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Abstract

Tensors of various orders can be used for modeling physical quantities such as strain and diffusion
as well as curvature and other quantities of geometric origin. Depending on the physical properties
of the modeled quantity, the estimated tensors are often required to satisfy the positivity

constraint, which can be satisfied only with tensors of even order. Although the space 323’” of
2m™-order symmetric positive semi-definite tensors is known to be a convex cone, enforcing

positivity constraint directly on 323’” is usually not straightforward computationally because there
is no known analytic description of ,@5’" for m> 1. In this paper, we propose a novel approach for

enforcing the positivity constraint on even-order tensors by approximating the cone ggm for the
cases 0 < m< 3, and presenting an explicit characterization of the approximation X5, C Q,, for

m=1, using the subset ©,,, C 3?’3’" of semi-definite tensors that can be written as a sum of squares
of tensors of order m. Furthermore, we show that this approximation leads to a non-negative linear
least-squares (NNLS) optimization problem with the complexity that equals the number of
generators in X, ;. Finally, we experimentally validate the proposed approach and we present an
application for computing 2m™-order diffusion tensors from Diffusion Weighted Magnetic
Resonance Images.

Keywords
high-order tensors; sum of squares of polynomials; diffusion tensor imaging

1. Introduction

Multi-linear algebra is a generalization of linear algebra and tensors which are multi-linear
forms are widely used for modeling various physical quantities commonly encountered in
engineering and physics. Elasticity [34], stress, strain and diffusion [10] are some examples.
In differential geometry, tensors are used to represent metrics, curvatures [40] and other
geometric quantities. In image processing, structure tensors [46] have been used for texture
analysis, trifocal tensors in multi-view geometry, etc. The tensors in most of these
applications are required to satisfy certain properties. For example, the tensors that
approximate the Bidirectional Reflectance Distribution Function (BRDF) [7] are anti-
symmetric, while the diffusion [10] and the structure tensors [46] are antipodally symmetric.
Furthermore, certain applications demand that the estimated tensors be positive-definite
since they model positive-valued physical quantities such as the diffusivity function or the
displacement probability of water molecules [8]. In this paper, we are interested in the case
of fully symmetric positive-definite tensors of various orders and hence for sake of
simplicity, every reference to the term zensorwill imply this particular case of tensors unless
otherwise stated.

*This research was supported by the NIH grant EB007082 & NSF066340 to BCV.
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Let 7" denote the set of 77-order symmetric positive-definite tensors in R3. As is well-

known, positivity condition requires the order /77to be even. Denote &7 the closure of 7™
consisting of symmetric positive semi-definite tensors (PSD) in R3. As subsets of the space

s of m™-order symmetric tensors, 7™, 7" are cones, convex subsets that are invariant
under positive scaling [18]. In most applications, the main computational problem can be

formulated as data interpolation problem with the domain being ,@3’" Specifically, the input
data are often in the form {(x1, 1), -, (X4 ¥} Where x;are directions in R3 represented as
points on the unit sphere S?, and y;are the values to be interpolated. The interpolation

problem requires a non-negative tensor T € ?/“3’" that interpolates the input data. Formulated
as a least-squares problem, it has the form

k
T=arg min Zlyi - px).
peEZY" =1

We note that both the objective function and the domain 23" are convex, and therefore, the
optimization problem above is in fact a convex optimization problem that, in principle, can
be solved using existing techniques [12]. However, a formal and significant difficulty of
applying these methods is that except for the m =1 case, there exists no known description

of the cone 32’3’” as it is well-known that the positivity test for polynomials of degree m > 2

is a difficult problem. In the second-order case, the cone 277 is known to be self-dual in the
sense that there exists an inner product < -, - > on s* such that < A, B>= 0 for any

A, Be ﬁg. The inner product allows the extension of the usual duality theory using
Lagrange multipliers to the cone 222, and there is a well-developed theory of semi-definite
programming (SDP) [12] that deals with /inear objective functions on 333

While the difficulty of providing a complete description of £2;™ seems to be unsurmountable
at this point, the main contribution of this paper is the realization of another formal difficulty
that can be overcome relatively easily. A cone Cin a vector space is said to be finitely-
generated if there exists a finite number of elements v, -+, v, € C, its generators, such that
every element ¢ € Ccan be written as a non-negative linear combination of the generators

c=ayvi+---+a,v,, ai,---,d, =0.

If the cone @5’" were finitely generated, the above optimization problem becomes a non-
negative linear least-squares (NNLS) problem, with complexity (number of variables) equals
to the number of generators. The advantage of solving an NNLS problem is that there are
software packages that can efficiently solve NNLS problems containing thousands of

variables [28]. While @3’" is not finitely-generated, it follows naturally that we can try to

approximate ?/’3’" with a finitely-generated subcone, and restrict the above optimization
problem to the subcone. The restriction can be justified if the subcone can be shown to be a

good approximation of 223",

The second contribution of this paper is an explicit characterization of the approximations

sz c «9”3'" for 0 <m<3,and Xy, C Qy, for m= 1, where %, is a finitely-generated

SIAM J Imaging Sci. Author manuscript; available in PMC 2012 December 31.



1X31-)lew1a1ems 1X31-){Jewiaremsg

1Xa1-)lewarems

BARMPOUTIS et al.

Page 3

subcone in the respective spaces. More specifically, let Q,, denote the subcone in 225"
consisting of semi-definite tensors that can be written as a sum of squares of tensors of order

m. We have the natural inclusions sz C @ © Z§" and our result gives a detailed
characterization of the approximation X, C Q,,, in terms of the geometry of the generators

in o, In particular, for m=1, 2, it is known that sz;@gm, and our result then gives a

detailed characterization of the approximation sz < 25" Our analysis have shown that,
for the lower-order cases m=1, 2, 3, which are of primary interest here, for a reasonable
precision requirement, Q,,, can be approximated by ¥, containing a few hundreds or at
most a few thousands of generators. It follows that the corresponding NNLS problems have
the complexity that are well within the capability of currently available NNLS algorithms
[28]. We quantitatively validate our method via several experiments, and we also present an
application of the proposed technique for estimating the diffusivity function from diffusion-
weighted MRI to demonstrate both the efficiency and accuracy of the proposed method.

The rest of this paper is organized as follows: In Sec. 2, we define the finitely-generated
subcone X, We also develop the theory that quantifies the approximation X, C Qs ;, and
the main theorem proved in this section relates the approximation error with the geometry of
the generators in X, Using the theory developed in Sec. 2, in Sec. 3 we explicitly work out
the formulas for the number of generators for X, required for a given accuracy
requirement. The results show that, up to order-6 and depending on the order, it generally
requires at most a few thousands of generators for X, in order to achieve a relative
approximation error of less than 10%. Finally, in Sec. 4, we validate our theoretical findings
using a set of experiments and we present an application of our method on diffusion-
weighted MR datasets.

Related Work

Symmetric positive-definite (SPD) tensors of order-2 have been used in modeling the
diffusivity function in the so called Diffusion Tensor MR Imaging (DT-MRI) [10]. SPD
matrices can be endowed with a Riemannian metric that is invariant under affine transforms.
This metric or its approximations have been employed for estimating and processing
diffusion tensor fields [48, 47, 29, 38, 18, 9]. Tensors of 3’7 and 5 order can model
reflectance distributions with specularities and cast shadows in facial images and have been
used for re-lighting in [7]. In general, odd-order tensors are generalizations of the order-1
tensor, which have been commonly used in computer graphics for representing the
Lambertian reflectance model. Similarly, 47, 62 or higher even-order tensors generalize the
2™ order tensors and have the ability to approximate multi-lobed functions [35, 30, 36] such
as the kurtosis of diffusion [26]. In particular, some 47-order tensors can be expressed as
2™ order tensors in higher dimensions and their properties have been studied in detail by
Moakher in [32, 33]. They however do not span the full space of the higher-order tensors as
was shown in the case of order-4 tensors in [6, 5]. In [20], Ghosh et al. used the metric
proposed by Moakher in [32, 33] to represent the space of 47-order SPD tensors using the
geometry of 27%order SPD tensors in higher dimensions. Recently, an algorithm for
imposing positivity constraints on 4#7-order tensors using their equivalent ternary quartic
polynomial representation was proposed in [6] and this was further developed in [5] and [21,
49].

After estimating a field of high-order tensors, it can be processed using a Finsler metric by

appropriately modifying the polynomial equivalent representation of the tensors that satisfy
the properties of Finsler geometry [4]. This method can be used for neuronal fiber tracking

from high angular resolution diffusion MRI data. Further processing of higher-order tensor
fields can be achieved by using the eigenvalue decomposition of matrices which has been
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extended for the case of high-order tensors in [23]. In this framework, the eigenvalues
correspond to the extreme values (minima or maxima) of a tensor and they can be used to
extract useful information from the kurtosis tensor [42] as well as the orientation of
maximum diffusion [11, 22]. Another method for extracting the principal orientation of
diffusion from a higher-order tensor was recently described in [44].

Although, high-order tensors have been employed in most of the aforementioned methods
due to their simple polynomial form and their ability to model multi-lobed spherical
functions, there are no existing methods for imposing positivity constraints in symmetric
tensors of any order higher than two and four. The need to impose positivity constraints
becomes essential especially in the case where the tensors approximate positive-valued
physical quantities, and it has been shown that imposing the positivity constraint on the
tensors approximating the diffusivity function being estimated reduces the approximation
errors significantly [5]. Recently, Pasternak et al. [37] also emphasized the importance of
enforcing positivity constraints in processing diffusion tensor MR images.

Finally, although Cartesian tensors basis have been widely used for modeling the diffusivity
function in DW-MRI, we would like to mention that Spherical Harmonic basis have been
employed in approximating other spherical functions involved in DW-MRI processing such
as the diffusion propagator. A detailed review of several multi fiber reconstruction methods
that employ spherical harmonic basis can be found in the recent article by Descoteaux et al.
on Diffusion Propagator Imaging [17]. The orientation distribution function (ODF) is
another example of a DW-MRI related spherical function, which can be reconstructed from
Q-ball imaging data [16, 13, 3] and was recently done in [2] by using the mathematically
correct definition of ODF and deriving a closed form expression for the same. In this article,
however, our main focus is on the use of Cartesian tensor basis for parameterizing the
diffusivity function in DW-MR datasets.

We will consider symmetric tensors of order /7 as functions defined on the unit sphere S2 in
R3. In particular, symmetric tensors of order /7 can be identified with homogeneous
polynomials of degree /7. for a symmetric tensor T of order /m, its associated homogeneous
polynomial Ax, y, 2) is given as

P()C, Yy, Z):rl‘(xs Tt X)7
———

m

where x = [x ¥4 7. Under this identification, 7 are homogeneous polynomials of degree m

that do not vanish on S2, and similarly, 2, are degree-/mhomogeneous polynomials that do
not take negative values in R3. Both are now considered as cones in H ,, the set of
homogeneous polynomials of degree m. For even degree 2/m, let Q5 ,, denote the subset of

,9773’" consisting of polynomials that can be written as a sum of squares of polynomials of
degree m. Qy ,is clearly a subcone of 323”’ forall m=1, and for m=1, 2, it is known that

QZmzﬂg’": the m =1 case follows easily from linear algebra and /7= 2 case is the content of
Hilbert’s theorem on ternary quartics [24]. For m> 2, however, the inclusion is strict

szgﬁg’". In this section, we will describe a general method for approximating Q5 ,, using a
finitely-generated subcone X, in Qo and we will provide a characterization of the
approximation error in terms of the geometry of the generators of X, For the important
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quadratic and quartic cases m =1, 2, our result provides an approximation of the full PSD
cone ,@3’" using a finitely-generated subcone Q, ;.

The basic norm used in this paper is the £1-norm over the sphere S%. More specifically, for
any PE Hy, its L1-norm ||P ||y is the integral over S?

IPll=1 oot

That it is indeed a norm follows from the fact that for two homogeneous polynomials 7, Q, P
= Qas polynomials if and only if |- @|; = 0. Note that the other norm properties are

trivial to prove. For any P € 22" and a subcone ) ,, C 2", we define the relative L1-
approximation error of Pas

Ey,,(P)= T

Proposition 2.1: Let T, be a closed subcone in 225 and P € 223"

L The £1-norm is convex: for any p € 272", the function g(g), g € 22"

g@=|lp-4||,

is a convex function on 223"

2. For P£0, Eyx, (P =0ifand only if PE Z,,. For any s> 0,

Ex,,(sP)=Eg,, (P).

Proof: For any q1,q2 € 22",

gtq+(1-0g0)=[ lp=tgq1-(1=0qaldx < [ lip=tqildx+ [ | [1-0p—(1-1)galdx,

and the convexity of the norm on ,@3”’ follows. (2) is clear because X, is closed. The
invariance of Ey, . under positive scaling follows readily from the definition.

Let my(X), -, Mg(pm)(X) denote the ;)= w2 monomials in H . (Note that o(/m) also
equals to the number of symmetric spherical harmonic basis elements, which can be mapped
to the monomials in H ,; using an one-to-one transformation [35, 15].) The monomials form
a basis in H ;, that identifies H ,, with RA™). We will denote HS,, the unit sphere in H,,,
consisting of polynomials

SIAM J Imaging Sci. Author manuscript; available in PMC 2012 December 31.
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d(m)

p)= aimy(x)
i=1

such that a?+ e +a§(m)=1. The subcone %, will be defined using polynomials in HS;;,, and
this is accomplished through the square map .%2:H,,, — Ha,,;:

Zrp)=p".

Clearly 772 is a smooth map, and .%22(p)=.%2(¢) if and only if p= #g. While %2 is not

linear, it maps rays in H , to rays in Ha,,:.%2(tp)=1>.%2(p). The geometry of the map .#2
will play a crucial role in our analysis below, and it is quantified by its condition number
nm- First, we define two quantities.

= min || Z2(p)]],-

m= max |l = min

Clearly we have 5mi">0 since HS,;, does not contain the zero polynomial. The two numbers
measure the amount of stretching and shrinking .22 does to the sphere HS,,. Their ratio
gives the condition number 7 ,, for .2

max

nm. .

In the following, we will often drop the subscript and denote the condition number simply as

nwhen the degree /min the context is clear. Figure 2.1 illustrates the effect of .#2 and its
condition number 7.

Proposition 2.2: 5™ ;min and hence 7 can be determined by evaluating dim? it

m

trigonometric integrals.

Proof: Let my, -+, My denote the of/m) monomials in H . A polynomial p € HSy, is
identified with the vector of coefficients a=[ay, -, ﬁo(m)]T as p=am;+ -+ agmMym)-
The L1-norm || 7:(p)|1 is the integral of £2 over S? that can be written as

d(m)

[ Z2p)||,= > e, L mi0m; (x) dx.

ij=1

Let A" denote the a{m) x a(/m) matrix whose components AZ‘- are the integrals J'g2
mAx)m4x) ak, we have

SIAM J Imaging Sci. Author manuscript; available in PMC 2012 December 31.
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| 72(p)|| =a" A™a.

It follows that M ;™" can be determined as

m

7= mina' A”a, 7nh"=mina'A"a,
aTa=1 aTa=1

both of which can be solved once A’ is known using Singular Value Decomposition. The
integrals J's2 m{x)m(x) dk can be computed in closed form since using spherical
coordinates, x=sin ycos 6, y=sin ysin 6, z=cos vy, each integral is a product of two
trigonometric integrals

/ . m;(x)m;(X) dx= ( b Zocosb 16sin®20 dH) ( ﬁzocosb 3ysin®y dz!/) ,

with exponents by, b,, b3, by depending on mj; m;.
In practice, Af; can be numerically evaluated to any desired accuracy without appealing to

the closed-form integral formulas. Next we prove a simple result that partially explains why
the linear case /m = 1 is substantially easier than the nonlinear cases m> 1.

Proposition 2.3: 7, =1 if and only if m=1. That is, ﬁf is isotropic with respect to the £1-
norm in Hy.

Proof: The “if’ part follows readily from the fact that
fszxydx=fsz xZ dx:fszyz dx=0,

and

4r
fsz xzdx=fszy2dx=fszz2dx=?.

The matrix Al is therefore diagonal with constant diagonal element , and ﬁf is isotropic
with respect to the Z1-norm in H.

Conversely, for m> 1, let p= X, g= x™1y. We show that || =(p)|l1 Z || 7(q)]|1:

T 21

||92( p)”] = f . X2 g = f =0 g:OSinzmzpcosmGsiHWdew,
||§2(q)”1 :f xz’"‘zyzdx=ﬂ;_ofzf0sin2’”g[/coszm‘zasinzesinwdedgb.
s2 - -

SIAM J Imaging Sci. Author manuscript; available in PMC 2012 December 31.
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in2m+ 1

Letc=/] LOS Ydy \we have

122, = 37 cos™ e,
FH(q)||,=c 2f cos>"~29sin>6do.
[72@l] =< [,

Therefore,

”fgz(P)H1 - ||552(q)||1=c Zzocoszm‘ZH(cosze — sin?6)d6
=c f zzocosz’"‘ze(ZcoszH — 1)de.

27

nzocos"‘zeda for any 72> 2, we have

since [ cos"6do="!

2m—1

1720, - |Z2@l|,=e(=— = 1) [ cos™6d,

which shows that || 7 (o)1 — || 72(g)||l1 # O if m> 1. This implies n,>1if m> 1.

¢
Using the square map .%2, we will define the approximating subcone sz by specifying its
generators as polynomials in HS,;,. More specifically, let ¢ = {p, -+, px} denote a finite set

¢

of kpolynomials (points) in HS,,. Its associated cone sz in Hy; is generated by the finite
¢

set of generators Z2(¢)=(p1,--- , pi): elements in sz are non-negative linear

combinations of %2 (p;):

2 2
p=aipi+---tapy,

%
for some &, -, a,¢= 0. It is immediately clear that sz C Qo C gzOZm for any finite subset

¢ C HSy,. Since .Z2(p)=.%2(—p), We can restrict points in ¢ to lie in one chosen hemisphere
of HS,,,. For such ¢, its completion ¢ C ¢ is obtained by joining all antipodal points of
points in ¢,

C={p1, -, P —P1>" " > —Di}

Examples—For m=1, Hy is R3 and HS; is S2. If ¢ consists of four points {[1, 0, 0]T, [0,
1,017, [0,0,1]T, [ V1/3. V1/3, V1/31}, the four polynomials py, o, ps, o are x, y, zand

@
1/3x++1/3y+v1/3z respectively. Elements in Zz are non-negative combinations of the

@
four polynomials p?, p3, p3, p3. More precisely, any ? € 22 is determined (in this case,
uniquely) by four non-negative numbers a;, &, &, as = 0 such that

SIAM J Imaging Sci. Author manuscript; available in PMC 2012 December 31.
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a a a 2a
P,y =+ 50X Hart 5+t 5T+ (k).

For m= 2, H, can be identified with R using the monomial basis {2, )2, 2, xy, xz, vz}
and HS, is S°. If ¢ consists of three points

[4,4,0,0,0,0]",[4,0,0,-1,0,0]7,[0,-4,0,0,0, 4],

where 4= V1/2 | the three polynomials p1, b, ps are A(X2 + JA), A(Z - x)), A(yz- )A). Any

CK - - -
pE 24 can be written (again uniquely) as

(ar+as) (ar+asz) @ %
12 g ) y4+(a1+7)x2y2 —arxy — a3y31+?)’212

p(x,y,2)=

for three non-negative &, &, a.

The inclusion sz C Qo gives an approximation of Q,, by sz, and it involves two
main components: the square map .%2 and the chosen polynomials in ¢ that provide the

generators in sz through .22. The main result of our analysis on the approximation error

4
of sz C Qo is given in the next theorem, which asserts that the approximation error can
be bounded by a product of contributions from both components: the condition number 7,

of .#2 and the condition number & ¢) of the set ¢ whose definition we now turn to.

Condition Number 6( ¢) of c—We use & ¢) as the measure that quantifies the
approximation of any g € HS,;,, considered as a point on the sphere, by the finite set ¢. We
will use the spherical distance dys,, (0, g) (arc-length in radians) to measure the distance
between a pair of points p, g on the sphere HSy,, and in particular, dys,,(p, g) is the angle
between the two unit vectors p, gin HS,,. A set ¢ is said to be good if there is a
triangulation of HS;; as a simplicial complex 7 whose vertex set 7 is the completion ¢ of ¢.
Since HS;; has dimension a{m) — 1, the top-dimensional simplexes in 7 have dimension
a(m) — 1 as well. Therefore, for any g € HS, there is a o(m) — 1-simplex g € 7
containing g. In particular, we will assume that g can be written as a non-negative linear
combination of the vertices of o g = aytp + - + dgm)-1Pa(m)-1 With &, -+, g m)-1 2 0.
While this is in general not true for an arbitrary triangulation 7 of HS,, it is not difficult to
show that 7 can be modified (without changing its underlying abstract simplicial complex)
to satisfy this property, e.g., by first defining a triangulation of the vertices in 7 considered
as points in the Euclidean space R4 using the same abstract simplicial complex as 7 and
radially projecting the simplices onto HS,,. For 0 < k< o(m) — 1, 7 will denote the set of 4
simplices in 7, and for a A-simplex o € 7, its width &(o) is defined as the maximal distance
between its vertices, oy, - -, P

8(o) :OrSrll,Ejl')s(deSm (Pi- j)-

SIAM J Imaging Sci. Author manuscript; available in PMC 2012 December 31.
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For a triangulation 7, we define its width to be the maximal width of its top-dimensional
simplices:

o(J)= max (o).

d(m)-1

The condition number of ¢ is then defined as the minimal width of the triangulations 7 that
have ¢ as its vertex set:

(€)= min_&(7).
T,70=¢

Since ¢ is finite, there exists a triangulation A( ¢) whose width gives the condition number
& ¢). We note that 0 < & ¢) < 7, and for a good set ¢, the following conditions hold,

1. Foreach g€ HSp, there are a(/m) elements, py, -+, Pam)-1, In € such that g=
+ - Ay my-1Pmy-1 for @, -+, dgmy-12 0 and dys,(0i p) < & ) forany 0 </ j<
am).

2. Foreach g € HSp, there exists p € ¢ such that dys,, (g, p) < & ©).

Property (1) follows immediately from the definition. Property (2) can be shown to follow
from the requirement that if g € o € 7', gis a non-negative linear combination of vertices
in o.

¢
Theorem 2.4: L et ¢ denote a good finite subset in HS,,, and sz its associated finitely-
generated subcone in Hy ., Let 8= §( ¢) denote the condition number of ¢ as defined above

and 7, the condition number of .%2. Then, for any polynomial 7€ Q,, its L -relative

approximation error Ez;gl(r) satisfies

0
20 9
Ez%g (r) < 4tan6sin >

The bound above constitutes our quantitative characterization of the approximation

%
sz C Qom, Not surprisingly, the bound provided above depends on both the map F2as

well as the set ¢ through 6and 7. The error measured by Ezzf takes place in Hy;, and the
bound on the right factored into two components with contribution from @that essentially
measures how well an arbitrary point g € HS;, can be approximated using ¢ and its
associated triangulation A( ¢). In particular, as will be seen from the proof, tan &arises from

approximating g using its nearest neighbor in ¢ as in Property (2) above while sin?¢ comes
from approximating g using the simplex o containing it as in Property (1).

We will prove the theorem through a sequence of lemmas given below. However, before
delving into the proof, we remark that although using the triangulation A( ¢) to define & ¢)
may seem unnecessary at first, it is in fact crucial to have Property (1) in order to produce a
smaller bound on the error. For example, it is possible to define & ¢) using only Property
(2), i.e., each g € HSp; can be approximated by a p € ¢ such that dys, (g, p) < & ©).
However, this hypothesis itself is only strong enough to produce the bound given in Lemma
2.6 (Equation 2.4). Disregarding 7, the bound given in Equation 2.4 is 2 sin 6, which is

SIAM J Imaging Sci. Author manuscript; available in PMC 2012 December 31.
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considerably inferior to the bound of 4 tan &sin? given in Theorem 2.4. In particular, for
small 6, the former is approximately 26 while the latter is 6° (See Equation 3.1), two order
of magnitude less. As will be clear in the proof, the main issue is to approximate the
polynomial ¢? for any g € HS,, with a sum of squares of polynomials in ¢. Using only
Property (2), it is difficult to determine what polynomials in HS;, can be used to
approximate ¢? other than the polynomial p € ¢ that is closest to g. With Property (1), we
have more choices at our disposal as we can approximate ¢ using the vertices p;of the
simplex o that contains g, and more importantly, the remainder of this approximation (sum
of (p; - pj)z) can be further approximated using polynomials in ¢. This is the content of
Lemma 2.8. In particular, when approximating 7, Property (1) allows the access of not only
the polynomials p; € ¢ that are neighbors of g but also polynomials in ¢ that are usually far
away from g. See Figure 2.1. Furthermore, as will be detailed in Section 3, Property (1)
allows us to formulate a simple method for estimating the minimal number of points
(polynomials) in ¢ needed for a given precision requirement.

Lemma 2.5: Let p, gbe two polynomials in HSy;and 6= dys, (0, g) denote their geodesic
distance considered as points on the sphere HS,,;,. We have

. 50
fsz Ip(x) — g(x)[2dx < 4s1n2§r],",}a".

Proof: Let r=p— g. Asavector in H, |/ = |0 - g. Using the law of cosines,

6
v=Irl=|p — gql= V2 — 2cos =2sin§. (2.2)

Therefore, 7y € HS;;, and we have
[ rPedx=y*[_(rx)/y)’dx < y*ni,
S S

and the result follows.

Next we prove an important lemma which shows that for two nearby p, gin HS,;, we can
approximate ¢? using £2 such that the £1-approximation error is a fraction (depending on the
geodesic distance) of the £1-norm of /2.

Lemma 2.6: Let p, g be two polynomials in HS;, and 6= dys,,(p, g) denote their geodesic

distance considered as points on the sphere HS,,. Let || 7:(0) — #(g)||; denote the £1-
difference between 7:(p), *:(q)

[720) - 729, =] IP*®) - P ®ldx. @)

We have

| 22(p) = Za(q)||, < 25007 Z2(P)||,.  (20)
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Proof: Using Holder’s inequality, we have

J P00 = @®ldx= 10 — gx)llp(x)+q(xldx

< (1000 - g ([ o)

The proof will proceed to bound the two terms on the right. By the preceding lemma, we

have

1

2 7]
(fsz |p(x) — Q(X)Izdx) < 2Sin§ \/Tﬁrnl_ax

For the second term, we will consider the polynomial ,—,, -, where y > 1 ensures that 7 €

HS; A quick calculation shows that =1 /cos¢- Since, by definition,

[ rmdx <™,
S

we have

=

max

3 4
(fszlp(X)+q(X)|2dX) =(f52;r2<x>dx) <=

<R

Combining the two inequalities, we have

6.0
fsz IP*(x) — > (X)|dx < 4cos§sin5n$a"=25in6 nmax,

Since
|72l =/, P*®dx < 1",

it follows that

max
MTm

min
Mm

[#2(p) = Za(g)|, < 2sin0"—||Fa(p)|,.-

This completes the proof.
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We will use the preceding lemma to prove two basic error estimates. For any two points p, g
in ¢, the following lemma provides a bound on the approximation error for points that lie on
the arc (geodesic path) joining p, g.

Lemma 2.7 Let p, gbe two neighboring points in A( ¢), i.e., there is a 1-simplex o in
A( ) with p, gas its two vertices. Let r= gp+ bgbe a convex combination of p, gwith a, b
>0and a+ b=1. If &= G ¢) denotes the condition number of ¢, then

0
E__ (r*) < 2sinftan’=1?,.
2, 2

Proof: By definition of 6, dys, (0, §) < 6. Let ¢= &pP? + PP + abp? + abg? be an element
2m
in /. . We have

¢— r2=(a2p2+b2q2+abp2+?bq2) — (ap+bg)*
=ab(p - q)”.

Let y=|p— g and t= (p— @)/ y € HSp, There exists s € ¢ such that the geodesic distance
between tand sis less than 6. By the preceding lemma,

) SZ|z2(x) — S (®)ldx < 2sin,||[F ()|,

2m
Now let ¢ = ¢ + aby2s? be another element in Z%, . We have
S IP®) —¢@ldx=ab [ |(yn)® = (ys)*ldx < 2absindn||(y)*®)|,-
S S
By Lemma 2.5, |y (x)|; < 4sin” gy This gives

. .20
f 52|r2(X) — p(x)|dx < 2sm951n2517m77,‘}11a". (2.5)

as gp < pror a b=0and a+ b= 1. We next bound the £1-norm of /2(x). Since r= ap+ bg,
there exists | < y < 1/cos¢ such that yr € HS;, This implies that

2.2 min
[, ®dx =,

or
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f P (X)dx > coszgngin. (2.6)
s2 2

Combining Equations 2.5 and 2.6 gives the desired result.

The preceding lemma can be generalized immediately to higher-order convex combinations.

Lemma 2.8: Let py, -, px denote the vertices of a k- 1-simplex o®1in A( ¢) as well as the
corresponding homogeneous polynomials in HS,,. Let r= ayp + - +agpx be a convex
combination of py, -, pgwith &, -, @¢=0and g + - + a5 = 1. If &denote the condition
number of ¢, Then

0
E ()< 4tan6’sin2§n,2n.
2m

Proof: Expanding 72, we have

rZZZk:a;?- pl.2+2zaiajpipj'
i=1

i<j

2m
The second sum contains ¢k =tb terms. To approximate 72 using an element ¥ € ZT , We
proceed similarly as before. We start with ¢ equals the first sum above. For each cross-term

2a;ap07in the second sum, we add aiaj(piz+p§) to ¢. This gives

k
=) arpi+ ) aaj(pi+p).
i=1

i<j
It follows that

¢ - r2:Za,jaj(p,-+pj)2.

i<j

2m
Next, we will approximate the squares (p;— pj)z using elements in 26 exactly as before.
More specifically, let y;;=|p;— gj and ;= (p;j= g)! yjj. There exists s;; € ¢ such that the
geodesic distance between f;and sj;is less than 6. Now let p = ¢+ Zi; a,-bj(y,-js,-/)z be an
2m
elementin /. . We have

P00 = poldx < Y aia [ 1073t (%) = gy *(0ldx.

i<j
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It follows from Equations 2.2 and 2.4 that all the integrals on the right can be uniformly
bounded

6

2 2 2
fs2|()’ijlij) (x) — (yijsij)"(X)dx < 8sinfsin Eflﬁaxﬁm,
and this gives

6
f . [ (x) — p(x)|dx < SSinesinzzn;‘axanaia -

i<j
Since g+ +a,=1,

(a1 +-+a)*—(@+-+al)  1=(al+-+ay)
2aiaj= 2 =72
i<j 2.7)

as af+ . +a’% > 1 by Cauchy-Schwarz inequality. This yields the bound

0
f gz|r2(x) - p(X)|dx < 4sinﬁsin25n,’2a"77m. (2.8)

We next bound the £1-norm of /2. Given that r= a1 + - aypy the following lemma shows
that the £2-magnitude |/ of the vector rsatisfies

|r] > Vcos6.
Hence, there exists1 <y < = such that yr€ HS;;,. Exactly as before, we have

1 .
[ P®dx = S > costi™. (2.9)
s2 b%

Equations 2.8 and 2.9 together complete the proof.

Lemma 2.9: Let A denote a A-simplex in RA™ whose vertices gy, -, Pk are on the unit

sphere, i.e., [|ll2 = -+ = ||pdll2 = 1. If there exists some a such that1 > a>0and p, p; > «
for all /# j, then for any X € A,

Ixll,> v

Proof: Letx = g0 + - agprwith a;=0and a; + -+ + g, = 1. It follows that
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k
X'x > Zaiz+20zZa,-aj.
i=0

i<j

Let s= 2%k aajand the above inequality becomes xTx=>1- (1 - a)s. From Equation 2.7,
we have o < 5 < 1< It follows that

x'x>1-(1-ae)=a.

We remark that when A= 2, 11 and the bound becomes tighter xTx > 1 . This gives the
cos @term in Equation 2.9. Fmaliy, we are ready to complete the proof of Theorem 2.4:

Proof: Since 7(X) can be written as a sum of squares, by Proposition 2.10, it can be written
as a sum of no more than a(m) terms with p;€ HS,;;.

d(m)

r®)=> aip}(x).
i=1

Each p;belongs to a (a{m) — 1)-dimensional simplex o€ A( ¢). By the preceding lemma,

2m
each p? can be approximated by an element p7in Zg with uniformly bounded relative £1-
error

[P} ) = ||, < CllpF |,

2m
o, Defne 7€ 3
where c=4tangsin®¢r2, Define” . as

d(m)
S
=1

and we have

d(m) d(m)

o0 = 7|, < D aillpe0) - 5|, < €Y aiflp? -
=1

i=1
On the other hand, we also have

d(m) d(m)

el < Yaif piooax= Y ailpeo]
i=1 )

i=1
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Combining both inequalities yields the desired result.
In the proof above we made use of the following proposition.
Proposition 2.10: Let rdenote a homogeneous polynomial of degree 2/m that can be written

as a sum of squares of homogeneous polynomials of degree /m. Then, rcan be written as a
sum of at most o(/m) squares

d(m)

r(®)=) @),
=1

where ay, -, agm) =2 0and py, -, Pom) € HSp

Proof: Suppose ris a sum of ksquares of homogeneous polynomials ¢, -+, g of degree m
r0)=1(X)+ - -+ ().
Denote my, -+, My ) the a(/7) monomials of degree /77, and X the vector

X=[m;(x), ma(x), - -+ , My (X)] "

whose components are the monomials. It follows that g;(x)=a;” X with a;the vector whose
components are coefficients of g{x), and

r(X):XT(alaT+ e +akaZ)X:XTSX.

The matrix Sis symmetric and positive semi-definite with non-negative eigenvalues. Let 14,
- Agm) denote its complete set of eigenvalues and vy, -, V) their associated unit
eigenvectors, |vi» = 1. It follows that

S:/11V1V-1r+ s +/ld(m)Vd(m)V;(m),

and

r(X)=/11XTV1V-1'—X+ s +/ld(m)XTVd(m)V;(m)X
=G+ Ao (X,

where ¢;(x)=v;/ X e HS,as [vjp = 1 for /=1, -, d(m).
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3. Approximating PSD Tensors of Orders two, four and six

In this section, we apply Theorem 2.4 to derive formulas for the minimal number of

- (g - - (ﬁ - - - -
generators in sz needed to ensure that the approximation sz C Qom is within a given
accuracy requirement. Specifically, the accuracy requirement is presented in the form of the

relative Z1-approximation error E‘fm (cf. Equation 2.1): for 0 < £ < 1, we derive a formula
€
that gives the (approximated) minimal number ~ (e, m) of generators in sz such that any r

%
€ Q,; can be approximated within e using szv i.e.,
ES (<e.

For PSD ternary tensors of orders two and four, it is known that they can be written as sums
of squares of three tensors of order one and two, respectively. This follows from the well-
known result that any ternary positive semi-definite homogeneous polynomial o(x) of degree
two and four can be written as a sum of three squares of polynomials of degree one and two,
respectively. The quadratic case follows easily from linear algebra while the quartic case
follows from the celebrated theorem of Hilbert on ternary quartics [24]. We will first
describe a general method for obtaining the formula ~ (e, m) for any order m, and we will
then explicitly work out the three cases m =1, 2, 3 that are of most interest for various
applications.

3.1. Preliminaries

Given a required precision e > 0, the bound provided by Theorem 2.4 allows us to determine
the condition number &= g ¢) for the point set ¢ in HS,; to ensure that the precision
requirement is satisfied. The main result in this section is a simple estimate on the number »
(e, m) of points in ¢ needed to achieve the desired 6on the sphere HS,,. Let

c,](9)=4tangsin2g,72 denote the bound given in Theorem 2.4. Since
0 1
tan@sin’ zzz(tane — sind),

C;(6) is a monotonically increasing function for g < g < =, and we will denote its inverse by
f,,(s)=C;1(s). f, can be numerically evaluated and the plots for 7, over the range 0.01 < e <
0.1 for several different 7-values are shown in Figure 3.1. If @is assumed to be small,

6 &
taaninZE ~ T (3.1)

Therefore, 4tangsin’¢5? ~ ¢ implies that
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The formula above gives an estimate on the condition number 6= &( ¢) given e and 7. We
next give an estimate on the size of ¢ for the given 6( ¢). Let n= a(m) - 1 denote the
dimension of the sphere HS,; and A( ¢) denote the triangulation associated with ¢. A
simplex in A( ¢) is said to be &-regular if the distance between any pair of its vertices equals
6, and the edge joining any pair of vertices is a geodesics on HS,,. Due to the curvature on
the sphere HS,,, it is not possible to cover HS,,, with only &-regular simplices. Therefore, we
assume that the 7-simplices in A( €) are approximately &regular in the sense that the
geodesic distance between any pair of vertices of a /+simplex in HS,;, is approximately 6
and the edge joining them is approximately a geodesic as well. For each vertex vin A( ¢),
its degree is the number of 7-dimensional simplices having it as a vertex. To estimate the
number of points in ¢, we will estimate two quantities: the number K of 7-dimensional
simplices in A( ¢) and the average degree v of the vertices. The number of points in ¢ can
then be estimated as

(n+DHK

N (e, m)=#of points in ¢ ~ >
v

The occurrence of 2 in the denominator accounts for the fact that points in ¢ are located only
on a hemisphere.

Estimate on K—Since HS; is covered by a collection of @-regular rmsimplices, K can be
estimated by taking the ratio between the volume of the sphere HS; and the volume of a &
regular r-simplex. Since @is in general assumed to be small, we will approximate the
volume of a &-regular 7-simplex on the sphere HS,;, with the volume w,(6) of a
corresponding &-regular #-simplex in the Euclidean space R

Vn+1 . 33
n! 27 . ‘

w,(0)=

It then follows that the number K of 7+simplexes can be estimated as

K=—7—, (34)

where the volume of the sphere V , is given by the formula [25]

o2 oo .
Vn= 24-(n1) ifnis Odd,
if niseven.

20272
T3-(n-1)

Estimate on v—For a typical vertex vin A( ¢), a small neighborhood ¢ around vin HS,
is covered by the &regular 7+simplices having vas one of their vertices. Again, assuming 6
is small, we can approximate this using Euclidean geometry, by transforming the
neighborhood U onto the tangent space T, at vusing the log map. The geodesic ball B g of
radius &on HS;, is mapped to the Euclidean ball of radius &and the image of each 7~
simplex under the log map can be approximated by a regular 7-simplex in the Euclidean
space with side length 6. See Figure 3.2. It follows that the degree of vcan be estimated as
the ratio between the volume of the unit #-dimensional ball and the volume of regular 7+
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simplex in R”with side length 6. The volume V” of an r+ball in R” with radius r= 1 is
given by the formula [25]

Qmyl2 . . .
viz] T if niseven;
200727 ifnis odd.

The degree vis then estimated as

Vn

" on()

(3.5)
Combining Equations 3.3, 3.4, 3.5, we have

- i o L _@tDV, (4 DV,
A (e, m)=#of points in ¢’ ~ GO L L

on(D (3.6)
=V f(e)7"

In the remaining section, we will work out the implication of the above estimate for 2/, 4%
and 6%-order tensors.

3.2. Second-Order Tensors

A quadratic homogeneous polynomial Ax, ¥, 2) in R3 has six coefficients Alx, ¥, 2) = ax? +
by + c2 + dxy+ exz+ fyz. It can be written in a matrix form as,

a ¢ ¢ X
Px,y9=[ x y z1| ¢ b { y |=x"Sx.

(4 ﬁ C Z

2 2

Positive semi-definiteness of the polynomial A, y; 2) is equivalent to the positive semi-
definiteness of the matrix S. It follows that determining positive semi-definiteness of a
homogeneous quadratic polynomial is straightforward by examining eigenvalues of S: Sis
positive semi-definite if and only its eigenvalues A4, A5, A3 are all non-negative and S can
be written as

S=4; VTV] +/12V;—V2+/13V;—V3,

where v;is the unit eigenvector with eigenvalue A, for /=1, 2, 3. It follows that Ax, ¥, 2)
can be written as a sum of three linear polynomials p1(x), p(X), p3(X),

P(x)=p1(X)*+p2(x)*+p3(x)7,

with pi(x)= Vv x.
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With m =1, the sphere HS;; has dimension n= 2. According to Proposition 2.3, the map ,9512
is isotropic with respect to the Z1-norm and 7= 1. Equation 3.6 (together with Equation 3.2)
then gives

2 2
N(e, 1) ~ 3V2(1)‘ :6(1)3. a7

T 2v2le P

More Precise Estimate—For the linear case m= 1, since HS,, is the two-sphere S, its
geometry is well-known and a better estimate on A/can be obtained. Given 6, S? is covered
by geodesic triangles whose sides have lengths of approximately 6. Approximating the areas
of these geodesic triangles with the area of an Euclidean equilateral triangles with side 6

gives & V3/4. Let F, E, Vdenote the number of triangles, edges and vertices in the
triangulation A( ¢). According to Euler’s formula

F — E+V=x(8*)=2

where y(S?) is the Euler characteristic of S%. Since £= 3A2, V=2 + A2 ~ A2. This gives
v= 6 as the average degree of a vertex on S%. Our estimate on the degree vin Equation 3.5

in this case gives v=47/ V3 ~ 7.2, which gives a 20% overestimate.

The area A of a geodesic triangle on S? with three interior angles a, B, y is given as [1]

A=a+B+y — .

In particular, for a geodesic equilateral triangle on S? with side length 6, its angle a is given
as

cosf — 00520)

a=cos™!( —
sin“6

’

and the estimate on the number of triangles is

A

= —1( cost—cos?6) _ ’
3cos™i( t) —m

Let 4tangsin?¢=¢ and 6= f{&) be the solution to the trigonometric equation. It then follows
that

b
N(eg, 1)=

3cos— ! (s colyeny _ o (3.8)
sin2(f(&))
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In Figure 3.1, we compare the two estimates using Equations 3.8 and 3.7. For £=0.1,
Equation 3.7 gives & ~ 30. And for £ =0.01 and 0.001, it gives ~ ~ 130 and 600,
respectively. As for Equation 3.8 it gives & ~ 34, 156, 725 for £=0.1, 0.01, 0.001,
respectively.

3.3. Fourth-Order Tensors

In this case, m= 2 and H, and HS, have dimensions six and five, respectively. The map 922
is no longer isotropic with respect to £1-norm in HS,. An analytic evaluation of the matrix
A2 gives

1 1/3 13 0 0 0
/3 1 13 0 0 0
o133 1 00 00 0
51 0 0 0 13 0 0
O 0 0 0 1/3 0

o 0 0 0 0 1/3

The singular values of A2 arranged in the descending order are

O'(AZ)_4—7T[1 2/5,2/5, 1/5, 1/5, 1/5]
=51 , , , , .

This gives =5, and Equation 3.6 gives

3V5 _s 90rm _5
NszUZS(E) ZFfU:S(g) .

For £=0.1, this yields A/~ 176790. However, in H», the polynomial Ux, y, 2) = X2+)2+2 is
the constant function 1 on 2. In particular, u(x, y, z)=v(x, y, z)/ V3 € HS,, and

Hf’»f (u)||] =4n/3. The map .#} stretches the constant polynomial considerably more than any
other quadratic polynomials, and this is the reason for the large condition number 7. Let Rv
denote the one-dimensional subspace in H, spanned by the constant polynomial t(x, y, 2),
and W its orthogonal complement,

Hy=Ruo® W.

The intersection of the sphere HS, with the subspace W is a four-sphere S, If we specialize
to this four-sphere, i.e., polynomials orthogonal to the constant polynomial X2 + )2 + 2, the
condition number 7 becomes 2 and the dimension of the sphere drops by one. Theorem 2.4
then provides the following estimate on the number of points

5V

AL
2v4

40
fn=2(8)_4=? Fpea(e)™.
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This number is considerably less than 176790. For example, for £ = 0.1, we have & »~ 1800
and for £=0.05, 0.01, ~ ~ 4670, 39620, respectively.

3.4. Sixth-Order Tensors

In this case, m= 3 and Hs, HS,; have dimensions 10, 9, respectively. The map 232 is again
non-isotropic with respect to £1-norm in Hg. The singular values of A3 arranged in the
descending order are

194+ V193 19++vV193 19++V193 19— V193 19— V193 19 - V193

AH=4 , ,
o(A)=4rl —575 210 210 210 210 210

, 2/105, 2/105, 2/105, 1/105].

The condition number 7 = 16.44, which is quite substantial. However, similar analysis as
above can be applied to eliminate polynomials in HSz coming from polynomials of lower
degree to substantially decrease the condition number. First, the three linear polynomials x;
¥, zare now embedded in Hz as (X2 + )2 + 2), 0@ + )2 + ), 24 + )2 + ). Let AX),
$(%), 4x), n(x), 5(x), 4X) be the following polynomials

TX)=x(x2+y2+28)/ V3,  r(x)=0.7184x>+0.3951 7(x),
SX)=y(x2+y2+22)/ V3, s(x)=0.7184y°+0.3951 5(x),
x)=z(2+y2+28)/ V3,  1(x)=0.718472+0.3951 1(x).

The three polynomials 7(x), S(x), {x) are responsible for the three largest singular values of
A3. The smallest singular value of 477/105 comes from the polynomial ¢(x) = xyz. Let W
denote the six-dimensional subspace in Hj that is the orthogonal complement of the
subspace spanned by 7(x), 5(x), {x) and g(x),

H;=RroRs®@RtoRgOW.
The sphere in W is five-dimensional, and the condition number of #; on S° is 7= 1.2769.

3V
VAL

_< 90m _
~ Wfq:l.ﬂ(g) 5=an:1.27(8) .

For £=0.1, 0.05, 0.01, the result above gives & ~ 1943, 6021, 85495, respectively.

4. Experimental Results

In this section we experimentally validate the proposed theory and at the end of this section
we present an application to Diffusion-Weighted MRI. In all the experiments we use tensors
in R3, which can be visualized by plotting the corresponding homogeneous polynomial A(x;
¥, 2) as a spherical function (see Fig. 4.1). Such tensor glyphs can be generated by scaling
the radius of a unit sphere at orientation x = [x y Z] 7 with the value of A(x; y, 2).
Additionally, we assign a color to each tensor glyph by using the following coloring scheme:
we use the method in [11, 22] to compute the unit vector [x y 2] 7 that maximizes A(x, y, 2)
and then we assign to the R, G, B color channels the squares of the three components in the
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vector x (i.e. R= X2, G= )2, B= Z). This color map produces smooth color transitions
when visualizing fields of tensors such as the diffusion tensor fields.

First, we construct a dataset with samples from Q, ,, as follows: we first generate random
vectors in RA7) using the normal distribution My =0, 02 = 1) in o{(m) = 3, 6, and 10
dimensions, and we use them as coefficients of linear, quadratic and cubic homogeneous
polynomials p € HS;, HS,, HS; in three variables, respectively. Then we construct 27, 411
and 67-order positive semi-definite tensors that belong to Qs ,,, by taking sums of squares of
the polynomials in HS;, HS,, HS;g, respectively. This process is repeated for 5000 times for
each order, producing a dataset of 15000 tensors in total. Several of the generated tensors are
shown in Fig. 4.1(right). The primary goal of the aforementioned process is to generate
samples from Q,,, in order to test the error analysis presented in Section 3, and it should not
be perceived as a DW-MRI simulation as in this section we do not discuss any application of
the proposed method to DW-MR imaging.

4
In order to investigate how many generators in the finitely-generated cone sz are
necessary for our algorithm to approximate accurately a set of given tensors, we apply our
framework to the previously described synthetic dataset using finite subsets ¢ € HS,, of
various sizes . The sets ¢ are constructed as the vertices computed by triangulating the unit
n-sphere. The triangulation is based on a variation of the algorithm for mesh generation
presented in [39], which extends to any dimension n of the n-sphere. This method is an
iterative force-based technique that uses a force displacement function to move the nodes of
the mesh and the Delaunay triangulation [14], which is a fundamental and widely used
triangulation process, to adjust the topology (i.e. the edges). Obviously, in our particular
case we discard the edge information since we only need the finite set of nodes. This
algorithm produces at the end the finite subsets ¢ € HS,,, for different predefined sizes .

We first use the constructed finite sets Cin a numerical framework for approximating the

error rate e achieved by the finitely-generated cone sz for m=1, 2, 3. The numerical
calculations were performed by randomly generating points in the n-sphere and testing if

@
each point lies inside or outside the cone sz- The error rate e is the ratio of the points
outside the cone over the total number of generated points. For each numerical computation
we used 100k points. The numerical approximations are shown as circles in Fig. 4.2. By
observing the figures we can see that in most of the cases the numerical approximations are
close to the proposed formulas for computing A. We should note that the results are based
on the computed sets ¢ using the method in [39]. One may expect that the results will be
slightly different if another method is employed for triangulating the n-sphere.

We also use the sets ¢ in a non-negative least squares (NNLS) optimization framework [28]

4
in order to estimate tensors from the finitely-generated cone sz that approximate the
given 15000 tensors. For each order of tensors, the NNLS system is formulated as Aw = b,
where A a matrix constructed from ¢, w the unknown solution vector and b contained the
values of the given positive-semidefinite homogeneous polynomial at K= 81 three-
dimensional unit vectors xq -+ Xg1 (producing 81 components of bas 6, = P(xq) - bg1 = P
(xg1)) for each tensor in the dataset. Although this problem seems extremely unconstrained
in general, in our particular case the NNLS algorithm by definition constrains the number of
non-zero elements in the solution vector to be at most a(2/m), which is significantly smaller
than the number of data points K'in all of our experiments. In order to estimate such a
constrained solution the NNLS algorithm implements a basis selection mechanism that starts
with a set of possible basis vectors in ¢, computes the associated dual vector, and then
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reselects the basis in the solution by iteratively performing swaps in order to minimize the
entries in the dual vector until they are all non positive. In our particular case of m=1, 2,3
the estimated unknown non-zero entries are 6, 15, 28 respectively which are all significantly
smaller than the number of given samples K= 81. For a detailed description of the NNLS
algorithm the reader is referred to [28].

<
The solutions w provide tensors in sz that approximate the given tensors in Qy,, for m=
1, 2, and 3. The computed tensors are compared to the ground truth (given) tensors using the
relative Z1-error (fitting error):

f82 |Pgi1'cn(x) - P(x)|dx
fqz |Pgi\r'en (X)ldX

(4.1)

The histograms of the errors found in the experiments (measured by Eq. 4.1) are plotted in
Fig. 4.3 for the case of 277 4% and 6-order tensors, respectively. Obviously, by increasing

4
N, i.e. the number of generators in the finitely-generated subcone sz: the error decreases
correspondingly. The table in Fig. 4.3 reports the mean errors for various difference sizes N
of the generator set.

The experimental results presented in Fig. 4.3 and Fig. 4.4 validate empirically our method
as the results corroborate well with our previous analysis on the number of generators
required for a given relative error bound. For 27%-order tensors, the analysis in Section 3
shows that for the error to be less than e = 10%, 1%, 0.1%, it requires approximately N~
30, 130 and 600 generators, respectively. The first plot in Fig. 4.3 shows that with /= 45,
there are no occurrences of error greater than 10%, and with A/= 150, there are no
occurrences of error greater than 1%. With 321 generators, the error becomes negligible. For
4™-order tensors, our analysis shows that for the error to be less than & = 10%, 5%, it
requires approximately A/~ 1800, 4670 generators, respectively. This can be seen from the
second plot in Fig. 4.3. With /< 1500 generators, there are occurrences of 10% error, and
with A/= 1500, there are no occurrences of error greater than 10%. To decrease the error
under 5% level, the plot shows that we need at least //= 3000 generators. Finally, for 67
order tensors, our analysis shows that for the error to be less than e = 10% and 5%, it
requires approximately N/~ 1943 and 6021 generators, respectively. The third plot in the
figure show that at /= 3000, there is only a small percentage of errors greater than 10%,
and with /= 6000, there is an even smaller percentage (less than 1%) of errors greater than
5%. In most cases, our earlier analysis underestimate the required numbers of generators,
and this is not surprising as these analysis are themselves based on several approximations.
Nevertheless, the experimental results do agree in general with the predictions made in
Section 3.

Figure 4.4 shows the running time of the optimization method for fitting one tensor versus
the approximation error for various orders and number of generators Ain the set ¢. The
running times are measured using an Intel Pentium Dual CPU at 1.60 GHz and 1GB RAM.
The plots demonstrate that the proposed technique can efficiently estimate positive tensors
of various orders. More specifically, 27 4% and 6/-order tensors can be estimated using
finitely-generated subcones of size V=45, /=900, and /= 6000 at 0.5ms, 12/ms, and
243ms, respectively.
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4.1. Application: Diffusion-Weighted MRI

Finally, we present an application of the proposed tensor approximation theory to Diffusion-
Weighted MRI (DW-MRI). In several DW-MRI processing methods, a diffusion tensor is
computed from the acquired diffusion-weighted signals. Negative diffusion values are non-
physical; therefore, appropriate methods such as our proposed framework are necessary to
ensure positive semi-definiteness of the estimated Diffusion tensors.

In order to demonstrate the necessity for estimating tensors with the positivity constraints,
we compare our method with an existing one that computes tensors without the constraints
[35]. In this experiment, we use the aforementioned synthetic dataset of 6-order tensors,
and we sample the corresponding homogeneous polynomials using K= 81 3-dimensional
unit vectors X1 -+ Xgp in the Stejskal-Tanner model [45], producing 81 DW-MRI samples for
each tensor in the dataset. Various levels of Rician noise are added to the samples with
standard deviations ranging from o= 0.04 up to o= 0.12. The noisy datasets are given as
inputs to: a) the proposed algorithm (using A//=6000), and b) the method proposed in in
[35], which is one of the several existing methods in the literature [15, 19] that estimate 6-
order tensors. For both, the computed 67 — ordertensors Ax) are compared to the ground
truth tensors using the error defined in Eq. 4.1.

Figure 4.5 shows the comparison of the fitting errors between the two methods for various
levels of noise in the data. The results conclusively demonstrate that tensors estimated using
positivity constraints approximate the data significantly better than the ones without. We
also note that this result agrees with similar comparisons reported earlier for tensors of lower
orders (e.g. 4”-order comparison in [5]), showing that the errors incurred in approximating
positive-valued functions are significantly smaller when positivity constraints are enforced
in the process. Our current results have provided further evidence that supports the
importance of imposing positivity constraints in this context.

In order to illustrate the performance of our framework on real data sets, we applied the
method to a DW-MRI data set of an excised rat hippocampus (shown in Fig. 4.6). The data
set contains 46 images acquired using a pulsed gradient spin echo pulse sequence, with 45
different diffusion gradients and approximate & value of 12508/ mn?. Figure 4.6 shows the
computed 67-order diffusion tensor field. The highlighted regions of interest demonstrate
the variability of the estimated structures. At each voxel, the fiber orientations can be
estimated from the peaks of the displacement probability, which can be computed from the
diffusion tensors as was shown in [5].

Finally, Fig. 4.7 presents the results obtained by applying our method to a DW-MRI dataset
from an excised rat optic chiasm. The data acquisition protocol was the same as in the rat
hippocampus dataset. The computed field of 47-order diffusion tensors is shown in the
center. Using the estimated diffusion tensors, we can compute the underlying fiber
orientations by computing the orientations that correspond to the maxima of the water
molecule displacement probabilities. The computed fiber orientations are shown on the right
and they agree with the known fiber orientations in the optic chiasm. Further quantitative
validations of these orientations with respect to those from histology will be performed as
part of our future work.

5. Discussion and conclusions

Symmetric positive semi-definite tensors have been used in many applications. Although
there are existing methods for imposing positivity constraints on the estimated tensors of
order two and four, none of these techniques can be easily extended to higher orders. In this
paper, we presented a framework for estimating PSD tensors of any order by approximating
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the space (cone) of PSD tensors with a finitely-generated subcone X, We discussed in
detail the geometry of the higher-order tensors, and we presented an explicit characterization
of the approximation, using the subset of semi-definite tensors that can be written as a sum
of squares of tensors of order m. This approximation leads to a non-negative linear least-
squares (NNLS) optimization problem, which can be efficiently solved, as it was
demonstrated using synthetic datasets and real diffusion-weighted MR images.

An interesting property of the NNLS optimization algorithm is that it produces sparse
solution vectors. In our particular case, although the problem seems significantly
unconstrained, the solution vector contains at most &(2/m) non-zero weights, which
corresponds to the rank of the basis matrix. Therefore if the finitely-generated set ¢ contains
a few thousands bases, the algorithm will select only 6, 15, 28 for tensors of order 2, 4, and
6 respectively. Note that the number of non-zero weights in the solution vector equals to the
number of the unique unknown parameters of the symmetric tensor in each case. The
sparsity of NNLS in comparison with other optimization techniques for modeling the
diffusion-weighted MR signal has also been studied in [27].

In our experiments the sets ¢ were generated by tessellating the unit n-sphere using the
iterative force-based technique in [39]. The vertices produced by this algorithm form the
finite subset ¢ € HS, for different predefined sizes N. An alternative approach could
involve constructing ¢ as a finite dictionary of elements in HS;;, by running a training
algorithm on a control dataset [31]. A finite set of diffusion basis for multi-fiber
reconstruction is also employed by the method in [43].

One of the advantages of the proposed algorithm is that it enforces positive semi-definite
constraints to the estimated tensors. The need for positivity constraints in DW-MRI has been
demonstrated in [6] and [5]. It has been shown that unconstrained methods may yield
negative diffusivities in real datasets, especially in voxels with high anisotropy or in the
presence of noise in the data.

Finally, although high order tensors can approximate several distinct fiber orientations, in
the current standard clinical settings for DW-MRI acquisition most of the multi-fiber
reconstruction techniques cannot estimate more than two fiber orientations [41], due to the
low diffusion weighting (b-value) and the small number of gradient orientations. However,
theoretically or in experimental settings with higher b-values and larger sets of diffusion
gradient orientations, the proposed technique can estimate up to 2 and 3 distinct fiber
orientations using tensors of order 4 and 6 respectively, which also agrees with the results
presented in [35].
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Fig. 2.1.

L eft: Comparison between .#72 and .#7. Let 527, r > 0 denote the circle with radius r
centered at origin in Hpp,. .2 is isotropic in the sense that ||<9312(p)||1 € Siﬂﬂ forallp EHS,.
#2, on the other hand, is not isotropic. HS; is the five-dimensional sphere S°. Its equator
can be identified with S* and the two polynomials £1/ V3(x*+y”+2%) form the two poles.
Inside the equator, are embedded S* and S%. %2 maps the poles +(x2 + y2 + z2) to S5, and
it maps the embedded S! and S to Sg,r,ls, Sin/ls, respectively. The condition number ) for

F}on HS, is 5. Restricting .7 to the equator S*, the condition number improves to 2.
Right: Local and non-local approximations. For each p € HS,,, Lemma 2.8 approximates p
first with the vertices of the simplex containing p. This local approximation is further
improved using non-local approximations as the polynomials (p; — pj)2 are approximated by
polynomials in HS,, that are generally far from p.
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L eft: Plots of f,, for n =1, 2, 4 inred, blue and green, respectively. e varies from 0.01 to 0.1
and © is given in degree. Right: Comparison plot of ~'(e, 1) according to Equations 3.7 (in
red) and 3.8 (in blue). The estimate using Equation 3.7 is between 17% and 20% less than

the estimate using Equation 3.8.
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Fig. 3.2

L eft: For small 8, we can approximate the volume of a 6-regular spherical simplex by the
volume of a ©-regular Euclidean simplex. The exponential map Exp, maps a neighborhood
of the origin in the tangent space T, diffeomorphically onto a neighborhood # at p. Since
the derivative of Expp at p is the identity, for small enough 6, Expy, is close to an isometry
in Bg. Right: The average degree of a vertex, v, can be approximated by the number of 6-
regular simplexes contained in the ball of radius ©.
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Fig. 3.3.
The geometry of the map 34‘32 Left: HS; is the nine-dimensional sphere S9. The
decomposition of Hj into four subspaces of dimensions of 3, 3, 3, 1 respectively implies that

HS; contains separate copies of sphere S?, S2, 2 and S°. %7 maps these spheres to spheres
of radii 527/83, 687/699, 877/105 and 4 /105, respectively. Right: The number of
generators in X, X4 and Zg that can ensure the given accuracy requirement. The plots for m
=1, 2, 3are inred, blue and green, respectively.
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Randomly generated tensors in £2m
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Examples of randomly computed symmetric positive semi-definite tensors in Qy, Qg, Qg.
The tensor glyphs are shown.
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achieved by N finite generators (vertical axis) in the unit n-sphere. The circles show the

numerical results produced for specific sets ¢ of various sizes N.
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Approximation errors for various
orders and hyperspherical resolutions

Order N Mean error
2 81 0.1%
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Histograms of tensor fitting errors obtained by our method for the case of 2", 4t and 6t"-
order tensors respectively, using various sizes N of the set ¢. The vertical axis corresponds
to the percentage of the tensors in the dataset (i.e. number of occurances), and the horizontal
axis corresponds to the given fitting error.
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Fig. 4.4.

Plots of the running time of our method for fitting one tensor versus the approximation error
for the case of 2", 4t and 6!M-order tensors, using various sizes N of the set . The vertical
axis corresponds to the obtained mean fitting error, and the horizontal axis corresponds to
the execution time.
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=== Positive 6th-order tensors (our method)

== = Gth-order tensors without positivity constraint
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Comparison of the 6M-order tensor fitting errors obtained by the proposed method and the
technique in [35] for various Rician noise levels in the data.
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Fig. 4.6.

DW-MRI dataset from an isolated rat hippocampus. The image without diffusion weighting
(So) is shown on the top left. The 6M-order diffusion tensors estimated by the proposed
method are shown as a field of spherical functions. The three regions of interest depict 6%-
order diffusion tensors that model one, two, and three fiber structures.
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Diffusion-weighted image Positive Diffusion Tensors of order-4 Estimated fiber orientations

Fig. 4.7.

DW-MRI dataset from an isolated rat optic chiasm. A field of 4™-order diffusion tensors
computed by the proposed method is shown in the central plate. The corresponding
estimated fiber orientations are shown on the right.
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