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Abstract

Interpolation error estimates needed in common finite element applications using simplicial
meshes typically impose restrictions on the both the smoothness of the interpolated functions
and the shape of the simplices. While the simplest theory can be generalized to admit less
smooth functions (e.g., functions in H1(Ω) rather than H2(Ω)) and more general shapes (e.g.,
the maximum angle condition rather than the minimum angle condition), existing theory does
not allow these extensions to be performed simultaneously. By localizing over a well-shaped
auxiliary spatial partition, error estimates are established under minimal function smoothness
and mesh regularity. This construction is especially important in two cases: Lp(Ω) estimates
for data in W 1,p(Ω) hold for meshes without any restrictions on simplex shape, and W 1,p(Ω)
estimates for data in W 2,p(Ω) hold under a generalization of the maximum angle condition
which requires p > 2 for standard Lagrange interpolation.

Interpolation error estimates for the standard finite element spaces typically involve two re-
quirements: conditions on the smoothness of the function being interpolated (data regularity) and
constraints on the geometry of the elements of the mesh (shape regularity). Beyond the simplest
interpolation error estimates (stated precisely in Proposition 1.2), data or shape regularity can be
substantially relaxed with some additional analysis. However the existing theory does not accept
the weakest restrictions on both data and shape regularity simultaneously.

Data Regularity and Average Interpolation Lagrange interpolation involves point-wise func-
tion evaluation leading to data regularity restrictions associated with the requirements of the
Sobolev embedding theorem. Alternatively, average interpolation can be used to handle less regular
data [13, 38, 5, 37, 11]. Because average interpolation ‘smears’ local estimates over a neighborhood
of simplices, error estimates rely more heavily on the geometry of the mesh, often needing meshes
of bounded ply (defined in Section 1.3, see Figure 1) so global summation can be performed.

Shape Regularity and Angle Conditions For triangular meshes the classical error estimates
are typically proved under a minimum angle restriction, but this condition is overly restrictive.
Triangle geometry and interpolation error are actually related through the largest angle of the
triangle [43, 6, 22]. (Convergence of the finite element method can occur for meshes with arbitrarily
large angles [8, 19], but the known counterexamples are finite element spaces containing subspaces
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associated with a shape regular mesh.) The maximum angle condition can be generalized to higher-
dimensional simplices but existing analysis gives stronger data regularity requirements [22, 24, 39].
The linear tetrahedral element is especially important to this discussion. Shenk constructed a
counterexample demonstrating that the expected Lagrange interpolation error estimates do not
hold for a fairly innocuous family of narrow tetrahedra [39]; see Fig. 3(right). Analysis using an
average interpolant eliminates this problem but again leads to new geometric restrictions on the
ply of the mesh [1].

Mesh Generation Geometric restrictions needed to prove interpolation error estimates are es-
sentially the output requirements for a mesh generator. In 2D many mesh generation techniques
aim to produce bounded aspect ratio triangulations (although a notable exception [30] only removes
large angles), but aspect ratio guarantees are impossible when the input (i.e., the boundary of the
domain) contains small angles [40]. To admit arbitrary input several mesh generation strategies
have been developed which allow a few poor quality triangles near small input angles [29, 33, 40, 36].
Guided by the interpolation theory the most commonly used strategy [29] provides provable upper
bounds on the largest angle and the ply of the mesh (as long as the input does not include high
degree vertices). This effective approach does not extend to 3D and guaranteed mesh generation
algorithms do not yield a bound on the ply [25, 42, 41, 10, 35, 36]. Figure 2(left) demonstrates
the high ply construction in the analogous 2D algorithm. Failures of these algorithms are difficult
to observe in practice since the mesh ply only grows logarithmically in the (inverse of the) size of
the smallest angle, but they represent a theoretical disconnect between output guarantees of the
mesh generator and the input requirements of numerical methods. Beyond provably-correct mesh
generation algorithms, simplified mesh generation algorithms are often practically successful, and
allowing high ply meshes extends the range of inputs producing acceptable results. Uniform refine-
ment of a structured grid in polar coordinates is perhaps the simplest situation yielding a high ply
node; see Figure 2(right). Providing the loosest set of geometric requirements in the interpolation
theory gives mesh generators the most flexibility in practical applications as well as new challenges
to improve existing guarantees under weaker requirements.

Outline This paper demonstrates that there is no inherent trade-off between data regularity and
shape regularity in interpolation of less regular Sobolev functions on simplicial meshes by developing
a theory accepting minimal data and shape regularity requirements. The key insight is that error
estimates cannot be localized over the meshes of high ply; rather a simpler auxiliary spatial partition
must be used. Before describing this construction, Section 1 contains the necessary preliminary
discussion including a more formal exposition of the prior results. Error estimates for the average
interpolant under uniform size and quality meshes are shown in Section 2. A generalization to
non-uniform meshes is given in Section 3 before some concluding remarks in Section 4.

1 Preliminaries

The statement x > y is used to mean there exists a positive constant C such that x ≤ C y when the
details of the constant are unimportant. For nearly all estimates discussed, this implied constant
will be independent of simplex/mesh shape regularity; whenever this is not the case, it will be
explicitly noted.

2



⇒ ⇒

Figure 1: Two refinement strategies that do not produce bounded aspect ratio meshes. (left) A
refinement strategy creating a mesh with bounded ply and maximum angle: all vertices have degree
six and all angles are acute. (right) A refinement strategy creating a high ply mesh without large
angles: all angles are smaller than 135 degrees: in the limiting case, the triangles in the corners
contain angles very near 135◦, 45◦ and 0◦.

Figure 2: (left) A quality mesh generated for an in-
put with a very small angle. Certain mesh generation
strategies can produce high ply meshes at vertices (or
along edges in 3D) near small input angles. (above)
“Uniform” refinement in polar coordinates leads to
a high ply at the origin.
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1.1 Balls, Cubes, and Simplices

The ball of radius r centered at x ∈ R
d is the set of points with Euclidean distance from x less

than r:
B(x, r) := {y : |x− y| < r}.

A d-cube or cube is a closed set Q ⊂ R
d of the form

Q =

[

a1 −
h

2
, a1 +

h

2

]

×
[

a2 −
h

2
, a2 +

h

2

]

× . . .×
[

ad −
h

2
, ad +

h

2

]

.

The point a = (a1, . . . , ad) is called the center of Q and h is called the size of Q, denoted size(Q).
A simplex is the convex hull of d+ 1 non-coplanar points (called vertices), {vi}di=0:

K =

{

d
∑

i=0

tivi : ti > 0,

d
∑

i=0

ti = 1

}

.

We let hK denote the length of the longest side of K and ρK denote the radius of the largest
sphere inscribed in K. Following Jamet’s shape regularity condition [22], the angle θK is defined
to characterize the quality of a simplex K by the formula,

θK := max
|ξ|=1

min
i

arccos ξ · ui (1)

where {ui} is the set of unit vectors parallel to the edges of the simplex K; see Fig. 3. This
angle measures how far from coplanar the set of edges is, so we call θK the coplanarity measure.
The subscript on h, ρ, and θ is often omitted when the simplex in question is apparent. In two
dimensions θK is half the largest angle of the triangle, and thus the set of triangles with coplanarity
bounded away from π/2 satisfy the maximum angle condition in the sense that all angles are
bounded away from π. In three dimensions, a more intuitive generalization of the maximum angle
condition defined by defined by Kř́ıžek [24] requires that both face and dihedral angles of the
tetrahedron are bounded away from π. This is also equivalent to bounding coplanarity away from
π/2 as shown in the proposition below.

Proposition 1.1. Let ψK denote the maximum of all face and dihedral angles of (three-dimensional)
tetrahedron K. For tetrahedra, bounds on coplanarity and face/dihedral angles are equivalent, i.e.,
if θK is bounded away from π/2 then ψK is bounded away from π and vice versa.

The proof, given in Appendix A, relies on a characterization of tetrahedra satisfying the maxi-
mum angle condition given in [2].

1.2 Sobolev Spaces

We will distinguish between the notation ∂
∂xi

and ∂i. The former will be used to denote differen-
tiation with respect to a particular variable while the latter represents differentiation with respect
to a function argument. For example, the following notation is used for an application of the chain
rule:

∂

∂xi
[u(2x+ 3y)] = 2∂iu(2x + 3y).
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Figure 3: Coplanarity θ for for several simplices with vector ξmax which maximizes the expression
in (1) labeled. (left) In 2D the coplanarity is half the largest angle. (center) The coplanarity of a
nearly flat “sliver” tetrahedron is nearly π/2. (right) The simplices used in a counter-example due
to Shenk [39] have coplanarity bounded away from π/2 even as the edge length ǫ approaches 0.

The Sobolev semi-norms and norms on functions over an open set Ω are defined by

|u|pWm,p(Ω) :=

∫

Ω

∑

|β|=m

|∂βu(x)|p dx and ||u||pWm,p(Ω) :=
∑

0≤k≤m

|u|pWm,p(Ω) ,

where the first summation is taken over multi-indices β and differentiation with respect to multi-
indices has the standard definition, ∂βu = ∂β1∂β2 . . . u. The W 0,p-norm is simply the standard
Lp-norm.

Throughout this paper, Ω ⊂ R
d is a bounded set and an extension domain for any Sobolev

spaces used; i.e. there is a continuous, linear operator EΩ : Wm,p(Ω) → Wm,p(Rd) such that
u(x) = EΩu(x) for all x ∈ Ω; see [3, p. 83] for technical results concerning extension domains.
Without ambiguity, the functions u and EΩu will not be distinguished: for x /∈ Ω, u(x) denotes
EΩu(x). Likewise, the estimate |u|Wm,p(Rd) > |u|Wm,p(Ω) is used freely.

1.3 Lagrange Interpolation on Simplicial Meshes

T always denotes a simplicial mesh of Ω. The ply of the mesh T is the maximum number of mesh
simplices intersecting a single simplex. Ply restrictions are often implicit in interpolation error
estimates since a mesh with bounded aspect ratio has a bounded ply. (In fact, the weaker restriction
of bounded circumradius to shortest edge ratio is sufficient to ensure bounded ply [44, 21].)

Let Πk denote the k-th degree Lagrange interpolant on a simplicial mesh,

Πku(x) :=
∑

i

u(vi)φi(x)

where φ are the piecewise nodal basis functions on T . While this paper only considers linear
interpolants (k = 1), the higher order cases are included in the statement of classical estimates for
smooth functions.

1.4 Prior Interpolation Error Estimates

The Bramble-Hilbert Lemma [7, 14] along with scaling properties of Sobolev semi-norms leads
to the following classical error estimate for the Lagrange interpolant; see [12, 15, 9] for complete
details.
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Proposition 1.2. If k + 1 > d
p and 0 ≤ m ≤ k, then for all simplices K and all u ∈W k+1,p(K),

|u−Πku|Wm,p(K) >
hk+1

ρm
|u|W k+1,p(K) . (2)

For simplices with bounded aspect ratio, h and ρ are proportional and thus the factor hk+1

ρm

reduces to hk+1−m. The estimate in the L2-norm (i.e., the m = 0 case) is particularly nice: the
term in the denominator disappears and the estimate is independent of the shape of the simplex.

The first generalization involves weakening the data regularity requirement, i.e., the restriction
u ∈ W 2,p(Ω). A function u ∈ W 1,p(Ω) (but not in W 2,p(Ω)) is not necessarily continuous so
an alternative to Lagrange interpolation must be considered. Clément first described such an
interpolant and proved an estimate which corresponds to the (k = 0)-case of (2) [13]. Scott and
Zhang proved a similar estimate based on an average interpolant [38]: specifically interpolant values
at mesh vertices are defined to be averages over an arbitrarily selected adjacent simplex. A distinct
advantage of the Scott and Zhang interpolant is that coefficients of basis functions corresponding to
boundary nodes only depend upon the boundary data. An alternative approach based on averaging
over balls has been developed which extends to vector-valued functions in the discrete de Rham
complex [5, 37, 11]; see Figure 4 for a comparison of the averaging regions. The resulting interpolant
of Christiansen and Winther also matches homogeneous boundary data selecting an appropriate
extension of the function outside the domain. In the simplest case, each of these constructions
reduces to the following theorem.

Theorem 1.3 (Specialized from [38, 11], etc.). Suppose T has a bounded aspect ratio and let Π0

be an average interpolant. Then for all u ∈W 1,p(Ω),

||u−Ψ0u||Lp(K) > h |u|W 1,p(K̂) , (3)

where K̂ is the union of K and its neighboring simplices.

Unlike the (m = 0, k = 1)-case of Proposition 1.2, Theorem 1.3 requires a bounded aspect ratio
mesh ensuring two things. First, K and its neighboring simplices have roughly the same size so
that diam(K) ≈ diam(K̂). Second, K has a bounded ply so these local estimates (3) over each
simplex can be summed to a global estimate. Our aim is to remove these restrictions on simplex
shape to match the m = 0 case of the classical estimate (2) which is independent of simplex shape.

The second generalization of Proposition 1.2 weakens the shape regularity requirements. For
this purpose, Jamet developed an improved estimate for sufficiently regular data.

Theorem 1.4 (Jamet, [22]). If k + 1−m > d
p , then for all u ∈W k+1,p(K),

|u−Πku|Wm,p(K) >
hk+1−m

(cos θ)m
|u|W k+1,p(K) . (4)

The restriction k + 1−m > d
p prevents Jamet’s result from applying in certain cases including

(perhaps the most important cases of) linear interpolation on triangles and tetrahedra: k = m = 1
when d = 2 or d = 3. The analysis of Babuška and Aziz [6] yields the result for the linear
triangular element (although care must be taken to derive the correct geometric factor 1/ cos θ
using this approach [23, 18, 28, 34]). Shenk generalized the approach of Babuška and Aziz to
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higher dimensions and, more importantly, demonstrated that (4) does not hold for the linear
Lagrange interpolant on tetrahedra [39]. Shenk’s example involves particularly simple geometry: a
family of tetrahedra depicted in Figure 3 with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, ǫ) where
ǫ approaches zero. Demonstrating the error estimate for an analogous class of triangles (i.e., 2D
simplices) is the crux of the argument of Babuška and Aziz.

An analysis by Acosta demonstrated that expected error estimates can be extended to certain
narrow tetrahedra (including those in Shenk’s example) by using average (rather than Lagrange)
interpolation [1]. This method does allow data and shape regularity to be weakened simultaneously,
but the analysis is inherently anisotropic: locally it must be possible to affinely transform the mesh
into a shape-regular mesh. (This is a standard requirement in an anisotropic framework; e.g.,
[4, 17, 20].) The resulting estimates expect the mesh to have a bounded ply so that local estimates
can be summed to form global error estimates. Note that the meshes in Figure 2 do not satisfy the
requirements of [1].

We will develop interpolation error estimates based on average interpolation under weakened
data and shape regularity requirements. Emphasis will be placed on avoiding any unnecessary
element shape requirements which, most notably, allows meshes with unbounded ply (as is the
case for Lagrange interpolants in Theorem 1.4). The result will be an interpolation theory which
extends Jamet’s minimal shape regularity requirements to less smooth data including the linear
tetrahedral element.

2 Uniform Error Estimates

To avoid the limitations associated with pointwise function evaluation, an average interpolant is
defined by mollifying the data before Lagrange interpolation:

Ξhu(x) := Π1Mhu(x). (5)

In the next subsection, the standard mollification procedure Mh is defined and a number of needed
properties are given.

Remark 2.A. This interpolant is used in [5, 37, 11], but in that context, the mollification radius
was selected to be small enough so that the averaging region stays within the neighboring triangles.
Since we do not assume aspect ratio bounds, we cannot use this property. Acosta uses essentially
an anisotropic variant of this construction [1]; see Figure 4.

2.1 Mollification and Integration

Mollification is a common tool in analysis for producing smooth approximations of functions in Lp

spaces. After defining the procedure, a few common facts about mollification are listed. The proofs
of these and similar results can be found in a number of textbooks, but are given in the appendix for
comparison to the later sections. For some examples of these kinds of technical details, especially
those for more regular data and including explicit dependence on on the mollification radius, see
[32, p. 191], [26, p. 58], [27, p. 98], and [16, p. 201].

Let ρ ∈ C∞(Rd) such that (i) supp(ρ) ⊂ B(0, 1), (ii)
∫

ρ(x) dx = 1, and (iii) ρ(x) ≥ 0 for all

x. Let ρh(x) =
1
hd
ρ(xh ). Then, (i) supp(ρh) ⊂ B(0, h), (ii)

∫

ρh(x) dx = 1, (iii) ρh(x) ≥ 0 for all x,

and (iv) ||∇ρh||L1(Rd) ≤ 1
h ||∇ρ||L1(Rd). The most commonly used mollifier is ρ(x) = ce−1/(1−||x||2)

where the constant c is chosen so (ii) holds. We also require that ρ is radially symmetric. While
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Figure 4: Averaging regions for the interpolants of (left to right) Clément, Scott and Zhang,
Christiansen and Winther, Acosta, and this paper. The first three were developed for shape reg-
ular meshes. The final two are shown on an anisotropic mesh to highlight the differences in the
construction. While the Acosta interpolant requires well-defined anisotropy in the mesh, our inter-
polant makes minimal assumptions on the mesh quality.

symmetry is not usually required, the common mollifier is symmetric and we explicitly use the
property in one step of the upcoming arguments.

A function is mollified by convolving it with ρh: given u ∈ L1(Rd), define

Mhu(x) :=

∫

Rd

u(x− y)ρh(y) dy =

∫

Rd

u(x− hz)ρ(z) dz.

The two representations above are equivalent, resulting from a simple change of variables, y = hz,
but the supports of the integrands are different. If a function is smooth enough (specifically, it
belongs to W 1,p(Ω) in the proposition below) then the difference between the function and its
mollification can be bounded in terms of the mollification radius.

Proposition 2.1. If p ≥ 1, then for all u ∈W 1,p(Ω),

||u−Mhu||Lp(Rd) > h |u|W 1,p(Ω) .

The next proposition demonstrates how the smoothness of the mollifier depends on the molli-
fication radius through a bound on the Lp-norm of a mollified function in terms of the Lq-norm of
the original function.

Proposition 2.2. If 1 ≤ q ≤ p ≤ ∞ and Q is a bounded set, then for all u ∈ Lq(Q),

||Mhu||Lp(Q) > hd
q−p

pq ||u||Lq(Qh)
(6)

where Qh :=
⋃

x∈QB(x, h).

Remark 2.B. Since ∂
∂xi

(Mhu) = Mh

(

∂u
∂xi

)

, Proposition 2.2 also applies for higher Sobolev

norms; specifically, (6) implies that

|Mhu|W k,p(Q) > h
d q−p

pq |u|W k,q(Qh)
. (7)

Finally a standard estimate of the Lp-norm of a function in terms of the Lq-norm is stated for
q larger than p. This can be proved with either Jensen’s or Hölder’s inequality.

Proposition 2.3. If 1 ≤ p ≤ q ≤ ∞ and Q is a bounded set, then for all u ∈ Lq(Q),

||u||Lp(Q) ≤ |Q|
q−p

pq ||u||Lq(Q) .
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Figure 5: For an example domain, the cubes in Q are shaded.

2.2 Error Estimate

Next we turn to removing the integrability condition in Jamet’s estimate (4). Again for simplicity
we first consider meshes in which simplex size and quality (measured by coplanarity, not aspect
ratio) are uniformly bounded and then relax these assumptions in Section 3.

Theorem 2.4. Suppose T contain no edges longer than h and let θ be the maximum simplex
coplanarity. Then for k ∈ {0, 1} and for all u ∈W k+1,p(Ω),

|u− Ξhu|W k,p(Ω) >
h

(cos θ)k
|u|W k+1,p(Ω) . (8)

Proof. First the triangle inequality is applied using the intermediate function Mhu,

|u− Ξhu|W k,p(Ω) ≤ |u−Mhu|W k,p(Ω) + |Mhu− Ξhu|W k,p(Ω) . (9)

The first term of (9) is independent of the triangulation T and is estimated using Proposition 2.1:

|u−Mhu|W k,p(Ω) > h |u|W k+1,p(Ω) . (10)

Next the second term of (9) is addressed:

|Mhu− Ξhu|W k,p(Ω) = |Mhu−Π1Mhu|W k,p(Ω) . (11)

The estimate is established locally, but not over the individual simplices of T . This is important
since averaging ‘smears’ the estimate on one simplex over its neighbors. Since we allow for high
ply meshes, it is not possible to sum these local estimates to yield the global result (8). Rather,
the estimate is localized over a simple artificial (and bounded-ply) decomposition, a covering of Ω
by cubes.

In a lattice of cubes of side-length h, let Q = {Qi} be the subset which intersect Ω; see Figure 5.
The term (11) is estimated on a single cube Qi ∈ Q. Let Ri and Si denote the cubes of side-length
3h and 5h, respectively, centered around Qi, and let Ki be the set of simplices in the triangulation
Th which intersect Qi; see Figure 6.

9



Next a value q > d is selected arbitrarily with the intention of applying Theorem 1.4 (since we
are in the setting k+ 1−m = 1). Applying Proposition 2.3 followed by the definition of Ki yields,

|Mhu−Π1Mhu|qW k,p(Qi)
> |Qi|

q−p

p |Mhu−Π1Mhu|qW k,q(Qi)

> |Qi|
q−p

p

∑

K∈Ki

|Mhu−Π1Mhu|qW k,q(K)
.

Theorem 1.4 can now be applied to each term of the summation on the right hand side and
Proposition 2.2 is used to return the estimate to the correct norm:

|Mhu−Π1Mhu|qW k,p(Qi)
> |Qi|

q−p

p

∑

K∈Ki

(

h

(cos θK)
k

)q

|Mhu|qW k+1,q(K)

> |Qi|
q−p

p |h|d
p−q

p

(

h

(cos θ)k

)q

|u|q
W k+1,p(Si)

.

Since |Qi| = hd, we conclude that

|Mhu−Π1Mhu|W k,p(Qi)
>

h

(cos θ)k
|u|W k+1,p(Si)

. (12)

Finally these estimates can be summed to get the global estimate:

|Mhu−Π1Mhu|pW k,p(Ω)
≤
∑

i

|Mhu−Π1Mhu|pW k,p(Qi)

>

(

h

(cos θ)k

)p
∑

i

|u|p
W k+1,p(Si)

>

(

h

(cos θ)k

)p

|u|p
W k+1,p(Ω)

. (13)

The final inequality holds since each cube Qi belongs to at most 5d cubes Sj.

Remark 2.C. The essential difference between this analysis and that of Acosta [1] is the use of
the artificial (and bounded-ply) mesh Q for establishing the local estimate (12).

Remark 2.D. Looking closely at the inequality (13) reveals that the extension domain property
has been used to estimate |u|W 2,p(

⋃
Si)

by |u|W 2,p(Ω).
Remark 2.E. In the Lp case of (8), i.e, k = 0, the estimate does not depend on simplex shape

which agrees with the classical result for more regular data.

3 Locally Quasi-Uniform Error Estimates

Extending Theorem 2.4 to admit non-uniform meshes requires a precise characterization of the
mesh size h at each point in the domain. We emphasize that the size function does not necessarily
reflect the size of the triangles in the mesh. Rather it is only an upper bound. Because the average
interpolant depends on a local neighborhood, the sizing function should not vary too rapidly so
that there is roughly a unique size (up to a constant factor) associated with the neighborhood.

10
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Figure 6: Diagram for the proof of Theorem 2.4. Triangles belonging to Ki are shaded.

Before proving error estimates, we outline precise restrictions on these sizing functions. Then
based on the sizing function, variable-radius mollification and compatible cubic coverings are de-
fined. As before, the final interpolation operator is a composition of the (modified) mollification
operation Mh with the usual Lagrange interpolation operator Π1:

Ξhu(x) := Π1Mhu(x). (14)

3.1 Sizing Function

Using Lagrange interpolation for smooth (enough) functions, mesh size is captured locally by the
length of the longest edge of a given triangle. For average interpolation, function values over
neighboring triangles must be considered and thus the size of the averaging region also plays a
role in the error estimate. On bounded aspect ratio meshes this is not an issue since the longest
edges of any pair of neighboring triangles are within a constant factor [31]. To analyze average
interpolants for meshes without aspect ratio bounds, we decouple the mesh sizing function from the
actual size of the triangles. Rather, the sizing function will be a smooth (enough) function which
provides an upper bound on the size of nearby triangles in the mesh. The result will be a sizing
function which can be used in the error estimate despite admitting meshes with adjacent triangles
with dramatically different sizes.

Letting Csizing be a positive constant, we consider the class of sizing functions h : Rd → (0,∞)
with bounded first and second derivatives:

|∇h(x)| ≤ 1

16
√
d
; (15) |∂i∂jh(x)| ≤ Csizing. (16)

We call a triangulation T of Ω compatible with sizing function h if for all x ∈ Ω, h(x) ≥ hT (x) where

11



Figure 7: Comparison of two (bounded aspect ratio) meshes associated with sizing functions h(x) =
1
2 |x| + 0.01 (left) and h(x) = |x|2 + 0.01 (right) over the square [−1, 1]2. In each case, both the
full mesh and the center region zoomed four times are shown. These meshes demonstrate the
differences between conditions (15) and (16): meshes only satisfying the former condition can
grade more quickly away from zero. Note: the meshes do not satisfy (15) with the particular choice
of constant, but this exaggerated example is given to more clearly display the effect.

T (x) denotes the triangle containing x.1 In this setting, we will establish uniform interpolation
estimates for any sizing function with a compatible mesh as long as the sizing function satisfies
(15) and (16) and the mesh satisfies the maximum angle condition (in the sense of coplanarity).

Remark 3.A. The particular choice of constant in (15) is not essential. However, this value is
very convenient for localizing future estimates to one layer of neighboring cubes in a 2:1 balanced
cubic partition described in Subsection 3.3. Selecting a larger constant in (15) will require analysis
of more levels of the cubic partition.

Remark 3.B. Restriction (15) is implicitly present (although the constant is often weaker) in
the context of shape regular meshes. For a shape-regular mesh T and letting P (T ) be the union of
triangles in T which intersect triangle T , we define

h(vi) = max
T∈T ,vi∈P (T )

hT ,

This definition of h can be extended to Ω using linear interpolation over the triangulation and it
immediately follows that the triangulation T is compatible with h. Moreover, properties of well-
spaced point sets ensure that |∇h| can be bounded depending only on the mesh shape regularity [31,
44, 21]. In other words, a shape regular mesh can be viewed as a mesh that is compatible with a
Lipschitz sizing function, and thus (16) is the only extra condition on the sizing function we require
to handle less shape-regular meshes.

Remark 3.C. Restrictions (15) and (16) do allow for non-uniform meshes. The sequence of sizing
functions hn(x) = |x|2 + 1

2n can be paired with a sequence of meshes with progressively smaller
elements near the origin. However, (16) does pose some additional limitations on how quickly the
sizing function can approach zero: in the shape regular case common adaptive refinement matches
a sizing function hn(x) = |x| + 1

2n or hn(x) = min
{

|x| , 1
2n

}

which is not smooth enough for (16).
See Figure 7.

Remark 3.D. Restrictions (15) and (16) are somewhat weaker than those used in [1] where there
are restrictions essentially of the form h(x) ≤ ∇h(x). In that setting Gronwall’s inequality prevents

1Without causing confusion this is a slight abuse of notation using h(x) to denote the sizing function and hT to
denote the length of the longest edge of triangle. This is done to emphasize the fact that the sizing function plays
the role of the mesh size in the upcoming estimates.

12



such sizing functions from being truly non-uniform. Using the techniques of this paper, it should
be possible to recover Acosta’s anisotropic results in a similar relaxed setting.

3.2 Variable-Radius Mollification

We now consider the generalization of mollification by allowing the mollification radius to vary over
the domain. Given u ∈ L1(Rd) and sizing function h, define

Mhu(x) :=

∫

Rd

u(x− y)ρh(x)(y) dy =

∫

Rd

u(x+ h(x)y)ρ(y) dy.

The only difference between this definition and the standard mollifier is that the radius h(x)
is spatially varying. We consider an isotropic mollification region (and thus produce isotropic
error estimates). The prior construction of Acosta uses an anisotropic mollifier, i.e., the term
(h1(x)y1, h2(x)y2, h3(x)y3) replaces h(x)y in the above definition [1]. First we note a simple prop-
erty of the variable radius mollifier.

Proposition 3.1. Let p ≥ 1 and Q ⊂ R
d, and define Qh :=

⋃

x∈QB(x, h(x)). Then for all the
sizing functions satisfying (15) and for all u ∈ Lp(Qh),

∫

Q
|u(x+ h(x)y)|p dx > ||u||pLp(Qh)

. (17)

Proof. This results from a simple change of variables, z = x + h(x)y. The Jacobian of this
transformation can be bounded by 1

(1+∇h(x)·y)d . By assumption (15) and since y ∈ B(0, 1), 1 +

∇h(x) · y ∈ [1− 1/(16
√
d), 1 + 1/(16

√
d)] producing (17).

Extensions of Propositions 2.1 and 2.2 are necessary to prove the non-uniform error estimates.
Since Remark 2.B no longer applies, i.e.,

∂

∂xi

(

Mhu
)

6= Mh

(

∂

∂xi
u

)

,

we prove these lemmas directly in the correct Sobolev norms.

Lemma 3.2. Let p ≥ 1 and Q be a cube. Then for k ∈ {0, 1} and for all u ∈W k,p(Ω),
∣

∣u−Mhu
∣

∣

W k,p(Q)
> HQ ||u||W k+1,p(Qh)

(18)

where HQ = maxx∈Q h(x), and Qh =
⋃

x∈QB(x, h(x)).

Proof. The k = 0 case of inequality (18) follows from a very similar argument to the proof of
Proposition 2.1. Letting w ∈ Lp

′

(Rd) be an arbitrary function,
∫

Q
|(u(x)−Mhu(x))w(x)|dx

=

∫

Q

∣

∣

∣

∣

∣

(

∫

B(0,1)

(
∫ 1

0

d

ds
(u(x− sh(x)y)) ds

)

ρ(y) dy

)

w(x)

∣

∣

∣

∣

∣

dx

≤
∫ 1

0

∫

Rd

∫

Q
|h(x)y · ∇u(x− sh(x)y)ρ(y)w(x)| dxdy ds.

13



Next we note that |h(x)y| ≤ HQ and then bound the inner integral independent of y by expanding
the set Q:

∫

Q
|(u(x)−Mhu(x))w(x)|dx

≤ HQ

∫ 1

0

∫

Rd

ρ(y)

∫

Q
|∇u(x− sh(x)y)w(x)| dxdy ds

> HQ |u|W 1,p(Qh)
||w||Lp′(Q) .

Note: the construction
∫

ρ(y) dy = 1 was used to eliminate the integral in the y variable. Selecting

w =
(

u(x) −Mhu(x)
)p−1

completes the result.

Next, the k = 1 case of inequality (18) is addressed. We begin by computing ∂
∂xi

Mhu(x)
directly:

∂

∂xi
Mhu(x) = Mh∂iu(x) +

∫

Rd

ρ(y)∂ih(x)∇u(x + h(x)y) · y dy. (19)

Then letting g(x) :=
∫

Rd ρ(y)∂ih(x)∇u(x + h(x)y) · y dy,
∣

∣

∣

∣

∣

∣

∣

∣

∂

∂xi

(

u−Mhu
)

∣

∣

∣

∣

∣

∣

∣

∣

Lp(Q)

≤
∣

∣

∣

∣∂iu−Mh(∂iu)
∣

∣

∣

∣

Lp(Q)
+ ||g||Lp(Q) . (20)

The first term can be estimated using the argument applied to (18) yielding,
∣

∣

∣

∣∂iu−Mh(∂iu)
∣

∣

∣

∣

Lp(Q)
≤ HQ |∂iu|W 1,p(R) . (21)

It only remains to estimate ||g||Lp(Q). Let Rd+ denote the halfspace with positive first coordinate,
xi > 0. First g is rewritten in terms of second derivatives of u:

g(x) = ∂ih(x)

∫

Rd

ρ(y)∇u(x + h(x)y) · y dy

= ∂ih(x)

∫

R
d
+

ρ(y) (∇u(x+ h(x)y) −∇u(x− h(x)y)) · y dy

= ∂ih(x)

∫

R
d
+

ρ(y)

(
∫ 1

−1

∂

∂s
∇u(x+ sh(x)y) ds

)

· y dy.

Our selection of a radially symmetric mollifier is important above as the property ρ(y) = ρ(−y)
has been applied.

∫

|g(x)w(x)| dx ≤
∫

Q

∫

R+

∫ 1

−1
|∂ih(x)| ρ(y)

∣

∣

∣

∣

∂

∂s
∇u(x+ sh(x)y)

∣

∣

∣

∣

|y| |w(x)| ds dydx

>

∫ 1

−1
|s|
∫

R+

ρ(y)

∫

Q
|h(x)|

∣

∣D2u(x+ sh(x)y)
∣

∣ |w(x)| dxdy ds,

where D2u denotes the Hessian of u, the matrix of second derivatives. Next, Hölder’s inequality
can be applied:

∫

|g(x)w(x)| dx > HQ |u|W 2,p(Qh)
||w||Lp′(Q) . (22)

Finally setting w(x) = g(x)p−1, and then combining (22) with (21) completes the result.
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The next step is to develop an extension of Proposition 2.2 for the variable-radius mollifier.

Lemma 3.3. If 1 ≤ q ≤ p ≤ ∞ and Q is a bounded set, then for all the sizing functions satisfying
(15) and (16) and for all u ∈W 2,q(Q), k ∈ {0, 1, 2},

∣

∣Mhu
∣

∣

W k,p(Q)
> h−dQ |Qh|

q−1

q |Q|
1

p ||u||W k,q(Qh)
(23)

where hQ = minx∈Q h(x) and Qh :=
⋃

x∈QB(x, h(x)).

Proof. We begin with the case k = 0. For all x ∈ Q,

∣

∣Mhu(x)
∣

∣ ≤ ||ρ||L∞(Rd)

∫

B(0,1)
|u(x+ h(x)y)| dy

≤ ||ρ||L∞(Rd)

∫

Qh

h(x)−d |u(z)| dz.

The previous inequality results from a change of variables z = x+ h(x)y. (Note, x is fixed in this
transformation.) Hölder’s inequality gives,

∣

∣Mhu(x)
∣

∣ = ||ρ||L∞(Rd) h
−d
Q |Qh|1/q

′ ||u||Lq(Qh)
. (24)

Integrating (24) in x over Q produces (23) in the k = 0 case.
Next, we turn to the case k = 2; the k = 1 case follows from very similar arguments.

∂2

∂xi∂xj
Mhu(x) =

∫

Rd

ρ(y)

[

∂i∂ju(x+ h(x)y) +

∂ih(x)∇ (∂ju(x+ h(x)y)) · y +

∂jh(x)∇ (∂iu(x+ h(x)y)) · y + (25)

∂ih(x)∂jh(x)y ·D2u (x+ h(x)y)) y +

∂i∂jh(x)∇ (u(x+ h(x)y)) · y
]

dy

The first term is identical to the k = 0 case using the function ∂i∂ju in the place of u. In the
second, third, and fourth terms, the same argument holds after we recall (15) and the fact that
|y| ≤ 1. While the argument is the same, the final term yields a few slight differences: (16) is
required and the resulting estimate is in terms of |u|W 1,p(Qh)

rather than |u|W 2,p(Qh)
seen in all the

other cases. This causes the right-hand side of (23) to contain the full Sobolev norm, rather than
the semi-norm.

Remark 3.E. In Lemma 3.3 (16) is only necessary for the case k = 2.
Remark 3.F. Lemmas 3.2 and 3.3 will be applied for cubes Q such that hQ ≈ HQ ≈ size(Q) ≈

size(Qh). In this setting the estimates yield the same factors of ‘h’ as seen in the analog with fixed
mollification radius.
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Algorithm 1 Cover Ω by cubes proportional to h.

Require: Q = {Q} where Q is a cube such that size(Qi) > 4maxx∈Ω h(x)
while ∃Qi ∈ Q such that size(Qi) > 8maxx∈Qi

h(x) do
Remove Qi from Q
Subdivide Qi into 2d new cubes of size size(Qi)

2 .
Insert all of the new cubes which intersect Ω into Q.

end while

Figure 8: An example cubic covering of a domain for some non-uniform sizing function.

3.3 Cubic Covering of Ω

An important idea in Section 2 was the use of a cubic grid of size h to cover the domain. In the
non-uniform case we seek to cover Ω with cubes such that each cube has side length proportional
to h(x) for x ∈ Q; see Figure 8 for an example. This is possible due to restriction (15) and can be
achieved through the simple algorithm given in Algorithm 1.

First we assert that any neighboring cubes produced have proportional sizes.

Proposition 3.4. Let Q = {Qi} be the set of cubes resulting from Algorithm 1. If Qi ∩ Qj 6= ∅,
then size(Qi) ≤ 2 size(Qj).

Proof. Suppose Qi and Qj are adjacent cubes such that size(Qi) ≤ size(Qj)
4 . Let xi ∈ Qi ∩Qj and

let xj ∈ Qj . Then,

h(xj) ≤ h(xi) +
1

16
√
d
|xj − xi| ≤

size(Qi)

4
+

1

16
√
d

√
dsize(Qj) ≤

1

8
size(Qj).

Thus Qj is eligible to be split by Algorithm 1 and we conclude that upon termination of the
algorithm the lemma holds.

The next proposition shows that for a compatible triangulation the simplices which intersect a
particular cube are contained well inside the cube and its neighboring cubes.

Proposition 3.5. Let Q be the set of cubes resulting from Algorithm 1. Then for all x ∈ Q,
4h(x) ≤ size(Q) ≤ 16h(x).
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Proof. Let Q be any cube resulting from Algorithm 1 and let Q̂ be the cube which was subdivided
to form Q. Then

2 size(Q) = size(Q̂) > 8max
x∈Q̂

h(x) > 8max
x∈Q

h(x). (26)

There exists x ∈ Q such that h(x) > size(Q)
8 since Q is not split further by the algorithm. By

requirement (15), for any y ∈ Q,

h(y) ≥ h(x)− 1

16
√
d
|x− y| ≥ size(Q)

16
. (27)

Combining (26) and (27) yields the result.

Lemma 3.6. Let triangulation T be compatible with h and let Q = {Qi} be the set of cubes resulting
from Algorithm 1. Then for all Q ∈ Q,

⋃

K∈K(Q)

⋃

x∈K

B(x, h(x)) ⊂ Si :=
⋃

Qj∩Q 6=∅

Qj,

where K(Q) denotes the set of simplices intersecting Q.

Proof. Let K ∈ K(Q) and let x ∈ K. Then x belongs to Q or a cube neighboring Q since by
Propositions 3.4 and 3.5 dist(x, Q) ≤ hK ≤ size(Q)/4 ≤ size(Q̂)/2 for any neighboring cube Q̂.
Let Q̂ denote the cube containing x and let y ∈ B(x, h(x)). Also let z denote the nearest point in
Q to x. The result is shown in two cases depending on the size of Q̂.
Case 1: size(Q̂) = size(Q) or size(Q̂) = size(Q)/2. Then

|y − z| ≤ |y− x|+ |x− z| ≤ h(x) + hK ≤ size(Q)

4
+

size(Q)

4
=

size(Q)

2
.

By the balance property (Proposition 3.4), this implies that y ∈ ⋃Qj∩Q 6=∅Qj .

Case 2: size(Q̂) = 2 size(Q). Then

|y − z| ≤ |y − x|+ |x− z| ≤ h(x) + hK

≤ h(z) +
|z− x|
16
√
d

+
size(Q)

4
≤ size(Q)

(

1

2
+

1

64
√
d

)

.

The balance property (Proposition 3.4) ensures that y must belong to a cube of size greater than
or equal to size(Q). Since |y − z| ≤ size(Q), y ∈ ⋃Qj∩Q 6=∅Qj .

3.4 Error Estimate

Now we have the necessary tools to prove an analog of Theorem 2.4 for a non-uniform sizing function
and compatible triangulation.

Theorem 3.7. Let k ∈ {0, 1}. For sizing functions h satisfying (15) and (16) paired with any
compatible mesh T , let Q be the set of cubes produced by Algorithm 1. Then for all u ∈W 1,p(Ω),

∣

∣

∣

∣u− Ξhu
∣

∣

∣

∣

W k,p(Ω)
>





∑

Qi∈Q

(

hi
(cos θ∗i )

k

)p

||u||p
W k+1,p(Qi)





1

p

(28)

where hi = maxx∈Qi
h(x) and θ∗i = maxT∩Si 6=∅ θT .
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Note that this result is uniform over the class of sizing functions satisfying (15) and (16), i.e.,
the inequality depends only upon Csizing and not the specific sizing function or mesh selected.

Proof. The proof structure is very similar to Theorem 2.4. First the estimate is divided using the
triangle inequality and the intermediate function Ξhu.

|u− Ξhu|W k,p(Qi)
≤
∣

∣u−Mhu
∣

∣

W k,p(Qi)
+
∣

∣Mhu− Ξhu
∣

∣

W k,p(Qi)
. (29)

Let Si denote the union of Qi with its neighboring cubes. By Lemmas 3.2 and 3.6,
∣

∣u−Mhu
∣

∣

W k,p(Qi)
≤ hi ||u||W k+1,p(Si)

.

Next the second term in (29) is estimated. Select a value q > d. Proposition 2.3 and Theorem 1.4
are applied for the smooth function Mhu:

∣

∣Mhu−Π1Mhu
∣

∣

q

W k,p(Qi)
> size(Qi)

q−p

p

∑

K∈Ki

∣

∣Mhu−Π1Mhu
∣

∣

q

W k,q(K)

> size(Qi)
q−p

p

∑

K∈Ki

(

hK
(cos θK)k

)q
∣

∣Mhu
∣

∣

q

W k+1,q(K)
.

Lemma 3.6 is applied to combine terms in the summation and Lemma 3.3 is used to return the
estimate to the correct norm. Letting θi = maxT∩Qi 6=∅ θT ,

∣

∣Mhu−Π1Mhu
∣

∣

q

W k,p(Qi)
> size(Qi)

q−p

p

(

hi
(cos θi)k

)q
∣

∣Mhu
∣

∣

q

W k+1,q(∪K∈Ki
K)

> size(Qi)
q−p

p

(

hi
(cos θi)k

)q

h
p−q

p

i ||u||q
W k+1,p(Si)

>

(

hi
(cos θi)k

)q

||u||q
W k+1,p(Si)

. (30)

Inequality (30) follows from Proposition 3.5 which guarantees that h−1
i size(Qi) > 1. Finally sum-

mation over all cubes and again utilizing Proposition 3.5 finishes the result:

∑

i

∣

∣

∣

∣u− Ξhu
∣

∣

∣

∣

p

W k,p(Qi)
>
∑

i

(

hQi

(cos θi)k

)p

||u||p
W k+1,p(Si)

>
∑

i





∑

j s.t. Qj∩Qi 6=∅

(

hQi

(cos θi)k

)p


 ||u||p
W 1,p(Qi)

> 2(2d+1)p
∑

i

(

hQi

(cos θ∗i )
k

)p

||u||p
W 1,p(Qi)

.

The final inequality results from the fact that there are fewer than 4d cubes intersecting Qi and for
any such cube Qj , hQj

≤ 2hQi
.

Remark 3.G. Due to Remark 3.E, the k = 0 case of Theorem 3.7 does not depend upon (16).
This means that Lp error estimates can be established for Lipschitz sizing functions (which, recalling
Remark 3.C, result from adaptive refinement in many common settings).

Remark 3.H. Similarly to Theorem 2.4, the extension domain property is also important to
Theorem 3.7. The usage is somewhat implicit: the continuous extension property is used to define
u on Qi 6⊂ Ω.
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A B
Figure 9: Requiring a globally defined sizing
function can lead to restrictions associated with
non-local portions of the boundary; e.g., a small
mesh in region A will force a reasonably small
mesh also in region B.

4 Final Remarks

To extend the maximum angle condition and its generalizations to less regular data Section 3 es-
tablishes ply-independent error estimates for a linear average interpolant. Broadly, this serves to
demonstrate that requirements on shape regularity and data regularity can be weakened simulta-
neously without the inherent trade-off seen in previous analyses. Specifically, these results extend
optimal error estimates under the maximum angle condition to several situations for which it was
previously not shown: linear interpolation of functions in W 1,p(Ω) and (when 1 ≤ d/p) W 2,p(Ω).
The latter result is most important in three dimensions where the maximum angle condition does
not hold for the Lagrange interpolant when p ≤ 2.

We have not addressed the question of boundary conditions. For error estimates in the Lp-
norm, the function can be explicitly adjusted to match a homogeneous boundary condition. In [11]
averaging regions near the boundary are shifted outside the domain where an explicit extension
by zero is used. When only considering the more straightforward scalar functions, an explicit
cutoff can also accomplish the task [34]. However, these manipulations corrupt error estimates
of the derivatives and fully generalizing (28) to preserve boundary data requires an alternative
approach. Ideally a mollification procedure analogous to the Scott and Zhang interpolant [38] can
be constructed which averages over a lower dimensional manifold so that only boundary data is
taken into account. Näıve approaches in this direction have proven unsuccessful.

The extension domain property has been used somewhat implicitly throughout the arguments
presented posing some limitations on the set of admissible meshes. Since the sizing function is
defined globally, mesh size in non-local portions of the domain can impact the maximum mesh
size; see Figure 9. These limitations are often ignored in the analysis as asymptotically (as h
becomes small) the impact disappears since the domain is fixed. Other mollification-based average
interpolants face similar limitations. For example, the construction of Christiansen and Winther
explicitly construct a small extension region outside the domain boundary and mesh elements are
assumed to be smaller than the size of this extension region. Ideally the domain could be embedded
in a manifold in which the non-local portions are far away (or more technically the extension
operator has a much smaller constant). While ad hoc methods for doing this are apparent for
simple examples, a complete theory for general domains is not.

In some cases, a higher-order variant of Theorem 3.7 may be necessary. Recall that for the
expected convergence rate in the Wm,p-norm, Jamet’s theorem requires k+1−m > d

p , where k+1
is the order of interpolation used and d is the spatial dimension. Thus average interpolation is
needed when d is large, p is near 1, or m is near k, i.e., estimates on higher derivatives are desired.
Extending Theorem 3.7 to cover these cases requires a higher-order mollification procedure. While
this mollifier can be defined, precise technical requirements under which the interpolation error
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estimate holds are still unknown.

Acknowledgments

The author gratefully acknowledges Noel Walkington for many useful discussions and the anony-
mous reviewers for several insightful comments.

References

[1] G. Acosta, Lagrange and average interpolation over 3D anisotropic elements, J. Comput.
Appl. Math., 135 (2001), pp. 91–109.

[2] G. Acosta, T. Apel, R. G. Durán, and A. L. Lombardi, Error estimates for Raviart-
Thomas interpolation of any order on anisotropic tetrahedra, Math. Comput., 80 (2011),
pp. 141–163.

[3] R. A. Adams, Sobolev Spaces, vol. 140 of Pure and Applied Mathematics, Academic Press,
Oxford, second ed., 2003.

[4] T. Apel, Anisotropic Finite Elements: Local Estimates and Applications, Advances in Nu-
merical Mathematics, Teubner, Stuttgart, 1999.

[5] D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus, homological
techniques, and applications, Acta Numer., 15 (2006), pp. 1–156.
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A Coplanarity vs. the Maximum Angle Condition

Proof. (Proposition 1.1) For this proof we omit the subscript K on θK and ψK without ambiguity.
First, we will bound ψ from above by a function of θ to establish that if θ is bounded away from π/2,
then ψ is bounded away from π. This will be shown by direct construction: for a tetrahedron with
maximum angle ψ, we will construct a particular vector ξ̂ which ensures that θ is sufficiently large.
Construction is divided into two cases. First we suppose that ψ is realized by a dihedral angle of the
tetrahedron. Considering this largest dihedral angle, all vertices of the tetrahedron are contained
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in two planes that meet at angles of ψ and π−ψ. Selecting a vector that points “away” from these
planes demonstrates

θ ≥ ψ/2. (31)

Next we suppose that ψ is realized by an angle in one of the faces of the tetrahedron. Let v1 be
the vertex at which the angle ψ occurs, let v2 and v3 denote the other two vertices of that triangle
and let v4 denote the last vertex; see Fig. 10. Moreover, without loss of generality we can assume
that |v2 − v4| ≤ |v3 − v4|, i.e., v4 is nearer to v2 than v3. Let ξ̂ be the unit normal vector to the
triangle with vertices v1, v2 and v4. To bound θ, first observe that ξ̂ is orthogonal to three of the
six lines containing edges of the tetrahedron. Two other edges belong to the triangle with vertices
v1, v2, v3, i.e., the triangle with a largest angle ψ. This large angle ensures that for any unit vector
ui in the direction of either of these two lines, ξ̂ · ui ≥ α− π/2. Lastly, we consider unit vectors in
the direction of the line through v3 and v4. The triangle inequality implies

∣

∣

∣
ξ̂ · (v3 − v4)

∣

∣

∣
≤
∣

∣

∣
ξ̂ · (v3 − v2)

∣

∣

∣
+
∣

∣

∣
ξ̂ · (v2 − v4)

∣

∣

∣
=
∣

∣

∣
ξ̂ · (v3 − v2)

∣

∣

∣
,

where the second term in the sum is zero by construction of ξ̂ orthogonal to the a plane containing

v2 and v4. Recalling our earlier argument,
∣

∣

∣
ξ̂ · (v3 − v2)

∣

∣

∣
≤ |v3 − v2| cos (ψ − π/2). Thus we can

estimate the angle between ξ̂ and the line containing v3 and v4.
∣

∣

∣ξ̂ · (v3 − v4)
∣

∣

∣

|v3 − v4|
≤ |v3 − v2| cos (ψ − π/2)

|v3 − v4|
≤ 2 cos (ψ − π/2) . (32)

The final inequality above follows from our definition of v3: |v3 − v2| ≤ |v3 − v4| + |v4 − v2| ≤
2 |v3 − v4|. We thus conclude that

θ ≥ min
i

ξ̂ · ui ≥ arccos (2 cos (ψ − π/2)) . (33)

Considering the two expressions (31) and (33), we see that if θ is bounded away from π/2, then ψ
is bounded away from π.

Next we establish a reverse inequality. The crux of the argument is contained in an inequality
from [2]. Defining m := sin π−ψ

2 , Acosta et al. assert that there are unit vectors u1, u2, u3 in the
directions of the edges of the tetrahedron such that

|(u1 × u2) · u3| ≥ m3. [2, p. 147] (34)

Letting ξ be an arbitrary unit vector, we consider the decomposition ξ = a(u1 × u2) + bu12 where
u12 is a unit vector in the plane spanned by u1 and u2. Since these are orthgonal subspaces,
a2 + b2 = 1 and thus a ≥ 1/

√
2 or b ≥ 1/

√
2. If a ≥ 1/

√
2, then

|ξ · u3| ≥ a |(u1 × u2) · u3| ≥
m3

√
2
. (35)

Otherwise b ≥ 1/
√
2. Letting γ denote the non-acute angle between the lines containing u1 and u2,

we observe that (34) implies that sin (π − γ) ≥ m3 or γ ≤ π − arcsin(m3). Also the angle between
u12 and the line in the direction of either u1 or u2 is no larger than γ/2. Thus,

max
i∈{1,2}

|ξ · ui| ≥ b cos
(γ

2

)

≥ 1√
2
cos

(

π − arcsin(m3)

2

)

. (36)
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Combining (35) and (36),

θ = max
|ξ|=1

min
i

arccos ξ · ui ≤ arccos

(

max

{

m3

√
2
,
1√
2
cos

(

π − arcsin(m3)

2

)})

.

Despite the complex form, this is the desired inequality. Specifically, if ψ is bounded away from π,
then m is bounded away from zero. Since all the functions we consider are continuous, it follows
that the argument of arccos is also bounded away from zero. Thus θ is bounded away from π/2.

B Mollification

Proofs of several propositions in Section 2.1 are provided here.

Proof. (Proposition 2.1) Define p′ by 1
p +

1
p′ = 1 and let w ∈ Lp

′

(Rd) be an arbitrary function. If

u ∈ C∞
c (Rd) then

∫

Rd

|(u(x)−Mhu(x))w(x)|dx

=

∫

Rd

∣

∣

∣

∣

(

u(x)−
∫

Rd

u(x− y)ρh(y) dy

)

w(x)

∣

∣

∣

∣

dx

=

∫

Rd

∣

∣

∣

∣

(∫

Rd

(u(x) − u(x− y))ρh(y) dy

)

w(x)

∣

∣

∣

∣

dx

=

∫

Rd

∣

∣

∣

∣

(
∫

Rd

(
∫ 1

0

d

ds
u(x− sy)) ds

)

ρh(y) dy

)

w(x)

∣

∣

∣

∣

dx.

The final equality results from the fundamental theorem of calculus. In the support of mollifier ρh,
|y| ≤ h so |yρh(y)| ≤ hρh(y). Then Hölder’s inequality can be applied:

∫

Rd

|(u(x)−Mhu(x))w(x)|dx

=

∫

Rd

∣

∣

∣

∣

(
∫

Rd

(
∫ 1

0
−y · ∇u(x− sy) ds

)

ρh(y) dy

)

w(x)

∣

∣

∣

∣

dx

≤
∫ 1

0

∫

Rd

∫

Rd

|−y · ∇u(x− sy)ρh(y)w(x)| dxdy ds

≤
∫ 1

0

∫

Rd

hρh(y)

(∫

Rd

|∇u(x− sy)|p dx

)
1

p
(∫

Rd

|w(x)|p′ dx
)

1

p′

dy ds

= h ||∇u||Lp(Rd) ||w||Lp′(Rd) .

By selecting w = (u−Mhu)
p−1, the left-hand side of the above estimate becomes ||u−Mhu||pLp(Rd)

.

Since p′(p − 1) = p, ||w||Lp′ (Rd) = ||u−Mhu||p−1
Lp(Rd)

. Dividing both sides by ||w||Lp′(Rd) gives the

desired inequality. Density of smooth functions in W 1,p(Ω) is used to extend this result to the full
space.
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Proof. (Proposition 2.2) Let û(x) := u(x)χQh
(x) where χQh

is the characteristic function of Qh.
Applying Young’s inequality to Mhû gives

||Mhû||Lp(Rd) > ||ρh||
L

pq
pq+q−p (Rd)

||û||Lq(Rd) .

Since Mhû ≡ Mhu on Q, ||Mhu||Lp(Q) = ||Mhû||Lp(Q) ≤ ||Mhû||Lp(Rd). Then recognizing that
||û||Lq(Rd) = ||û||Lq(Qh)

and computing the norm of ρh yields the desired estimate.

PSfrag replacements ξ̂ξ̂

ψ
ψ

v1

v2

v3

v4

Figure 10: In the proof of Proposition 1.1, when
bounding ψ in terms of θ, a specific ξ̂ can be con-
structed explicitly when ψ is realized by a large di-
hedral angle (left) or a large angle in a face (right).
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