method is analyzed in
the special case when a sphere is approximated by planar facets.

Algorithms coupling an atomistic description and a macroscopic continuum description dis-
cretized on a mesh are found in many other areas of physics and biology. For example, when
the mesh size approaches the molecular scale in computational fluid dynamics, then the Navier-
Stokes equations for the continuum break down and a particle model is necessary. An example
is when the mean free path of gas molecules is large. Then the no-slip condition at solid surfaces
is no longer valid. Another example is when the geometry in nanoscale and microscale devices
has to be resolved at a molecular level [15, 26, 36]. Methods to couple a particle model and
discretizations of a continuum model on a mesh are reviewed in [36]. The computational domain
is split into subdomains with either a particle model or a continuum model [13, 15]. The diffi-
culty is to handle the interaction at the interface between the subdomains. The particles and
the continuous variables all live on the same mesh in the particle-in-cell method. Electrically
charged particles interact with an electromagnetic field on a mesh in applications of the method
in plasma physics [49]. In these methods, both the microscopic and macroscopic equations are
integrated in the whole time interval of interest. This is in contrast to the idea in the heteroge-
neous multiscale method [17] and the “equation-free” method [33] where the microscopic level
is visited only for short time intervals to feed the mesoscopic or macroscopic model with data.

The contents of the remaining sections of the paper are as follows. The model at the meso-
scopic level is described in Section 2. In Section 3, we review the Smoluchowski model for
diffusion and reactions of individual molecules and show how to adapt it to model the interac-
tion between a particle and a curved membrane. The algorithm for coupling the mesoscale and
the microscale is described in Section 4. To study the effect of our boundary representation,
the surface of a sphere is represented locally by planes in Section 5 and the consequence of this



approximation on the accuracy of the microscale model is analyzed. The multiscale algorithm
is applied to four different examples in Section 6. The diffusion of a molecule on a sphere and
its annihilation by a trap is simulated in the first example and compared to an analytical result.
In the second example, the simulation of a mitogen activated protein kinase (MAPK) cascade is
compared to data from [48]. The algorithm is applied to the reversible adsorption of a molecule
to a membrane in the third problem. Finally, results from a biologically motivated example
are presented with species and reactions in the cytosol, adsorption of one species to the nuclear
membrane, and its translocation into the nucleus.

Vectors and matrices are written in boldface. A vector u has the components u; and the
elements of a matrix A are A;; or a;;.

2 The mesoscopic scale

On the mesoscopic scale, the dynamics of the biochemical reaction network is modeled as a
continuous time discrete space Markov process [31]. If the system is well-mixed such that
transport of molecules can be ignored, the time dependent state will simply be the total copy
number of each of the participating chemical species, and the stochastic process can be sampled
exactly using the Stochastic Simulation Algorithm (SSA) due to Gillespie [27] or variants thereof
[19].

In order to introduce spatial dependence and molecular transport, the domain €2 is parti-
tioned into N non-overlapping voxels V;. For a system with M participating species, the state
of the system can now be described by the N x M state matrix X (¢) whose entry x;;(t) is the
copy number of species j in voxel ¢ at time ¢. The copy numbers of the species in voxel ¢ are
denoted by x;. and the components of x.; are the number of molecules of species j in the voxels.
Within each voxel V; we assume that the well-stirred assumption holds, and to each chemical
reaction in the system we associate a stoichiometry vector v;.,r = 1,..., R. The reaction r in
voxel i alters the state of the system according to x';. = x;. + v;,.. For example, a bimolecular
reaction can be written

ar(x;.)
Xij + Xij’ E— ‘Xriju7 (1)

where the entries of v;, are —1 for j,j’, 1 for 7 and zero otherwise. The propensity function
ar(x;.) is the probability per unit time for the reaction to fire in an infinitesimal time interval. In
the Markov formalism, the time until the reaction occurs is an exponentially distributed random
variable with mean 1/a,(x;.).

The domain €2 is covered by an unstructured primal mesh consisting of tetrahedra with a
triangulated boundary 0. A dual mesh is constructed with the voxels V; centered around the
nodes or vertices of the mesh.

A primal mesh and a dual mesh are depicted in 2D to the left in Figure 1. The edges of the
voxel in the center are the lines from the centroid of a triangle to the midpoint of an edge. A
dual mesh in 3D is obtained by generalizing the construction in 2D. Quadrilateral parts of three
triangular planes form the faces of a voxel intersecting a tetrahedron. A triangle has its base on
an edge opposing the vertex of the voxel and a corner at the midpoint of the opposite edge. For
every tetrahedron, the intersection of these triangles will define the quadrilaterals that separates
the vertices, see Figure 1b. For example, the face that separates the leftmost and top vertices
in the tetrahedron in the figure is defined by the centroid of the tetrahedron, the centroid of the
front left triangular face, the midpoint of the edge between the vertices and the centroid of the
rear face.



(b)

Fig. 1: A primal mesh (solid) and the dual mesh (dashed) in 2D (a). A tetrahedron in 3D with a
triangular plane, the upper left part of which is a face of the voxel with the top vertex in the center and
the voxel with lower left vertex in the center (b).

The molecules move between the voxels by diffusion. The diffusive motion of molecules is
modeled as a first order event

Xij =5 Xy, (2)
where one molecule of species j diffuses from voxel i to the adjacent voxel k with propensity
gitxij. The coeflicients g;, are determined by the diffusion coefficient D and a finite element
discretization of the Laplacian on the primal mesh in [22], where the properties of this approx-
imation are discussed in detail. Complicated geometries have a simpler representation in an
unstructured mesh composed of tetrahedra compared to a Cartesian grid with cubic voxels. In
particular, the representation of curved membranes is simplified considerably. The membrane is
triangulated by the faces of the tetrahedra on the membrane. A discretization of a membrane
of such quality is difficult to achieve in a Cartesian grid where the membrane surface cuts the
cubic voxels irregularly. Realizations of the system on unstructured meshes can be obtained in
an efficient manner by the Next Subvolume Method (NSM) [19] as implemented in the URDME
software package [12].

The advantage with a mesoscopic model is that only the copy number of the species in each
voxel is updated and diffusion is modeled as jumps between discrete voxels. In a microscopic
model, the paths and reactions of individual molecules are tracked requiring much more com-
puting time for the same number of molecules. If the mesh is kept fixed, the cost of simulating
a trajectory on the mesoscale scales linearly with the number of molecules in a fixed domain
while it scales quadratically for the microscopic method [29].

3 The microscopic scale

The microscopic model for the motion of the molecules is here Brownian dynamics with the
Smoluchowski model [45] for reacting molecules. The probability density function (PDF) for
the position of a molecule satisfies a parabolic partial differential equation. For N molecules,
we have a N-body problem which cannot be solved analytically. One approach to simulate
such a system is to choose a small time step and then update the position of each molecule by
sampling from a normal distribution. After each time step one determines whether a reaction
has occurred or not. This approach is taken in Smoldyn [5] and MCell [32]. The problem with
this approach is that for an accurate result the time step must be chosen very small and as a
consequence the method may become inefficient. If the system does not have properties where
the finest scales have to be resolved these methods are a good choice.



An efficient algorithm for simulating systems that require high accuracy allowing longer time
steps and well defined reaction dynamics is the Green’s Function Reaction Dynamics (GFRD)
proposed in [52, 53] for 3D problems. Improvements have been developed in [48] and [29]. The
GFRD idea is to decompose the problem into one-body and two-body problems by choosing a
time step At such that molecules are unlikely to react with more than one other molecule or the
boundary of the domain 9. Details how to choose At can be found in [29, 40, 48, 52]. If the
molecule is located at z™ at time ¢ = ", the new position z"t! at t = t"+! = t" + At is sampled
from the cumulative distribution function (CDF) derived from the corresponding PDF.

The GFRD algorithm is here extended to reactions and diffusion on and in the vicinity of ar-
bitrary curved surfaces. A surface is approximated locally by the tangential plane reconstructed
from the triangulation of the surface. The new position of a molecule on or near the surface is
sampled from the distribution with the PDF satisfying the Smoluchowski equation in a Carte-
sian coordinate system. Other methods for simulation of molecular diffusion and reactions on
biological membranes have been developed and applied to simulations on e.g. the cell membrane
[38, 39] and the endoplastic reticulum [43]. An overview of modeling difficulties and simula-
tion techniques for membranes is found in [9]. The Laplace-Beltrami equation for macroscopic
diffusion of molecules on curved surfaces is solved in [39, 43, 44]. The surface is reconstructed
from a Cartesian grid in [39, 44] and the difference approximation on the surface is embedded
in 3D in [43, 44]. A microscopic model for realization of the reaction-diffusion process on plane
membranes is proposed in [38] and in [11] a general method for diffusion on curved surfaces
including anisotropy is described. In [3] molecule-surface interaction probabilities for different
scenarios are proposed for use with particle-based simulators that use a fixed time step such as
Smoldyn [4].

3.1 Molecules in three dimensions

A single molecule at the position z™ at t" moves according to Brownian motion and the new
location at "1 is sampled from a normal distribution in 3D with mean z” and variance 2DAt.
The PDF for the particle’s position is

1 |z — 2|
” tn+1 n tn — o
Pt ) = exp( 2220, 3)

where || - || is the Euclidean norm.
Consider a pair of molecules with two different diffusion coefficients Dy and D5 and positions
z? and z4 at t". The new positions z; and z9 are determined by introducing two new coordinates

212 = \/Dy/D1z1 + \/D1/Dazy, 'y =12 — 2. )

The new z7, " is sampled as in (3) from a 3D normal distribution with mean 2%, and variance

2D15At where D15 is the combined diffusion D1 = D14 Ds. The relative distance y™*! between
the molecules is sampled from a distribution with a PDF satisfying the Smoluchowski equation.
In a spherical coordinate system with r = (r, 6, ¢), the PDF p.(r, t|r", ") solves

?pr 2 0pe 1 90 (. Opr 1 py
Opr = D1z ( or? + r or + 2 sin 6§ 50 (51119 00 ) * r2sin? @ O¢? ) ’ 5)

with the boundary condition at the reaction radius » = o between the two molecules

Opr
47T0'2D1287];|r=a = krpr(r = Uat|rn7tn) (6)



and initial condition py(r,¢|r™,¢™) = §(r — r™). The probability of the molecules to react with
each other is controlled by the association coefficient k.. When k, = 0 then they never react
and when k, — oo the boundary is absorbing and an association always occurs at » = 0. The
same equation is also valid for the binding of a molecule to a spherical membrane but then o is
the radius of the sphere and very much larger than the reaction radius.

There is an analytical solution to (5) with boundary condition (6) in [10, p. 382] but the
solution is complicated and expensive to evaluate. Instead a scheme based on operator splitting
is proposed in [29] simplifying the computations of the required PDFs. Approximate samples of
the distribution with the PDF in (5) can be computed in the following way:

1. Solve in the radial direction for p,.(r, t|r™,t"),r > o,t > t", in

*p, | 20p;
ot o > ’

Otpr = D12 (
with initial condition p,.(r, t"|r™, ") = 6(r — r™) and boundary condition
2 ap?" . n n
4o Dlgﬁ\r:g = kypr (o, t|r™, t"). (8)

Sample the distribution for "1, There is an analytical solution to (7) and (8) in [35] and
also the CDF is integrated analytically there.

2. Solve in the polar and azimuthal directions for py(6,t|r" 1,0, ¢",t"),0 € [0, 7], ¢ € [0,27),

in
Do 1 0 (. ,0pe 1 9%py

Opp = ——5 | —= 00— —_— 9

tPo = ()2 (sin9 26 \"" "0 ) T smZg %6 ) ©)

with initial condition py(8,t"|r"*1 0, 4", t") = §(0)/(r"*1)%sind. There is an analytical

formula for the PDF, see e.g. [29], and the CDF can be integrated numerically and

tabulated from that formula. The CDF is sampled for §"*'. The solution in (9) is
independent of ¢ and ¢™*?! is sampled from the uniform distribution in [0, 27).

3.2 Molecules near and on surfaces

Here, a curved membrane embedded in 3D space is represented by planar facets. A molecule in
the cytosol can attach to a planar facet and a molecule on a facet is allowed to diffuse on it and
react with other molecules on the the same facet or other adjacent facets. More details of this
geometrical approximation can be found in Section 4.2.

As is shown in [29], the splitting technique in Section 3.1 can be used for pairs of molecules
on a plane in 2D. After a change of coordinates as in (4), the PDF of the relative position
between two molecules in cylindrical coordinates r = (r, ¢) satisfies on a membrane facet

Ppe  10pe | 1 py
Oypr =D — -+ ==, 10
P 12<8r2+7“8r+7“28¢2 (10)
with the boundary condition at the reaction radius r = o
0
27T0’D12%|T:0— = k,pe(r = 0, t|rn, tn). (11)
r

A new position (r, ¢) is sampled in two steps using an approximation of the PDF in (10):



1. Solve in the radial direction for p,.(r, t|r™,t"),r > o,t > t", in

*p, , 19p,
oz o ) ’

Oipr = D12 < (12)
with initial condition p,.(r, t"|r™, t") = é(r —r™) and boundary condition (11). The analyt-
ical solution to (12) is relatively complicated involving an integral of a rational expression
in Bessel functions [10, p. 370]. We solve (12) numerically in this paper and sample the
corresponding numerically integrated CDF for " +1.

2. Sample a normal distribution for ¢”*! in the azimuthal direction with the PDF

The diffusion equation in a Cartesian coordinate system for a molecule above a facet with
the normal in the z-direction is needed for the binding of a molecule to a membrane. Assume
that there is no other molecule in the neighborhood. With r = (x,y, z), the PDF p,(r, ¢|r",t")
satisfies

aQPr 82pr 52291«
Oipr = D 14
tPr ( o2 + Oy2 + 922 |’ (14)
with the association coefficient k, and the boundary condition at z = 0
Opr
D= = kypr(z = 0,t]e", t7). (15)

Using operator splitting, the sampling of the distribution defined by (14) is performed as follows:
1. Solve in the z direction for p,(z,t|z™,t"),z > 0,t > ", in

&p-

022’

with initial condition p,(z,t"|r",t") = 6(z — 2™) and boundary condition (15). The
analytical solution is derived in [10, p. 358]. A new 2"*! is obtained by sampling the
numerically integrated CDF.

atpz =D (16)

2. Sample a normal distribution in 2D for the position parallel to the plane if 2" *! > 0 from
the previous splitting step or on the approximating plane if 2”*! = 0. The PDF for x and
y is with 2" =¢y" =0

2 2
Day (2,9, £771]0,0,47) = Ty ) . (17)

1
= 4nDAt P <_ ADAT

In this section we have described how a micro particle can bind to and diffuse on a planar
surface in 2D. In the next section, we will describe a hybrid simulation strategy that combines
the mesoscale and microscale. The mesoscale model requires a spatial discretization, and each
surface embedded in the 3D domain is approximated by a surface mesh composed of triangles.
This boundary mesh representation is used to approximate the surface locally with facets pro-
viding a natural surface representation for the microscopic part of the solver. This strategy is
described in detail in the next section, and the approximations made in the special case of a
spherical surface S? are analyzed in detail in Section 5.



4 Coupling the mesoscale and the microscale

In this section we describe the algorithm used to simulate a hybrid system. The coupling of the
meso- and microscales is based on an operator splitting scheme over species and space. Species
requiring a more detailed description are simulated at the microscale level while the remaining
species are simulated on the mesoscale. The algorithm is flexible: species can be simulated on
the mesoscale in some parts of the domain and on the microscale in other parts.

4.1 Splitting the system into two subsystems

In the beginning of every time step, the species in the voxels are divided into one mesoscopic part
and one microscopic part. A species can be simulated on the mesoscale in some voxels and on
the microscale in other voxels. As illustrated in Section 6, this flexible structure is important to
facilitate partitioning of systems where the need to resolve parts of the model on the microscale
arises from different properties of the model.

Given a partitioning in species and space, the chemical reactions of the original system have
to be divided into three parts: one purely mesoscopic part involving only mesoscopic variables,
one purely microscopic part and one part that involves both mesoscopic and microscopic degrees
of freedom. The last set of reactions are bimolecular reactions where one of the reactants is
a mesoscopic variable and the other a microscopic variable in the same voxel. Such mixed
reactions are executed by the more detailed microscopic solver, and the mesoscopic variable
is simply assumed to be uniformly distributed in the voxel according to the local well-mixed
assumption on the mesoscale.

Suppose that species A is simulated at the microscopic level and that B is a mesoscopic
species and let them react with each other and form the product C. If the microscopic rate
constant for the reaction is kpjcro in

A+ B kmicro C, (18)

then the mesoscopic rate constant is kmeso = 470 D12kmicro/ (470 D12 + Emicro) Where Dyg is
the sum of the diffusion constants for A and B and o is the reaction radius. The mesoscopic
propensity aap for the reaction is kpeso[B] where [B] is the number B molecules in the voxel.
The time to the next reaction is sampled from an exponential distribution with mean equal
to 1/aap. When a reaction has occurred then the microscopic A disappears, the number of
mesoscopic B molecules is lowered by one and a new microscopic C appears at the old position
of A.

The algorithm advances the system a time step A7 forward in time from 7" to 77! = 7" +A7T
using a splitting scheme of first order accuracy in time. The steps in the algorithm are:

1. Freeze all microscopic state variables and update the mesoscopic part of the system as
described in Section 2 during the time step A7. The chemical reactions that are executed
by the mesoscale solver only involve mesoscale reactants.

2. Freeze the mesoscopic state variables and update the microscopic part of the system At in
time using the method described in Section 3. Mixed reactions involving both mesoscopic
and microscopic variables are executed by the microsolver as in (18). For every local time
step At < At taken by the microscopic solver, we track the voxel in the mesh containing
the molecule by the procedure in Section 4.3.

3. Update the state at 7°*! by determining if any meso- or microvariables have been created
or destroyed in the time step and repeat from Step 1 until the final simulation time has
been reached.



While simple in structure, in practice the splitting algorithm requires that information about
the geometry and boundaries as defined by the unstructured mesh is communicated to the
microsolver. The position of a microscopic molecule is easy to determine in a Cartesian mesh
in a cubic € but such a mesh does not possess the geometric flexibility of an unstructured mesh
in a general domain.

4.2 Boundary approximation for the microscale solver

The boundary of the domain 0f) is covered by non-overlapping triangles. Each vertex of the
triangle is also a vertex in a tetrahedron, and is thus a center vertex in a voxel in the dual
mesh used by the mesoscopic solver and defined in Section 2. For a vertex with coordinate ¢,
on the boundary, we associate the volume element V; with one plane or facet P; approximating
the boundary. This vertex is a vertex of many triangles 7;;, j = 1,...1V;, in the surface
mesh. Denote the outward normal to each of these triangles by n;;. The plane P; that a
molecule in voxel V; can bind to or diffuse on is defined by the point {; and the averaged normal
n;, = Ni_1 Zjvzl n;; scaled to unit length. In principle, this approximation is not necessary, but
it simplifies the implementation considerably compared to letting the molecules move directly
on the triangles in surface mesh. The bookkeeping of reactions between molecules in space and
on the intersection of 9 and a voxel would be more complicated, since we would have to keep
track of which triangle the molecule is closest to and choose a time step such that we only have
to consider reactions between a molecule and one triangle at a time.

In the hybrid algorithm, all these facets are precomputed in an initialization step and stored
in an extended mesh data structure. A data structure corresponding to 7;; is also generated in
a preprocessing step as this information will be needed frequently in the parts of the algorithm
described in the next subsection. An analogous data structure for the tetrahedra in the mesh is
also formed in this way.

4.3 Mapping between microscopic and mesoscopic degrees of freedom

For the microscopic simulation the underlying mesoscopic mesh is in principle not needed, apart
from representing the boundaries. However, in order to allow mixed reactions across the two
scales it is necessary to keep track of which voxel in the mesh each micro-molecule is located in.
Also, to avoid having to compare the molecule’s position to each planar surface approximating
the boundary in every step of the microscopic solver, we need to know if the molecule is close to
one of the approximating boundary planes, i.e. if a molecule is close to a vertex on an exterior
or interior boundary of the domain. For consistency between the two models, a molecule on
the microscale cannot simply be assigned to the voxel corresponding to its closest vertex in
the primal mesh. There is no guarantee for a general unstructured mesh that this will be the
correct voxel in the dual mesh. In general, it would be computationally expensive for the hybrid
algorithm to find and assign the correct voxel to a microscopic molecule after each local time
step At. However, as explained in the next section, we will restrict At in the microscopic solver
in such a way that the probability of a molecule to diffuse across several voxels in the mesh is
small. This means that the procedure outlined below will often exit early already in the first
step. Knowing that the voxel containing a molecule at time "' is expected to be close to its
voxel at t" we proceed as follows:

1. Starting at the last voxel the molecule was known to belong to, loop over all tetrahedra in
the primal mesh having the center vertex in the voxel as one of its corners and determine
if the molecule is inside one of those tetrahedra.
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2. If we do not find a tetrahedron containing the molecule in Step 1, we continue by finding
the closest vertex to the current position of the molecule.

3. Once we have found the nearest vertex in the mesh, the search procedure in Step 1 above
is repeated starting from that vertex.

4. When the tetrahedron containing the particle has been found in the primal mesh, we
determine which dual element the molecule belongs to by checking its position with respect
to the planes defined by the quadrilateral surfaces shown in the right panel of Figure 1.

The decision in Step 1 is based on the barycentric coordinates of the molecule with respect
to the tetrahedron. If all coordinates are positive, the molecule is found inside the tetrahedron.
The matrices that map the Cartesian coordinates of the molecule to the barycentric coordinates
are precomputed and stored before starting the hybrid algorithm. The cost of determining if a
molecule is inside a tetrahedron is then that of performing matrix vector multiplication with a
3 X 3 matrix.

The vertex in Step 2 is found by first comparing the distance from the vertex of its previous
voxel to the neighboring vertices. If the molecule is found to be closer to one of the neighbors,
then focus is shifted to that vertex and the procedure is repeated. In this way we will ”slide”
in the mesh towards the nearest vertex. A limited number of distances between vertices have
to be computed and compared in this step.

The molecule can always be found in Step 3 within two layers of tetrahedra around the
vertex with minimal distance to the molecule, unless it is outside the domain. This can happen
if the molecule is close to a boundary since it will be bounded by the facets approximating the
surface described in the previous section and not by the triangulated surface mesh. In that case
we assign the molecule to its closest tetrahedron measured by the absolute value of the sum of
negative components in the molecule’s barycentric coordinates. The computational work in this
step as the same as in Step 1.

The normals of the quadrilateral faces of the voxels are precomputed and stored initially
for use in Step 4. Note that this is the same necessary preprocessing step as in the assembly
of a standard finite volume discretization starting from the primal mesh. At most three such
comparisons are needed to assign the molecule to its correct dual, i.e. at most three scalar
products of vectors with three elements need to be computed.

These four algorithmic steps are simplified considerably in a Cartesian mesh. On a 2D
surface, the algorithm is analogous but since molecules will move on the averaged planes and
not on the boundary triangles directly, a position on the actual surface mesh is first determined
in Steps 1 and 3 above by projecting orthogonally onto the triangles 7;; in the boundary mesh.
When the correct voxel V; has been found, the molecule is projected to the facet P;.

After each splitting time step the system has to be updated according to the partitioning
of the meso- and microscales. A mesoscopic molecule may have entered a voxel in which it
should be simulated on the microscale. It is then assigned a position in space, and since we
assume that molecules on the mesoscale are well-mixed, the position is given by sampling from a
uniform distribution over the voxel. A microscopic molecule may have entered a voxel in which
it should be simulated on the mesoscale, and in this case we simply increment the mesoscopic
state vector accordingly. If there are no chemical reactions, then the total number of molecules
of the species is preserved but the identity of a microscopic molecule is lost when it is converted
to the mesoscale.
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4.4 Time step selection

The splitting time step A7 should be appropriately chosen, neither too large nor too small. If
AT is too small when a microscopic molecule has entered a new voxel it is likely that it has not
had time to become well-mixed in the new voxel and may diffuse back to its previous voxel with
high probability . On the other hand, if A7 is too large the error introduced by the operator
splitting will be large since the error is proportional to A7. The splitting time step should be
chosen such that the distance a microscopic molecule can move during A7 is about the length of
avoxel, i.e. VDAT ~ hor At ~ h?/D, where h is a measure of the mesh size. The macroscopic
partial differential equation modeling diffusion is the diffusion equation. Discretize the time and
space derivatives. The time step in an explicit time marching method to solve that equation
will depend in the same manner on the spatial step for a stable solution.

The time step At in the microscopic simulations satisfies At < A7 and should be so small
that a collision between freely moving single molecules or pairs of molecules or the boundary
is improbable. These restrictions on At are discussed in detail in [29]. A curved surface is
approximated by planar facets. Let h be a measure of the length of a facet. The distance a
diffusing molecule on a surface moves in a time step is of the order of v/ DAt and it is shown in
the next section that also here vV DAt ~ h or At ~ h?/D for good accuracy.

5 Approximations near and on the membrane

In this section the analytical solutions of the densities in (7), (16), (9) and (17) in the microscopic
model will be compared near and on a spherical membrane S? with radius o. The sphere is
approximated by the planes or facets P; generated in Section 4.2. We will show that the PDF's
are close if the model constants fulfill certain conditions and the distance a molecule moves in
a microscopic time step At is small compared to o

Assume that the diffusion coefficient is D in space and D, on the surface and that the initial
position of the molecule is above the north pole at radius v’ with the polar angle § = 0, see
Figure 2a, or on the surface of one of the facets P; approximating the sphere, see Figure 2b. For
the same new radial position r and the same new polar angle 6, the exact PDF for the sphere is
compared to the approximate PDF from the triangulated surface. The algorithm for association
and diffusion on a membrane can handle any smooth surface by a local approximation with the
the set of P; but an analysis is not possible for such surfaces in the same detail as it is for S2.

5.1 Density outside the sphere

The PDFs of the new position of a molecule above a sphere are determined in a spherical
coordinate system in (7) and in the Cartesian coordinate system of the tangent plane in (16).
The angle between the normal of the tangent plane P; and the direction of the polar axis is ¢
in Figure 2a.

Given that the location of the molecule is at r" at ¢ = ¢", the PDF solving (7) and (8) for
the position in the radial direction r outside a sphere at t"*1 = t" + At is (see [10, p. 368] or
34])

1

— = (exp(—a?) + exp(—b?
SWTG’\/DgAJtFEL g( ) p( T))
T Lo 2 2
pr— irDo? exp(—b;) exp((b, + ¢ )")erfe(b, + ¢;), (19)

r—1r r4+1r —20 k. +4rDo

Ay = ; b, = y Cr =
VA4DAt V4DAt 4w Do?

pr(r, Atlr') =

DAY,

12



polar axis polar axis

rz z (h,0)
P1 91/ P, p
P2
o (pp, Zp)
6,
(]
®,

(a) (b)

Fig. 2: Local coordinate systems with one tangential plane P; for approximation in the radial direction
(a). Local coordinate systems with two tangential planes P1 and P» for approximation in the polar
direction (b).

where erfc is the complementary error function [1, Ch. 7]. The boundary condition at r = o is
given by (8)

47 Do

Op
2220 — kyp,y 2
B P (20)

The coordinates of 7’ in the Cartesian system are p’ = r’sin¢ and 2z’ =’ cos¢ — 0. A new
position z, is sampled in the z-direction perpendicular to the tangent plane. The PDF for z, to
be at the same radius r as in (19) is compared to p,.. The PDF for the position z is

p=(z, At]z') = (exp(—a2) + exp(~b2))

1
2v DAt
—BZ exp(—bi) exp((b, + c.)Herfe(b, + c,), (21)
zr — 2 zr + 2 At

Uy = —F——, b, = —F— € = k B
VADAt © VaDAt T TV D
see [10, p. 358]. The boundary condition at z = 0 is (cf. (15))

Ip:
D =k.p.. 22
0z p (22)
Let the relation between k, and k. be
k k k. + 4w Do k 1
o o=__"r X _r = s =K (1 . 23
" ArDo2?’ D 4w Do? 4w Do? * o " ( + k’ra> (23)

If o > 1/kl then k,/D =~ k| and ¢, = ¢, and the boundary condition is approximately the same
for both p, and p,. The distance between ' at t” and r at t"*! is at most a small factor times
V' DAt. Then the quotient r/r’ satisfies

vV DAt

g

r—r

(24)

<

~

g
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In Figure 2a, we find that (p')? + (2, + 0)? = r?. Consequently, for small ¢

/ AN 2 / AT r’ 4
zr— 2 =ry/1— 5 ) sin ¢—r'cosp=r—r +5¢ 1—— ) +0(¢%),

r

/

/ 2 /
zr+2 =r1— <7;> sin? ¢+ 1 cosp— 20 =71+ 1’ — 20 — %¢)2 <1+7;> + O(¢h).
(25)

To be able to resolve the geometry of the sphere, the size of the facet h &~ o@pyax should be a
small factor times v DA¢. Thus, ¢ < ¢max ~ VDAt/o. A comparison between a, and b, in
(19) and a, and b, in (21) using the expressions in (25) and (24) shows that

r

! ’ "

= —_— 1 —_— ~ —,

2vV4AD At < 7"> o (26)
r'o r’

bz = br + b(b(b"_ O(¢3)> b¢ ~ =

a, = ar + a¢¢2 + O(¢4)’ g

VADAt o

By Taylor expansion one can show that a perturbation ¢ in the arguments a,,b., and c, will
result in a perturbation of O(¢) in p,.

Multiplying p, in (19) by the surface element 47r? and comparing with p, in (21), we
conclude by (23), (24), and (26) that the relation between them is

4rp, = p, (27)
if 0> VDAL, ¢ < ¢prax ~ VDAt/o, and k, = k. and 0 > 1/k].

The probability for the molecule to bind to the sphere at t"*! with the initial position ' > &
is derived in [34]

n_ 0 ky _ 2 2

pr(x, At|r’) = 7 &+ 4nDo (erfc(d) exp(—d®) exp((d + f)*)erfe(d + f)), o

r—o DAt At
d= ,e=k'vVDAt, f=e+ =k, —=.
VvA4DAt " / o D
Since
E~1,7J70 k, B K!. NI,L
o o k.+4rDo k. +1/oc = ok,

and ' — o is a small factor times v DAt, the first two factors in (28) are close to one when
o > VDAt and o > 1/k!.. The probability to react with the tangent plane in the Cartesian
system is found in [18]

p. (%, At|2") = erfe(d) — exp(—d?) exp((d + €)?)erfe(d + e). (29)

By comparing (28) and (29), we see that p,(*, At|r') is well approximated by p, (x, At|z") when
o is large compared to 1/k.., and v DAt.

The conclusion from the analysis is that the error in the PDF due to the approximation of
the sphere by planar facets is small when the size of the facet h is of the same order as v DAt
and the radius of the sphere o fulfills o > vV DAt and o > 1/k..
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5.2 Density on the sphere

The PDFs of a new polar position at time ¢ of a molecule diffusing on the sphere or the approx-
imation of the sphere are determined and compared.

Consider a molecule initially at the north pole § = 0 of the sphere. It diffuses on the sphere
for ¢ > t". The PDF for the polar angle, the solution of (9), is

o = ﬁ > (204 1) exp(—L(€ + 1)) Py(cos(9)), (30)
£=0

where P, is a Legendre polynomial and v = D At/c?. Since cos(f) ~ 1 — 62?/2 for small 6
and Py(1) = 1, there exist coefficients ¢, such that P, ~ 1 — ¢,6#%. By the definition of the
Legendre polynomials and their recursion formula [1, Ch. 8], ¢co = 0,¢; = 1/2, and for £ > 1 the
coeflicients satisfy

20+ 1 1 Y4
= T (Cf * 2) BTt (31)

The solution to (31) is ¢ = ¢(¢ + 1) /4. Hence, the first two terms in the Taylor expansion of pg
about 6 = 0 are

1

T 4ro?

92
Po (SO - ZSQ + @(94)> )

oo oo (32)
So =) 20+ 1) exp(—L(+1)y), Sp=> L(L+1)(20+1)exp(—L(L + 1)y).

£=0 =0

The sums in (32) can be approximated by integrals Iy and Is defined by

Iy, = / (22 + 1) exp(—z(z + 1)y)dx = l,

. T (33)
I, = / x(x+1)(2x + 1) exp(—z(x + 1)) dx = e

0

It is shown in the Appendix that Sy is bounded from below and above by

Y 7HL = exp(—(2 — 4y/2y + 37)) (1 — exp(—y/F(V2 + /7)) (34)
< 8o <7 1+ /2y exp(—(1 —~/2)/2)).

Thus, for small , the upper bound is v~ (1+O(y/7)), the lower bound is y~*(1 - O(/7)), and
So &~ 1/v. An approximation of py in (32) is then for small 6

L (- 06! 35
po= o (1- 15 + O0"). (35)

Assume that the normals of two adjacent tangent planes and the polar axis lie in the same
plane. The molecule is initially at a point on the left plane P; in Figure 2b with a polar angle
0 = 0. The angle between the normal of P; and the polar axis is ¢;. The intersection of the
polar axis and z = 0 in the (p, z) coordinate system is at p; = o tan(¢1). At 6 = 6, there is an
edge in the approximating surface and to the right we have the second plane P5. The distance
between the origin and the edge is h = o tan(¢1 +6.). This is a measure of the size of the facets
on the sphere. The angle between the planes P; and Pz is ¢2. To determine a polar angle on
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the approximation of the sphere, p is first sampled from a Gaussian distribution centered at
(o tan(¢1),0) on Py with the PDF

1 —p? 1 1 /p\2
A = = _— — .
Polp A1) 4w DAt P <4DAt) dryo? P ( 4~ (0) ) (36)

Then the position 6 on the sphere is obtained by projecting the sampled p in the radial direction
on the sphere. Let the first sampled value be p; < h — o tan(¢;). Then the new position of the
molecule is on P; and the corresponding sampled angle 6, satisfies

tan(6r + ¢1) = (p1 + o tan(¢1))/o. (37)
The p; corresponding to a particular 6y is
p1 = o(tan(fy + ¢1) — tan(eéq)). (38)

If the sampled value is ps with ps > h — o tan(¢;), then the position is projected on Py along
its normal. Then the new coordinates will be (see Figure 2b)

(63 29) = (= c03(62)? + hsin(ga)?, — (p. — h)sin(ga) cos(6)), ps = pa + o tan(@n).  (39)
In this case, the new polar angle 65 after projection satisfies

tan(fs + ¢1) = pp/(0 + 2p), 01 < 0. < 0. (40)
The sampled point (ps + o tan(¢;),0) corresponding to a given 5 is by (39) and (40)

pp=0 (tanwz + ¢1) + 0 hsin(¢n) (cos(¢2) tan(0z + ¢1) — sin(g))
v cos(2)(cos(¢2) + tan(fz + 1) sin(¢2))

If the geometric resolution of the sphere is fine, i.e. ¢ > h, then ¢; and ¢, are small and after
MacLaurin expansion in ¢o we have

po = o tan(8 + 61)(1 + d2(h/o — tan(6z + 61)) + O(#3)) — o tan(éy). (42)

If the time step is small such that o > /DAt then 65 = O(¢2) and we always have ¢1 < ¢o.
Hence, h/o — tan(fs + ¢1) = sin(¢1) — tan(fz + ¢1) = O(¢2) and p, can be written

p2 = o(tan(f + ¢1)(1+ O(¢3)) — tan(¢1)). (43)

- tan(gbl)) . (41)

The expansion of the leading terms of the expression inside the parenthesis in (38) and (43) is
now for j =1,2

tan(0; + ¢1) — tan(¢1) = tan(6;)(1 + ¢1 tan(f;) + O(7)). (44)

The approximate PDF for the polar angle is then by (36), (38), (43), and (44)

1 —tan(0;)*(1 + O(¢7))
0,At) = J i=1,2. 4
pp(0, At) P eXp< ™ s J=1, (45)
For small angles, the Taylor expansion is
S P +0(03¢7) |, j=1,2 (46)
Po = DA Ay A
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when the new location is on P;, j = 1,2. Since 6; < h/o, the quotient 6% /v < (h/\/DsAt)* ~ 1.
The quotient pg/p, of pg in (30) and p, in (36) for ¢, = 0 follows from (35) and (46) when  is
sufficiently small such that Sy ~ 1/~

Po 392

— 1+ —+... 47
The conclusion from this analysis is as in Section 5.1. The error in the PDF due to the

approximation of the sphere by planar facets is small when h is of the same order as /DAt

and the radius of the sphere o fulfills o > / DAt.

6 Results

In this section we consider three examples to illustrate the accuracy and the flexibility of the
proposed method. First, we show that diffusion and reactions on a curved surface are computed
accurately by comparing an analytical result and a simulation of two molecules diffusing and
reacting on a sphere. In the two remaining examples, the need for a microscale solver for parts
of the model arises for two conceptually different reasons.

In the second example, taken from [51], one reaction is highly diffusion limited and needs to
be resolved in a detailed manner. If association is fast compared to diffusion, fast re-association
reactions are a determining factor for the behavior of the model. To capture that phenomenon
by a purely mesoscopic model, an extremely fine space discretization approaching the interaction
radius of the molecules is required. For very small voxels, special corrections and modifications
of the model are necessary [23, 24]. As the molecules are free to move in the entire domain, the
mesh has to be uniformly fine. If the reaction pair to be resolved on the microscale is only one of
many possible events in the system, most parts of the model are going to be vastly over-resolved,
causing unnecessarily long simulation times. As an alternative to this approach, we show that a
moderately fine mesh is sufficient if a small subsystem is simulated with the microscopic model.

In the final example, the geometry and molecular interaction of a certain species with the
boundary motivate a more detailed microscopic model to be used locally in space. Instead of
dividing only the species into a mesoscopic and a microscopic part as in the second example, we
here partition both species and space and show that high accuracy is retained while significantly
reducing the number of molecules that are simulated at the microscopic level.

6.1 Diffusion and reactions on a membrane

To show that our treatment of surfaces is accurate we consider a simple example with two
molecules A and B diffusing on a sphere and reacting instantly upon collision. For a single
molecule diffusing on a sphere, one can compute the average time for the molecule to be captured
by a trap defined by a cone with half-angle § and a spherical cap [8, 37]. Since we are considering
molecules with small radii compared to the radius of the sphere, the time for the two molecules
to react can be well approximated by the case of a single molecule and a trap. Thus, for two
molecules with diffusion constants D4 and Dp and reaction radii 4 and op the average time
until they react is close to

2
_ o? 2In (lfcos(oA+o'B))
Ds+ Dp 1+ cos(oa+o0B)

—1], (48)

e

17



where o is the radius of the sphere. In Figure 6.1, we compare the result of microscopic
simulations for three different mesh resolutions to 7, in (48). The error bars correspond to 95%
confidence intervals computed by sampling 6500 realizations of the system. The parameters are
Dy = Dp =107"m?, 04 = o = 10~°m and the radius of the sphere is 9.23 - 10~ "m. The
time step is chosen so small that the error from the discretization of the sphere is larger than
that due to the discretization of time.

700
_— =T
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@ 6501 — Microscale ||
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Fig. 3: The average time until a reaction between two molecules diffusing on a sphere with different
triangulations compared to 7, in (48). Even for the coarsest mesh resolution, the analytical solution
falls in the 95% confidence interval.

As we see in the figure, the approximation improves as we refine the discretization of the
sphere as expected. A finer mesh requires a smaller time step, and since the molecules on average
diffuse a distance proportional to v/¢, the time step has to decrease as h> where h is the length
parameter of the voxels, cf. Sections 4.4 and 5. It would be desirable to be able to estimate the
error more precisely for general surfaces a priori or a posteriori.

6.2 Simulating highly diffusion limited bimolecular reactions

In [48] a model of one layer of a mitogen-activated protein kinase (MAPK) pathway is studied.

k k
KK—I—Kk:I,KK—KﬁKK*-ﬁ-Km KK+Kp§KK—Kpﬁ>KK*+Kpp, (49)
2 5
k1 k3 k4 ke %
Pt Kpyp=P~ Ky P + Ky, P+ Ky=P— K, P +K, (50)
2 5
KK* KK, pP%p (51)

In the first two reactions in (49) K is phosphorylated in two steps by the kinase K K to become
K, and Kp,. The dephosphorylation of K by the phosphatase P occurs in two steps in (50)
from K, to K, and finally to K. The enzymes are inactive, K K* and P*, after the reactions
in (49) and (50) and are activated in (51) to become KK and P. They are now prepared
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to act as enzymes in new phosphorylation and dephosphorylation reactions. The parameters
ki, i =1,...,6, have typical values and k7 = In(2) /71, see [48].

The response time T, is defined as the average time to reach 50% of the steady state level
of the doubly phosphorylated substrate K,,. It depends on spatio-temporal correlations which
cannot be captured on the macroscale or the mesoscale when k7 is large and the diffusion is slow.
The difference between the microscopic and mesoscopic simulations is due to the possibility of
fast rebindings. In particular, if k7 is large, then KK* and P* will be reactivated quickly.
Thus, on the microscale, the dissociation of KK — K and P — K, could be followed by a fast
reactivation and then a rebinding to K or K, or to K,, or K,. If this process is sufficiently
fast, it cannot be captured on the macro- or mesoscale unless the spatial resolution is very high.
In [24] it is shown how to compute correct mesoscopic rate constants and how to account for
reactions over neighboring voxels in the RDME to be able to simulate the MAPK model in (49),
(50), and (51) accurately. This, however, requires a uniformly fine mesh down to scales of just
a few molecular radii.

Since most of the system can be simulated accurately on the mesoscale, we propose a splitting
of the system where the complexes KK — K and P — K,,, are simulated on the microscale and
the rest of the system is simulated on the mesoscale. When KK — K or P — K, dissociates the
products are simulated on the microscale in the remaining part of the splitting time step A7.
Thus for a reasonable A7 that time will be sufficient for the molecules to become well-mixed
in a voxel, see Section 4.4. After a splitting time step, the products are again considered as
mesoscopic.

In Figure 4 we compare the results of our hybrid method to those obtained with GFRD
in [48] and with the macroscale by solving the reaction rate equations. The parameter in the
definition of k7 is 7yl = 1us. The other parameters in (49), (50), and (51) are as in [48].

180 ‘ | Il Microscale
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—— Hybrid method
—— GFRD | 160
—— Mean field
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Fig. 4: (a) The average response time 7yes of the doubly phosphorylated substrate Ky, as a function
of the diffusion constant D. (b) The average number of molecules simulated on the microscale in the
beginning of a time step compared to the average number of molecules simulated on the mesoscale.

The response is significantly faster on the microscale than on the macroscale. The hybrid
method agrees very well with the results from [48] as shown in Figure 4a, but the fraction of the
total number of molecules simulated on the microscale is significantly reduced, see Figure 4b.
The cost of simulating molecules with the microscopic method grows almost quadratically with
the number of molecules [29]. Although some overhead is introduced in the hybrid scheme, we

19



still gain orders of magnitude in computing time with the mixed method without compromising
the accuracy.

6.3 Molecular transport from the cytosol to the nucleus

The flexibility and full capability of our algorithm is demonstrated in an example with more than
one subdomain, reactions both in the bulk and on a membrane, as well as reversible adsorption
of a molecule to a membrane. The model we consider will be a prototypical model for transport
from the cytosol to the nucleus via nuclear pore complexes (NPCs). It will not contain all known
components in that process; we will rather focus on the key interactions between a species in
the cytoplasm and the nuclear membrane and how accurately that interaction can be simulated
by the mesoscopic, microscopic and hybrid methods respectively.

The model is defined in Table 1. It consists of three logical modules: a set of reactions in
the cytosol (1-4) that result in the creation of a species C, C’s reversible binding to the nuclear
membrane (5-6), and its subsequent reaction with the pore P on the membrane (7-9) leading
to its translocation into the nucleus. The proteins A and B are here abstract variables, but
as an example we can envision B being the end product of the signal cascade modeled in the
previous section while A could be modeling an importin, a helper protein that needs to bind
to a protein targeted for nuclear transport in order to link it to the pore. Reaction (2) is then
the coarse-grained creation of B, and (1) would implicitly model the recycling of the importin
A from the nucleus to the cytoplasm.

Reactions in the bulk

(1) 0 A
(2) 0L B

(3,4) A+B%C

Reversible adsorption of C to the membrane

(5.6) C=c,
ka

Translocation of C into nucleus

kP
(7,8)  Cp+P=C,,_P
ky

(9) C-P s Pt

Table 1: The reactions of the full translocation model. Reactions (1-4) take place in the bulk, (5) near
the reactive boundary, the membrane, and (6-9) on the membrane. After B is released in the nucleus,
A can be recycled to the cytoplasm to complete another transport cycle.

6.3.1 Adsorption to a membrane

Before simulating the full system we illustrate the accuracy of the hybrid approach for reactions
between molecules and a surface in Figure 5. The reversible adsorption of C' to the membrane
(5,6) is simulated with the mesoscopic, microscopic and hybrid methods in Figure 5 using a
space discretization with 6706 voxels. The domain is taken to be a box with sides of length
4.6-107% m and 6-107% m at the bottom and the height 4.8-107¢ m. The boundary is reactive
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at the bottom, z = 0. The total number of molecules in the simulation is 10. The reaction rates
are kg = 1077 ms~! and kg = 1.0 s~ ! and the diffusion constant is D = 10712 m?2s~1.

The rate constant for mesoscopic binding of a molecule to the surface has unit ms=!. It is
thus necessary to divide with a local length scale in the mesoscopic propensity. How to choose
that length parameter in the case of reactions with surfaces or between molecules on surfaces
is unknown for an unstructured, tetrahedral mesh. In the case of a structured Cartesian mesh,
correct mesoscopic rate constants for reactions occurring on a plane surface are derived in [24].

For the unstructured mesh, using two different naive choices for the length scale parameter
[ in the mesoscopic propensities for membrane binding, the mesoscopic and microscopic models
differ for the steady-state distribution of the total number C' on the membrane. Use as [
the local mesh size parameter h provided by the mesh generator and the radius of a sphere,
Tspn, With the same volume as the voxel sharing triangular faces with the membrane. The
mesoscopic results differ from each other, from the microscopic simulations and the mean field
prediction. Using the radius of a sphere improves the result, but there is still an error. However,
simulating all C' molecules in voxels with centers ¢ within a slice of the domain defined by
Zmicro = {€ = (2,9, 2)|2 < Zmicro} yields good results also for relatively small values of zmicro
(a). The number of molecules at the micro level increases slowly when zpiero increases as seen
in Figure 5b. When zpicro = 1.5 pm the hybrid simulations show excellent agreement with pure
microscale simulations in the whole domain, but only ~ 40% of the molecules are updated with
the microscopic solver.
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Fig. 5: (a) The result of the hybrid method with zmicro in pum is compared with the mesoscopic model
with the length parameter [ = h and [ = r4,, and with the pure microscopic model. The dashed line
corresponds to the mean field prediction. (b) The time averaged number of microscopic molecules in a
simulation with the hybrid method for different zmicro-

6.3.2 The full translocation model

Figure 6a displays a snapshot of the full system in Table 1 in a purely microscopic simulation.
The radius of the cell (the outer sphere) is taken to be 2.58um and that of the nucleus (the
inner sphere) 0.98um. These are realistic sizes for a yeast cell in an early stage of the cell cycle.
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(a) (b)

Fig. 6: (a) A snapshot of a purely microscopic simulation. The size of molecules is larger in the figure
than in the actual simulation for illustrative purposes. (b) The partial adsorption of C' molecules to
the nuclear membrane (green) at the microscopic level is resolved by letting C' be a microscopic degree
of freedom in a layer of tetrahedral elements around the nucleus (red). In the remaining part of the
domain (blue), the system is updated in time by the mesoscopic model.

If species A corresponds to an importin protein, it will be present in higher copy numbers
than the other species in the model. All A molecules are therefore simulated mesoscopically
as well as all other molecules outside a sphere with radius 1.3 - 10~%m, the blue domain in
Figure 6b. All molecules (except for A molecules) are simulated on the microscale close to and
on the membrane, the red and green domains in Figure 6b. We are using the more expensive
microscopic simulation only near and on the nuclear membrane, where it is most needed for the
accuracy.

The reaction rates in Table 1 are p = 0.03 s~ 1, k; = 2.5336 - 10720 m3s~1, ky = 0.02 571,
ko = 1076 ms™1, kg = 0.02 571, k, = 107 m2s71 k7 = 0.04 s7! and k, = 0.1 s7!. The
diffusion constant D for all molecules in space is 10_15 m?s~1 and on the membrane Dj is
10~'* m2s~!. The reaction radius ¢ for all molecules is 1072 m and the splitting time step
AT is 0.5. In Figure 7, the average number of molecules during a simulation of the full system
system is plotted. Initially, there are 1000 A molecules in the cytoplasm, while B and C are
present in low copy numbers.

In this example the mesoscopic diffusion of the A molecules is dominating the execution
time, and the time spent on the microscale simulations is negligible. Hence, the cost of the
hybrid simulation is close to that of a purely mesoscopic simulation, but with higher accuracy
for reactions near and on the membrane. The cost of the microscale simulation and the overhead
introduced by the coupling routines in Section 4 depends on the problem and the parameters.
In the above examples, the overhead ranges between 0 and 30 per cent of the total execution
time. The microscale simulation could be dominant if a major part of the molecules are bound
to a membrane as the interaction between molecules on a surface is expensive to simulate.
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Fig. 7: The time evolution of the system in Table 1 is simulated.

7 Discussion

For certain systems it has been shown that the classical, purely mesoscopic description for
reaction-diffusion systems fails to capture important dynamics predicted by a corresponding
microscopic description [23, 24, 48, 52]. This is due to the fact that the assumption of molecules
being well stirred in a voxel is not satisfied at fine scales. Thus, in order to resolve the model
a high mesh resolution is needed and this leads to a breakdown of the mesoscopic model in its
classical formulation [30]. In [24] this issue is addressed by computing corrected mesoscopic rate
constants and considering reactions involving neighboring voxels.

In this work, we have taken another approach. Instead of using a very fine mesh in a
mesoscopic simulation to resolve fast association reactions, sharp gradients, or geometric details,
we combine the mesoscopic model with a microscopic model in a hybrid method. The main
advantages are our ability to resolve fine scaled structures in the model without increasing the
stiffness in the parts of the model that can be treated accurately at the mesoscopic level as
well as the possibility to switch to a microscopic model when the corresponding mesoscopic
model cannot easily be defined. Numerical examples illustrate both these capabilities of the
method. Ultimately, how the approach taken in this paper will compare to that in [24] in terms
of computational efficiency will depend on the nature of the particular model under study. The
extension of [24] to unstructured meshes is non-trivial and further work is needed in order to be
able to make a fair efficiency comparison, but in general, the more scale separation the model
displays the more likely it is that the hybrid method will be faster.

An alternative is to use adaptive mesh refinement [7] to increase the accuracy locally in
parts of the domain. This is possible provided that all parts of the model can be formulated
on the mesoscale and that the RDME can be corrected to account for errors due to small
voxels. However, adaptive mesh refinement is complicated to implement in three dimensions
with preserved mesh quality for unstructured meshes, and we believe that our approach is
simpler, more accurate and more flexible.

In Sections 4.4 and 5 we show that it is necessary to restrict the time step At in the micro-
scopic solver such that the probability is small that the molecules traverse more than one voxel
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in At. That time step scales as the mesh size squared. In a purely microscopic simulation with
GFRD style algorithms, it is not necessary to restrict the time step in such a way. For a fine
mesh this could of course be adding a significant overhead to the microscale part of the hybrid
simulation. However, the basic idea underlying our algorithm is that instead of using a very fine
mesh where high accuracy is needed we use a microscopic simulation. Hence, for an appropriate
mesh and partitioning, the potential overhead from this time step restriction should be small
compared to the gain due to the reduction of the size of the microscale part of the system in
relation to a full microscopic simulation.

In our method, a curved surface embedded in 3D is approximated by planar facets de-
rived from the unstructured surface mesh. For problems where membranes are important, an
unstructured mesh can represent the membrane geometry accurately. The precision of this ap-
proximation is analyzed for diffusion on a sphere. In numerical experiments with reactions and
diffusion the agreement is very good between simulations and an analytical result.

In the examples, we made use of a static partitioning determined before the simulation was
started. The implementation of the algorithm itself is very flexible, and would allow for an
extension to dynamic partitioning of the system. The development of good criteria to base such
adaptive splittings on is a natural next step to make the algorithm fully automatic.
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Appendix

f(x)

Fig. 8: The upper and lower bounds on the terms of the sum S with v =0.8-1072, 2_ = 7 and . = 8.

The upper and lower bounds on Sy in (32) are derived by integral estimates as illustrated in
Figure 8.

Let f(x) be the continuous function such that the terms in Sy are f(¢), £ = 0,1,.... The
maximum of

f(@) = 2z + 1) exp(—z(z + 1)7)

is vV2exp(—(1 —7/2)/2)//7 at Tmax = (/2/7 —1)/2. Let 2_ = [Tmax| and 24 = [Tmax]|
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denote the largest and smallest integers such that x_ < zpy,x < 4. Then by Figure 8

r_—1

/i_l dac—/ fla—1) dm<Zf /Oz_f(ac)dx

/ fx)de < Z f(e /I+ f(xl)dz/:lf(x)da;.

ZI+

By combining the above inequalities and observing that [~ | f(z)dx < f(z_), the bounds on
the sum are

L f(fv)dﬂf+/w+ f(x)dw<%f(€)</o f(x)de + fz_).

A lower bound on the integrals in the left hand side is

xr _— o0

)
=77 (1 —exp(—z—(z- + 1)y) + exp(—a (24 +1)7))
> fy_l(l — eXpP(—Zmax(Tmax — 1)7)(1 — exp(—2(z_ + 1)¥)))
> 771 (1 — exp(—Zmax (Tmax — 1)7)(1 — exp(—2(Tmax + 1)7)))
=711 — exp(—(2 — 4v/27 + 37)) (1 — exp(—7(V2 + v7)))),

and an upper bound on the sum is Y~ + f(Zmax). These are the bounds in (34).

1.4
130
1.2F s

o 11f

0.9r

,
0.8,

3 4
log l0(1/y)

Fig. 9: The quotient (solid) between the sum Sy and 1/ and the upper and lower bounds on ~So
(dashed) for different values of ~.

The bounds and Sy divided by 1/7 are compared for varying -y in Figure 9. The gap between
the upper and lower estimates closes rapidly for decreasing .
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