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Abstract
In part one of this paper [T. Butler and D. Estep, SIAM J. Numer. Anal., to appear], we develop
and analyze a numerical method to solve a probabilistic inverse sensitivity analysis problem for a
smooth deterministic map assuming that the map can be evaluated exactly. In this paper, we treat
the situation in which the output of the map is determined implicitly and is difficult and/or
expensive to evaluate, e.g., requiring the solution of a differential equation, and hence the output
of the map is approximated numerically. The main goal is an a posteriori error estimate that can be
used to evaluate the accuracy of the computed distribution solving the inverse problem, taking into
account all sources of statistical and numerical deterministic errors. We present a general analysis
for the method and then apply the analysis to the case of a map determined by the solution of an
initial value problem.

Keywords
a posteriori error analysis; adjoint problem; density estimation; inverse sensitivity analysis;
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1. Introduction
In part one of this paper [4], we develop and analyze a numerical method to solve an inverse
stochastic sensitivity analysis problem for a smooth deterministic map. Namely, given a
(probability) measure on the output of the map, compute the (probability) measure on the
input space (comprising data and/or parameters) that produce the output measure. This is the
stochastic version of the deterministic inverse problem for the map, and it is also the direct
inversion of the forward stochastic sensitivity analysis problem for the map. As such, it
deals directly with the inverse of the map in question, rather than, say, a statistical model of
the output of the map.

In [4], we formulate this inverse problem using the law of total probability and then analyze
an approximate solution method assuming that the map in question can be evaluated exactly.
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The solution method borrows heavily from techniques used inmeasure theory. The
computed solution provides a systematic method for approximating the probability of any
specified event in the input space.

However, our interest lies in situations in which the output of the map is determined
implicitly and is difficult and/or expensive to evaluate, e.g., requiring the solution of a
differential equation. In addition, we wish to consider the situation in which the measure on
the output of the map is only described approximately using a finite number of samples.
These practical discretization choices introduce additional numerical errors that affect the
computed inverse distribution.

In this paper, we carry out an analysis of the effects of these two numerical discretizations
on the computed inverse distribution. As a consequence of the analysis, we prove that the
numerical error of the approximate parameter density computed from the algorithm for
solving the inverse problem converges to zero as the discretization (both statistical and
deterministic) converge to zero. But our main goal is the derivation of an a posteriori error
estimate that can be used to evaluate the accuracy of the computed distribution solving the
inverse problem, taking into account all sources of statistical and numerical deterministic
errors.

While our particular interest is a numerical analysis of the method constructed for the
inverse problem in [4], aspects of the analysis we present hold general interest. We present a
general error analysis for a computed probability distribution accounting for the effects of
finite sampling and errors in each sample resulting from evaluation of a numerically
approximated map. Because of the application to inverse problems, we also require error
estimates for gradients of quantities of interest computed from numerical solutions of
ordinary differential equations, which again is of interest in other contexts, e.g., applications
to optimization.

1.1. The inverse problem
As mentioned, the problem we study in [4] is a direct inversion of the forward stochastic
sensitivity problem for a deterministic model. We consider an operator q(λ) that maps
values in a parameter (and data) space Λ to an output space D. We assume there is a
parameter volume measure μΛ on Λ that determines the volume of sets in Λ. The volume
measure depends on the units of measure used for the parameters and also reflects the
structural dependency among the parameters, e.g., depending on whether μΛ is a product
measure. The volume measure is specified as part of the model that defines the map q(λ)
since the parameters must be explicitly defined in the physical model that determines q. We
assume that μΛ is absolutely continuous with respect to the Lebesgue measure and the
volume V of Λ is finite.

The deterministic model can be expressed in terms of a likelihood function L(q|λ) of the
output q values given the input parameter values λ, where L(q|λ) = δ(q–q(λ)) is the unit
mass distribution at q = q(λ). If we specify a density σΛ(λ) on the parameter space Λ, then
the law of total probability implies

(1.1)

The stochastic inverse sensitivity analysis problem that we study is the inversion of the
integral equation (1.1). Namely, we assume that an observed probability density  is
given on the output value q(λ) and we seek to compute the corresponding parameter density
σΛ(λ) that yields  via (1.1).
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1.2. The solution method
In [4], we present a computational measure theoretic algorithm to approximate the solution

of the inverse problem (1.1) by a simplefunction σΛ,M’(λ) with respect to a partition 
of Λ. Paraphrasing the main result from [4], we have the following theorem.

THEOREM 1.1. Given a measurable set A ⊂ Λ, we can approximate P(A) using the simple
function

(1.2)

The constructive proof yields a computational algorithm that generates a probability P(bi)
for each cell bi, using only calculations of volumes in Λ. The main steps of the algorithm are
based on the following observations:

• The probability of an interval of output data [qm, qM)  is equal to the
probability of the region generalized contours defined by A = q−1([qm, qM)).

• If  is constant on [qm, qM), then the probability of b∩A for any event b ⊂ Λ
is equal to the probability of A times the ratio of volumes μΛ(b∩A)/μΛ(A).

Thus, the algorithm proceeds by first approximating  with a simple function, which
induces regions of contours with probabilities defined by the approximate output density.

Then, the ratios of volumes for each cell in the partition  are computed with respect to
all the induced regions of contours. From this, we obtain P(bi) for each cell and obtain (1.2).

The main focus of the analysis in [4] is on the convergence of the approximate

representation to the true representation on a given partition  assuming that map the
map is evaluated exactly.

1.3. Sources of error
In this paper, we analyze and estimate errors affecting the values {P(bi)} in the

representation (1.2) for a fixed partition . Since we fix the partition , we simplify
the notation in [4] by dropping the hat on the piecewise-linear representation q̂(λ) of q(λ).

In particular, we consider two sources of error that affect the approximation of the
representation σΛ,M’(λ). The first is “statistical error” that arises if the observed probability
density  is known only through a finite collection of random samples. This type of
error affects the left-hand side of (1.1). For example, finite sampling of the distribution of
random variable q(λ) is used when the observed distribution is complicated to evaluate or
when it is determined by experimental observations. Given an analytic, easy-to-evaluate
distribution function for q(λ), we need not perform any sampling.

The second source of error arises when we use numerical approximations in the evaluation
of the map q, e.g., as happens if q involves solving a differential equation. This means that
we use approximate values of q and its gradient to form the approximate representation q̂(λ)
≈ q̂(λ). This source of error affects the evaluation of the likelihood function in (1.1).

In this paper, we present two kinds of error analysis. We give an a priori convergence
analysis that shows that the error tends to zero as the discretization is refined. This analysis
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uses error bounds that are robust in the sense of holding under general conditions but which
are generally orders of magnitude too large for particular computed solutions. Our main
purpose in this paper is to give an a posteriori error analysis that provides the means to
compute an relatively accurate error estimate on any particular computed solution. The latter
result is important for the purposes of uncertainty quantification and for distributing
computational resources in order to achieve a desired accuracy with efficiency.

We let F(t) denote the probability distribution on Λ that represents (1.2), where , and

(1.3)

Here the inequality, λ ≤ t, is considered componentwise. We use Fq(t) to denote the
probability distribution function of q(λ). To simplify the presentation, we assume bi is
contained in a region of contours Ai induced by the simple function approximation to .
If no sampling is used to evaluate  or Fq(t), then the algorithm yields

(1.4)

where q(bi) = {q(λ), λ ∈ bi}. (If bi ⊄ Ai, then we alter (1.4) to sum over the regions of
induced contours Aj such that bi ∩ Aj ≠ ∅.) Using (1.4) in (1.3) gives

(1.5)

For the first source of error, we let Fq(t) denote a sample distribution function computed
from a finite collection of error-free sample values {Q1, ∆ , },

This leads to an approximation of  defined

Next we consider the use of an approximation q̂(λ) ≈ q(λ), which leads to an error in

computation of . We define the approximate sample distribution function  as

(1.6)

We calculate probabilities using (1.6) and seek to determine the error . We
decompose the error to get
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(1.7)

2. General error analysis for a computed probability distribution
We begin by bounding . We conduct an a posteriori analysis similar to that used for
nonparametric density estimation for elliptic problems with randomly perturbed diffusion
coefficients in [13]. The error in the distribution is bounded by

(2.1)

Using standard statistical arguments [13], for any ∊ > 0,

(2.2)

with probability greater than 1 – ∊. It is possible to prove other forms of this bound [13].
Using (2.2) in (2.1) yields for any ∊ > 0,

(2.3)

with probability greater than 1 – ∊.

For , we assume a bound or estimate Ei for the error in q ̂(bi) on each cell bi. More
precisely, the piecewise linear function q is defined on the partition {Bi} of Λ, where q(λ) =
q(μi) + ∇q(μi)(λ – μi) on Bi and μi is a chosen value in Bi, and q̂(λ) = q̂(μi) + ∇q̂(μi)(λ –
μi) on Bi. Hence the error has the form

(2.4)

Hence, we require estimates or bounds for the errors in both q̂(μi) and ∇q̂(μi), respectively.
The derivation of the a priori bound or a posteriori error estimate is specific to a particular
map q. In section 3, we derive the necessary estimates for nonlinear ordinary differential
equations. Similar results hold for elliptic problems [5].

For convenience, we choose the fine partition {bi} so that for each 1 ≤ i ≤ M’, bi ⊂ Bj for
some 1 ≤ j ≤ M. Thus, for all cells bi ⊂ Bj for a fixed j, there is the same deterministic error
term associated with q̂(bi). We let Ej, 1 ≤ j ≤ M, denote the deterministic error associated
with each q̂(bi) for all bi ⊂ Bj. Using an analogous argument as in [13],
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where E = maxj |Ej|, Mi = max q(bi), and mi = min q(bi).

Using (2.2) for the first two terms on the right-hand side of the inequality we have that for
any ∊ > 0

with probability greater than 1 – ∊. Assuming Lipschitz continuity of the distribution Fq with
constant L, for any ∊ > 0,

with probability greater than 1 – ∊.

Putting together the bounds yields the next theorem.

THEOREM 2.1. For any ∊ > 0,

(2.5)

with probability greater than 1 – ∊. If no sampling is used to evaluate  or Fq(t), then

(2.6)

Note that F̂(t) is the distribution calculated using exact values of  but approximate
values of q.
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3. Application to nonlinear ordinary differential equations
We apply the general error analysis to a finite dimensional map q defined implicitly by the
solution to a differential equation that depends on a finite number of parameters in the
model. We consider the initial value problem

(3.1)

where ,  is smooth, and  are the
parameters. We solve (3.1) to calculate a linear functional of the solution, or a quantity of
interest,

(3.2)

We assume that the solution y of (3.1) depends (implicitly) on parameters λ in a smooth
way and denote solutions of (3.1) as yλ and the quantity of interest as q(λ) to emphasize the
implicit dependence of the quantity of interest on the parameters. The smooth dependence of
solutions to (3.1) on parameters λ implies the dependence of the quantity of interest on λ is
also smooth.

3.1. Construction of the piecewise-linear representation
Computing the gradient information is problematic for a differential equation. We use an
adjoint equation and variational analysis to do this implicitly. We solve the initial value

problem at a reference parameter value ,

(3.3)

where (yμ, μ) is a reference point. We define the exact adjoint problem,

(3.4)

The following theorem [25] relates the value of q(λ) to q(μ) for λ near μ.

THEOREM 3.1. If f(y; λ) is twice continuously differentiable with respect to both y and λ and
Lipschitz continuous in both y and λ, then the quantity of interest is Fréchet differentiable at

(yμ, μ) with derivative  given by

(3.5)

Additionally,

(3.6)

In the absence of numerical error,
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(3.7)

for λ close to μ.

The global piecewise-linear approximation on the partition  of Λ is constructed by
using the local linearization on each cell Bi to obtain

(3.8)

where μi is the reference parameter value chosen in cell Bi.

3.2. Discretization
The a posteriori error estimate uses a variational analysis after introducing an adjoint
problem. The variational analysis makes it natural to write the discretization method in the
finite element framework. This is not restrictive as most common finite difference schemes
can be written as a finite element method with a particular choice of quadrature for
evaluating integrals.

A finite element method is based on the variational formulation of the differential equation.
For the differential equation,

(3.9)

the problem is to find  such that

(3.10)

for all . (We use g instead of f because there are several problems that have to
be solved below.)

We compute a solution on the interval [0, T], and we discretize the interval 0 = t0 < t1 < … <
tN = T with time intervals Ij = (tj–1, tj) and time steps kj = tj–tj–1. The finite element method

produces a piecewise polynomial approximation. We use  to denote the space of
polynomials of degree q and less on time interval Ij and define the space of piecewise
polynomials,

We consider the discontinuous Galerkin (dGq) finite element method that produces an
approximate solution  [18]. Since X may be discontinuous at time nodes, we define

, and . The approximation is

computed interval by interval. We set X0 = x0. Then we compute 
successively for j = 1, 2, … , N, satisfying
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(3.11)

Remark 3.1. If g(x, t) ≡ g(x) and q = 0, the dG0 approximation matches the backward Euler
approximation at the time nodes. In general, we may obtain various difference schemes, e.g.,
the subdiagonal Pade schemes, by employing quadrature to evaluate the integrals in (3.11)
[17, 27]. There is also a continuous Galerkin (cG) approximation that produces yet other
classes of approximations [9]. We carry out the analysis below for the dG scheme assuming
the integrals in (3.11) are computed exactly. The extension of the a posteriori analysis to
handle quadrature and the cG method is straightforward [12] and we do not discuss this
further.

3.3. The effect of using an approximate solution on the piecewise-linear representation
The main interest is in treating the effects of using a numerical approximation Yμ in the
linearization of the forward problem used to construct an adjoint. We define the approximate
adjoint using (3.4) with “perturbed” operator Dyf(Yμ; μ1),

(3.12)

We assume f(y; λ) is twice continuously differentiable with respect to both y and λ, so that
standard convergence results for Yμ imply that over some (short) time interval [0, T],

(3.13)

where ∥·∥V and ∥·∥U are the L2([0, T]) norm of some appropriate matrix and vector norms of
the arguments, respectively.

Let q̂(λ) denote the approximate quantity of interest calculated using (3.6) with Yμ and Φ in
place of yμ and φ,

(3.14)

with error q(λ) – q̂(λ). Taking the difference of (3.7) and (3.14) gives

(3.15)

Term I is a linear functional of the error yμ – Yμ and it can be estimated using standard a
posteriori analysis techniques as described below. Term II measures theeffect of using Yμ
and Φ on the sensitivity of q(λ) to changes in the initial conditions. Term III measures the
effect of using Yμ and Φ on the sensitivity of q(λ) to changes in model parameters.

The terms II and III depend linearly on the vector λ – μ. The analysis below produces
estimates that also depend on this vector linearly so that the error estimates for these terms
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are also linear functions of this vector. Thus, following the analysis described below for p
linearly independent vectors λ – μ, we obtain a set of error estimates such that the error
defined by II and III for any vector λ – μ can be written as a linear combination from this
set of error estimates.

3.4. Convergence and order of accuracy
We can use straightforward a priori error analysis on (3.15) to show that |q(λ) – q̂(λ)
converges at the same order as the dGq method over a short time period under the
assumption that f is twice continuously differentiable.

3.5. Estimate of the error in a quantity of interest
We compute an a posteriori error estimate using variational analysis and adjoint problems
[9, 18, 7, 8, 12, 27, 6]. We begin by recalling the a posteriori estimate of error in a quantity
of interest. Let X denote the dGq approximation to (3.9) and let e = x – X, where x solves
(3.9) exactly. We linearize around X in the sense of perturbing the operator to arrive at the
adjoint problem

(3.16)

where . For simplicity, we use g’ for  below. If ψ1(t)
≡ 0, then the quantity of interest is (e(T), ψ2). If ψ2 = 0, then the quantity of interest is

 dt.

Assume ψ1(t) ≡ 0 in (3.16). Take the inner product of the adjoint problem with e and
integrate from 0 to T to obtain

(3.17)

We decompose (3.17) into a sum of integral equations over each time interval in the
discretization and integrate by parts over each interval to get

(3.18)

Since e = x – X might be discontinuous at the boundaries of each interval, we expand the
first term on the right-hand side of (3.18) to

(3.19)

with  n–1 = ∂(tn–1). Substitution of (3.19) into (3.18) and rearranging the terms yields

Substituting e = x – X and using ẋ – g(x) = 0 gives
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(3.20)

Similarly, if ψ2 = 0 and ψ1(t) is nonzero for some t ∈ (0, T), we obtain

(3.21)

We summarize as the following theorem.

THEOREM 3.2. A computable estimate of the error in a quantity of interest of (3.9) is obtained
by solving (3.16) and computing either (3.20) or (3.21).

Implementation details—Using the a posteriori estimate involves several important
practical considerations. We discuss two.

Often “Galerkin orthogonality” is used to introduce a projection of the adjoint solution into
the approximation space for the forward solution. This makes the estimate easier to compute
and has the effect of “localizing” the error contributions from each time step.

The estimate (3.20) is computable provided that we can compute the adjoint solution ∂. This

raises several issues. The first is that we cannot use  in practice since this requires

the unknown solution x. Typically, we use . The effect of this
approximation on the computation of ∂ can be analyzed, e.g., [10]. The error depends on the
accuracy of X, so typical short time error bounds can be proved. The second issue is that in
practice we solve the adjoint problem using a numerical method, typically using a higher-
order method than used for the forward solution.

The consequence is that in practice we use an approximate adjoint solution. We can alter the
analysis below to take into the account the effect on the estimate, but this significantly
complicates the presentation of the results while it is generally not significant.

3.6. Estimating term II in (3.15)
We first observe that term II is a linear functional of the error arising from solving the exact
adjoint with the approximate adjoint. We adapt the a posteriori analysis to estimate the error
of this approximation. We define the adjoint to the approximate adjoint as

Since ẇ – Dy f(Yμ; μ) = 0, we have
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This gives

(3.22)

By adding and subtracting Dyf(Yμ; μ1)⊺ ϕ to the differential equation in (3.4) for the exact
adjoint, we have

(3.23)

Substituting (3.23) into (3.22) and using (3.12), we have

(3.24)

(3.25)

We show that the second term on the right-hand side of the last equation is higherorder and
estimate the first term on the right-hand side. If f(y; λ) is three times continuously
differentiable, then we use Taylor’s theorem to get

where J denotes the n × n identity matrix and the vector operator denoted vec is a map from
 defined by stacking the columns (in order) of a matrix to form a column vector.

We let

The first term on the right-hand side is a linear functional of the error yμ – Yμ and can be
estimated by Theorem 3.2.

We now show that the second term is higher-order. Let η = ϕ – Φ then

(3.26)

If Yμ is sufficiently close to yμ over [0, T], then

(3.27)

where ∊(t) is a perturbation matrix satisfying ∥∊(t)∥ ≤ C ∥yμ – Yμ∥ for some C > 0 and all t ∈
[0, T]. Substituting (3.27) into (3.26) gives
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(3.28)

Let Σ(t) denote the fundamental matrix of (3.29); then

This implies that

(3.29)

Here, ∥·∥U is interpreted as before to mean the L2([0, T]) norm of a given vector norm of the
argument, and C > 0 is some constant that bounds the product of supt∈[0,T] ∥Σ(t)∥, supt∈[0,T]
∥Σ(t)−1∥, and supt∈[0,T] ∥Φ(t)∥. Thus, by Lipschitz continuity of the first derivatives of f(y;
λ) and (3.29),

3.7. Estimating term III in (3.15)
Add and subtract 〈Dλ f(Yμ; μ1)(λ1 – μ1),ϕ〉 and write III = IIIa + IIIb, where

and estimate IIIa and IIIb.

Estimating term IIIa. Add and subtract 〈(Dλf(yμ; μ1) – Dμf(Yμ; μ1))(μ1 – μ1), Φ〉 and write
IIIa = IIIaa + IIIab, where

We show that IIIaa is higher-order. We know that ∥ϕ – Φ∥ ≤ C ∥yμ – Yμ∥U for some
constant C > 0; therefore

for some constant C > 0.

Again assuming that f(y; λ) is three times continuously differentiable,
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We substitute this estimate into IIIab so that

We let

Thus, we have represented IIIab as a linear functional of the error in yμ – Yμ, which can be
estimated by Theorem 3.2.

Estimating term IIIb. We let ψIIIb = Dλf(Yμ, μ1)(λ1 – μ1) so that

Thus, IIIb is a linear functional of the error in the adjoint solutions ϕ – Φ. We apply
Theorem 3.2. We again define an adjoint to the approximate adjoint as

We perform a standard variational argument to obtain

Using (3.26)–(3.28) in the right-hand side above, we have

The two terms on the right-hand side are analagous to (3.24) and (3.25). The second term on
the right-hand side has already been proved to be higher-order. Therefore, the second term is
neglected in the estimate. The first term is estimated similarly to how (3.24) was estimated.
We define

and the first term is approximated by
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which is a linear functional of the error of yμ – Yμ and is estimable by Theorem 3.2. This
completes the proof of Theorem 3.3.

THEOREM 3.3.

Let Yμ and Φ denote the numerical solutions to the initial value problem (3.3) and the
approximate adjoint problem (3.12), respectively.

Apply Theorem 3.2 to estimate termI.

Let pm be the number of model parameters and pi the number of initial conditions (pm +
pi = p)

For I = 1, … , p do

if i ≤ pm then

Let z denote the solutions to the adjoint to the approximate adjoint problem

where δi denotes the ith standard basis vector in 

Set

Solve (3.12) with data given by the above vectors and use Theorem 3.2 to compute the
standard error representations given by

else

Let w denote the solutions to the adjoint to the approximate adjoint problem

where δi denotes the ith standard basis vector in 

Set
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Solve (3.12) with data given by the above vectors and use Theorem 3.2 to compute the
standard error representations given by

end if end for Fix λ and set u := λ – μ, where

The error q(λ) – q̂(λ) is given by

where eu is the computable error estimate given by

This theorem provides a means of computing the Ei required in Theorem 2.1. Set Ei =
maxλ∈Bi eu. For convex polygonal cells Bi, computation of Ei is straightforward since eu is a
linear function of λ, so the maximum occurs on the boundary.

4. Examples
We present examples that illustrate the properties of the computable a posteriori error
estimate. In the case of deterministic computations, it is standard to test the accuracy of the
estimate by direct comparison to the error on problems for which the actual error is known
or can be approximated using an extremely accurate reference solution. However, it is more
complicated to test accuracy for the estimates we have derived for stochastic computations
because of the nature of the a posteriori bound we use for the stochastic component of the
error.

We have explored the accuracy of the a posteriori bound on the effects of finite sampling in
[13, 14]. Likewise, the accuracy of the a posterior error estimate for deterministic problems
is well recorded; e.g., see [9, 18, 7, 8, 12] and many research papers. We do not repeat tests
on these aspects here. Rather, in Examples 1 and 2 we explore the accuracy of the a
posteriori error estimates on errors in computed derivatives that are needed for the estimate
on the solution of the inverse problem. These estimates are new so their properties have not
been explored in the literature. Finally, in Example 3 we present an example in which we
check the a posteriori estimate against a direct approximation of the error.

In all the examples, the numerical solution and error estimates are computed using GAASP.1

We use a first-order discontinuous Galerkin (dG1) method for the forward solve and a
second-order continuous Galerkin (cG2) method for all of the adjoint solves. We use the
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adaptive time step capability in GAASP to control the numerical integration error. In the
first two examples, we terminate time step refinement once the error estimate corrects the
estimated gradient by less than 10%.

4.1. Example 1
The first example is a coupled linear system with four parameters:

(4.1)

The adjoint problem is

(4.2)

Computing the true errors requires knowledge of the exact ϕ. To this end, we choose ψ(t) =
(ψ1, ψ2)⊺ and ϕ(T) = (ϕ1,T, ϕ2,T)⊺ so that ϕ(t) = (t, 1)⊺.

In this linear example, II = 0. We report the error estimates for term III. We take μ = (2, 2,

2, 2)⊺, so .

We consider both T = 3 and T = 10. We plot the forward solutions yμ and Yμ for T = 3 with
two different time steps in Figure 4.1. Table 4.1 shows the error estimate results for T = 3.
Since the computed error estimates tend to be accurate, we can often compute a corrected
gradient by adding the error estimate to the computed (estimated) gradient. We see
improvement in the corrected gradient by comparing the fourth and last columns of Table
4.1. At T = 3, Yμ is a good approximation of yμ at the coarse time step of 0.2 as seen in
Figure 4.1, so the second derivative calculations involving Yμ used in the error estimates
produce accurate error estimates beginning at this time step.

We plot the forward solutions yμ and Yμ for T = 10 with four different time steps in Figures
4.2 and 4.3. The oscillations of yμ increase in magnitude and with higher frequency as time
increases. As seen in Table 4.2, when the error estimate is of the same order of magnitude as
the estimated gradient, the estimate cannot be used to correct the gradient.

4.2. Example 2
The second example is a nonlinear problem with two parameters:

(4.3)

We set μ = (−0.1, 20)⊺ so yμ(t) = 20/ (20 + 1 + (−0.1)20t – cos(20t)). The quantity of
interest is y(T ). The adjoint problem is

1Write to estep@math.colostate.edu for information.
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(4.4)

The solution to (4.4) is ϕ(t) = C(20 + 1 + 20(−0.1)t – cos(20t))2, where C is chosen so ϕ(T )
= 1. Since (4.3) is nonlinear, we report the error estimates for both terms II and III.

We show results for both T = 3.9 and T = 10. We plot the forward solutions yμ and Yμ and
adjoint solutions ϕ and Φ for T = 3.9 and T = 10 with three different time steps in Figures
4.4 and 4.5, respectively. Tables 4.3 and 4.4 show the error estimate results for T = 3.9 and
T = 10, respectively.

4.3. Example 3
We consider the nonlinear example first presented in [4]:

The quantity of interest is the average value of x(t) over the time interval [0, 2]. Thus, we set
ψ(t) = 1[0,2](t)/2 in the adjoint problem. We use a time step of 0.25 to solve at each point of
a 20 20 grid of uniformly spaced parameter values in Λ = [.8, 1.2] × [.1, π × – .1] and
compute the simple function approximation of the σΛ shown in Figure 4.6, where we use
10,000 samples of the quantity of interest to approximate the output density. We denote the
associated distribution function by F̃(1)(t).

We have max1≤i≤M’ (max q(bi) – min q(bi)) ≤ 2.69 × 10−1 and the corresponding estimate is
E ≤ 7.53 × 10−04. The normal distribution imposed on the quantity of interest has a small
variance (approximately 6.72 10−03) so the Lipschitz constant of the distribution is bounded
by 5. Thus, using (2.5) with ∊ = 0.05, we have that

with probability 95%.

In order to compare the computed a posteriori error estimate to the true error, we directly
approximate the error in a computed solution by using another more accurate solution. We
use a time step of 1.0 × 10−02 to compute solutions to the forward problem at each parameter
in the 20 × 20 grid, and we invert using 108 samples of the output data and use the same
resolution in Λ of 60 × 60 small cells to obtain another approximate distribution function
that we denote F̃(2)(t). We compare F̃(1)(t) to F̃(2)(t) and compare to the error bound above.
We evaluate the difference in these distributions at the upper-right corner of each bi and plot
the absolute value of the difference in Figure 4.7. The maximum computed absolute value of
error at these points is less than 6.70 × 10−03, which is within the error bound above.
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Fig. 4.1.
Solutions to (4.1) for T = 3. Left two plots: Yμ,1 and Yμ,2 with a time step of 0.2. Right two
plots: Yμ,1 and Yμ,2 with a time step of 0.1. The dotted lines indicate the corresponding
exact solutions yμ,1 and yμ,2 evaluated on the same time mesh as the dashed-lined numerical
approximations Yμ,1 and Yμ,2.
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Fig. 4.2.
Solutions to (4.1) for T = 10. Left two plots: Yμ,1 and Yμ,2 with a time step of 0.2. Right
two plots: Yμ,1 and Yμ,2 with a time step of 0.1. The dotted lines indicate the corresponding
exact solutions yμ,1 and yμ,2 evaluated on the same time mesh as the dashed-lined numerical
approximations Yμ,1 and Yμ,2.
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Fig. 4.3.
Solutions to (4.1) for T = 10. Left two plots: Yμ,1 and Yμ,2 with a time step of 0.05. Right
two plots: Yμ,1 and Yμ,2 with a time step of 0.025. The dotted lines indicate the
corresponding exact solutions yμ,1 and yμ,2 evaluated on the same time mesh as the dashed-
lined numerical approximations Yμ,1 and Yμ,2.
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Fig. 4.4.
Solutionsto (4.3) for T = 3.9 with a time step of 0.3 (left), 0.15 (middle), and 0.075 (right).
Top plots: Yμ and yμ. Bottom plots: Φ and φ. The dotted lines indicate the corresponding
exact solutions yμ and φ evaluated on the same time mesh theY as dashed-lined numerical
approximations μ and Φ.
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Fig. 4.5.
Solutions to (4.3) for T = 10 with a time step of 0.04 (left), 0.02 (middle), and 0.01 (right).
Top plots: Yμ and yμ for time interval [9, 10]. Bottom plots: Φ and ϕ. The dotted lines
indicate the corresponding exact solutions yμ and ϕ evaluated on the same time mesh as the
dashed-lined numerical approximations Yμ and Φ.
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Fig. 4.6.
Left: The global piecewise-linear approximation to q(λ) using a coarse 20 × 20 set of cells.
The circles in each cell indicate the reference parameter used to linearize q(λ) in that cell.
Right: A contour plot of the computed probability distribution on a grid of 60 × 60 cells
corresponding to a normal distribution on q(λ).
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Fig. 4.7.
Plot of absolute values of approximate errors in probabilities over the 60 × 60 grid of cells
used to approximate the solution to the inverse problem. The errors are approximated using
a more accurate approximation F̃(2)(t) computed using a refined numerical solution with a
time step of 10−2, resulting in E < 10−7, and 108 samples of the output density to make
statistical errors small. The maximum in this plot is approximately 6.70 × 10−03, which is
less than the computed bound 2.55 × 10−02.
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