
ar
X

iv
:0

90
7.

07
26

v2
  [

cs
.D

S]
  1

 J
un

 2
01

0

Asymmetric Traveling Salesman Path and

Directed Latency Problems∗

Zachary Friggstad† Mohammad R. Salavatipour‡ Zoya Svitkina§

Department of Computing Science

University of Alberta

Edmonton, Alberta T6G 2E8, Canada

June 1, 2010

Abstract

We study integrality gaps and approximability of two closely related problems on directed
graphs. Given a set V of n nodes in an underlying asymmetric metric and two specified nodes
s and t, both problems ask to find an s-t path visiting all other nodes. In the asymmetric
traveling salesman path problem (ATSPP), the objective is to minimize the total cost of this
path. In the directed latency problem, the objective is to minimize the sum of distances on this
path from s to each node. Both of these problems are NP-hard. The best known approximation
algorithms for ATSPP had ratio O(log n) [7, 9] until the very recent result that improves it to
O(log n/ log logn) [3, 9]. However, only a bound of O(

√
n) for the integrality gap of its linear

programming relaxation has been known. For directed latency, the best previously known
approximation algorithm has a guarantee of O(n1/2+ǫ), for any constant ǫ > 0 [25].

We present a new algorithm for the ATSPP problem that has an approximation ratio of
O(log n), but whose analysis also bounds the integrality gap of the standard LP relaxation of
ATSPP by the same factor. This solves an open problem posed in [7]. We then pursue a deeper
study of this linear program and its variations, which leads to an algorithm for the k-person
ATSPP (where k s-t paths of minimum total length are sought) and an O(log n)-approximation
for the directed latency problem.

1 Introduction

Let G = (V,E) be a complete directed graph on a set of n nodes and let d : E → R
+ be a cost

function satisfying the directed triangle inequality duw ≤ duv + dvw for all u, v, w ∈ V . However,
d is not necessarily symmetric: it may be that duv 6= dvu for some nodes u, v ∈ V . In the metric
Asymmetric Traveling Salesman Path Problem (ATSPP), we are also given two distinct nodes
s, t ∈ V . The goal is to find a path s = v1, v2, . . . , vn = t that visits all the nodes in V while
minimizing the sum

∑n−1
j=1 dvjvj+1

. ATSPP can be used to model scenarios such as minimizing the

∗A preliminary version of this paper appeared in the Proceedings of 21st Annual ACM-SIAM Symposium on

Discrete Algorithms
†Supported by NSERC and iCORE scholarships
‡Supported by NSERC and an Alberta Ingenuity New Faculty award
§Supported by Alberta Ingenuity

1

http://arxiv.org/abs/0907.0726v2


total cost of travel for a person trying to visit a set of cities on the way from a starting point to
a destination. This is a variant of the classical Asymmetric Traveling Salesman Problem (ATSP),
where the goal is to find a minimum-cost cycle visiting all nodes. In the k-person ATSPP, given an
integer k ≥ 1, the goal is to find k paths from s to t such that every node is contained in at least
one path and the sum of path lengths is minimized.

Related to ATSPP is the directed latency problem. On the same input, the goal is to find a
path s = v1, v2, . . . , vn = t that minimizes the sum of latencies of the nodes. Here, the latency of
node vi in the path is defined as

∑i−1
j=1 dvjvj+1

. The objective can be thought of as minimizing
the total waiting time of clients or the average response time. There are possible variations in the
problem definition, such as asking for a cycle instead of a path, or specifying only s but not t,
but they easily reduce to the version that we consider. Other names used in the literature for this
problem are the deliveryman problem [23] and the traveling repairman problem [1].

1.1 Related work

Both ATSPP and the directed latency problem are closely related to the classical Traveling Sales-
man Problem (TSP), which asks to find the cheapest Hamiltonian cycle in a complete undirected
graph with edge costs [15, 21]. In general weighted graphs, TSP is not approximable. However,
in most practical settings it can be assumed that edge costs satisfy the triangle inequality (i.e.
duw ≤ duv+dvw). Though metric TSP is still NP-hard, the well-known algorithm of Christofides [8]
has an approximation ratio of 3/2. Later the analysis in [27, 29] showed that this approximation
algorithm actually bounds the integrality gap of a linear programming relaxation for TSP known
as the Held-Karp LP. This integrality gap is also known to be at least 4/3. Furthermore, for all
ǫ > 0, approximating TSP within a factor of 220/219 − ǫ is NP-hard [26]. Christofides’ heuristic
was adapted to the problem of finding the cheapest Hamiltonian path in a metric graph with an
approximation guarantee of 3/2 if at most one endpoint is specified or 5/3 if both endpoints are
given [16].

In contrast to TSP, no constant-factor approximation for its asymmetric version is known. The
current best approximation for ATSP is the very recent result of Asadpour et al. [3], which gives
an O(log n/ log log n)-approximation algorithm. It also upper-bounds the integrality gap of the
asymmetric Held-Karp LP relaxation by the same factor. Previous algorithms guarantee a solution
of cost within O(log n) factor of optimum [9,11,18,19]. The algorithm of Frieze et al. [11] is shown
to upper-bound the Held-Karp integrality gap by log2 n in [28], and a different proof that bounds
the integrality gap of a slightly weaker LP is obtained in [24]. The best known lower bound on the
Held-Karp integrality gap is essentially 2 [5], and tightening these bounds remains an important
open problem. ATSP is NP-hard to approximate within 117/116 − ǫ [26].

The path version of the problem, ATSPP, has been studied much less than ATSP, but there
are some recent results concerning its approximability. An O(

√
n) approximation algorithm for it

was given by Lam and Newman [20], which was subsequently improved to O(log n) by Chekuri
and Pal [7]. Feige and Singh [9] improved upon this guarantee by a constant factor and also
showed that the approximability of ATSP and ATSPP are within a constant factor of each other,
i.e. an α-approximation for one implies an O(α)-approximation for the other. Combined with the
result of [3], this implies an O(log n/ log log n) approximation for ATSPP. However, none of these
algorithms bound the integrality gap of the LP relaxation for ATSPP. This integrality gap was
considered by Nagarajan and Ravi [25], who showed that it is at most O(

√
n). To the best of our

knowledge, the asymmetric path version of the k-person problem has not been studied previously.

2



However, some work has been done on its symmetric version, where the goal is to find k rooted
cycles of minimum total cost (e.g., [12]).

The metric minimum latency problem is NP-hard for both the undirected and directed versions
since an exact algorithm for either of these could be used to efficiently solve the Hamiltonian Path
problem. The first constant-factor approximation for minimum latency on undirected graphs was
developed by Blum et al. [4]. This was subsequently improved in a series of papers from 144 to
21.55 [13], then to 7.18 [2] and ultimately to 3.59 [6]. Blum et al. [4] also observed that there is
some constant c such that there is no c-approximation for minimum latency unless P = NP. For
directed graphs, Nagarajan and Ravi [25] gave an O((ρ + log n)nǫ ǫ−3) approximation algorithm
that runs in time nO(1/ǫ), where ρ is the integrality gap of an LP relaxation for ATSPP. Using their
O(
√
n) upper bound on ρ, they obtained a guarantee of O(n1/2+ǫ), which is the best approximation

ratio known for this problem before our present results.

1.2 Our results

In this paper we study both the ATSPP and the directed latency problem. The natural LP

min
∑

e∈E

dexe (1)

s.t. x(δ+(u)) = x(δ−(u)) ∀u ∈ V \ {s, t} (2)

x(δ+(s)) = x(δ−(t)) = 1 (3)

x(δ−(s)) = x(δ+(t)) = 0 (4)

x(δ−(S)) ≥ α ∀S ⊂ V, S 6= ∅, s /∈ S (5)

xe ≥ 0 ∀e ∈ E

relaxation for ATSPP is (1) with α = 1, where δ+(·) denotes the set of outgoing edges from a
vertex or a set of vertices, and δ−(·) denotes the set of incoming edges. A variable xe indicates that
edge e is included in a solution. Let us refer to this linear program as LP(α), as we study it for
different values of α in constraints (5). We begin in Section 2 by proving that the integrality gap
of LP(α = 1) is O(log n).

Theorem 1.1 If L is the cost of a feasible solution to LP (1) with α = 1, then one can find, in
polynomial time, a Hamiltonian path from s to t with cost at most (2 log n+ 1) · L.1

We note that, despite bounding the integrality gap, our algorithm is actually combinatorial and
does not require solving the LP. We strengthen the result of Theorem 1.1 by extending it to any α
with 1

2 < α ≤ 1. This captures the LP of [25], which has α = 2
3 , and is also used in our algorithm

for the directed latency problem. We prove the following theorem in Section 3.

Theorem 1.2 If L is the cost of a feasible solution to LP (1) with 1
2 < α ≤ 1, then one can find,

in polynomial time, a Hamiltonian path from s to t with cost at most 6 logn+3
2α−1 · L.

1All logarithms in this paper are base 2.

3



It is worth observing that this theorem, together with the results of [25], imply a polylogarithmic
approximation algorithm for the directed latency problem which runs in quasi-polynomial time,
as well as a polynomial-time O(nǫ)-approximation. However, that approach relies on guessing a
large number of intermediate vertices of the path, and thus does not yield an algorithm that has
both a polynomial running time and a polylogarithmic approximation guarantee. So, to obtain a
polynomial-time approximation, we use a different approach. For that we consider LP(α) for values
of α that include α ≤ 1

2 . If we allow α ≤ 1
2 then LP(α), as a relaxation of ATSPP, can be shown

to have an unbounded integrality gap. However, we prove the following theorem in Section 4.

Theorem 1.3 If L is the cost of a feasible solution to LP (1) with α = 1
k , for integer k, then one

can find, in polynomial time, a collection of at most k · log n paths from s to t, such that each vertex
of G appears on at least one path, and the total cost of all these paths is at most kL log n.

Next, we study another generalization of the ATSPP, namely the k-person asymmetric traveling
salesman path problem. In Section 5 we prove the following theorem:

Theorem 1.4 There is an O(k2 log n) approximation algorithm for the k-person ATSPP. More-
over, the integrality gap of its LP relaxation is bounded by the same factor.

Given these results concerning LP(α), we study a particular LP relaxation for the directed
latency problem in Section 6. We improve upon the O(n1/2+ǫ)-approximation of [25] substantially
by proving the following:

Theorem 1.5 A solution to the directed latency problem can be found in polynomial time that has
cost no more than O(log n) · L, where L is the value of LP relaxation (8), which is also a lower
bound on the integer optimum.

We note that this seems to be the first time that a bound is placed on the integrality gap of
any LP relaxation for the minimum latency problem, even in the undirected case.

2 Integrality gap of ATSPP

We show that LP relaxation (1) of ATSPP with α = 1 has integrality gap of O(log n). Let x∗ be
its optimal fractional solution, and let L be its cost. We define a path-cycle cover on a subset of
vertices W ⊆ V containing s and t to be the union of one s-t path and zero or more cycles, such
that each v ∈ W occurs in exactly one of these subgraphs. The cost of a path-cycle cover is the
sum of costs of its edges.

Our approach is an extension of the algorithm by Frieze et al. [11], analyzed by Williamson [28]
to bound the integrality gap for ATSP. That algorithm finds a minimum-cost cycle cover on the
current set of vertices, chooses an arbitrary representative vertex for each cycle, deletes other
vertices of the cycles, and repeats, at the end combining all the cycle covers into a Hamiltonian
cycle. As this is repeated at most log n times, and the cost of each cycle cover is at most the cost
of the LP solution, the upper bound of log n on the integrality gap is obtained. In our algorithm
for ATSPP, the analogue of a cycle cover is a path-cycle cover (also used in [20]), whose cost is
at most the cost of the LP solution (Lemma 2.2). At the end we combine the edges of O(log n)
path-cycle covers to produce a Hamiltonian path. However, the whole procedure is more involved

4



than in the case of ATSP cycle. For example, we don’t choose arbitrary representative vertices,
but use an amortized analysis to ensure that each vertex only serves as a representative a bounded
number of times.

We note that a path-cycle cover of minimum cost can be found by a combinatorial algorithm,
using a reduction to minimum-cost perfect matching, as explained in [20]. In the proof of Lemma
2.2 below, we make use of the following splitting-off theorem, as also done in [24], where splitting
off edges yv and vx refers to replacing these edges with the edge yx (unless y = x, in which case
the two edges are just deleted).

Theorem 2.1 (Frank [10] and Jackson [17]) Let G = (V,E) be a Eulerian directed graph and
vx ∈ E. There exists an edge yv ∈ E such that splitting off yv and vx does not reduce the directed
connectivity from u to w for any u,w ∈ V \ {v}.

This theorem also applies to weighted Eulerian graphs, i.e. ones in which the weighted out-degree
of every vertex is equal to its weighted in-degree, since weighted edges can be replaced by multiple
parallel edges, producing an unweighted Eulerian multigraph.

Lemma 2.2 For any subset W ⊆ V that includes s and t, there is a path-cycle cover of W of cost
at most L.

Proof. Consider the graph G′ obtained from G by assigning capacities x∗e to edges e ∈ E and
adding a dummy edge from t to s with unit capacity. From constraints (2)-(4) of LP(α = 1) it
follows that this is a weighted Eulerian graph. Constraints (5) and the max-flow min-cut theorem
imply that for any v ∈ V , the directed connectivity from s to v in G′ is at least α = 1.

We apply the splitting-off operation on G′, as guaranteed by Theorem 2.1, to vertices in V \W
until all of them are disconnected from the rest of the graph. Let G′′ be the resulting graph on
W and let x′ be its edge capacities except for the dummy edge ts (which was unaffected by the
splitting-off process). By Theorem 2.1, the directed connectivity from s to any v ∈ W does not
decrease from the splitting-off operations, which means that in G′′ it is still at least α. This ensures
that x′ satisfies constraints (5) for all sets S ⊂ W with S 6= ∅ and s /∈ S, and is a feasible solution
to LP(α) on the subset W of vertices. Furthermore, the triangle inequality implies that the cost of
x′ is no more than that of x∗, namely L.

Now we make the observation that if we remove from LP(α = 1) constraints (5) for all but
singleton sets, the resulting LP is equivalent to a circulation problem, and thus has an integer
optimal solution. Since there is a feasible solution to LP(α = 1) on the set W of cost at most L
(namely x′), and removing a constraint can only decrease the optimal objective value, it means
that there is an integer solution to the following program that costs no more than L:

min
∑

e∈E

dexe (6)

s.t. x(δ+(u)) = x(δ−(u)) ≥ 1 ∀u ∈W \ {s, t}
x(δ+(s)) = x(δ−(t)) = 1 (7)

x(δ−(s)) = x(δ+(t)) = 0

xe ≥ 0 ∀e ∈ E

In principle, this integer solution can have x(δ+(u)) > 1 for some nodes u. In this case, we find a
Euler tour of each component of the resulting graph (with dummy edge ts added in) and shortcut

5



it over any repeated vertices. This ensures that x(δ+(u)) = 1 for all u without increasing the cost.
But such a solution is precisely a path-cycle cover of W . �

Algorithm 1 Asymmetric Traveling Salesman Path

1: Let a set W ← V ; integer labels lv ← 0 for all v ∈ V ; flow F ← ∅ and circulation H ← ∅
2: for 2 log2 n+ 1 iterations do
3: Find the minimum-cost s-t path-cycle cover F ′ on W
4: F ← F + F ′ ⊲ F is acyclic before this operation
5: Find a path-cycle decomposition of F , with cycles C1...Ck and paths P1...Ph, such that

⋃

i Pi is acyclic
6: for each connected component A of

⋃

j Cj do ⊲ A is a circulation
7: For each vertex u ∈ A, let du be the in-degree of u in A
8: Find a “representative” node v ∈ A minimizing lv + dv
9: F ← F −A ⊲ subtract flows

10: for each w ∈ A, w 6= v, and for each path Pi

11: if w ∈ Pi then modify F by shortcutting Pi over w
12: Remove all nodes in A, except v, from W ⊲ Note: they don’t participate in F anymore
13: H ← H +A ⊲ add circulations
14: lv ← lv + dv
15: end for
16: end for
17: Let P be an s-t path consisting of nodes in W in the order found by topologically sorting F

⊲ F is an acyclic flow on the nodes W
18: for every connected component X of H of size |X| > 1 do
19: Find a Euler tour of X, shortcut over nodes that appear more than once
20: Incorporate the resulting cycle into P using a shared node
21: end for
22: return P ⊲ P is a Hamiltonian s-t path

We consider Algorithm 1. Roughly speaking, the idea is to find a path-cycle cover, select a rep-
resentative node for each cycle, delete the other cycle nodes, and repeat. Actually, a representative
is selected for a component more general than a simple cycle, namely a union of one or more cycles.
We ensure that each vertex is selected as a representative at most log n times, which means that af-
ter 2 log n+1 iterations, each surviving vertex has participated in the acyclic part of the path-cycle
covers at least log n + 1 times. This allows us at the end to find an s-t path which spans all the
surviving vertices, W , and consists entirely of edges in the acyclic part, F , of the union of all the
path-cycle covers, using a technique of [25]. Then we insert into it the subpaths obtained from the
cyclic part, H, of the union of path-cycle covers, connected through their representative vertices.
We occasionally treat subgraphs satisfying appropriate degree constraints as flows or circulations.

Lemma 2.3 During the course of the algorithm, no label lv exceeds the value log n.

The idea of the proof is, as the algorithm proceeds, to maintain a forest on the set of nodes V ,
such that the number of leaves in a subtree rooted at any node v ∈ V is at least 2lv . The lemma
then follows because the total number of leaves is at most n. We first prove an auxiliary claim.

6



Claim 2.4 In each component A found by Algorithm 1 on line 6, there are two distinct nodes x
and y such that dx = dy = 1.

Proof. Let F̄ be the value of F at the start of the current iteration of the outside loop, i.e.
before F ′ is added to it on line 4. F̄ is acyclic, because during the course of the loop, all cycles of
F are subtracted from it. So A is a union of cycles, formed from the sum of an acyclic flow F̄ and
a path-cycle cover F ′, which sends exactly one unit of flow through each vertex.

Consider a topological ordering of nodes based on the flow F̄ , and let x and y be the first and
last nodes of A, respectively, in this ordering. As A always contains at least two nodes, x and y
are distinct. Since x and y participate in some cycle(s) in A, their in-degrees are at least 1. We
now claim that the in-degree of x in A is at most 1. Indeed, since all other nodes of A are later
than x in the topological ordering, it cannot have any flow coming from them in F̄ . So the only
incoming flow to x can be in F ′. But since F ′ sends a flow of exactly one unit through each vertex,
the in-degree of x in A is at most one. A symmetrical argument can be made for y, showing that
its out-degree in A is at most one. But since A is a union of cycles, every node’s in-degree is equal
to its out-degree, and the in-degree of y is also at most 1. �

Proof of Lemma 2.3. As the algorithm proceeds, let us construct a forest on the set of nodes V .
Initially, each node is the root of its own tree. We maintain the invariant that W is the set of tree
roots in this forest. For each component A that the algorithm considers, and the node v found on
line 8, we attach the nodes of A, except v, as children of v. Note that the invariant is maintained,
as these nodes are removed from W on line 12. The set of nodes of each component A found on
line 6 is always a subset of W , and thus our construction indeed produces a forest.

We show by induction on the steps of the algorithm that if a node has label l, then its subtree
contains at least 2l leaves. Thus, since there are n nodes total, no label can exceed log2 n. At the
beginning of the algorithm, all labels are 0, and all trees have one leaf each, so the base case holds.
Now consider some iteration in which the label of vertex v ∈ A is increased from lv to lv + dv. By
Claim 2.4, there are nodes x, y ∈ A (possibly one of them equal to v) with dx = dy = 1. Since v
minimizes lu + du among all vertices u ∈ A, we have that lx + dx ≥ lv + dv and ly + dy ≥ lv + dv,
and thus lx ≥ lv + dv − 1 and ly ≥ lv + dv − 1. Thus, by the induction hypothesis, the trees rooted
at x and y each have at least 2lv+dv−1 leaves. Because we update the forest in such a way that v’s
new tree contains all the leaves of trees previously rooted at x and y, this tree now has at least
2 · 2lv+dv−1 = 2lv+dv leaves. �

Lemma 2.5 At the end of the algorithm’s main loop, the flow in F passing through any node
v ∈W is equal to 2 log n+ 1− lv, and thus (by Lemma 2.3) is at least log n+ 1.

Proof. There are 2 log n + 1 iterations, each of which adds one unit of flow through each vertex
v ∈W . We now claim that for a vertex v ∈W , the amount of flow removed from it is equal to its
label, lv. Flow is removed from v only if v becomes part of some component A. Now, if it is ever
part of A, but not chosen as a representative on line 8, then it is removed from W . Thus, we are
only concerned about vertices that are chosen as representatives every time that they are part of
A. Such a vertex has flow dv going through it in A, which is the amount subtracted from F . But
since this is also the amount by which its label increases, the lemma follows. �

We now show that Algorithm 1 returns a Hamiltonian s-t path of cost at most (2 log2 n+1) ·L.
Proof of Theorem 1.1. At the end of the main loop, all nodes of V are part of either W or H
or both. So when all components of H are incorporated into the path P , all nodes of V become

7



part of the path. We bound the cost of all the edges used in the final path by the total cost of all
the path-cycle covers found on line 3 of the algorithm. We note that at the end of the algorithm,
the cost of the flow F +H is no more than this total.

We claim that when the s-t path P is found on line 17, F contains flow on every edge between
consecutive nodes of P . This is similar to an argument used in [25]. First, since F is acyclic, it has
a topological ordering. Suppose we find a flow decomposition of F into paths. There are at most
2 log n + 1 such paths, and, by Lemma 2.5, each vertex of W participates in at least log n + 1, or
more than half, of them. This means that any two vertices u, v ∈ W must share a path, say P ′,
in this decomposition. In particular, suppose that v immediately follows u in the path P . This
means that v appears later than u in the topological order, so on P ′ v comes after u. Moreover,
we claim that on P ′, v will be the immediate successor of u. If not, suppose that there is a node w
that appears between u and v in P ′. But this means that in the topological ordering (and thus in
P ), w will appear after u and before v, which contradicts the fact that they are consecutive in P .
So we conclude that there is an edge with flow in F between any two consecutive nodes of P , and
thus the path P costs no more than the flow F .

Regarding H, we note that it is a sum of cycles, and thus Eulerian. So it is possible to find a
Euler tour of each of its components, using only edges with flow in H. The subsequent shortcutting
can only decrease the cost. Thus, the total cost of cycles found on line 19 is no more than the cost
of the flow H. To describe how these cycles are incorporated into the path P , we show that each
of them (or, equivalently, each connected component of H) shares exactly one node with W (and
thus with P ). Note that every component A added to H contains only nodes that are in W at that
time. Moreover, when this is done, all but one nodes of A are expelled from W . So when several
components of H are connected by the addition of A, the invariant is maintained that there is one
node per component that is shared with W . Now, suppose that v is the vertex shared by the cycle
obtained from component X and the path P . On line 20, we incorporate the cycle into the path
by following the path up to v, then following the cycle up to the predecessor of v, then connecting
it to the successor of v on the path. By triangle inequality, the resulting longer path costs no more
than the sum of costs of the old path and the cycle. �

3 Integrality gap for relaxed ATSPP LP

Consider LP(α) with 1
2 < α ≤ 1, and say that it has cost L. We bound its integrality gap for

ATSPP. As in the proof of Lemma 2.2, we can apply splitting-off to obtain a feasible solution to
LP(α), of cost at most L, on a graph induced by a subset of vertices W ⊆ V . Let x be such a
solution. Lemma 3.1 below shows how to use x to find a feasible fractional solution to LP (6) on
W , of cost within a constant factor of L, namely 3

2α−1L. Since LP (6) has integer optimum, there

is an integer solution to LP (6) on W , and thus a path-cycle cover, of cost at most 3
2α−1L. Then

we can proceed as in Section 2, applying Algorithm 1 to bound the cost of the resulting ATSPP
solution by 2 log n + 1 times the path-cycle cover cost. This shows that LP(α) has integrality gap
at most 6 logn+3

2α−1 , proving Theorem 1.2.

Lemma 3.1 Given a solution x to LP(α), with α > 1/2, on a subset W ⊆ V , with cost at most
L, a feasible solution to LP (6) on W of cost at most 3

2α−1L can be found.

Proof. Multiply x by 1/α. Now it constitutes a flow F of 1/α units from s to t. Constraints (5),
restricted to sets of size 1, imply that each node u now has at least one unit of flow going through

8



it. Find a flow decomposition of F into paths and cycles, so that the union of the paths is acyclic.
Let F = Fp + Fc, where Fp is the sum of flows on the paths in our decomposition, and Fc is the
sum of flows on the cycles.

Choose some γ such that 1
2α < γ < 1. For any node u such that the amount of Fp flow going

through u is less than γ, shortcut any flow decomposition paths that contain u, so that there is no
more Fp flow going through u. Let U ⊆ W be the set of vertices still participating in the Fp flow.
Then each vertex in U has at least γ units of Fp flow going through it, and each vertex in W \ U
has at least 1− γ units of Fc flow going through it.

We find a topological ordering of vertices in U according to Fp (which is acyclic), and let P
be an s-t path that visits the nodes of U in this topological order. We claim that the cost of P is
within a constant factor of the cost of Fp. The argument for this is similar to one in the proof of
Theorem 1.1. Out of 1/α units of flow going from s to t in Fp, each vertex u ∈ U carries γ units,
which is more than half of the total amount (as γ > 1/2α). So for any two such vertices u and v,
there must be shared flow paths that carry flow of at least 2γ − 1/α units. In particular, for every
two consecutive nodes u, v ∈ P , Fp must contain such shared paths in which v immediately follows
u. So the cost of P is at most 1

2γ−1/α times the cost of Fp.

We now define x̃ as a flow equal to one unit of s-t flow on the path P plus 1
1−γ times the flow

Fc. We claim that x̃ is a feasible solution to LP (6): there is exactly one unit of flow from s to t
(as Fc consists of cycles not containing s or t); there is flow conservation at all nodes except s and
t; each vertex in U (and thus in P ) has at least one unit of flow going through it; and each vertex
in W \ U has at least one unit of flow going through it (as it had at least 1 − γ units of Fc flow).
The cost of this solution is at most

1

2γ − 1/α
· cost(Fp) +

1

1− γ
· cost(Fc) ≤ max

(

1

2γ − 1/α
,

1

1− γ

)

· 1
α
L.

If we set γ = 1
3 +

1
3α , which satisfies 1

2α < γ < 1, we see that the cost of x̃ is at most 3
2α−1 · L. �

4 Relaxed ATSPP LP with α ≤ 1/2

Consider LP (1) with α = 1
k ≤ 1

2 for some integer k ≥ 2. It can be shown that, as a relaxation for
the ATSPP problem, this LP has unbounded integrality gap. For example, let D be an arbitrarily
large value and consider the shortest path metric obtained from the graph in Figure 1. One can
verify that the following assignment of x-values to the arcs is feasible for LP (1) with α = 1/2.
Assign a value of 1/2 to arcs (1, 2), (3, 2), (3, 6), (1, 4), (5, 4), and (5, 6) and a value of 1 to arcs
(2, 3) and (4, 5). Every other arc is assigned a value of 0. This assignment is feasible for the linear
program and has objective function value 5. On the other hand, any Hamiltonian path from 1 to
6 has cost at least D.

Let L be the cost of the optimal solution to LP(α = 1
k ). We show how to find k ·log n paths from

s to t, such that each node of G appears on at least one path, and the total cost of all these paths
is at most k log n · L. Let us define a k-path-cycle cover to be a set of k disjoint paths from s to t
and zero or more cycles, which together cover all nodes. Like a path-cycle cover, the minimum-cost
k-path-cycle cover can be found by a combinatorial algorithm by creating k copies of both s and t
and using the matching algorithm described in [20].

Lemma 4.1 For any subset W ⊆ V that includes s and t, there is a k-path-cycle cover of W with
total cost at most kL.

9



2 3

4 5

1 6

1

1

1

1

1

1

1

1

D

Figure 1: Bad gap example for LP (1) with α = 1/2. Here, D is an arbitrarily large integer.

Proof. As in the proof of Lemma 2.2, we apply splitting-off to a solution of LP(α) to get a
solution to LP(α) on a subset W ⊆ V of vertices, of no greater cost. Now, if we multiply this
solution by k, we get a feasible solution to LP (6) with constraints (7) replaced with

x(δ+(s)) = x(δ−(t)) = k.

The cost of this solution is no more than kL. But this LP has an integer optimum, which, possibly
after shortcutting, is exactly a k-path-cycle cover. �

Proof of Theorem 1.3. We start with W = V and repeat the following until W = {s, t}:
1. Find a k-path-cycle cover F of W of cost at most kL, as guaranteed by Lemma 4.1.
2. Remove from W all nodes (except s and t) that participate in paths of F .
3. For each cycle C of F , choose a representative node v ∈ C, and remove from W all nodes of

C except v.
Let us say that the procedure terminates after T iterations. As the size of W halves in each
iteration, T is at most log n. In the last iteration, all elements of W must have participated in the
paths, as otherwise there would be a node v that remains in W after this iteration. This implies
that the graph

⋃

F is connected. It also has total cost at most kL log n, and, if we add kT edges
from t to s, becomes Eulerian. This means that we can construct kT ≤ k log n paths from s to t,
covering all nodes of V , out of edges of

⋃

F . �

5 Algorithm for k-person ATSPP

In this section we consider the k-person asymmetric traveling salesman path problem. The LP
relaxation for this problem is similar to LP (1), but with x(δ+(s)) = x(δ−(t)) = k for constraint (3)
and x(δ−(S)) ≥ 1 for constraint (5). Arguments similar to those in Section 2 show that a k-path-
cycle cover on any subset W is a lower bound on the value of the LP relaxation for the k-person
ATSPP. Our algorithm constructs a solution that uses each edge of O(k log n) k-path-cycle covers
at most k times, proving a bound of O(k2 log n) on the approximation ratio and the integrality gap.

Our algorithm starts by running lines 1-16 of Algorithm 1, except with T = (k + 1) log n + 1
iterations of the loop and finding minimum-cost k-path-cycle covers instead of the path-cycle covers
on line 3. Then it finds k s-t paths in the resulting acyclic graph F , satisfying conditions of
Lemma 5.1 below. The algorithm concludes by incorporating each component of the circulation H
into one of the obtained paths, similarly to lines 18-21 of Algorithm 1.

10



Lemma 5.1 After lines 1-16 of Algorithm 1 are executed with T iterations of the loop on line 2
and finding minimum-cost k-path-cycle covers on line 3, there exist k s-t paths in the resulting
acyclic graph F , such that each edge of F is used at most k times, and every node of F is contained
in at least one path. Moreover, these paths can be found in polynomial time.

Proof. We prove the existence result first. We note that the graph F can support kT units
of flow from s to t. This is because in each of the T iterations, k s-t paths were added to the
graph, whereas the removal of cycles does not decrease the amount of flow supported. So F can
be decomposed into kT edge-disjoint paths from s to t. Moreover, each node of F participates in
at least T − log n of these paths by Lemma 2.5.

Let K be the comparability graph obtained from F . Namely, K has the same set of nodes
as F , and there is an undirected edge between nodes u and v in K if F contains a directed path
either from u to v or from v to u. We claim that the nodes of K can be partitioned into at most k
cliques. As comparability graphs are perfect graphs [14], the minimum number of cliques that K
can be partitioned into is equal to the size of the maximum independent set in K. So suppose, for
the sake of contradiction, that K contains an independent set I of size k + 1. Then no nodes in I
must share any of the paths in our decomposition of F . Since each appears on at least T − log n
paths, there must be at least (k + 1) · (T − log n) paths total in the decomposition. However, this
is a contradiction, since (k + 1) · (T − log n) = (k + 1)k log n+ k + 1 > (k + 1)k log n+ k = kT .

Given the set of k cliques in K, we can convert each of them into an s-t path in F . For each
such clique C, order the nodes of C in a way consistent with a topological ordering of F . Then F
contains a path from each node u of C to the next node v: the existence of a uv edge in K shows
that there is a path between these nodes in F , and the topological ordering guarantees that this
path goes in the correct direction. There must also be paths from s to the first node of C as well
as from the last node of C to t, since s is the only source and t is the only sink of F . Furthermore,
the acyclicity of F shows that each edge of F is used at most once for connecting nodes in C. As
there are k cliques, each edge is used at most k times in total. If the number of cliques is smaller
than k, then we can add arbitrary paths from F to our collection to obtain exactly k paths.

To find the required paths algorithmically, we construct the following bipartite graph B from
F with bipartitions X and Y . For each v ∈ F \ {s, t}, add nodes xv to X and yv to Y (note that
|X| = |Y |). Now, for each ordered pair of nodes (u, v) such that there is a directed path from u
to v in F , add an edge from xu to yv. Let K ′ be the directed graph obtained from K − {s, t} by
orienting each edge uv according to flow F . It is easy to see that any collection of q disjoint cliques
covering K − {s, t} corresponds to a covering of K ′ by q vertex-disjoint paths and vice-versa. We
claim that there is a covering of K ′ by q disjoint paths if and only if there is a matching in B that
leaves only q nodes in X and q nodes in Y unmatched.

Consider a covering of K ′ by q vertex-disjoint paths P . Form a matching M = {xuyv :
uv used by P}. Since P is a collection of vertex-disjoint paths, each node has indegree and outde-
gree at most one in P , so M is a valid matching. Furthermore, since P covers the nodes of K ′ with
q paths, then exactly q nodes have indegree 0 and exactly q nodes have outdegree 0. Thus, in M
exactly q nodes of X and q nodes of Y are unmatched. Conversely, let M be a matching of B that
leaves exactly q nodes of X unmatched. For each unmatched node yu ∈ Y , form a directed path
in K ′ starting at u by the following process. If xu is matched to, say, yv, then add arc uv to the
path. Continue this process from yv until the corresponding node in X is not matched. This will
form q vertex-disjoint paths in K ′ that cover all nodes.

As noted earlier, we know that K can be covered by at most k disjoint cliques. Therefore, there

11



is a matching in B that leaves at most k nodes in X and k nodes in Y unmatched. Compute such
a matching and map it to the corresponding paths in K ′. Finally, extend these at most k paths to
s− t paths by adding an arc from s to the start of each path and an arc from the end of each path
to t. Again, since the only source in F is s and the only sink in F is t, these arcs correspond to
edges in K. �

Proof of Theorem 1.4. Let L be the cost of a linear programming relaxation for the problem.
The edges of F as well as the edges used to connect the eulerian components of H to the paths come
from the union of T k-path-cycle covers on subsets of V , and thus cost at most T ·L = O(k log n) ·L.
However, the algorithm may use each edge of F up to k times in the paths of Lemma 5.1, which
makes the total cost of the produced solution at most O(k2 log n) · L. �

6 Approximation algorithm for Directed Latency

We introduce LP relaxation (8) for the directed latency problem. The use of xuw and f v
uw variables

in an integer programming formulation for directed latency was proposed by Mendez-Diaz et al.
[22], who do a computational evaluation of the strength of its LP relaxation. However, our LP
formulation uses a different set of constraints than the one in [22].

In LP (8), a variable xuw indicates that node u appears before node w on the path. Similarly,
xuvw for three distinct nodes u, v, w indicates that they appear in this order on the path. For every
node v 6= s, we send one unit of flow from s to v, and we call it the v-flow. Then f v

uw is the amount
of v-flow going through edge (u,w), and ℓ(v) is the latency of node v. To show that this LP is a
relaxation of the directed latency problem, given a solution path P , we can set f v

uw = 1 whenever
the edge (u,w) is in P and v occurs later than u in P , and f v

uw = 0 otherwise. So f v is one unit
of flow from s to v along the path P . Also setting the ordering variables xuw and xuvw to 0 or 1
appropriately and setting ℓ(v) to the latency of v in P , we get a feasible solution to LP (8) of the
same cost as the total latency of P .

Constraints (12) are the flow conservation constraints for v-flow at node u. Constraints (13)
ensure that no v-flow enters s or leaves v. Constraints (14) say that v-flow passes through u if and
only if u occurs before v. Since the t-flow goes through every vertex, when all the variables are in
{0, 1}, it defines an s-t path. We can think of the t-flow as the universal flow and Constraints (15)
ensure that every v-flow follows an edge which has a universal flow on it. Constraints (16), in an
integer solution, ensure that if a set S contains some node y that comes before v (i.e. xyv = 1),
then at least one unit of v-flow enters S.

We note that a min-cut subroutine can be used to detect violated constraints of type (16), allow-
ing us to solve LP (8) using the ellipsoid method. Our analysis does not actually use Constraints
(15), so we can drop them from the LP. Although without these constraints the corresponding
integer program may not be an exact formulation for the directed latency problem, we can still find
a solution whose cost is within factor O(log n) of this relaxed LP.

Lemma 6.1 Given a feasible solution to LP (8) with objective value L, we can find another solution
of value at most (1 + 1

n)L in which the ratio of the largest to smallest latency ℓ( ) is at most n2.

Proof. Let (x, ℓ, f) be a feasible solution with value L, with ℓ(t) the largest latency value in this
solution. Note that L ≥ ℓ(t). Define a new feasible solution (x, ℓ′, f) by ℓ′(v) = max{ℓ(v), ℓ(t)/n2}.

12



min
∑

v 6=s

ℓ(v) (8)

s.t. ℓ(v) ≥
∑

uw

duwf
v
uw ∀v

ℓ(v) ≥ [dsu + duw + dwv]xuwv ∀u,w, v : |{u,w, v}| = 3 (9)

ℓ(t) ≥ ℓ(v) ∀v
xuw = xvuw + xuvw + xuwv ∀u,w, v : |{u,w, v}| = 3 (10)

xuw + xwu = 1 ∀u,w : u 6= w (11)

xsu = xut = 1 ∀u /∈ {s, t}
∑

w

f v
wu =

∑

w

f v
uw ∀v,∀u /∈ {s, v} (12)

∑

w

f v
sw =

∑

w

f v
wv = 1 ∀v

f v
us = f v

vu = 0 ∀u, v (13)
∑

w

f v
uw = xuv ∀v, u 6= v (14)

f v
uw ≤ f t

uw ∀u,w, v (15)
∑

u/∈S,w∈S

f v
uw ≥ xyv ∀S ⊂ V \ {s}, y ∈ S (16)

xuw, xuwv, f
v
uw ≥ 0 ∀u,w, v

The total increase in the objective function is at most n · ℓ(t)
n2 ≤ L/n as there are n nodes in total.

Thus, the objective value of this new solution is at most (1 + 1/n)L. �

Using Lemma 6.1 and scaling the edge lengths (if needed), we can assume that we have a
solution (x, ℓ, f) satisfying the following:

Corollary 6.2 There is a feasible solution (x, ℓ, f) in which the smallest latency is 1 and the largest
latency is at most n2 and whose cost is at most (1 + 1

n) times the optimum LP solution.

Let L∗ be the value (i.e. total latency) of this solution.
The idea of our algorithm is to construct s-v paths for several nodes v, such that together

they cover all vertices of V , and then to “stitch” these paths together to obtain one Hamiltonian
path. We use our results for ATSPP to construct these paths. For this, we observe that parts of a
solution to the latency LP (8) can be transformed to obtain feasible solutions to different instances
of LP(α). For example, we can construct a Hamiltonian s-t path of total length O(log n) · ℓ(t) as
follows. From a solution to LP (8), take the t-flow defined by the variables f t

uw, and notice that it
constitutes a feasible solution to LP(α = 1). In particular, since xyt = 1 for all y, constraints (16)
of LP (8) for v = t imply that the set constraints (5) of LP (1) are satisfied. The objective function
value for LP (1) of this solution is at most ℓ(t). Thus, by Theorem 1.1, we can find the desired
path. Of course, this path is not yet a good solution for the latency problem, as even nodes v with

13



ℓ(v)≪ ℓ(t) can have latency in this path close to O(log n) · ℓ(t). Our algorithm constructs several
paths of different lengths, incorporating most nodes v into paths of length O(log n) · ℓ(v), and then
combines these paths to obtain the final solution.

Algorithm 2 Directed Latency

1: Let (x, ℓ, f) be a solution to LP (8). Let S be the path {s}.
2: Partition the nodes into g = ⌊log ℓ(t) + 1⌋ sets V1, . . . , Vg with v ∈ Vi if 2

i−1 ≤ ℓ(v) < 2i.
3: for i = 1 to g − 1 do
4: for j = 1 to 2 do
5: if Vi 6= ∅ then
6: Let vji = argmaxv∈Vi

|{u ∈ Vi : xuv ≥ 1
2}| ⊲ this maximizes the size of Bj

i below

7: Let Aj
i = {u ∈ V : x

uvj
i

≥ 2
3 + 2i−2+j

24 logn }
8: Let Bj

i = {u ∈ Vi : xuvj
i

≥ 1
2} ⊲ |Bj

i | ≥ (|Vi| − 1)/2

9: Find an s-vji path P j
i , containing Aj

i , of cost δ1 log n · 2i; append P j
i to S.

10: Find 2 log n s-vji paths Pj
i , containing Bj

i , of total cost at most 2 log n · 2i; append
Pj
i to S.

11: Vi = Vi \ (Aj
i ∪Bj

i ∪ {v
j
i }) ⊲ size of Vi is at least halved

12: end if
13: end for
14: Let Vi+1 = Vi+1 ∪ Vi ⊲ remaining nodes are carried over to the next set
15: end for
16: Construct an s-t path Pg, containing Vg, of cost at most (2 log n+ 1) · ℓ(t). Append Pg to S.
17: Shortcut S over the later copies of repeated nodes. Output S.

6.1 Constructing the paths

Algorithm 2 finds an approximate solution to the directed latency problem, and we now explain
how some of its steps are performed. The algorithm maintains a path S, initially containing only
the source, and gradually adds new parts to it. This is done through operation append on lines 9,
10, and 16. To append a path P to S means to extend S by connecting its last node to the first
node of P that does not already appear in S, and then following until the end of P . For example,
if S = sabc and P = sbdce, the result is S = sabcdce. Step 10 appends a set of paths to S. This
just means sequentially appending all paths in the set, in arbitrary order, to S.

Next we describe how to build paths P j
i and Pj

i in Steps 9 and 10. We described above how
to use Theorem 1.1 to build a Hamiltonian s-t path P of length (2 log n + 1) · ℓ(t), which is used
on line 16 of the algorithm. The idea behind building paths P j

i and Pj
i with their corresponding

length guarantees is similar.
To construct P j

i , we do the following. Since each node u ∈ Aj
i has x

uvj
i

≥ 2/3, the amount of

vji -flow that goes through u is at least 2/3. We apply splitting-off on this flow to nodes outside of

Aj
i , and obtain a total of one unit of s-vji flow over the nodes in Aj

i , of cost no larger than ℓ(vji ) ≤ 2i.
This flow satisfies all the constraints of LP(α = 2/3), including the set constraints (5), which are
implied by the set constraints (16) of the latency LP (8), as x

uvj
i

≥ 2/3 for u ∈ Aj
i . Thus, using

Theorem 1.2, we can find a path from s to vji , spanning all the nodes of Aj
i , whose cost is at most

14



δ1 log n · 2i for some constant δ1.
To obtain the set of paths Pj

i , we look at the vji -flow going through each node of Bj
i , whose

amount is at least 1
2 . After splitting-off all nodes outside of Bj

i , we get a feasible solution of cost

at most ℓ(vji ) ≤ 2i to LP(α = 1/2). By Theorem 1.3, we can find 2 log n paths, each going from s

to vji , which together cover all the nodes of Bj
i , and whose total cost is at most 2 log n · 2i.

6.2 Connecting the paths

We now bound the lengths of edges introduced by the append operation in the different cases.
For a path P , let app(P ) be the length of the edge used for appending P to the path S in the
algorithm.

Lemma 6.3 For any i, j, and path P ∈ Pj
i , app(P ) ≤ 6 · 2i. Also, app(Pg) ≤ 6 · 2g.

Proof. Let u be the last node of the path S before the append operation, vji be the last node of
P , and w be the first node of P that does not appear in S. We need to bound duw, the distance
from u to w.

We observe that xwu ≤ 5/6. If u = s, this is trivial. Otherwise, u = vj
′

i′ is the endpoint of some
path constructed in an earlier iteration. Note that j′ ≤ 2 and i′ ≤ g − 1 ≤ log ℓ(t) ≤ 2 log n by our

assumption that ℓ(t) ≤ n2, which means that 5
6 ≥ 2

3 + 2i′−2+j′

24 logn . So, if we had xwu > 5/6, then w

would be included in the set Aj′

i′ and in the path P j′

i′ , and thus be already contained in S, which is
a contradiction.

Consequently, xuw = 1− xwu ≥ 1/6. This means that the amount of w-flow that goes through
u is at least 1/6. Since this flow has to reach w after visiting u, it has to cover a distance of at least
duw, thus adding at least 1

6 · duw to ℓ(w), the latency of w. Thus, ℓ(w) ≥ 1
6duw, and duw ≤ 6ℓ(w).

Now, if w ∈ Pj
i , it must be in Bj

i , which, by definition, means that w ∈ Vi, and therefore ℓ(w) ≤ 2i.
So app(P ) = duw ≤ 6 · 2i. If w ∈ Pg, then app(Pg) ≤ 6ℓ(w) ≤ 6ℓ(t) ≤ 6 · 2g. �

To bound the cost of appending a path P j
i to S, we need an auxiliary lemma.

Lemma 6.4 For any ǫ > 0, if xuw + xwv ≥ 1 + ǫ, then ℓ(v) ≥ ǫ · duw.

Proof. Using Constraint (10) we have:

1 + ǫ ≤ xuw + xwv

= (xvuw + xuvw + xuwv) + (xuwv + xwuv + xwvu)

= 2xuwv + (xvuw + xuvw) + (xwuv + xwvu).

On the other hand, (xvuw + xuvw) + (xwuv + xwvu) ≤ xvw + xwu = 2 − (xuw + xwv) ≤ 1 − ǫ,
using again Constraint (10), then Constraint (11), and the assumption of the lemma. Therefore,
2xuwv ≥ (1 + ǫ)− (1− ǫ) = 2ǫ, i.e. xuwv ≥ ǫ. Then the claim follows using Constraint (9). �

Lemma 6.5 For any i and j, app(P j
i ) ≤ 24 log n · 2i.

Proof. Let u, vji , and w be as in the proof of Lemma 6.3. To bound duw, we consider two cases.

Case 1: If w ∈ Vi, we apply the same proof as for Lemma 6.3 and conclude that app(P j
i ) ≤ 6·2i.

15



Case 2: If w 6∈ Vi, let (i
′, j′) be an earlier iteration of the algorithm in which node u = vj

′

i′ was

added to S. Since w /∈ S, it must be that w /∈ Aj′

i′ , and thus xwu < 2
3 + 2i′−2+j′

24 logn . On the other

hand, since w ∈ Aj
i , it must be that x

wvj
i

≥ 2
3 +

2i−2+j
24 logn . Because 2i′ + j′ ≤ 2i+ j − 1, we have

xuw + x
wvj

i

= (1− xwu) + x
wvj

i

≥ 1− 2i′ − 2 + j′

24 log n
+

2i− 2 + j

24 log n

≥ 1 +
1

24 log n
.

Using Lemma 6.4, we get that app(P j
i ) = duw ≤ 24 log n · ℓ(vji ) ≤ 24 log n · 2i. �

Lemma 6.6 Suppose that a node v is first added to path S in iteration k of the outer loop of the
algorithm. Then the latency of v in S is at most δ2 log n · 2k, for some constant δ2 > 0.

Proof. Let len(P ) denote the length of a path P . The latency of node v on S is at most:

k
∑

i=1

2
∑

j=1






len(P j

i ) +
∑

P∈P
j
i

len(P ) + app(P j
i ) +

∑

P∈P
j
i

app(P )







≤
k

∑

i=1

2
∑

j=1

[

δ1 log n · 2i + 2 log n · 2i + 24 log n · 2i + 2 log n · 6 · 2i
]

≤ δ2 log n · 2k

�

Suppose that ni is the number of nodes that are originally placed into the set Vi. Since a node
v is originally placed in Vi if ℓ(v) ≥ 2i−1, the value of the LP solution L∗ can be bounded by:

L∗ =
∑

v

ℓ(v) ≥
g

∑

i=1

ni 2
i−1. (17)

Let n′
i denote the size of Vi at the beginning of iteration i of the outer loop. Note that n′

i may
be larger than ni since some nodes may have been moved to Vi in Step 14 of the previous iteration.

Claim 6.7 For any i, the size of the set Vi at the end of iteration i is at most n′
i/4.

Proof. Consider the iteration (i, j = 1). Note that the vertex vji is chosen precisely to maximize

the number of nodes u in Vi with x
uvj

i

≥ 1/2, which is the size of the set Bj
i . If we imagine a

directed graph H on the set of vertices Vi, in which an edge (u,w) exists whenever xuw ≥ 1/2, then
vji is the vertex with highest in-degree in this graph. Now, from Constraint (11), it’s not hard to
see that some vertex in H will have in-degree at least (n′ − 1)/2. So the number of nodes removed
from Vi in step 11 of the algorithm is at least |Bj

i ∪ {v
j
i }| ≥ n′/2, and size of Vi decreases at least

by a factor of two. Similarly, at least half of the remaining nodes of Vi are removed in the iteration
j = 2, so overall the size of Vi decreases at least by a factor of four. �

16



We now show that the total latency of the final solution S is at most O(log n) · L∗.

Proof of Theorem 1.5. From Claim 6.7, it follows that at most a 1/4 fraction of the n′
i nodes

that are in Vi at the beginning of iteration i are moved to the set Vi+1 at the end of this iteration.
Thus, for any 1 < i ≤ g, n′

i ≤ ni + n′
i−1/4. This implies that n′

i ≤
∑i

h=1 nh/4
i−h.

Now we claim that the total latency of the solution S is at most
∑g

i=1 n
′
i · δ2 log n · 2i. This is

because at most n′
i nodes are added to S in iteration i, and each such node has latency at most

δ2 log n · 2i (using Lemma 6.6). Therefore, the total latency of the solution is at most:

g
∑

i=1

n′
i · δ2 log n · 2i ≤

g
∑

i=1

δ2 log n · 2i ·
i

∑

h=1

nh

4i−h

= δ2 log n

g
∑

i=1

i
∑

h=1

2h−i · 2h nh

≤ δ2 log n

g
∑

h=1

2h nh

∞
∑

i=0

1

2i

≤ O(log n) · L∗,

using the bound on n′
i, re-ordering the summation, and using inequality (17). Combined with

Corollary 6.2, this proves the theorem. �

6.3 Extensions

The above algorithm can be easily extended to the more general setting in which every node of
the graph comes with a weight c(v) and the goal is to find a Hamiltonian s-t path to minimize the
total weighted latency, where the weighted latency of a node vi is equal to c(v) ·∑i−1

j=1 dvjvj+1
. This

requires changing the objective function of LP (8) to
∑

v 6=s c(v)ℓ(v) and changing the definition of

vji on line 6 of Algorithm 2 to maximize the total weight, instead of the number, of vertices in Bj
i .

We also note that our approximation guarantee for directed latency is of the form O(γ +
log n), where γ is the integrality gap of ATSPP. So an improvement of the bound on γ would not
immediately lead to an improvement for directed latency.

Acknowledgements

This work was partly done while the second author was visiting Microsoft Research New England;
he thanks MSR for hosting him. We also thank the anonymous referees for helpful comments.

References

[1] F. N. Afrati, S. S. Cosmadakis, C. H. Papadimitriou, G. Papageorgiou, and N. Papakostanti-
nou. The complexity of the travelling repairman problem. Informatique Theorique et Appli-
cations, 20(1):79–87, 1986.

[2] A. Archer, A. Levin, and D. P. Williamson. A faster, better approximation algorithm for the
minimum latency problem. SIAM J. Comput., 37(5):1472–1498, 2008.

17



[3] A. Asadpour, M. X. Goemans, A. Madry, S. Oveis Gharan, and A. Saberi. An
O(log n/ log log n)-approximation algorithm for the asymmetric traveling salesman problem.
In Proc. 21st ACM Symp. on Discrete Algorithms, 2010.

[4] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan. The
minimum latency problem. In Proc. 26th ACM Symp. on Theory of Computing, 1994.

[5] M. Charikar, M. X. Goemans, and H. Karloff. On the integrality ratio for asymmetric TSP.
In Proc. 45th IEEE Symp. on Foundations of Computer Science, 2004.

[6] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum latency tours.
In Proc. 44th IEEE Symp. on Foundations of Computer Science, 2003.

[7] C. Chekuri and M. Pal. An O(log n) approximation ratio for the asymmetric traveling salesman
path problem. Theory of Computing, 3(1):197–209, 2007.

[8] N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem.
Technical report, Graduate School of Industrial Administration, Carnegie-Mellon University,
Pittsburgh, PA, 1976.

[9] U. Feige and M. Singh. Improved approximation ratios for traveling salesperson tours and
paths in directed graphs. In Proc. 10th APPROX, 2007.

[10] A. Frank. On connectivity properties of Eulerian digraphs. Ann. Discrete Math., 41:179–194,
1989.

[11] A. Frieze, G. Galbiati, and F. Maffioli. On the worst-case performance of some algorithms for
the asymmetric traveling salesman problem. Networks, 12:23–39, 1982.

[12] A. M. Frieze. An extension of Christofides heuristic to the k-person travelling salesman prob-
lem. Discrete Applied Mathematics, 6(1):79–83, 1983.

[13] M. Goemans and J. Kleinberg. An improved approximation ratio for the minimum latency
problem. Math. Program., 82:111–124, 1998.

[14] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathe-
matics, Vol 57). North-Holland Publishing Co., Amsterdam, The Netherlands, second edition,
2004.

[15] G. Gutin and A. P. Punnen, editors. Traveling Salesman Problem and Its Variations. Springer,
Berlin, 2002.

[16] J. A. Hoogeveen. Some paths are more difficult than cycles. Oper. Res. Lett., 10:291–295,
1991.

[17] B. Jackson. Some remarks on arc-connectivity, vertex splitting, and orientation in digraphs.
Journal of Graph Theory, 12(3):429–436, 1988.

[18] H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko. Approximation algorithms for
asymmetric TSP by decomposing directed regular multigraphs. J. ACM, 52(4):602–626, 2005.

18



[19] J. Kleinberg and D. P. Williamson. Unpublished note, 1998.

[20] F. Lam and A. Newman. Traveling salesman path problems. Math. Program., 113(1):39–59,
2008.

[21] E. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. Shmoys, editors. The Traveling
Salesman Problem: A guided tour of combinatorial optimization. John Wiley & Sons Ltd.,
1985.

[22] I. Mendez-Diaz, P. Zabala, and A. Lucena. A new formulation for the traveling deliveryman
problem. Discrete Applied Mathematics, 156(17):3223–3237, 2008.

[23] E. Minieka. The deliveryman problem on a tree network. Ann. Oper. Res., 18:261–266, 1989.

[24] V. Nagarajan and R. Ravi. Poly-logarithmic approximation algorithms for directed vehicle
routing problems. In Proc. 10th APPROX, pages 257–270, 2007.

[25] V. Nagarajan and R. Ravi. The directed minimum latency problem. In Proc. 11th APPROX,
pages 193–206, 2008.

[26] C. H. Papadimitriou and S. Vempala. On the approximability of the traveling salesman prob-
lem. Combinatorica, 26(1):101–120, 2006.

[27] D. Shmoys and D. P. Williamson. Analyzing the Held-Karp TSP bound: a monotonicity
property with application. Inf. Process. Lett., 35(6):281–285, 1990.

[28] D. P. Williamson. Analysis of the Held-Karp heuristic for the traveling salesman problem.
M.S. Thesis, MIT, 1990.

[29] L. A. Wolsey. Heuristic analysis, linear programming and branch and bound. Mathematical
Programming Study, 13:121–134, 1980.

19


	1 Introduction
	1.1 Related work
	1.2 Our results

	2 Integrality gap of ATSPP
	3 Integrality gap for relaxed ATSPP LP
	4 Relaxed ATSPP LP with 1/2
	5 Algorithm for k-person ATSPP
	6 Approximation algorithm for Directed Latency
	6.1 Constructing the paths
	6.2 Connecting the paths
	6.3 Extensions


