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Mean field games: numerical methods for the planning problem

Yves Achdou ∗, Fabio Camilli †, Italo Capuzzo-Dolcetta ‡

March 19, 2010

Abstract

Mean fields games describe the asymptotic behavior of differential games in which the
number of players tends to +∞. Here we consider a numerical method for the optimal
planning problem, i.e. the problem in which the positions of a very large number of identical
rational agents, with common value function, evolve from a given initial spatial density to a
desired target density at the final horizon time.

Keywords: Mean field games, optimal control, convex duality, numerical methods.

1 Introduction

Mean field type models describing the asymptotic behavior of stochastic differential game prob-
lems (Nash equilibria) as the number of players tends to +∞ have recently been introduced by
J-M. Lasry and P-L. Lions [13, 14, 15]. In the periodical setting, a typical such model comprises
the following system of evolution partial differential equations for the unknown scalar functions
u = u(t, x) and m = m(t, x)

∂u

∂t
− ν∆u+H(x,∇u) = V [m], in (0, T ) × T

d, (1)

∂m

∂t
+ ν∆m+ div

(
m
∂H

∂p
(x,∇u)

)
= 0, in (0, T ) × T

d, (2)

with the initial and terminal conditions

m(0, x) = m0(x), m(T, x) = mT (x), in T
d, (3)

given two probability densities m0 andmT . Since the functionm represents a probability density
it is natural to supplement (1)-(3) with the further conditions

∫

Td

m(t, x)dx = 1, m > 0 . (4)

We denote by T
d = [0, 1]d the d−dimensional unit torus, by ν a nonnegative constant and by

∆, ∇ and div, respectively, the Laplace, the gradient and the divergence operator acting on the
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Antonio Scarpa 16, I-00161 Roma, camilli@dmmm.uniroma1.it
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x variable. The other operators occurring in the system are the scalar Hamiltonian H(x, p),
typically convex in the gradient variable, and the operator V associating a real valued function
V [m] on T

d to a probability density m. Precise assumptions on H and V as well as some
examples will be specified below.
Consider the important special case when the Hamiltonian is of the form

H(x,∇u) = sup
γ

[
γ · ∇u− L(x, γ)

]
.

In this case, if u and m solve the system above, then Dynamic Programming arguments, see
Bardi-Capuzzo Dolcetta [4], Fleming- Soner [9], show that the solution u of the forward in time
Hamilton-Jacobi-Bellman equation (1) is the value function of an optimal control problem for
the controlled dynamics defined on T

d by

dXs = −γs ds+
√

2ν dWs,

(here s is the physical time and t = T − s is the time to the horizon and (Ws) is a Brownian
motion), and running cost density L(Xs, γs) + V [ms](Xs) depending on the position Xs, the
control γs and the probability density ms. On the other hand, (2) is a backward Fokker-Planck
equation with velocity field ∂H

∂p (x,∇u) depending on the value function itself. In this context,
conditions (3) represent the requirement that the positions of a very large number of identical
rational agents whose dynamics is given by

dXs = −∂H
∂p

(Xs,∇u(s,Xs)) ds+
√

2ν dWs,

evolve from a given spatial density mT at s = 0 ⇔ t = T to a desired target density m0 at
s = T ⇔ t = 0. Problem (1),(2),(3),(4) (we will occasionally refer to it as MFGP) has been
introduced by P-L. Lions in his lectures at Collège de France (2009-2010), see [17], as a mean

field planning problem.
Note that in MFGP, the initial time condition differs from the one studied in the seminal papers
[14, 15], where the initial and final time conditions are indeed

u(0, x) = V0[m|t=0](x). m(T, x) = mT (x), in T
d, (5)

and V0[m|t=0](XT ) is an additional terminal cost term (terminal with respect to the s variable).
The mean field planning problem can be viewed as an inverse problem for the terminal cost
u|t=0 appearing in the direct mean field game system (1),(2),(5),(4) in order to drive the density
of players from mT to m0.
Whereas existence (and uniqueness) results for (1),(2),(5),(4) are available under fairly general
assumptions, see [14, 15], much less is known concerning MFGP. Indeed, as far as we know,
P-L. Lions has proved existence for MFGP in mainly two cases:

1. ν = 0 (deterministic case), H is a smooth and strictly convex Hamiltonian such that

lim|p|→∞
H(x,p)

|p| = +∞, V [m](x) = F (m(x)) where F is a smooth and strictly increasing
function, m0 and mT are smooth functions bounded away from 0.

2. ν > 0, H(p) = c|p|2 or H(p) is close to c|p|2, V [m](x) = F (m(x)) where F is a smooth,
bounded and nondecreasing function, m0 and mT are smooth functions bounded away
from 0,
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but existence is still an open question when ν > 0 and the Hamiltonian is more general. P-L.
Lions has also proved that if H is sublinear with respect to p and if m0 6= mT , then there are no
solutions to MFGP if T is small enough. Therefore, existence may only result from combined
nonlinear effects.
We shall also consider a penalized version of system MFGP, namely





∂uε

∂t
− ν∆uε +H(x,∇uε) = V [mε], in (0, T ) × T

d,

∂mε

∂t
+ ν∆mε + div

(
mε∂H

∂p
(x,∇uε)

)
= 0, in (0, T ) × T

d,
∫

Td

mε(t, x)dx = 1, mε > 0,

uε(0, x) = 1
ε (m

ε(0, x) −m0(x)), mε(T, x) = mT (x), in T
d

(6)

where ε is a small positive parameter. Problem (6) is clearly of the form (1),(2),(5),(4), which
is more easily handled as we have already seen.
It is also worthwhile to observe that the planning problem described above can be seen as a
generalization of the simpler system, (with in particular V = 0, ν = 0),

∂u

∂t
+

1

2
|∇u|2 = 0 ,

∂m

∂t
+ div (m∇u) = 0 , (7)

m(0, x) = m0(x), m(T, x) = mT (x) (8)

which was introduced by Benamou and Brenier [5], see also [18], as a fluid mechanics formulation
of the Monge-Kantorovich mass transfer problem. In [5], a numerical method for the solution
of (7),(8) is proposed on the basis of a reformulation of the problem as the system of optimality
conditions for a suitably constructed primal-dual pair of convex optimal control problems for
the transport equation

∂m

∂t
+ div (mγ) = 0 ,

the velocity field γ(x, t) playing here the role of a distributed control. Similarly, the mean field
games models can also be reformulated as an optimal control problems for a density driven by
a Fokker-Planck equation, see [14, 15].

An important research activity is currently going on about approximation procedures of
different types of mean field games models, see [12] for a numerical method based on the re-
formulation of the model as an optimal control problem for the Fokker-Planck equation with
an application in economics, and [10] for a very recent work on discrete time, finite state space
mean field games. Also, in [1], the authors have proposed and analyzed the convergence as the
discretization step tends to 0 of finite difference methods basically relying on monotone approx-
imations of the Hamiltonian and on a suitable weak formulation of the Fokker-Planck equation,
both in the stationary case and in the non-stationary one. Finally, applications of the theory of
mean fields games to economics are considered in [11, 16].

The focus of the present paper is on numerical methods for the solutions of the general planning
problems MFGPand MFGPP.
In Section 2, we propose finite differences semi-implicit schemes for the approximations of
MFGPand MFGPP. Section 3 is dedicated to the optimal control formulation of those discrete
schemes, following ideas in [5], [15], [18]. Existence and uniqueness of solutions of the discrete
control problems are discussed, together with some convergence analysis on a penalized version
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of the semi-implicit scheme. In Section 4 we discuss a strategy based on the Newton algorithm
for solving the discrete nonlinear system arising from the schemes introduced in the previous
sections. Finally, in Section 5 we describe a few numerical experiments, which show that the
proposed methods are successful even in some cases not covered by the theory. The schemes are
also robust in the deterministic limit of the models, that is when the parameter ν is very close
to 0.

2 Finite differences schemes

In this section we construct finite differences discretization schemes for system (1),(2),(3),(4)
and its penalized version (6). For simplicity of notations, we will always consider the case d = 2
although our approach and results hold for general d.
Let T

2
h be a uniform grid on the two-dimensional torus with mesh step h (assuming that 1/h

is an integer Nh) and denote by xij a typical point in T
2
h. Let NT be a positive integer and

∆t = T/NT , tn = n∆t, n = 0, . . . , NT . The values of u and m at (xi,j , tn) are approximated,
respectively by Un

i,j and Mn
i,j .

We first discuss the approximations of the nonlinear operators in (1). The operator V [m](xi,j)
is approximated by

(Vh[M ])i,j = V [mh](xi,j), (9)

where mh is the piecewise constant function taking the value Mi,j in the square |x−xi,j|∞ ≤ h/2.
We assume that V [mh] can be computed in practice. In particular, if V is a local operator, i.e.
V [m](x) = V (m(x)), then (Vh[M ])i,j = V (Mi,j).
We introduce next the finite difference operators

(D+
1 U)i,j =

Ui+1,j − Ui,j

h
and (D+

2 U)i,j =
Ui,j+1 − Ui,j

h
, (10)

and define

[DhU ]i,j =
(
(D+

1 U)i,j , (D
+
1 U)i−1,j , (D

+
2 U)i,j, (D

+
2 U)i,j−1

)T
, (11)

(∆hU)i,j = − 1

h2
(4Ui,j − Ui+1,j − Ui−1,j − Ui,j+1 − Ui,j−1). (12)

In order to approximate the Hamiltonian H in equation (1), we consider a numerical Hamiltonian
g : T

2 × R
4 → R, (x, q1, q2, q3, q4) → g (x, q1, q2, q3, q4) satisfying the following conditions:

(G1) monotonicity : g is nonincreasing with respect to q1 and q3 and nondecreasing with
respect to q2 and q4.

(G2) consistency: g (x, q1, q1, q2, q2) = H(x, q), ∀x ∈ T
2,∀q = (q1, q2) ∈ R

2.
(G3) differentiability : g is of class C1.

We will sometimes make further assumptions on g:
(G4) convexity : (q1, q2, q3, q4) → g (x, q1, q2, q3, q4) is convex.
(G5) coercivity :

limq1→−∞
g(x,q1,q2,q3,q4)

|q1|
= +∞ uniformly w.r.t. x, q2, q3, q4,

limq2→+∞
g(x,q1,q2,q3,q4)

q2
= +∞ uniformly w.r.t. x, q1, q3, q4,

limq3→−∞
g(x,q1,q2,q3,q4)

|q3|
= +∞ uniformly w.r.t. x, q1, q2, q4,

limq4→+∞
g(x,q1,q2,q3,q4)

|q4|
= +∞ uniformly w.r.t. x, q1, q2, q3.
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This coercivity property implies that

lim
‖ [DhU ] ‖∞→∞

maxi,j g(xi,j , [DhU ]i,j)

‖ [DhU ] ‖∞
= +∞. (13)

Standard examples of numerical Hamiltonians fulfilling these requirements are provided by
Lax-Friedrichs or Godunov type schemes, see [1].

2.1 A scheme for the planning problem

The approximation of equation (1) is given by the semi-implicit scheme:

Un+1
i,j − Un

i,j

∆t
− ν(∆hU

n+1)i,j + g(xi,j , [DhU
n+1]i,j) = (Vh[Mn])i,j . (14)

Note that we could as well consider fully implicit or fully explicit schemes; the present choice
will prove convenient because it is well suited to an optimal control formulation.
In order to approximate equation (2), it is convenient to consider its weak formulation which
involves in particular the term

−
∫

T2

div

(
m
∂H

∂p
(x,∇u)

)
w dx

which by periodicity turns out be equal to

∫

T2

m
∂H

∂p
(x,∇u) · ∇w dx

for any test function w. This term will be approximated by

h2
∑

i,j

Mi,j∇qg(xi,j , [DhU ]i,j) · [DhW ]i,j = h2
∑

i,j

Bi,j(U,M)Wi,j ,

where the operator B is defined as follows:

Bi,j(U,M) =
1

h







Mi,j
∂g

∂q1
(xi,j, [DhU ]i,j) −Mi−1,j

∂g

∂q1
(xi−1,j, [DhU ]i−1,j)

+Mi+1,j
∂g

∂q2
(xi+1,j, [DhU ]i+1,j) −Mi,j

∂g

∂q2
(xi,j, [DhU ]i,j)




+




Mi,j
∂g

∂q3
(xi,j, [DhU ]i,j) −Mi,j−1

∂g

∂q3
(xi,j−1, [DhU ]i,j−1)

+Mi,j+1
∂g

∂q4
(xi,j+1, [DhU ]i,j+1) −Mi,j

∂g

∂q4
(xi,j , [DhU ]i,j)







. (15)

The discrete version of equation (2) is chosen as the following scheme:

Mn+1
i,j −Mn

i,j

∆t
+ ν(∆hM

n)i,j + Bi,j(U
n+1,Mn) = 0. (16)

Remark 1 It is important to realize that the operator M 7→ −ν(∆hM)i,j − Bi,j(U,M) is the
adjoint of the linearization of the operator U 7→ −ν(∆hU)i,j + g(xi,j , [DhU ]i,j).
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Finally, we introduce the compact and convex set

K = {(Mi,j)0≤i,j<NT
: h2

∑

i,j

Mi,j = 1,Mi,j ≥ 0} (17)

which can be viewed as the set of the discrete probability measures.

The fully discrete scheme for system (1),(2),(3),(4) is therefore the following:





Un+1

i,j −Un
i,j

∆t − ν(∆hU
n+1)i,j + g(xi,j , [DhU

n+1]i,j) = (Vh[Mn])i,j ,

Mn+1

i,j −Mn
i,j

∆t + ν(∆hM
n)i,j + Bi,j(U

n+1,Mn) = 0, n = 0, . . . NT − 1, 0 ≤ i, j < Nh

Mn ∈ K, n = 0, . . . NT ,

MNT

i,j = (mT )i,j , M0
i,j = (m0)i,j, 0 ≤ i, j < Nh,

(18)

where

(mT )i,j =
1

h2

∫

|x−xi,j |∞≤h/2
mT , and (m0)i,j =

1

h2

∫

|x−xi,j |∞≤h/2
m0. (19)

2.2 A scheme for the penalized planning problem

Here we introduce a discrete version of system MFGPP, see (6) in the Introduction, namely

U ε,n+1
i,j − U ε,n

i,j

∆t
− ν(∆hU

ε,n+1)i,j + g(xi,j , [DhU
ε,n+1]i,j) = (Vh[Mn])i,j , (20)

M ε,n+1
i,j −M ε,n

i,j

∆t
+ ν(∆hM

ε,n)i,j + Bi,j(U
ε,n+1,M ε,n) = 0, (21)

M ε,n ∈ K, (22)

for n = 0, . . . NT − 1 and 0 ≤ i, j < Nh, with the final time and initial time conditions

U ε,0
i,j =

1

ε
(M ε,0

i,j − (m0)i,j), M ε,NT

i,j = (mT )i,j , ∀ 0 ≤ i, j < Nh. (23)

Observe that the previous problem is a penalized approximation of (18). It can be proved that
for ε > 0, (20)-(23) has a unique solution (for the proof we refer to [1], Theorem 6).

3 Optimal control formulation of the discrete problems

3.1 The discrete planning problem

In this section we introduce an optimal control problem whose optimality conditions are inter-
preted as the semi-implicit scheme (18). In this way, using a convex duality argument based
on the Fenchel-Rockafellar Theorem, we prove the existence of a solution to such a system, see
Theorem 1 below.
In what follows, we assume that ν is nonnegative and that

(Vh[M ])i,j = V (Mi,j), and that V = W ′ where W : R → R

is a strictly convex, coercive C2 function.
(24)
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It follows that the image of the interval (0,+∞) by V is some interval JV = (λ,+∞). We
also assume g satisfies (G1)–(G5).

If χ denotes the indicator function of the set {m ≥ 0}, the Legendre-Fenchel transform of
W + χ is defined by (

W + χ
)∗

(α) = sup
m

[
αm−W (m) − χ(m)

]
.

It is clear that
(
W+χ

)∗
is convex, continuous and non decreasing. If α ∈ JV then

(
W+χ

)∗
(α) =

αV −1(α) −W (V −1(α)). If α /∈ JV then
(
W + χ

)∗
(α) = −W (0).

Consider now the convex functional Θ on R
NT×N2

h × R
4NT×N2

h :

Θ(α, β) =

NT∑

n=1

∑

i,j

(W + χ)∗
(
αn

i,j + g(xi,j , [β
n]i,j)

)
.

where α = (αn
i,j), β = ([βn]i,j) and [βn]i,j = (β1,n

i,j , β
2,n
i,j , β

3,n
i,j , β

4,n
i,j ), 1 ≤ n ≤ NT , 1 ≤ i, j ≤ Nh.

The Legendre-Fenchel transform of Θ is defined by

Θ∗(M,Z) = sup
α,β




NT∑

n=1

∑

i,j

Mn−1
i,j αn

i,j + 〈[Zn−1]i,j, [β
n]i,j〉 − (W + χ)∗

(
αn

i,j + g(xi,j , [β
n]i,j)

)

 ,

(25)
whereM = (Mn

i,j), Z = ([Zn]i,j) and [Zn]i,j = (Z1,n
i,j , Z

2,n
i,j , Z

3,n
i,j , Z

4,n
i,j ), 0 ≤ n < NT , 1 ≤ i, j ≤ Nh

and 〈[Z], [β]〉 =
∑4

k=1 β
kZk,.

Remark 2 Note that in our definition, for n = 1, . . . , NT , the dual variable of αn
i,j is Mn−1

i,j ,

and the dual variable of [βn]i,j is [Zn−1]i,j. This lag in the time index n will prove convenient
for our purpose.

Let us introduce the minimization problem





Minimize Θ∗(M,Z) subject to the constraint

Mn
i,j −Mn−1

i,j

∆t
+ ν(∆hM

n−1)i,j + divh(Z
n−1)i,j = 0, 1 ≤ n ≤ NT ,

MNT

i,j = (mT )i,j,

M0
i,j = (m0)i,j ,

(26)

where

divh(Z
n−1)i,j = (D+

1 Z
1,n−1)i−1,j + (D+

1 Z
2,n−1)i,j + (D+

2 Z
3,n−1)i,j−1 + (D+

2 Z
4,n−1)i,j

The above minimization problem is an optimal control problem for a discrete density driven by a
discrete Fokker-Planck equation. The data (m0)i,j, (mT )i,j ∈ K are discrete probability densities.

We are going to prove next that if the initial datum satisfies (m0)i,j > 0 for all i, j, then
the optimal control problem above has at least a solution (M,Z), that there exists a solution
(α, β) of the dual problem and that the optimality conditions at the saddle point coincide with
the discrete scheme (18). The argument is based on convex duality and the Fenchel-Rockafellar
theorem.
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Let us introduce for this purpose the functionals F ,Λ,Σ by setting

F(Ψ) =
1

∆t


∑

i,j

(m0)i,jΨ
0
i,j −

∑

i,j

mT,i,jΨ
NT

i,j


 (27)

(α, β) = Λ(Ψ) ⇔





αn+1
i,j =

Ψn+1
i,j − Ψn

i,j

∆t
− ν(∆hΨn+1)i,j ,

[βn+1]i,j = [DhΨn+1]i,j , 0 ≤ n < NT ,
(28)

and, finally,

Σ(α, β) =





F(Ψ) if ∃Ψ s.t. (α, β) = Λ(Ψ) and
∑

i,j

Ψ0
i,j = 0,

+∞ otherwise.
(29)

Lemma 1 The functional Θ is convex and continuous. The functional Σ is convex and lower
semicontinuous. Moreover, the following constraints qualification property holds: there exists
(α, β) such that Σ(α, β) < +∞ (and of course Θ(α, β) < +∞).

Proof. Convexity and continuity/semicontinuity are straightforward to check. For the con-
straint qualification it is enough to solve

Un+1
i,j − Un

i,j

∆t
− ν(∆hU

n+1)i,j + g(xi,j , [DhU
n+1]i,j) = rn+1

i,j ,

where rn+1
i,j ∈ JV (recall (24)) for all i, j, n, with an initial datum U 0

i,j such that
∑

i,j U
0
i,j = 0.

Then, take (α, β) be such that





αn+1
i,j =

Un+1
i,j − Un

i,j

∆t
− ν(∆hU

n+1)i,j ,

[βn+1]i,j = [DhU
n+1]i,j, 0 ≤ n < NT − 1,

Thus

Σ(α, β) = − 1

∆t

∑

i,j

(mT ),i,jU
NT

i,j +
1

∆t

∑

i,j

(m0),i,jU
0
i,j < +∞.

Lemma 2 The functionals Θ∗ and Σ∗ are convex and lower semicontinuous. Moreover,

Θ∗(M,Z) =

NT∑

n=1

∑

i,j

(W + χ)(Mn−1
i,j ) + sup

β

{
NT∑

n=1

∑

i,j

〈[Zn−1
i,j ], [βn]i,j〉 −Mn−1

i,j g(xi,j , [β
n]i,j)

}

and

Σ∗(M,Z) = sup
Ψ





1

∆t

∑

i,j

((mT )i,j +MNT

i,j )ΨNT

i,j − 1

∆t

∑

i,j

((m0)i,j +M0
i,j)Ψ

0
i,j

+

NT−1∑

n=0

∑

i,j

Ψn+1
i,j

(
Mn

i,j −Mn+1
i,j

∆t
− ν(∆hM

n)i,j − divh(Z
n)i,j

)




.
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Proof. Convexity and semi-continuity are a direct consequence of the previous lemma and the
properties of the Legendre-Fenchel transform. Adding and subtracting a same term in (25), we
get

Θ∗(M,Z) = sup
α,β





NT∑

n=1

∑

i,j

−Mn−1
i,j g(xi,j , [β

n]i,j) + 〈[βn]i,j, [Z
n−1]i,j〉

+

NT∑

n=1

∑

i,j

Mn−1
i,j

(
αn

i,j + g(xi,j , [β
n]i,j)

)
− (W + χ)∗

(
αn

i,j + g(xi,j , [β
n]i,j)

)





.

A simple computation shows that this can be written as

sup
γ,β

{ NT∑

n=1

∑

i,j

−Mn−1
i,j g(xi,j , [β

n]i,j) + 〈[βn]i,j , [Z
n−1]i,j〉 +Mn−1

i,j γn
i,j − (W + χ)∗

(
γn

i,j

)}

and the formula for Θ∗ in the statement follows. As for Σ∗, observe that

Σ∗(M,Z) = sup
α,β




NT−1∑

n=0

∑

i,j

Mn
i,jα

n+1
i,j + 〈[Zn]i,j , [β

n+1]i,j〉 − Σ(α, β)


 .

Thus, taking the definition of Σ and Λ into account,

Σ∗(M,Z) = sup
Ψ





1

∆t

∑

i,j

(mT )i,jΨ
NT

i,j − 1

∆t

∑

i,j

(m0)i,jΨ
0
i,j

+

NT−1∑

n=0

∑

i,j

Mn
i,j

(
Ψn+1

i,j − Ψn
i,j

∆t
− ν(∆hΨn+1)i,j

)
+ 〈[Zn]i,j , [DhΨn+1]i,j〉




,

and the claimed formula for Σ∗ easily follows by a discrete integration by part.
Using Lemma 2, it easy to realize that the optimal control problem (26) can be equivalently
formulated as the unconstrained minimization problem

min
M,Z

Θ∗(M,Z) + Σ∗(−M,−Z) (30)

The qualification condition is fulfilled for this problem also:

Lemma 3 Assume that (m0)i,j > 0 for all i, j. Then there exists (M,Z) such that





Θ∗(M,Z) < +∞,
Σ∗(−M,−Z) < +∞,
Θ∗ is continuous in a neighborhood of M,Z.

Proof. Take Mn
i,j = n

NT
(mT )i,j + (1 − n

NT
)(m0)i,j , and choose φn such that

∆hφ
n =

1

∆t
(Mn+1 −Mn) + ν∆hM

n, n = 0, . . . , NT − 1.

Since φn is unique up to the addition of a constant, one can always choose the constant in such
a way that φn < φ < 0, where φ is a fixed negative number.
Set then

Z1,n
i,j =

φn
i,j

h
, Z2,n

i,j = −
φn

i,j

h
, Z3,n

i,j =
φn

i,j

h
, Z4,n

i,j = −
φn

i,j

h
.
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We have
divh(Z

n)i,j = −(∆hφ
n)i,j

Therefore





Mn+1
i,j −Mn

i,j

∆t
+ ν(∆hM

n)i,j + divh(Z
n)i,j = 0, 0 ≤ n < NT

MNT

i,j = (mT )i,j ,

M0
i,j = (m0)i,j,

Mi,j ≥ 0.

Observe that the assumption (m0)i,j > 0 implies Mn ≥ m > 0 for all n < NT .
Using Lemma 2, this implies Σ∗(−M,−Z) = 0. Also, taking the definition of Z into account,

Θ∗(M,Z) =

NT∑

n=1

∑

i,j

W (Mn−1
i,j ) + sup

β

{ NT∑

n=1

∑

i,j

(φn−1
i,j

h
(β1,n

i,j − β2,n
i,j + β3,n

i,j − β4,n
i,j )

−Mn−1
i,j g(xi,j , [β

n]i,j)
)
.

Since φ < 0 and Mn > m > 0, n = 0, . . . , NT − 1, from the coercivity (G5) of g we deduce that
Θ∗(M,Z) is finite and Θ∗ is continuous in a neighborhood of (M,Z).

The next result gives sufficient conditions for the existence of a solution of the discrete system
(18).

Theorem 1 Assume that

• g satisfies (G1)-(G5)

• V satisfies (24).

• (m0)i,j, (mT )i,j ∈ K with (m0)i,j > 0, ∀i, j

• either ν > 0 or
(
ν = 0 and (mT )i,j > 0, ∀i, j

)
.

Then the saddle point problem:

min
M,Z

Θ∗(M,Z) + Σ∗(−M,−Z) = −min
α,β

(Θ(α, β) + Σ(α, β)) (31)

has a solution (M,Z), (α, β) and there exists U such that (α, β) = Λ(U). Moreover, (M,Z) and
U satisfy the optimality conditions of (31)

−Λ∗(M,Z) ∈ ∂F(U), (32)

Λ(U) ∈ ∂Θ∗(M,Z), (33)

which are equivalent to the discrete system (18).

Proof. By applying the Fenchel-Rockafellar Duality Theorem to Θ and Σ (see for example
[2, 8, 3, 18]) and using Lemma 1, there exists a solution (M,Z) of the problem

Θ∗(M,Z) + Σ∗(−M,−Z) = inf
M,Z

(Θ∗(M,Z) + Σ∗(−M,−Z)) = − inf
α,β

(Θ(α, β) + Σ(α, β)) . (34)

10



By applying the Fenchel-Rockafellar Duality Theorem to (M,Z) 7→ Θ∗(M,Z) and (M,Z) 7→
Σ∗(−M,−Z), and using Lemmas 2 and 3, we deduce that there exist (α, β) such that

Θ(α, β) + Σ(α, β) = inf
α,β

(Θ(α, β) + Σ(α, β)) = − inf
M,Z

(
Θ∗(M,Z) + Σ∗(−M,−Z)

)
. (35)

We have thus proved the existence of a solution of the saddle point problem (31). By the
optimality conditions, see [3] Theorem 2.4 page 205, we get

−Λ∗(M,Z) ∈ ∂F(Ψ), (36)

(α, β) = Λ(U) ∈ ∂Θ∗(M,Z). (37)

Recalling the definition of F , (36) is seen to be in fact equivalent to





Mn+1
i,j −Mn

i,j

∆t
+ ν(∆hM

n)i,j + divh(Z
n)i,j = 0, 0 ≤ n < NT ,

MNT

i,j = (mT )i,j ,

M0
i,j = (m0)i,j.

(38)

On the other hand, it is easy to see that (37) is equivalent to

Θ∗(M,Z) =

NT∑

n=1

∑

i,j

(
Mn−1

i,j αn
i,j + 〈[Zn−1]i,j, [β

n]i,j〉 − (W + χ)∗
(
αn

i,j + g(xi,j , [β
n]i,j)

))
.

Introducing γn
i,j = αn

i,j + g(xi,j , [β
n]i,j), n = 1, . . . , NT , the latter equation is equivalent to

Zk,n
i,j = Mn

i,j

∂g

∂qk
(xi,j , [β

n+1]i,j), k = 1, . . . , 4, (39)

0 =

NT∑

n=1

∑

i,j

(
Mn−1

i,j γn
i,j − (W + χ)∗(γn

i,j) − (W + χ)(Mn−1
i,j )

)
. (40)

Equation (40) is equivalent to

Mn
i,j ≥ 0,

γn+1
i,j =

Un+1
i,j − Un

i,j

∆t
− ν(∆hU

n+1)i,j + g(xi,j , [DhU
n+1]i,j) = W ′(Mn

i,j) if Mn
i,j > 0,

γn+1
i,j =

Un+1
i,j − Un

i,j

∆t
− ν(∆hU

n+1)i,j + g(xi,j , [DhU
n+1]i,j) ≤W ′(Mn

i,j) if Mn
i,j = 0,

(41)

for 0 ≤ n < NT .
From (38) and (39), we deduce

Mn+1
i,j −Mn

i,j

∆t
+ ν(∆hM

n)i,j + Bi,j(U
n+1,Mn) = 0, 0 ≤ i, j < Nh, 0 ≤ n < NT . (42)

The fact that MNT ∈ K and (42) imply that h2
∑

i,j M
n
i,j = 1 for all n, 0 ≤ n < NT . Finally

Mn ∈ K because of (42).
Finally, let us prove that Mn > 0 for all 0 ≤ n < NT . Indeed, assume that the minimum of
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Mn
i,j is 0 and is reached at n0 < NT , i0, j0. Equation (42) for n = n0, i = i0 and j = j0 can be

written

0 =

1

∆t
Mn0+1

i0,j0
+

ν

h2
(Mn0

i0+1,j0
+Mn0

i0−1,j0
+Mn0

i0,j0+1 +Mn0

i0,j0−1)+

1

h




−Mn0

i0−1,j0

∂g

∂q1
(xi0−1,j0 , [DhU

n0+1]i0−1,j0) +Mn0

i0+1,j0

∂g

∂q2
(xi0+1,j0 , [DhU

n0+1]i0+1,j0)

−Mn0

i0,j0−1

∂g

∂q3
(xi0,j0−1, [DhU

n0+1]i0,j0−1) +Mn0

i0,j0+1

∂g

∂q4
(xi0,j0+1, [DhU

n0+1]i0,j0+1)




If ν > 0, then the nonnegativity ofM and the monotonicity of g imply thatM n0

i0±1,j0
= Mn0

i0,j0±1 =
0. We can therefore repeat the argument for the triplets of indices (n0, i0±1, j0) and (n0, i0, j0±
1). Repeating the argument as many times as necessary, we finally obtain that M n0 = 0, which
is impossible since Mn0 ∈ K.
If ν = 0 and MNT > 0, a similar argument gives that Mn0+1

i0,j0
= 0. After a finite number of

steps, we get that MNT

i0,j0
= 0, which is in contradiction with the hypothesis.

As a consequence, (38), (39) and (41) can be written:

Un+1
i,j − Un

i,j

∆t
− ν(∆hU

n+1)i,j + g(xi,j , [DhU
n+1]i,j) = V (Mn

i,j), (43)

Mn+1
i,j −Mn

i,j

∆t
+ ν(∆hM

n)i,j + Bi,j(U
n+1,Mn) = 0, (44)

for n = 0, . . . NT − 1 and 0 ≤ i, j < Nh, with

MNT

i,j = (mT )i,j , M0
i,j = (m0)i,j , 0 ≤ i, j < Nh, (45)

and
Mn ∈ K, 0 ≤ n ≤ NT . (46)

Recognizing that equations (43) to (46) comprise indeed the semi-implicit finite difference scheme
(18), the proof is complete.

System (18) also enjoys some uniqueness property:

Proposition 1 Under the same assumptions as in Theorem 1, if (U n
i,j ,M

n
i,j)n,i,j and (Ũn

i,j , M̃
n
i,j)n,i,j

are solutions of system (18), then

Mn
i,j = M̃n

i,j for all n = 0, . . . , NT ; and for all (i, j) .

Moreover if the numerical Hamiltonian g is strictly convex and
∑

ij U
0
ij =

∑
ij Ũ

0
ij = 0, then

Un
i,j = Ũn

i,j for all n = 0, . . . , NT ; and for all (i, j) .

Proof. The proof resembles very much the proofs of uniqueness in [14] and in [1]. We give it
for completeness.
Multiplying (43) satisfied by (Ũn

i,j , M̃
n
i,j)n,i,j by Mn

i,j − M̃n
i,j, doing the same thing with (43)

satisfied by (Un
i,j ,M

n
i,j)n,i,j and subtracting, then summing the results for all n = 0, . . . , NT − 1

12



and all (i, j), we obtain

NT−1∑

n=0

((Un+1 − Ũn+1) − (Un − Ũn),Mn − M̃n)2
∆t

− ν(∆h(Un+1 − Ũn+1),Mn − M̃n)2

+

NT−1∑

n=0

∑

i,j

(g(xi,j , [DhU
n+1]i,j) − g(xi,j , [DhŨ

n+1]i,j))(M
n
i,j − M̃n

i,j)

=

NT−1∑

n=0

(
Vh[Mn] − Vh[M̃n],Mn − M̃n

)
2
,

(47)

where (X,Y )2 =
∑

i,j Xi,jYi,j. Similarly, subtracting the equation (44) satisfied by (Ũn
i,j , M̃

n
i,j)n,i,j

from the same equation satisfied by (Un
i,j,M

n
i,j)n,i,j, and multiplying the result by Un+1

i,j − Ũn+1
i,j ,

sum for all n = 0, . . . , NT − 1 and all (i, j) leads to

1

∆t

NT−1∑

n=0

((Mn+1 −Mn) − (M̃n+1 − M̃n), (Un+1 − Ũn+1))2 + ν((Mn − M̃n),∆h(Un+1 − Ũn+1))2

−
NT −1∑

n=0

∑

i,j

Mn
i,j[Dh(Un+1 − Ũn+1)]i,j · ∇qg

(
xi,j, [DhU

n+1]i,j
)

+

NT −1∑

n=0

∑

i,j

M̃n
i,j[Dh(Un+1 − Ũn+1)]i,j · ∇qg

(
xi,j, [DhŨ

n+1]i,j

)
= 0.

(48)

Adding (47) and (48) and leads to

NT −1∑

n=0

∑

i,j

Mn
i,j

(
g(xi,j , [DhŨ

n+1]i,j) − g
(
xi,j, [DhU

n+1]i,j
)
− [Dh(Ũn+1 − Un+1)]i,j · ∇qg

(
xi,j , [DhU

n+1]i,j
))

+

NT −1∑

n=0

∑

i,j

M̃n
i,j

(
g
(
xi,j, [DhU

n+1]i,j
)
− g(xi,j , [DhŨ

n+1]i,j) − [Dh(Un+1 − Ũn+1)]i,j · ∇qg(xi,j , [DhŨ
n+1]i,j)

)

+

NT −1∑

n=0

(
Vh[Mn] − Vh[M̃n],Mn − M̃n

)
2

= 0,

because M and M̃ satisfy the same final and terminal conditions. The three terms in the
sum above being nonnegative, they must be zero. The strict monotonicity of V implies that
M̃n = Mn for all n = 1, . . . , NT − 1.

If g is strictly convex, we also get that [DhU
n] = [DhŨ

n] for all n = 0, . . . , NT . Hence
∆hU

n = ∆hŨ
n and substituting in the equation satisfied by U and Ũ we get

Un+1
i,j − Un

i,j = Ũn+1
i,j − Ũn

i,j for all n = 0, . . . , NT − 1 (49)

Now it is clear that if Ũ0
ij = U0

ij then by (49) Ũn
ij = Un

ij , for all n. Hence, there exists i, j such

that U0
i,j

− Ũ0
i,j

≥ δ > 0. By (D+
1 U)ij = (D+

1 Ũ)ij , we get that U 0
ij − Ũ0

ij ≥ δ > 0 for any i, j and

this gives a contradiction to
∑

i,j U
0
ij =

∑
i,j Ũ

0
ij = 0.
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3.2 The discrete penalized planning problem

We discuss briefly the optimal control interpretation of the discrete penalized planning problem
(20)-(23) and prove some estimates on the ε-dependence of its solutions.

Theorem 2 Under the same assumptions as in Theorem 1, the minimization problem

Minimize Θ∗(M,Z) +
1

2ε∆t

∑

i,j

(M0
i,j − (m0)i,j)

2 subject to





Mn+1
i,j −Mn

i,j

∆t
+ ν(∆hM

n)i,j + divh(Z
n)i,j = 0, 0 ≤ n < NT ,

MNT

i,j = (mT )i,j ,

(50)

where Θ∗ is given by (25) has a solution (M ε, Zε). Moreover, there exists a solution U ε of the
dual problem (which we do not write) and

Zε,k,n
i,j = M ε,n

i,j

∂g

∂qk
(xi,j , [DhU

ε,n+1]i,j).

The pair (M ε, U ε) is the solution of the discrete penalized system (20)-(23).

The existence and uniqueness of (20)-(23) have already been discussed in § 2.2. The remaining
part of the proof of Theorem 2 is almost the same as the proof of Theorem 1: we skip it for
brevity.

Proposition 2 Under the same assumptions as in Theorem 1 the following estimate holds

max
i,j

|M ε,0
i,j − (m0)i,j | ≤ Cε

1

2 (51)

for a constant C which may depend on h and ∆t but not on ε.

Proof. For a solution (U,M) of (43)-(46), (M,Z) with Zk,n
i,j = Mn

i,j
∂g
∂qk

(xi,j , [DhU
n+1]i,j) is

suboptimal for (50). Therefore

Θ∗(M ε, Zε) +
1

2ε∆t

∑

i,j

(M ε,0
i,j − (m0)i,j)

2 ≤ Θ∗(M,Z). (52)

But

Θ∗(M ε, Zε)

=

NT∑

n=1

∑

i,j

W (M ε,n−1
i,j ) + sup

β

NT∑

n=1

∑

i,j

M ε,n−1
i,j (〈∇qg(xi,j , [DhU

ε,n]i,j), [β
n]i,j〉 − g(xi,j , [β

n]i,j))

≥
NT∑

n=1

∑

i,j

W (M ε,n−1
i,j ) −

NT∑

n=1

∑

i,j

M ε,n−1
i,j g(xi,j , 0) ≥ C,

(53)
where C does not depend on ε. From (52) and (53),

1

2ε∆t

∑

i,j

(M ε,0
i,j − (m0)i,j)

2 ≤ C,

where C does not depend on ε. This yields the desired result.
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Proposition 3 With the same assumptions as in Theorem 1, the solution of the penalized dis-
crete system (20)-(23) satisfies

max
n,i,j

|U ε,n
i,j | ≤ C, (54)

for a constant C which may depend of h and ∆t but not of ε.

Proof. Throughout the proof, C denotes a positive constant that may vary and depend on h
and ∆t but is independent of ε.
Proposition 2 implies that

min
i,j

M ε,0 ≥ α > 0 (55)

for ε small enough and α independent of ε, because mini,j(m0)i,j > 0.
Let N be the vector space of the grid functions with zero average:

N = {(Wi,j)0≤i,j<Nh
:
∑

i,j

Wi,j = 0}. (56)

Consider the functional

J : N → R, W 7→ −
∑

i,j

Wi,j

(
M ε,1

i,j −M ε,0
i,j

∆t
+ ν(∆hM

ε,0)i,j

)
+
∑

i,j

M ε,0
i,j g(xi,j , [DhW ]i,j).

(57)
We know that there exists a positive constant c such that ‖W‖∞ ≤ c‖ [DhW ] ‖∞, ∀W ∈ N .
This observation, (55) and (13) imply that

lim
‖ [DhW ] ‖∞→∞

J(W ) = +∞. (58)

Since the functional J is continuous, (58) implies the existence of a minimum U . It is also
possible to check that there exists a constant C which only depends on α, h and ∆t such that
the minimum points satisfy ‖U‖∞ ≤ C. From (G3) and (G4), the Euler equations

−
∑

i,j

Wi,j

(
M ε,1

i,j −M ε,0
i,j

∆t
+ ν(∆hM

ε,0)i,j

)
+
∑

i,j

M ε,0
i,j ∇qg(xi,j , [DhU ]i,j)·[DhW ]i,j = 0, ∀W ∈ N

characterize the points of minimum. They can be written

∑

i,j

Wi,j

(
M ε,1

i,j −M ε,0
i,j

∆t
+ ν(∆hM

ε,0)i,j + Bi,j(U,M
ε,0)

)
= 0, ∀W ∈ N .

On the other hand,

∑

i,j

(
M ε,1

i,j −M ε,0
i,j

∆t
+ ν(∆hM

ε,0)i,j + Bi,j(U,M
ε,0)

)
= 0,

because M ε,1 ∈ K and M ε,0 ∈ K. Therefore U is a minimum of J if and only if U is a solution
of

M ε,1
i,j −M ε,0

i,j

∆t
+ ν(∆hM

ε,0)i,j + Bi,j(U,M
ε,0) = 0 (59)

This proves that for the constant C introduced above, the solutions of (59) in N satisfy ‖U‖∞ ≤
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C. This implies that ‖U ε,1 − 〈U ε,1〉‖∞ ≤ C.
On the other hand, from (20) for n = 0 and the fact that U ε,0 ∈ N , we find that |〈U ε,1〉| ≤ C
and therefore ‖U ε,1‖∞ ≤ C. Then, again from (20) for n = 0, we obtain that ‖U ε,0‖∞ ≤ C. The
estimate for U ε,n, n > 1 follows as usual.
Using (23), an easy consequence of Proposition 3 is the following improvement of Proposition 2

Corollary 1 With the same assumptions as in Theorem 1, the solution of the penalized discrete
system (20)-(23) satisfies

max
i,j

|M ε,0
i,j − (m0)i,j | ≤ Cε (60)

for a constant C which may depend of h and ∆t but not of ε.

Also since KNT +1 is compact, there exists a family of grid functions (M n) and a subsequence
still noted ε such that limε→0 maxn ‖M ε,n−Mn‖∞ = 0. We aim at passing to the limit as ε→ 0.

Proposition 4 With the same assumptions as in Theorem 1. For a subsequence still called ε,
let (U ε,n,M ε,n) be a solution of (20)-(23) and (Mn) be a family of grid functions in K such that
limε→0 maxn ‖M ε,n −Mn‖∞ = 0. There exists a family of grid functions (U n) such that up to a
further extraction of a subsequence, limε→0 maxn ‖U ε,n−Un‖∞ = 0 and (Un,Mn)n is a solution
of (43)-(46).

Moreover, if the numerical Hamiltonian g is strictly convex, all the sequence (U ε,n,M ε,n)
converges to the unique solution of (43)-(46).

Proof. From (60), we deduce that M 0
i,j = (m0)i,j . From the uniform bound of U ε,n, it is

possible to find a family of grid functions (U n) such that up to the extraction of a subsequence
limε→0 maxn ‖U ε,n−Un‖∞ = 0 and by passing to the limit, we find that (U n,Mn)n is a solution
of (43)-(46).

If g is strictly convex, any converging subsequence converges to the unique solution of (43)-
(46) and this gives the convergence of all the sequence.

3.3 Remarks on the optimal control formulation of the original pde’s system

Here, we are going to introduce an optimal control problem whose optimality conditions give
the system (1)–(3), at least in the case where the operator V is the gradient of some functional
W . The optimal control problem is similar to the one proposed in [14, 15] for the so-called finite
horizon mean field game problem, i.e. system (1)-(2) with the terminal conditions

u(0, x) = V0[m](0, x), m(T, x) = mT (x) . (61)

As mentioned in the introduction, this approach is reminiscent of the simpler computational fluid
mechanics formulation of the Monge-Kantorovith mass transfer problem proposed by Benamou
and Brenier [5, 6, 7]. We refer to [18] for a rigorous presentation of the ideas in [5] in the
framework of convex duality.
For simplicity, we take ν = 1. The optimal control problem is to minimize with respect to
admissible controls α the functional

∫ T

0

∫

Td

[
m(t, x)L(x, α(t, x)) +W (m)

]
dt dx

subject to the constraints




∂tm+ ∆m+ div(mα) = 0, in (0, T ) × T
d,

m ≥ 0, in (0, T ) × T
d,

m(T, x) = mT (x) in T
d,

m(0, x) = m0(x) in T
d,
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where L : T
d × R

d → R is the Legendre-Fenchel transform of the of the convex Hamiltonian H
and W ′ = V . We assume that

(H1) L : T
d × R

d → R, is C1, and coercive in α, uniformly with respect to x,

(H3) W : R → R is a strictly convex coercive and C2 function (the image of (0,+∞) by V = W ′

is an interval (λ,+∞) which we call JV ).

(H2) mT and m0 are probability densities on T
d.

The Hamiltonian
H(x, p) = sup

α∈Rd

(
p · α− L(x, α)

)
.

is convex and LSC with respect to its second argument. We assume for simplicity that H is of
class C1.
Let us proceed first in an informal way. Following [5], we begin by modifying the problem in
such a way that the constraints become linear; for this purpose, we introduce

Φ(x,m, z) = sup
p∈Rd

(
p · z −mH(x, p)

)
for x ∈ T

d,m ≥ 0, z ∈ R
d.

It is easy to check that Φ is convex and lower semicontinuous with respect to (m, z) and that





m > 0 ⇒ Φ(x,m, z) = mL(x, z
m ),

z = 0 ⇒ Φ(x,m, z) ≤ mL(x, 0),
m = 0, z 6= 0 ⇒ Φ(x,m, z) = +∞.

At least formally, the new problem is to minimize over vector fields z = z(t, x) the convex
functional ∫ T

0

∫

Td

[
Φ(x,m(t, x), z(t, x)) +W (m(t, x))

]
dt dx

subject to 



∂tm+ ∆m+ div z = 0, in (0, T ) × T
d,

m ≥ 0, in (0, T ) × T
d,

m(T, x) = mT (x), in T
d,

m(0, x) = m0(x), in T
d.

(62)

Note that the set defined by the constraints is convex and nonempty at least if m0 > 0 and
if m0 and mT are smooth enough. Indeed, just take m̂(t, x) = t

TmT (x) + T−t
T m0(x) and solve

−∆ζ = ∂tm̂+ ∆m̂ , 〈ζ〉 = 0 , ζ(T ) = ζT

and take z(t) = ∇ζ(t).
The definition of the latter minimization problem is only formal. To do things in a more rigorous
way, let us proceed as follows.
We call χ the indicator function of the set {m ≥ 0}: χ(m) = 0 if m ≥ 0 and χ(m) = +∞
if m < 0. χ is convex and LSC. we introduce the Legendre-Fenchel transform of the function
W + χ: (

W + χ
)∗

(α) = sup
m

(
αm−W (m) − χ(m)

)
. (63)
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It is clear that
(
W+χ

)∗
is convex, continuous and non decreasing. If α ∈ JV then

(
W+χ

)∗
(α) =

αV −1(α) −W (V −1(α)).
Consider the convex and continuous functional Θ:

Θ : C([0, T ] × T
d) ×

(
C([0, T ] × T

d)
)d → R ∪ {+∞}

(α, β) 7→
∫ T

0

∫

Td

(
W + χ

)∗
(α+H(β)).

Let M = M
(
[0, T ] × T

d
)

denote the set of Radon measures. The Legendre-Fenchel transform
of Θ is

Θ∗ : M×
(
M
)d → R ∪ {+∞}

(m, z) 7→ sup
α,β

(
〈m,α〉 + 〈z, β〉 −

∫ T

0

∫

Td

(
W + χ

)∗
(α+H(β))

)
.

We have

Θ∗(m, z) = sup
α,β

(
−〈m,H(β)〉 + 〈z, β〉 + 〈m,α+H(β)〉 −

∫ T

0

∫

Td

(
W + χ

)∗
(α+H(β))

)

= sup
β

(−〈m,H(β)〉 + 〈z, β〉) + sup
γ

(
〈m, γ〉 −

∫ T

0

∫

Td

(
W + χ

)∗
(γ)

)

Focus on the supremum w.r.t. γ:

sup
γ

(
〈m, γ〉 −

∫ T

0

∫

Td

(
W + χ

)∗
(γ)

)
= sup

γ

(
〈m, γ〉 −

∫ T

0

∫

Td

sup
y∈R

(yγ(t, x) −W (y) − χ(y))

)
.

If dm = dm
dµ dµ+ dms, where µ is the Lebesgue measure on [0, T ]×T

d, the quantity above reads

sup
γ

(
〈ms, γ〉 +

∫ T

0

∫

Td

inf
y∈R

((
dm

dµ
(t, x) − y

)
γ(t, x) +W (y) + χ(y)

))
.

The supremum is +∞ if ms 6= 0 or if dm
dµ is non positive. In the opposite case, the supremum

is W̃ (m) = supγ∈C

∫ T
0

∫
Td

(
dm
dµ (t, x)γ(t, x) −W ∗(γ(t, x))

)
dµ, which coincides with W (m) =

∫ T
0

∫
Td W (dm

dµ (t, x))dµ if dm
dµ (t, x) is continuous.

Therefore
Θ∗(m, z) = sup

β

{
〈z, β〉 − 〈m,H(β)〉 + (W̃ + χ̃)(m)

}

where χ̃ is the indicator function of the set of nonnegative measures on [0, T ] × T
d with a L1

density w.r.t the Lebesgue measure. Thus the problem of minimizing Θ∗ is the rigorous version
of the minimization problem above. The construction of Θ∗ shows that Θ∗ is convex and LSC

on M([0, T ] × T
d) ×

(
M([0, T ] × T

d)
)d

.

On the other hand, consider the functional Σ : C([0, T ] × T
d) ×

(
C([0, T ] × T

d)
)d → R ∪ {+∞}

defined by

Σ(α, β) =

{
F(φ) if (α, β) = Λ(φ),
+∞ in the opposite case,
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where F is the linear form on

{
φ ∈ C1,2([0, T ] × T

d) :

∫

Td

φ(t = 0) = 0

}
defined by

F(φ) = −〈mT , φ(t = T )〉 + 〈m0, φ(t = 0)〉, (64)

and where Λ is the linear operator from

{
φ ∈ C1,2([0, T ] × T

d) :

∫

Td

φ(t = 0) = 0

}
to C([0, T ]×

T
d) ×

(
C([0, T ] × T

d)
)d

defined by

(α, β) = Λ(φ) ⇔
{
α = ∂tφ− ∆φ,
β = ∇φ. (65)

It is clear that Σ is convex. The Legendre-Fenchel transform of Σ is

Σ∗(m, z) = sup
α,β

(
〈m,α〉 + 〈z, β〉 − Σ(α, β)

)
.

Thus

Σ∗(m, z) = sup
φ

(
−〈mT , φ(t = T )〉 + 〈m0, φ(t = 0)〉 + 〈m,∂tφ− ∆φ〉 + 〈z,∇φ〉

)
,

and Σ∗ is a convex and LSC functional.
Moreover, there exists (α̃, β̃) ∈ C([0, T ] × T

d) ×
(
C([0, T ] × T

d)
)d

such that Σ(α, β) < +∞ (and
of course Θ(α, β) < +∞). Indeed it is enough to solve

∂tφ− ∆φ+H(x,∇φ) = g

where g is a smooth function taking its values in JV , with a smooth initial data φ0. It can be
proved that φ is smooth. Then one can take α̃ = ∂tφ− ∆φ, β̃ = ∇φ. We have α̃ +H(β̃) = g,
thus Θ(α, β) = (α +H(β))V −1(α +H(β)) −W (V −1(α +H(β))) for (α, β) close to (α̃, β̃). On
the other hand, Σ(α̃, β̃) = −〈mT , φ(t = T )〉 + 〈m0, φ(t = 0)〉 < +∞.
We can apply Fenchel-Rockafellar duality theorem, see for example [2, 8, 3, 18]:

inf
α,β

(Θ + Σ) = −min
m,z

(
Θ∗(m, z) + Σ∗(−m,−z)

)
.

From [3] (theorem 2.4 page 205), the problem of finding (α, β) minimizing Θ+Σ and a solution
of the dual problem, i.e. finding (m, z) minimizing Θ∗(, )+Σ∗(−,−) is equivalent to solving the
system of optimality conditions: (α, β) = Λ(φ) with

−Λ∗(m, z) ∈ ∂F(φ), (66)

Λ(φ) ∈ ∂Θ∗(m, z). (67)

Condition (66) is equivalent to the weak formulation of

∂tm+ ∆m+ div(z) = 0,
m(t = T ) = mT ,
m(t = 0) = m0.

With γ = α+H(β), condition (67) is equivalent to

z = mdH
dq (∇φ),

(W̃ + χ̃)(m) +
∫ T
0

∫
Td(W + χ)∗(γ) − 〈m, γ〉 = 0.
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The latter equation implies that m is a positive measure absolutely continuous w.r.t. the
Lebesgue measure and that a.e.,

γ = ∂tφ− ∆φ+H(x,∇φ) ∈ ∂W (m). (68)

If m > 0 and m is continuous, we find (1)-(3).

Remark 3 It is worthwhile to observe that the present duality argument is not a proof of the
existence of a solution of (1)-(3): we have only proved that if there exists a minimum of Θ + Σ
such that m > 0 and m is continuous, then the optimality conditions yield (1)-(3).

4 Solving the systems of nonlinear equations

4.1 The Newton method for the penalized problem

4.1.1 Description of the method

In § 2.2, we have seen that solutions of the systems of nonlinear equations (43)-(46) arising from
a semi-implicit scheme for (1)-(3) can be found by passing to the limit in the penalized problem
(20)-(23). It is therefore important to propose a solution procedure for the penalized problem
(20)-(23). We propose to use the Newton method.
The system can be seen as a forward discrete HJB equation for U with a Cauchy condition at
t = 0 coupled with a backward discrete Fokker-Planck equation for M with a Cauchy condition
at final time. This structure prohibits the use of a straightforward time-marching solution
procedure.
Call U and M the vectors of R

(NT +1)N2
h such that UkN2

h
+iNh+j = Uk

i,j and MkN2
h
+iNh+j = Mk

i,j .
The system of nonlinear equations can be written

{
FU (U ,M) = 0,
FM (U ,M) = 0,

(69)

with

• FU (U ,M) = 0 ⇔ (20) ∀n, 0 ≤ n < NT , ∀i, j and U 0
i,j =

(
V0,h(M0)

)
i,j

, ∀i, j
•

FM (U ,M) = 0 ⇔





Mn
i,j −Mn+1

i,j

∆t
− ν(∆hM

n)i,j − Bi,j(U
n+1,Mn) = 0, 0 ≤ n < NT ,

MNT given.
(70)

In order to discuss the Newton method for solving (69), we use the following notation

AU,U (U ,M) = DUFU (U ,M), AU,M(U ,M) = DMFU (U ,M),
AM,U (U ,M) = DUFM(U ,M), AM,M(U ,M) = DMFM(U ,M).

(71)

The matrices AUU (U ,M) and AUM (U ,M) have the form

AUU =




I 0 . . . . . . . . . 0

− 1

∆t
I D1

. . .
...

0 − 1

∆t
I D2

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . . − 1

∆t
I DNT−1 0

0 . . . . . . 0 − 1

∆t
I DNT




AUM =




E0 0 . . . . . . 0

E1 0
...

0 E2

. . .
...

...
. . .

. . .
. . .

...
0 . . . 0 ENT

0



.

(72)
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The blocks of AUU (U ,M) are sparse. The block Dn corresponds to the discrete operator
(Zi,j) 7→

(
1

∆tZi,j − ν(∆hZ)i,j + [DhZ]i,j · ∇g(xi,j, [DhU
n]i,j)

)
. From the regularity and mono-

tonicity assumptions on g, Dn is a M-matrix, thus AUU is invertible.
The blocks of AUM (U ,M) are sparse too with the assumptions used in § 2, but they may be
dense if V and V0 are nonlocal operators.
From Remark 1, the matrices AMM (U ,M) and AMU (U ,M) have the form

AMM =




DT
1 − 1

∆t
I 0 . . . 0

0 DT
2 − 1

∆t
I

. . .
...

...
. . .

. . .
. . . 0

...
. . . DT

NT
− 1

∆t
I

0 . . . . . . 0 I




AMU =




0 Ẽ1 0 . . . 0
...

. . . Ẽ2

. . .
...

...
. . .

. . . 0
...

. . . ẼNT

0 . . . . . . 0



. (73)

Note that
VT ẼnW =

∑

i,j

Mn−1
i,j [DhV ]i,j ·D2

q,qg(xi,j , [DhU
n]i,j)[DhW ]i,j.

From the convexity of g, we see that the block Ẽn is symmetric and positive semi-definite if
Mn−1 is a nonnegative grid functions.
In § 4.1.2, we show that if Vh is strictly monotone and if the iterate produced by the Newton
method satisfies M ≥ 0, then the Jacobian matrix

(
AU,U AU,M

AM,U AM,M

)

is invertible. The positivity of M is not guaranteed though, but if the initial guess is close
enough to a solution (Û ,M̂) with M̂ > 0, then the iterates M will stay positive.
Assuming the invertibility of the matrix, the most time consuming part of the procedure lies in
solving the system of linear equations

(
AU,U AU,M

AM,U AM,M

)(
U
M

)
=

(
GU

GM

)
. (74)

The chosen algorithm is as follows:

1. solve first
AU,U Ũ = GU . (75)

This is done by observing that Ũ0 = G0
U and sequentially solving

DkŨ
k = −LkŨ

k−1 +GU,k, (76)

i.e. marching in time in the forward direction. We know that (76) has a unique solution if g
satisfies the regularity and monotonicity assumptions mentioned above. The systems (76)
can be solved with efficient direct solvers (in our tests we have used the library SuperLu).

2. Introducing U = U − Ũ , the vector (U ,M)T satisfies

(
AU,U AU,M

AM,U AM,M

)(
U
M

)
=

(
0

GM −AM,U Ũ

)
, (77)

which implies (
AM,M −AM,UA

−1
U,UAU,M

)
M = GM −AM,U Ũ . (78)
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The system (78) is solved by means of an iterative method, for example, the BiCGstab
algorithm as in the numerical tests described below; it only requires an implementation
of the matrix-vector product with the matrix AM,M − AM,UA

−1
U,UAU,M . Of course, this

matrix is not assembled: the matrix-vector product involves matrix-vector products with
the matrices AM,M , AM,U and AU,M and solving a linear system of the form (75), similar
to that appearing in the first step.
Once (78) is solved, U is obtained by solving the discrete forward linearized HJB equation

AU,UU = −AU,MM (79)

by the same method as for (75).

4.1.2 Well posedness of the systems of linear equations arising in the Newton

method

In the paragraph below, we prove that the systems of linear equations arising in the Newton
method is well posed if the current iterate (produced by the Newton method) satisfies M ≥ 0.
Consider the system (

AU,U AU,M

AM,U AM,M

)(
V
Q

)
=

(
0
0

)
, (80)

It is easy to see that (80) implies QNT = 0. Call AUU the submatrix of AUU

AUU (U ,M) =




D1 0 . . . . . . 0

− 1
∆tI D2

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 − 1

∆tI DNT




(81)

andAMM = A
T
UU . Introduce also the block-diagonal matrices AUM(U ,M) = Block-Diag(E1, . . . , ENT

)

and AMU (U ,M) = Block-Diag(Ẽ1, . . . , ẼNT
). We obtain

AUU




V 1

...
V NT


+AUM




Q0

...
QNT −1


+

1

∆t




E0Q
0

0
...


 = 0,

AMU




V 1

...
V NT


+A

T
UU




Q0

...
QNT −1


 = 0.

(82)

This implies that



Q0

...
QNT −1




T

AUM




Q0

...
QNT −1


+

1

∆t
(Q0)TE0Q

0 −




V 1

...
V NT




T

AMU




V 1

...
V NT


 = 0. (83)

From (G4), the matrix AMU is symmetric and positive semi-definite if M has non negative
coordinates, i.e. if the current iterate produced by the Newton method satisfies m ≥ 0. Assum-
ing that the operators Vh and V0,h are strictly monotone, the blocks En are negative definite.
Therefore, if M ≥ 0, we deduce from (83) that Qn = 0 , n = 0, . . . NT − 1. Using this in the
first set of equations of (82) yields that V n = 0, n = 1, . . . NT since the blocks Dn are invertible,
and finally V 0 = 0 because V 0 +E0Q

0 = 0.
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4.2 A solution procedure for the penalized problem

As explained above, the Newton method described above may break down if in the Newton
loop, the approximation of mh takes negative values. A similar phenomenon was observed by
Benamou, Brenier and Guittet [6, 7] when they studied a somewhat similar but simpler penalty
method (using conjugate gradient iterations instead of Newton) for computing a mixed L2-
Wasserstein distance between two probability densities. This is of course a strong drawback
of the method. However, breakdown does not happen if the initial guess is close enough to a
positive solution. Therefore, it is important to find good initial guesses for the Newton method.
For this reason, the penalty parameter ε in (20)-(23) is gradually decreased to a small value,
say 1/100, starting from a moderately small value, say 1. The fixed point found by the Newton
method for a given value of ε is used as an initial guess for the next and smaller value of ε.
Doing so, we have avoided breakdowns.
Another sensible way to avoid breakdowns would probably be to use multigrid/Newton algo-
rithms, but this has not been tested yet.

5 Numerical experiments

In all the problems considered below, the Hamiltonian is of the form H(x, p) = ψ(x, |p|) and the
discrete Hamiltonian is obtained via a Godunov scheme, i.e

g(x, q1, q2, q3, q4) = ψ

(
x,
√

(q−1 )2 + (q−3 )2 + (q+
2 )2 + (q+

4 )2
)
.

We have used the semi-implicit scheme (43)-(46), and the solver described in § 4. In the tests
below, we take

H(x, p) = sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|α, V [m](x) = m2(x),

with possibly different values of α.

5.1 Test 1

We take ν = 1, α = 2, T = 1. The initial and final conditions are

m(t = 0) = 0.5 + 1.5 1{max(|x−0.2|,|y−0.2|)≤0.25},

m(t = T ) = 0.5 + 1.5 1{max(|x|,|y|)≤0.25)},

and we use the penalty parameter ε = 1/100. Note that the initial and final states of m are
piecewise constant, therefore not smooth.
In Figure 1, we plot the L2 norms of mh and uh versus time. We see that the L2 norm of
mh exhibits a plateau away from t = 0 and t = T ; In fact, in can be seen by looking at the
snapshots as in Figure 2 that mh is almost stationary in the time interval [1/10, 9/10]. This
stationary state is the solution of the stationary problem (infinite horizon mean field game), see
[1] for numerical results in the infinite horizon case. Another striking fact is that the solution
u|t>0 is smooth. In Figure 2, we plot the contours of mh and uh at different times: note that
uh is smooth for t ≈ T whereas it is not smooth for t ≈ 0; somehow, this can be understood
by realizing that the final time condition for m is a Cauchy condition for a well posed parabolic
problem in m, whereas the initial time condition on m greatly affects u.
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Figure 1: Test 1: The L2 norm of mh (right) and uh (left) vs. 200× time
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Figure 2: Test 1: the contours of mh (left) and uh (right) at t = i/200, i =
0, 4, 8, 20, 100, 180, 196, 200
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5.2 Test 2

We take ν = 1, α = 2 and a much shorter time interval, i.e T = 0.01. The initial and final time
conditions are now

m(t = 0) = 0.2 + 1{max(|x+0.2|,|y−0.2|)≤0.25}

m(t = T ) = 0.2 + 1{max(|x|,|y|)≤0.25)}.
(84)

We use the penalty parameter ε = 1/100. In Figure 3, we plot the L2 norms of mh and uh

versus time. Here we see that the time interval is too short for an asymptotic regime to appear
away from t = 0 and t = T . Snapshots of the solutions at different intermediate dates are shown
in Figure 4. The initial density m|t=0 takes two values only. The plateau in the graph of m
observed at time t = 0 splits into two bumps at t > 0, one moving to the left and the other one
to the right. These bumps meet to form another plateau at time T . Note that the solution u is
smooth near t = T . This can be heuristically explained by saying that the final time condition
on m is a natural one (unlike the initial condition on m).

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0  10  20  30  40  50

"mnorm"

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0  10  20  30  40  50

"unorm"

Figure 3: Test 2: The L2 norm of mh (right) and uh (left) vs. 50× time
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Figure 4: Test 2: the contours of mh (left) and uh (right) at t = i/50, i = 0, 1, 2, 5, 25, 45, 49, 50
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5.3 Test 3

We take ν = 0.0125 α = 3 and T = 0.1. The initial and final time condition are (84) and we use
the penalty parameter ε = 1/100. Snapshots of the solutions at different intermediate dates are
shown in Figure 5. Compared to Tests 1 and 2, the function u|t=T does not seem to be smooth.

In Figure 6, we plot the error between the density computed at t = 0 and the target versus
ε. We see that the error behaves linearly with respect to ε.

5.4 Test 4

Here we choose V (m) = − log(m): therefore, the theory in § 3 does not apply, because V has
the wrong monotonicity. Such a choice of V can be used to describe situations where there
is a fashion effect, i.e. the players have a gregarious behavior. We take ν = 0.125 α = 3
and T = 0.1. The initial and final time condition are (84) and we use the penalty parameter
ε = 1/100. The method proposed in § 2.2 has been successful, although it is not supported by
the theory. Snapshots of the solutions at different intermediate dates are shown in Figure 7.

5.5 Convergence of the iterative algorithms

In Figure 8, we plot the typical convergence of the Newton method for (69) with α = 2 and
ε = 0.1, a total number of unknowns of 250, 000 (NT = 50 and N = 50) and two different values
of ν: ν = 1 and ν = 0.01. The behavior of the algorithm does not seem to depend much on ν
In Figure 9, we plot the typical convergence of the BiCGstab algorithm for (78) for ν = 1 and
ν = 0.01. The convergence is linear in both case but much slower for the smaller value of ν.

6 Conclusion and perspectives

We have studied some planning problems for discrete mean field games. We have proved exis-
tence via an optimal control formulation and uniqueness under rather general assumptions. We
have also proposed a penalized method which can be implemented in practice. The numerical
computations presented above are in agreement with the theory.
Some important questions remain open: in particular, it would be interesting to prove bounds on
the solution of the discrete problems, uniform with respect to the grid parameters and the time
step. We expect that these bounds may be obtained at least when the Hamiltonian is quadratic
or close to quadratic, since P-L. Lions has proved existence for the continuous problem MFGP

in this case. If such bounds are obtained, the question of the convergence to the solution of the
continuous problem could be tackled.
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[Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris, 1983. Théorie
et applications. [Theory and applications].

[9] W. H. Fleming and H. M. Soner. Controlled Markov processes and viscosity solutions,
volume 25 of Stochastic Modelling and Applied Probability. Springer, New York, second
edition, 2006.

[10] D.A. Gomes, J. Mohr, and R.R. Souza. Discrete time, finite state space mean field games.
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Figure 8: Convergence of the Newton method for ν = 1 (left) and ν = 0.01 (right)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90  100

"conv_bicgstab_nu1"
"convbicgstab_nu0.01"

Figure 9: Convergence of the BiCGstab algorithm for ν = 1 and ν = 0.01
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