

Edinburgh Research Explorer

Dimensional Reductions for the Computation of Time–Dependent
Quantum Expectations

Citation for published version:
Leimkuhler, B 2011, 'Dimensional Reductions for the Computation of Time–Dependent Quantum
Expectations', SIAM Journal on Scientific Computing, vol. 33, no. 4, pp. 2024-2038.
https://doi.org/10.1137/100788148

Digital Object Identifier (DOI):
10.1137/100788148

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
SIAM Journal on Scientific Computing

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 22. Nov. 2024

https://doi.org/10.1137/100788148
https://doi.org/10.1137/100788148
https://www.research.ed.ac.uk/en/publications/dcb9694b-eb38-4c12-bce4-fdde337851ba

DIMENSIONAL REDUCTIONS FOR THE COMPUTATION OF

TIME–DEPENDENT QUANTUM EXPECTATIONS

GIACOMO MAZZI∗ AND BENEDICT J. LEIMKUHLER†

Abstract. We consider dimension reduction techniques for the Liouville-von Neumann equation
for the evaluation of the expectation values in a mixed quantum system. We describe several existing
methods that have appeared in the literature, showing the failure of them when the system is scaled
up. We introduce a new method termed DEC (Direct Expectation values via Chebyshev) based on
evaluation of a trace formula combined with a direct expansion in modified Chebyshev polynomials.
This reduction is highly efficient and does not destroy any information. We demonstrate the practical
application of the scheme for a nuclear spin system and compare with popular alternatives. In nuclear
spin dynamics the main goal for simulations is being able to simulate a system with as many spins
as possible, for this reason it is very important to have an efficient method that scales the least with
respect to the number of particle. This method may be applied to autonomous quantum problems
where the desired outcome of quantum simulation, rather than being a full description of the system,
is only the expectation value of some observables.

Key words. Matrix Exponential, Chebyshev expansion, Krylov subspace, Density Matrix,
Nuclear Magnetic Resonance.

1. Introduction. When dealing with the dynamics of a quantum system of
particles the motion is described by the Schrödinger equation :

∂|Ψ〉
∂t

= −iH |Ψ〉, (1.1)

where H is the Hamiltonian and |Ψ〉 the wave function of the system, and we have
chosen physical quantities such that ~ = 1. When H is time–independent it is possible
to have an exact formulation of the solution:

|Ψ(t)〉 = e−iHt|Ψ0〉. (1.2)

From a numerical point of view finding a solution of (1.2) has proved to be a
challenging task in the last decades. Many numerical methods have been proposed
over the years to solve (1.2), from polynomial expansion of the exponential [1, 2, 3],
to projection on Krylov subspaces [4, 5, 6].

When the wave function |Ψ〉 depends on the particle positions q and momenta
p it is very common to adopt a splitting method for the Hamiltonian, H = T + V
with V diagonal and T the kinetic term which is diagonal in Fourier space. With this
approach the main cost is the evaluation of a fast Fourier transform (FFT) to switch
between the x-grid and the p-grid; the cost of this transform is O(N logN) where
N is the size of the system [7]. However when the wave function depends on other
variables, like the spin of the particles, it is not straightforward to apply a splitting
method. For a general survey of these approaches see [8] and [9].

It is important to remark that all of these methods suffer when the size of Ψ
becomes large. In many practical cases, such as spin dynamics, where Ψ depends on
or only on the spin variable the size of Ψ grows exponentially with the number of
particle of the systems. In fact the dimension of the Hilbert space where Ψ lies in the
case of a system with n spins I is (2I + 1)n.

∗School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, UK
(G.Mazzi@sms.ed.ac.uk).

†School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, UK

1

Leimkuhler, B 2011, 'Dimensional Reductions for the Computation of Time-Dependant Quantum
Expectations' SIAM Journal on Scientific Computing, vol 33, no. 4, pp. 2024-2038.

This paper is organized as follows. In Section 2 we introduce the Liouville–von
Neumann equation that describes the dynamics of the density matrix; we also discuss
the issues that arise when attempting to solve this equation. In Section 3 we describe
two of the main techniques that have been applied in quantum simulation for the eval-
uation of the solution of the Schrödinger equation, specifically the Krylov expansion
via Lanczos–Arnoldi iterations and the expansion in Chebyshev polynomials. We also
present a more recent method based on a different evaluation of the Krylov subspace
expansion called Zero Track Elimination (ZTE) [10]. This method has been devel-
oped for simulations of nuclear spin dynamics within the Nuclear Magnetic Resonance
(NMR) community. We give also its first mathematical analysis of it, exploring the
limitations and explaining why it typically works in the application to NMR spin sim-
ulation. In Section 4 we introduce the new method we have developed: termed Direct
Expectation values via Chebyshev (DEC). In this section also the technical details of
the implementation are presented; we also comment on the relationship between DEC
and the Kernel Polynomial Method (KPM) [11]. Finally, In Section 5 we make a per-
formance comparison between (a) DEC, (b) classical Krylov expansion based on the
Lanczos algorithm, (c) the ZTE method, and (d) Chebyshev expansion. The sample
system is a pairwise interacting nuclear spin system, which, although simple, contains
the main features of a proper system the NMR community is interested in.

2. The Liouville Von–Neumann Equation. When the sample of interest is
composed of a large number N of identical systems each described by a wave function
|Ψ〉, it is common to introduce a statistical operator called the density operator ̺
defined by:

̺ =

N
∑

j=1

|Ψj〉〈Ψj |, (2.1)

which evolves according to the Liouville-von Neumann equation:

∂̺

∂t
= −i[H, ̺], (2.2)

where the square brackets [,] indicate the usual commutation brackets: [H, ̺] =
H̺− ̺H . If ̺ is expanded using a (finite) approximate basis set {|ϕ1〉 . . . |ϕn〉}, (2.2)
may be viewed as an ordinary differential equation in a matrix argument. In the
time–independent case the solution for (2.2) may be written:

̺(t) = e−iHt̺0e
iHt. (2.3)

It is possible and sometimes preferable to rewrite (2.3) by introduction of the
Liouvillian L = Id⊗H−H⊗ Id, where Id is the identity matrix, and ⊗ indicates the
tensor product, allowing us to recast ̺ as a vector:

̺V (t) = e−iLt̺V0 , (2.4)

where if ̺ is a matrix of size n × n, ̺V is an n2-dimensional vector constructed by

2

joining together the columns of ̺:

̺V =

̺11
. . .
̺n1
̺21
. . .
. . .
̺nn

. (2.5)

For a large system and using a typical basis set, H and L will be structured sparse
matrices. If the sparsity is taken into account when storing these matrices the compu-
tational cost of (2.4) is equal to that of (2.3). At the same time most of the literature
concerns with matrix–vector operations, so the Liouvillian formulation is more suit-
able for comparison with other works [9], also this formulation is better suited when
dealing with relaxation phenomena [12].

While the evolution of the system is described by the density matrix, the outputs
we are interested in obtaining from quantum simulations are typically the expectations
of observables, these being the only quantities we can compare with experiments. In
the density matrix formalism the expectation value of an observable Q, associated
with an operator Q̂ is written as:

〈Q̂(t)〉 = Trace{̺(t)Q̂}. (2.6)

If instead of propagating ̺(t) using (2.3) we evaluate ̺V (t) via (2.4) we simply need
to recast ̺V into a matrix form before applying (2.6). For the rest of the paper we
drop the superscript V when dealing with the vectorized form of ̺ (2.5) as we will
always use the density matrix in its vectorized form.

Whereas in general quantum simulations the equation of motion is solved for a
quantity ̺ which has dimension n×n, the types of outputs we are generally interested
in are just one dimensional objects (2.6). In this paper we exploit this fact and design
an algorithm that computes (almost) directly the evolution of the expectation value
(2.6), instead of the evolution of the density matrix (2.3). This approach does not
lose any information of the original system (the only errors arise due to truncation),
but at the same time the method provides a powerful computational tool, with po-
tential dramatic reduction in the computational cost, especially when dealing with
large matrices. The main idea of this approach is to exploit features of a Chebyshev
expansion for the matrix exponential in (2.4).

Several methods to evaluate (2.4) are discussed in a recent monograph [9]; however
our proposed Direct evaluation of the Expectation values via Chebyshev polynomials
(DEC) method is different because it does not directly evolve the density matrix.
Instead it exploits the trace evaluation in (2.6) and with the computation of just one
Chebyshev expansion it allows the solution of (2.6) at any time.

The idea of storing the traces has already been applied for evaluations of spec-
tral quantities, mainly the density of states, within the so called Kernel Polynomial
Method (KPM). A key difference between our method and KPM is that in the latter
method, this accumulation is not used for a time–dependent quantity, so no issues of
convergence of the series at different times need to be taken into account [13].

DEC can be extremely powerful when we are only interested in the expectation
values; if instead it is necessary to evaluate the evolution of the density matrix itself
using (2.4), then traditional approaches, such as those presented in the next section,
where the full density matrix is propagated, would be needed.

3

3. Existing Methods. In the past decades many methods have been developed
for the numerical evaluation of the matrix exponential [14]. Among them, the most
succesful methods from a computational viewpoint, especially when dealing with large
matrices, are those based on the evaluation of the product of the exponential and the
initial vector, rather than those where the matrix exponential is explicitly calculated.

In fact given ̺0, it is possible, and much less involved from a numerical point of
view, to evaluate ̺(t) = exp(−iLt)̺0 as in (2.4) without any explicit calculation of
exp(−iLt). For this reason, especially when dealing with large sparse matrices, such
methods are usually applied.

3.1. Krylov expansion via Lanczos–Arnoldi. Examples of such methods are
those based on expansion of the exponential in Krylov subspace [15, 16, 17, 18, 19].
The main idea is to project (2.4) onto the subspace:

Km(L, ̺0) = span{̺0, L̺0, L2̺0, . . . , L
m̺0}. (3.1)

To get a suitable basis for the Krylov subspace, we may use the Lanczos algorithm
[20], as L is Hermitian. The Lanczos method is an iterative method, a very desirable
feature in the context of large sparse matrices. For specific details see [21].

An approximation for ̺(t) is:

̺(t) = e−iLt̺0 ≈ ‖̺0‖Vme−iTmte1, (3.2)

where Tm and Vm come from the Lanczos algorithm. The Lanczos algorithm provides
an orthonormal basis set Vm for the Krylov subspace Km(L, ̺0) via a three-term
recursion [20, 22]:

βj+1qj+1 = Lqj − αjqj − βjqj−1, αj = (Lqj , qj), (3.3)

with initial values q0 = 0, q1 = ̺0. Tm is a tridiagonal matrix of size m×m, and e1
is the first vector of the canonical basis of size n. This technique is very powerful for
short time simulations, because with few iterations m it is possible to have remarkably
good approximations, but for longer times larger Krylov subspaces would be needed to
stay close to the real solution. On the other hand if we do not consider enough terms
in the Lanczos algorithm for longer times, (3.2) is no longer a reliable approximation.

It is possible to set a stopping criterion for the Lanczos iterations [17]; for a given
t we can find m such that:

t[Tm]m+1,m|[e−itTm]m,1| ≤ ε, (3.4)

where |[A]i,j | indicates the absolute value of the i, j-th element of the matrix A. In
our experiments the best way to implement a Krylov expansion was to evaluate each
step:

̺n+1 = e−iLdt̺n ≈ ‖̺n‖V n
me−iTn

mte1. (3.5)

In this way with less than 10 iteration of Lanczos per step it was possible to have a
fast and accurate benchmark. The obvious drawback is that no information passes
from step n to step n+1. However in our numerical tests the use of a longer timestep
that would allow a common Krylov subset Km(L, ̺) for more than one step ̺n was
not preferrable as it requires more iterations of (3.3). Because of the fact that the
equation (3.4) involves the evaluation of the exponential of a tridiagonal matrix, when
m is large this operation becomes a serious bottleneck for the whole simulation.

4

3.2. The Chebyshev expansion. Another method that has been widely ap-
plied for solving (1.1) is the expansion of the exponential into Chebyshev polynomials
[1, 2, 25].

The preliminary step of this method is to rescale the matrix within the interval
[−1, 1], as outside this interval the Chebyshev polynomials grow exponentially, and
the expansion becomes unstable; to do that we need to evaluate the two extremes of
the spectrum of L.

In order to obtain extreme values we propose, as already mentioned in the lit-
erature [23], to perform a few steps of Lanczos iteration, as this provides a good
approximation for the extreme eigenvalues, for small computational cost. It is known
that the values we get from such a process are only approximate, and they are inside
the extremes of the real spectrum of L, σ(L). One way to overcome this issue is to
slightly expand the range obtained using Lanczos iterations [11]; another approach is
to use the sum of the norms of Tk and qk obtained from the initial 4–5 iterations of
(3.3) to approximate an upper bound [23].

In our numerical tests we used the MATLAB function eigs, to compute a few
eigenvalues of a given matrix starting from the two extemes of the spectrum using an
ARPACK [24] routine based on the Lanczos–Arnoldi iteration. The same approach
has been used elsewhere in the literature [25].

In our experiments, the values provided by this function were accurate enough to
avoid any issue coming from not having rescaled L exactly within the [−1, 1] interval.
If we define these two values as α and β, i.e. β ≤ σ(L) ≤ α, we may rewrite L as
L = (S Id − LsD), where D = (α − β)/2, S = (α + β)/2, and −1 ≤ σ(Ls) ≤ 1. We
may then expand the exponential of Ls in the Chebyshev polynomials and we arrive
at the following equation for ̺:

̺(t) = e−iLt̺0 ≈ e−itS

(

nmax
∑

k=0

ck(tD)Tk(Ls)̺0

)

, (3.6)

with tD = Dt. Both ck(tD) and Tk(Ls) can be calculated iteratively:

ck(t) = (2− δk,0)(−i)kJk(t), (3.7)

where δk,0 is the Kronecker delta,

Tk+1(x) = 2xTk(x) − Tk−1(x), (3.8)

with initial values T0(x) = 1, T1(x) = x. Jk(t) is the k-th Bessel function of the first
kind.

The Bessel Functions of the First Kind of integer order may be evaluated directly
by using a three-term recurrence relation

Jn+1(t) =
2n

t
Jn(t)− Jn−1(t). (3.9)

It is well known that (3.9) becomes numerically unstable for n > t [26]. To improve
the method, we may exploit the linear nature of the iterative algorithm. It is possible
to use Miller’s algorithm, and to solve an inverted form of (3.9), i.e. to solve for
Jn−1 given Jn, Jn+1 [26]. When using Miller’s Algorithm it is suggested to expand
the number of terms (providing a sort of buffer), i.e. to start the backward iteration
process from mstart = n + r, where n is the actual order of the function we are

5

interested in and r is some small expansion. In this case we need to know already
from an a priori error analysis how many iterations need to be performed to get below
the threshold ε.

It is possible to prove that for the rescaled Hermitian matrix Ls, when applied to
a vector of unit Euclidian norm we have [9]:

‖Pm−1(tLs)̺0 − e−itLs̺0‖ ≤ 4

(

e1−(t/2m)2 t

2m

)m

form > t, (3.10)

where Pm(t) is the order m expansion in Chebyshev polynomials. This equation
indicates that there is a superlinear decay of the error when m > t.

We may then use the relation 4(exp{1 − (τ/2m)2} τ
2m)m ≤ ε to approximate m.

From practical point of view the usual way of applying Chebyshev is to evaluate [3, 1]:

̺n+1 = e−iLdt̺n ≃ Pnmax
(dtL)̺n, (3.11)

where:

Pnmax
= e−idtS

nmax
∑

k=0

ck(dtD)Tk(Ls). (3.12)

nmax may be evaluated either from (3.10) or directly checking the convergence (4.7).
To avoid numerical instabilities coming from the iterative formula for the Bessel

functions it is also possible to get Pm̺n for a given m via the Clenshaw Algorithm
[27, 9]:

dk = ck̺n + 2Lsdk+1 − dk+2, k = m− 1,m− 2, . . . , 0, (3.13)

with initial values dm+1 = dm = 0, and Pm(dtL)̺n = d0 − d2.
From a computational cost point of view the performances of the two methods

(Lanczos and Chebyshev) are usually comparable, although depending on the features
of the problem there are cases where Lanczos [28] or Chebyshev [25] may be preferred.
In our numerical tests they were practically equal when dealing with large matrices.

3.3. The Zero–Track–Elimination method. Nuclear Magnetic Resonance
(NMR) is a spectroscopy technique that exploits the interaction between nuclear spins
and electromagnetic fields in order to analyze the samples. The temporal evolution
of such a system is described via a density matrix that has size (2I + 1/2)n where
I is the spin and n the number of nuclei. The exponential growth of the size of ̺
with respect to n impedes the use of simulations when dealing with systems involving
more than few (5-6) spins. Many attempts have been made to solve this (see [29, 10]
for recent approaches), even using Chebyshev polynomials [3]. These algorithms have
been developed to simulate both liquid systems, where the Hamiltonian is generally
time–independent, and for Solid–State NMR. In the latter case the Hamiltonian is
time–dependent due to the not averaging out of anisotropic interactions during the
motion of the sample, and as previously remarked DEC is not applicable in this case.

Recently also a new method for the simulation of large spin system called Zero
Track Elimination (ZTE) has been presented [10]. This technique is based on the idea
of pruning out the elements of ̺(t) which do not belong to K(L, ̺0). Most of the time
the initial density ̺0 is sparse.

In order to reduce the steps needed to evolve the full system, we monitor the
elements of ̺(t) that stay below a chosen threshold ξ during this first evolution steps

6

and introduce structural zeros based on these observations. The evolution is then
performed in this reduced state space (̺Z , LZ). The idea is extremely appealing, as
once the propagator for Lz is evaluated all the subsequent steps have the cost of a
reduced matrix–vector, and it is possible to use traditional methods to evolve ̺Z in
the reduced system:

̺Z(t) = e−iLZt̺Z(0). (3.14)

The initial time length is set as the inverse of the largest Larmor frequency. The
Larmor frequency is a given quantity for each element that depends on the physical
property of the nucleus and is the frequency of resonance for a non–interacting spin:
ω0
j = −γjB, where −γj is the gyromagnetic ration of the nucleus and B the applied

magnetic field.
The timelength of the initial check is then:

δt =
1

tlar
=

2π

minj{|ω0
j |}

, (3.15)

where ω0
j is the Larmor frequency of the j-th spin. The following theorem given in [10]

assures that it is possible to prune out from the evolution those states that remains
exactly 0 during the firsts time steps. It is possible to prove that for a state |l〉 holds:

〈l|e−iLt|̺0〉 = 0, for t ∈ [0, δt] ⇒ 〈l|e−iLt|̺0〉 = 0, for t ∈ [0,∞) (3.16)

To prove (3.16) it is sufficient to expand e−iLt into a Taylor expansion. In fact:

〈l|e−iLt|̺0〉 = 〈l|
∞
∑

k=0

Lk (−it)k

k!
|̺0〉 =

∞
∑

k=0

(−it)k

k!
〈l|Lk̺0〉, for t ∈ [0, δt], (3.17)

can be true for any t ∈ [0, δt] only if 〈l|Lk̺0〉 = 0 for all k, but this means that
〈l|e−iLt|̺0〉 = 0, for t ∈ [0,∞).

However from a practical point of view few states 〈l| obeys (3.16), a much higher
number of states will stay close to 0 during the first j time steps, where j = δt/dt.
So the states 〈l| that are pruned out are those for which:

〈l|e−iLt|̺0〉 < ǫ, t ∈ [0, δt]. (3.18)

It is claimed [10] that the error of such an approximation is similar to what would be
obtained by not considering in the Krylov expansion the contributions coming from
high values of n in Ln̺0.

The main problem of this approach is the choice of δt, i.e. the duration of the
initial propagation. In fact if we look at a full diagonalization of L we see that:

̺(t) = Xe−iDtX−1̺0, (3.19)

so each element of ̺(t) can be written as a sum of oscillators vibrating at different
λj ∈ σ(L),

̺k(t) =

n
∑

j=1

X[k,j]µje
−iλj t, µj =

N
∑

l=1

X[j,l]̺
l
0. (3.20)

7

From (3.20) it is clear that to ensure that we are not pruning out the low frequencies
modes we would need at least δt ∝ 1/minj{|λj |}, and this could be different from
the lowest Larmor frequency minj{|ω0

j |} as this last is a quantity related to the non–
interacting spins.

It is possible to have an estimate of the lowest eigenvalue of L using a technique
like the one we used for the Chebyshev expansion (3.2). The simple choice of δt
depending on λj rather than ω0

j is not enough to ensure the validity of (3.18). Within
this framework we can restate (3.18) in a simpler form for a one dimension function
and prove that:

Theorem 3.1. Given a function f(t) =
∑n

j=1 e
−λjtµj the condition that |f(t)| <

ǫ for t ∈ [0, 2π/minj{λj} is not sufficient to ensure that |f(t)| < ǫ for t ∈ [0,∞).
Proof. To prove Theorem 3.1 we can check that if the λj are not well separated

then it is possible to have a combination of similar frequencies that build up on a
total frequency that is the lowest common multiplier of the initial frequencies. In the
general form if for one or more ̺k we have the resonance condition:

̺k(t) = αe−i2πλt −
∑

j

βje−i2π(λ+δj)t, (3.21)

and βj , α > 0 rationals such that α =
∑

j βj . ∃ small enough δj s.t. we have that
|̺k(t)| < ǫ, t ∈ [0, δt] but at the periodic maximum t > δt s.t. |f(t)| = α+

∑

j βj ≫ ǫ.
We provide a specific counter–example for the Zero Track Elimination; for instance

the function:

f(t) = e−i2πt − 1

2
e−i2π(1.001)t − 1

2
e−i2π(0.999)t. (3.22)

If we look at the δt evaluated looking at the lowest isolated frequency we have that
δt ≃ 1, within this time max|f(t)| ≃ 2× 10−5 but clearly the maximum amplitude of
this periodic function will be 2.

In order to ensure the validity of (3.18) even with δt that depends on σ(L) rather
than the Larmor frequencies, we need to check the separation of the eigenvalues,
and obviously an analysis of that kind would be as expensive as a whole simulation.
While it is not clear how a resonance condition like (3.21) would arise in practice,
the possibility of behavior mimicking (3.21) becomes more and more likely with an
increase in system complexity.

Focusing on NMR simulations, however, the reason why ZTE performs well in
practice [10] lies in the fact that the numerical comparison with other methods is not
performed on ̺(t) but on the observables (2.6). In particular for experimental reasons
the only quantity that can be compared with experiments is the Free Induction Decay
signal (FID) defined as:

f(t) = Trace {̺(t)Ip} (3.23)

̺(t) can be written as combination of Pauli matrices, and Ip is the shift up operator:
Ip = Ix + iIy. The Fourier transform of f(t) gives then the spectrum of the sample,
where each resonant frequency is revealed by a peak. Due to relaxation effects in the
experiments the shapes of the resonance peaks are not delta function, as it would
be expected from (3.20) but are smoother. To mimic this smoothness also for the
simulated data it is common practice to evaluate the Fourier transform not of (3.23)
but on a exponentially decaying function f̃(t):

f̃(t) = e−ξtf(t), (3.24)

8

where the parameter ξ comes from other fitted data [32]. The main effect of (3.24)
is exactly to smooth out all the low frequency modes that will differentiate ̺(t) from
̺Z(t).

There are however some drawbacks:
• For this method there is no available convergence theory;
• The performance depends strongly on the initial condition ̺0, and on H . As
expected, in our tests the size of the reduced system could change by a factor
of two depending on the number of interacting spins. The reason for this
effect comes from the fact that the less sparse is L, the more non–zero states
may appear within the first steps and this will make a less effective reduction
Lz;

• Another reason of the strong dependence of ZTE on the initial conditions
comes from (3.15); depending on the Larmor frequencies, and on the timestep
size the number of evolution steps at the beginning can become large, and as
this the most expensive part of the simulation the influence of it on the total
computational costs may become important.

4. A new approach: The Direct Expectation values via Chebyshev.

The common point of all the methods presented in the previous section is that they
involve the propagation of the matrix ̺, and for this reason they suffer from requiring
that matrix operations (or matrix-vector operations) be performed at each step of
calculation. Let us recall that the only quantities that can be compared between
quantum simulations and experiments are the observables, for an operator Q̂ we have:

〈Q̂(t)〉 = Trace{̺(t)Q̂}. (4.1)

The first step of DEC is to perform a Chebyshev expansion as seen in section 3.2, to
get:

̺(t) = e−iLt̺0 ≈ e−itS

(

nmax
∑

k=0

ck(tD)Tk(Ls)̺0

)

, (4.2)

If we insert (4.2) into (4.1) we find:

〈Q̂(t)〉 = Trace

{(

e−itS
nmax
∑

k=0

ck(tD)Tk(Ls)̺0

)

Q̂

}

. (4.3)

By exploiting the linearity of the trace operation we can pull out of the trace all
time–dependent parts, and evaluate a priori the coefficients Tk(Ls). In fact we may
rewrite (4.3) as:

〈Q̂(t)〉 = e−itS
nmax
∑

k=0

ck(tD)Trace
{

Tk(Ls)̺0Q̂
}

. (4.4)

This is the key equation of the DEC method as it is possible to store an array of scalar
values R̃k(Ls) = Trace{(Tk(Ls)̺0)Q̂}. All the time–dependent terms are just scalar
values that have to be multiplied by R̃k(Ls) to get the evolution of Q̂ at any time:

〈Q̂(t)〉 = e−itS
nmax
∑

k=0

ck(tD)R̃k(Ls). (4.5)

If more than one observable is required it is still possible to use DEC. The only
difference with the single expectation case is that we need to store different sets of
R̃k, one for each operator Q̂.

9

4.1. Stopping Criterion. The number of terms for the polynomial expansion
in (3.6) depends on a prescribed tolerance ε, and on the time tD. In other methods
based on Chebyshev approximation [3], the following has been suggested as a stopping
criterion:

nmax s.t. ‖cnmax
(tD)‖ < ε. (4.6)

Due to the zeros of the Bessel function J(t), at fixed time tD, (4.6) may hold for
some n, even though the expansion has not yet reached the convergence regime; it
may happen that for n1 > n we have that cn1

(tD) > cn(tD). To avoid this effect it is
enough to use as a stopping criterion a combination of two Bessel functions; the cost
of such a stopping criterion is that at most we need to perform an extra iteration step
(3.7). In our numerical tests we have used the following:

nmax s.t.
√

‖cnmax−1(tD)‖2 + ‖cnmax
(tD)2‖ < ε. (4.7)

The total time τ plays a role here, since the larger τ the more terms (Tk, ck) will be
needed to get |ck|, below the threshold ε.

4.2. Computation of the Expansion. In order to optimise the number of
terms we evaluate, but without having to check at each step whether we have already
evaluated enough terms Tk(Ls), we propose to evaluate first 〈Q̂(t)〉, at the final time
τ , and to store the Nmax values of R̃k(Ls). We can prove that:

Theorem 4.1. Given a Chebyshev expansion for an exponential e−iLt̺0 if (4.7)
holds for a given time τ and small enough ε then (4.7) holds for any time t ≤ τ .

Proof. From Equation (3.7) it is clear that ck depends on the Bessel functions.
If we look at the asymptotic behaviour of the Bessel function of first kind, for any
k ∈ N , we have that, for k fixed [30]:

Jk(t) ∼
1

Γ(k + 1)

(

t

2

)k

, lim t → 0, (4.8)

where Γ(t) is the Euler–Γ and for n ∈ Z we have that Γ(n) = (n − 1)!. Equation
(4.8) shows that for any k 6= 0, in a neighbourhood of t = 0, Jk(t) is increasing
monotonically with respect to t. This behaviour is maintained for the whole interval
[0, j′k] where j′k is the first zero of the derivative of Jk(t). It is possible to show (see
[30], Eq.9.5.2), that k ≤ j′k; consequently we can say that if (4.7) holds for a given
nmax at τ and τ ≤ nmax, then we are in the monotonically increasing region for
Jnmax

(t) and Jnmax+1(t). In this case, equation (4.7) holds also for any t ≤ τ .

4.3. Efficient Implementation. The cost of DEC is all in the first step. Note
that the cost of the evaluation of any Tk(Ls) itself is roughly equivalent to that of a
matrix–matrix multiplication, as per the iteration Tk+1(Ls) = 2TkLs − Tk−1, (3.8).
But what is actually needed in all our calculations is Tk̺0. Because of the linearity of
the iterative expression, we may multiply T0 and T1 by ̺0 and then use (3.8) directly
on Tk̺0. The iterated operation is then just a matrix–vector multiplication. This
is the well known reason of the good computational performances of the Chebyshev
expansion for large sparse matrices.

After all the R̃k(Ls) needed have been stored, it is possible to get 〈Q(t)〉 at any
time t ∈ [0, τ] by evaluating:

〈Q(t)〉 = e−iDts

nmax
∑

k=1

ck(ts)R̃k(Ls) (4.9)

10

0 5 10 15 20
−0.5

0

0.5

1

t

J(
t)

J
0

J
1

J
5

J
10

J
15

Fig. 4.1. Example of few integer order Bessel Functions of the first kind.

where the ck are evaluated iteratively via (3.7), and nmax satisfies (4.7) for tD.
For the details of the algorithm we refer to the Appendix. As a final remark we note
that if the Hamiltonian is time–dependent it is not possible to apply DEC, as it is
not possible anymore to isolate the time–dependent part out of the trace.

4.4. Comparison of DEC with KPM. In this section we compare our DEC
method with the Kernel Polynomial Method (KPM), introduced in the field of con-
densed matter physics as a method to compute spectral properties, such as the density
of states [13, 31]. The methods appear to be similar, as both involve storing traces,
but as we explain below, they are fundamentally quite different schemes. The density
of states is defined, for a Hamiltonian H with spectrum Eλ, as

N(E) =
∑

λ

δ(E − Eλ), (4.10)

where δ(E − Eλ) is the Dirac delta.
The main idea of this method is to expand N(E) into Chebyshev polynomials:

N(E) =
1

π
√
1− x2

[

µ0 + 2

∞
∑

n=1

µnTn(E)

]

, (4.11)

with moments (i.e. coefficients of the expansion)

µn =

∫ 1

−1

Tn(x)N(x)dx = Trace{Tn(H)} ≃ lim
Nr→∞

[

1

Nr

∑

r

〈r|Tn(x)|r〉
]

, (4.12)

the µn values may then be evaluated once and for all and stored. For a detailed
description of such a method, see e.g. [11].

In DEC, on the other hand, which is concerned with the time–dependent evolu-
tion, the moments of the expansion in (4.2) are time–dependent, but we do not need

11

Fig. 5.1. Left: Sparse structure of the Liouvillian (n = 1024, nz = 11232) for a system of 5
spins. Right: Structure of the Liouvillian (n = 65536, nz = 1900288) for a system of 8 spins. Both
figures refer to strong coupling systems.

to evaluate them by performing each time the dot product of the exponential function
with the polynomials Tn as the µn in our case are known to be the Bessel functions.

A lot of effort in the development of KPM is focussed on issues arising from having
to find the µn (like evaluating the expansion at points x where the original function
is not differentiable), all of these techniques do not apply for DEC.

For DEC, instead, we have to compare the Bessel functions at different times to
check the convergence of the series, and Theorem 4.1 has been developed for this very
purpose. For this reason we store the traces of the polynomial themselves, which are
time–independent in the DEC case, and which may be used again at different time
evaluations.

5. Numerical Experiments. Nuclear spin dynamics provides a perfect exam-
ple to test DEC, because the final outcome of the simulations is an observable, the
free induction decay (FID) signal, and this result is the sole important quantity, as it
is the only data available from experiment.

As Hamiltonian we assumed a sum of isotropic chemical shift and the isotropic
term of a pair interaction called Homonuclear J–couplings, that depend on the inner
product Ij · Ik [32]:

H = −
n
∑

j=1

ω0
j I

z
j +

n
∑

j,l=1

JjlIj · Il. (5.1)

For the initial density matrix we set ̺0 = −Iy, that is the result of the application of
a so called x-pulse to a sample already under the effect of a strong constant magnetic
field along the z direction [32]. This is the usual initial condition when the acquisition
of the signal starts.

An illustration of the structure of the Liouvillian matrix is presented in Fig.5.1.
The sparsity depends on the number of interactions among the spins. In most cases
the J–coupling interaction matrix J is relatively sparse. In our numerical test a strong
coupling system, where J is dense and each spin interacts with every other spins, was
simulated.

Due to the fact that our implementation involves only matrix–vector multiplica-
tion, techniques developed both for structured and unstructured sparse matrices may

12

Fig. 5.2. Logarithmic comparison of computational costs for Lanczos, Zero Track Pruning
(ZTE) and Direct Expectations via Chebyshev (DEC), with dt = 0.1 N = 1000.

be exploited.

For comparison of computational costs we tested this method with an increasing
number of spin particles using different methods to evaluate the exponential. In par-
ticular to examine the error we compared DEC with the expm function of MATLAB,
that uses a scaling and squaring algorithm with Padé approximation. In this way we
evaluate once for all U = e−iLdt where dt is the step size of the simulation, and then
at each time–step we propagate ̺:

̺n+1 = U̺n. (5.2)

It is well known that in terms of computational costs this simplistic approach performs
poorly, so we compared DEC also with the methods presented in this paper.

The other three alternate methods we compared DEC with are the ZTE [10],
Krylov expansion via Lanczos [33], and the Chebyshev expansion.

For the Lanczos method we have used the function expv of the package EXPOKIT
[33] written in MATLAB.

5.1. Summary of Results. The error-to-cost (measured in CPU time) dia-
grams are shown in Figure 5.2 for all the methods described. All the numerical tests
have been performed on a Dell PowerEdge 1950 with 4GB RAM and a DualCore Intel
processors running in 32bit mode. The language used is MATLAB. To avoid instabil-
ities coming form the evaluation of the Bessel functions in these numerical tests we
set the tolerance to be ε = 1e− 7.

It is clear that for that DEC is almost an order of magnitude more efficient than
the alternatives. DEC performs at its best for short time simulations (i.e. when the
total time τ is small), so that we do not need to evaluate a large number of Tk, and
when at the same time the use of small time step dt is required, as the cost for any
step after the first is negligible.

For instance, while for all the other methods the cost of a 1000 step simulation
with dt = 0.1, is approximately half the cost of a simulation of 1000 steps with
dt = 0.01, for DEC there is a gain of almost an order of magnitude, see Figure 5.3.

13

Fig. 5.3. Logarithmic comparison of computational costs for Lanczos and DEC when simulating
for the same number of total steps N but with different stepzise dt. N = 1000 in both the cases.

n spin Matrix size expm expv Chebyshev ZTE Reduceda DEC
2 16 0.08 0.99 0.54 1.06 8 0.39
3 64 0.1 1.41 0.68 1.79 30 0.60
4 256 0.17 1.88 0.95 2.26 112 0.76
5 1024 1.5 7.87 2.40 5.80 420 1.14
6 4096 40.84 29.78 9.60 24.51 1584 1.93
7 16384 165.06 102.92 112.85 6006 16.11
8 65536 677.22 129.93
9 262144 542.98

Table 5.1

Comparison of computational costs, CPU time in seconds, for dt = 0.1, N = 1000.

aSize of ̺ for the reduced system

6. Conclusion. In this article we have presented a new method for simulation
of an observable in a mixed quantum system. By expanding the exponential of the
Hamiltonian in Chebyshev polynomials, and exploiting the trace operation performed
when evaluating the expectation value of an observable, it is possible to reduce the
evolution of any observable to a one–dimension function that can be evaluated directly.

We also presented an optimal algorithm to perform such a calculation, and showed
how this new method can easily compete in term of computational costs with a variety
of model reduction approaches, whilst maintaining the approximation errors below a
chosen threshold.

Moreover, we have discussed the ZTE method in some detail, demonstrating why
it cannot be reliable in every case and also clarifying why it performs well in the
setting of solid state NMR simulation.

Acknowledgements. G.M. is very grateful to Arieh Iserles for useful suggestions
at the starting of this work. We are also thankful to the anonymous referees for their
helpful comments. This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC).

Appendix A. The DEC algorithm. We provide here a detailed description
of the algorithm. TM

k indicates the matrix of size n built from the vector T V
k as in

14

(2.5) inputs: L (an n× n Hermitian matrix, ̺0 vector of dimension n
outputs: expectation value f(t) evaluated at (j∆t), j = 1, . . . , N .

1. evaluate α,β via Lanczos s.t. α ≤ σ(L) ≤ β
2. scale L and get Ls

3. evaluate T V
0 = Id̺0, T

V
1 = Ls̺0

4. while ‖ck‖ < ε
5. ck = (2 − δk,0)(−i)kJk(τS), τ = total time
6. T V

k+1 = 2LsT
V
k − T V

k−1

7. store R̃k = Trace{(TM
k)Q̂}

8. end

9. for j = 1 : N
10. re-evaluate the ck at different time t = jdt

11. f(j) =
∑nj

max

k=1 ckR̃k

12. end

REFERENCES

[1] H. Tal–Ezer and R. Kosloff, An accurate and efficient scheme for propagating the time–
dependent Schrödinger equation, J. Chem. Phys., 81, pp. 3967–3971 (1984).

[2] A. Vijay and H. Metiu, A polynomial expansion of the quantum propagator, the Green’s func-
tion and the spectral density operator, J. Chem. Phys., 116, pp. 60–68 (2001).

[3] M. Veshtort and R. G. Griffin, SPINEVOLUTION: a powerful tool for the simulation of
solid and liquid state NMR experiments, J. Magn. Reson., 178, pp. 248–282, (2006).

[4] G. Moro and J. H. Freed, Calculation of ESR spectra and related Fokker–Plank forms by the
use of the Lanczos algorithm, J. Chem. Phys. 74(7), pp. 3757–3773 (1981).

[5] T. J. Park and J. C. Light, Unitary quantum time evolution by iterative Lanczso reduction,
J. Chem. Phys., 85(10), pp. 5870–5876, (1986).

[6] K. Kormann, S. Holmgren and H. O. Karlsson, Accurate time propagation for the
Schrödinger equation with an explicitly time-dependent Hamiltonian, J. Chem Phys.,
128(18), pp. 184101–18412, (2008).

[7] R. H. Hardin and F. D. Tappert,Applications of the split–step Fourier method to the numerical
solution of nonlinear and variable coefficient wave equations, SIAM Rev. 15, pp. 423, (1973).

[8] C. Leforestier et. al., A comparison of different propagation schemes for the time–dependent
Schrödinger equation, J. Comp. Phys. 94, pp. 59–80 (1991).

[9] C. Lubich From quantum to classical molecular dynamics: reduced models and numerical anal-
ysis, Zurich Lectures in Advanced Mathematics, Zurich, (2008).

[10] I. Kuprov, Polynomially scaling spin dynamics II: Further state–space compression using sub-
space techniques and zero track elimination, J. Magn. Reson., 195, pp. 45–51, (2008).

[11] A. Weiße, G. Wellein, A. Alvermann and H. Fehske, The kernel polynomial method, Rev.
Mod. Phys., 78(1), pp. 275–306, (2006).

[12] H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University
Press, (2002).

[13] H. Röder, R. N. Silver, Kernel polynomial method for a nonorthogonal electronic–structure
calculation of amorphous diamond, Phys. Rev. B, 55(23), pp. 15382–15385, (1997).

[14] C. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a matrix,
twenty–five years later, SIAM Review, 45(1), pp. 3–49 (2003).

[15] Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential opera-
tor,SIAM J. Num. Anal., 29(1), pp. 209–228 (1992).

[16] C. Bekas, Y. Saad, M. L. Tiago and J. R. Chelikowsky, Computing charge densities with
partially reorthogonalized Lanczos, Comp. Phys. Comm., 171(3), pp. 175–186, (2005).

[17] M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential
operator, SIAM J. Num. Anal. 34(5), pp. 1911–1925 (1997).

[18] J. C. Schulze, P. J. Schmid and J. L. Sesterhenn, Exponential time integration using Krylov
subspaces, Int. J. Numer. Meth. Fluids, 60, pp. 591–609 (2009).

[19] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, (2008).
[20] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential

and integral operators J. Res. Nat. Bur. Standards, 45, 255–282 (1950).

15

[21] G. H. Golub and C. F. Van Loan, Matrix Computations, The John Hopkins University Press,
Baltimore, (1996).

[22] J. Cullum and R. A. Willoughby, Lanczos algorithms for large symmetric eigenvalue com-
putations, Birkhäuser, Boston, (1985).

[23] Y. Zhou, Y. Saad, M. L. Tiago and J. R. Chelikowsky, Self–consistent–field calculations
using Chebyshev–filtered subspace iteration, J. Comp. Phys. ,219(1), pp. 172–184, (2006).

[24] R. B. Lehoucq, D. C. Sorensen and C.Yang, ARPACK USERS GUIDE: Solution of large
scale eigenvalue problem by implicit restarted Arnoldi methods, SIAM, (1997).

[25] L. Bergamaschi, M. Caliari and M. Vianello. Efficient computation of the exponential oper-
ator for discrete 2d advection–diffusion equations, Numer. Lin. Alg. Appl., 10(3), pp. 271–
289, (2003).

[26] F. W. J. Olver and D. J. Sookne, Note on Backward Recurrence Algorithms, Math. of
Comp., 26(120), pp. 941–947, (1972).

[27] C. W. Clenshaw, Chebyshev Series for Mathematical Functions, Mathematical Tables, 5, H.M.
Stationery Office, London, (1962).

[28] M. Hochbruck and C. Lubich, Exponential Integrators for Quantum-Classical Molecular Dy-
namics, BIT Num. Math., 39(4), pp. 620–645, (1999).

[29] M. Bak, J. T. Rasmussen and N. C. Nielsen, SIMPSON: a general simulation program for
solid–state NMR spectroscopy, J. Magn. Reson. 147, pp. 296–330, (2000).

[30] M. Abramowitz and I. A. Stegun Handbook of mathematical functions, Dover, New York,
(1964).

[31] Y. Saad and J. R. Chelikowsky, Numerical methods for electronic structure calculations of
materials, SIAM Rev., 52(1), pp. 3–54, (2010).

[32] M. H. Levitt, Spin Dynamics, Wiley, Chichester, (2001).
[33] R.B. Sidje, EXPOKIT: A software Package for Computing Matrix Exponentials, ACM Trans.

Math. Softw., 24(1), 130–156, (1998).

16

