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Abstract

We overcome two major bottlenecks in the study of low rank approximation by assuming the low
rank factors themselves are sparse. Specifically,

(1) for low rank approximation with spectral norm error, we show how to improve the best known
nnz(A)k/

√
ε running time to nnz(A)/

√
ε running time plus low order terms depending on the

sparsity of the low rank factors, and

(2) for streaming algorithms for Frobenius norm error, we show how to bypass the known Ω(nk/ε)
memory lower bound and obtain an sk(logn)/ poly(ε) memory bound, where s is the number of
non-zeros of each low rank factor. Although this algorithm runs in exponential time, as it must
under standard complexity-theoretic assumptions, we also present polynomial time algorithms using
poly(s, k, log n, ε−1) memory that output rank k approximations supported on an O(sk/ε)×O(sk/ε)
submatrix.

Both the prior nnz(A)k/
√
ε running time and the nk/ε memory for these problems were long-standing

barriers; our results give a natural way of overcoming them assuming sparsity of the low rank factors.

http://arxiv.org/abs/2111.00668v1


1 Introduction

In modern computational problems, one often encounters large scale and high dimensional datasets that are
too large and complex to be understood as is. A common approach to dealing with this complexity is to
find low rank approximations to these datasets. That is, given a matrix A ∈ Rn×d and a target rank k, one
seeks a rank k matrix B ∈ Rn×d such that A is well-approximated by B. This is advantageous, as a rank
k matrix can be written as B = U · V⊤ for an n × k matrix U and a d × k matrix V, which only takes
(n + d)k parameters to describe rather than nd. Oftentimes, the task of finding this B is accomplished by
computing a rank k matrix B that approximately minimizes the reconstruction error ‖A−B‖, where ‖·‖ is
some norm, e.g., the Frobenius norm or the spectral norm.

In practice, the coordinates often have physical interpretations, and in such cases, it is desirable to be
able to interpret the low rank approximation found. However, B as obtained above, now described with
(n+ d)k parameters, is often still too large to interpret easily. Thus, one could further ask for the low rank
approximation factor B to be sparse as well. One way to formalize this is to require that B can be written as
the sum of k rank 1 matrices, each of which is supported on an s× s submatrix for some sparsity parameter
s. We refer to such a B as being an s× s-sparse rank k matrix.

Definition 1.1 (s× s-sparse rank k matrix). For a sparsity parameter s ∈ N and rank parameter k ≤ n, an
n× d matrix B is s× s sparse rank k if it can be written as

B =

k
∑

i=1

τixiy
⊤
i

where τi ∈ R and xi ∈ Rn and yi ∈ Rd are s-sparse unit vectors for each i ∈ [k]. When the ambient
dimensions n and d are clear from context, we write Ss,k ⊆ Rn×d for the set of s× s-sparse rank k matrices.

The above notion of sparse low rank matrices can be either used as an assumption or a constraint.
We study both variants of the low rank approximation problem, and in both cases, we obtain improved
algorithms over prior low rank approximation algorithms in certain settings.

In the first setting, one assumes that the optimal rank k approximation takes the form of a sparse low
rank matrix. This scenario is a phenomenon known as localization of eigenvectors, and occurs frequently
in many applications [HBCY21, ZYC+20], for example in quantum many-body problems [LVTW09, NH15]
and network analysis [PSC18]. In this case, the optimal solution to the low rank approximation problem
can be computed by an SVD, which has efficient approximation algorithms [CW13, MM15, ZL16]. However,
one may further ask the question of whether we can do better than the best known algorithms for approx-
imate SVD under this additional sparsity assumption on the singular vectors. This question was studied
in the work of [HBCY21] and a followup work of [ZYC+20], which studied algorithms for computing eigen-
vectors in symmetric matrices with localized eigenvectors. In [HBCY21], the authors study an algorithm
for finding a small submatrix containing the supports of the leading eigenvectors by greedily adding rows
and columns without formal guarantees, and [ZYC+20] seek to improve this approach using reinforcement
learning techniques.

In the second setting, we instead deal with an arbitrary input matrix A, but still seek a sparse low rank
matrix to approximate A. Thus, we constrain our low rank approximation to be sparse, and optimize over
this smaller space instead. It turns out that this constraint makes the problem significantly harder in time
complexity (as we show later), which is a phenomenon that is well-documented in the context of the related
sparse PCA problem (see Section 1.4 for a discussion). Nonetheless, we show that this formulation of the
problem is in fact easier than the unconstrained low rank approximation problem in the context of streaming
algorithms.

1.1 Randomized Block Krylov Methods for Sparse Singular Vectors

Our first contribution gives new algorithms for the spectral low rank approximation problem, when we are
promised that the top k singular components are s-sparse. Let A ∈ Rn×d be a rank r matrix whose top k
left and right singular vectors are s-sparse. The best previous known general case algorithm of [MM15] (see
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Theorem 1.11), based on block Krylov methods, runs in time dominated by roughly

nnz(A)k√
ε

.

We improve this bound to roughly
nnz(A)√

ε
.

Theorem 1.2 (Spectral low rank approximation for sparse singular vectors). Let A ∈ Rn×d be a rank r
matrix whose top k left and right singular vectors are supported on s coordinates. Then, there is an algorithm
which outputs Â such that

∥

∥

∥A− Â

∥

∥

∥

2

2
≤ (1 + ε)‖A−Ak‖22

in time

O

(

nnz(A)√
ε

+
n

ε

)

log
srk logn

ε
+ poly

(

s, k,
1

ε
, logn

)

.

Remark 1.3. By a simple modification of our analyses, the condition for s-sparse singular vectors can be
replaced by an approximate sparsity condition, such that for the jth singular component, there is a set of s
coordinates which captures a

1− ε

k
√
r

σk+1

σj

fraction of the ℓ2 mass of the left singular vector, and similarly for the right singular vector.
We note that this robustness condition is a strong assumption, and we believe that an important direction

for future work is to find algorithms that handle more relaxed assumptions on the approximate sparsity of
the singular vectors.

Our algorithm proceeds in two steps: (1) we first identify small subsets of coordinates S ⊂ [n] and
T ⊂ [d] that contain all large coordinates of the sparse left and right singular vectors (2) we proceed with
standard low rank approximation algorithms on the subset of coordinates. The idea is that finding top
singular vectors in the smaller submatrix is sufficient to find the top singular vectors in the original matrix,
since all of our original singular vectors roughly retain their singular values in the submatrix, while the other
singular components can only decrease. The observation for this general approach has already been made in
[HBCY21, ZYC+20]. However, to implement this idea efficiently, several additional new ideas are needed,
and our algorithm carefully combines power method, Chebyshev polynomials, and binary search to obtain
the result of Theorem 1.2.

1.1.1 Overview of Techniques

Our first idea is that with a budget of nnz(A)/
√
ε running time, we can run näıve power method for 1/

√
ε

iterations initialized with a single random Gaussian vector g ∼ N (0, Id) to compute (AA⊤)1/
√
εAg. Using

the SVD A = UΣV⊤ of A, we may write this as UΣO(1/
√
ε)V⊤g. Then by the rotational invariance

of the Gaussian, this random vector is distributed as a random linear combination of the left singular

vectors of A, where the ith left singular vector is scaled by roughly σ
1/

√
ε

i . Then if i ∈ [k] is such that

σi ≥ (1 +
√
ε)σk+1, then σ

1/
√
ε

i is a constant factor larger than σ
1/

√
ε

k+1 , so the s entries corresponding to the

ith left singular vector stand out in (AA⊤)1/
√
εAg. Thus, selecting the top sk entries with largest absolute

value in (AA⊤)1/
√
εAg retrieves a superset of the support of the left singular vectors with singular value

σi for which σi ≥ (1 +
√
ε)σk+1. We can repeat on the right side as well to obtain the support of the large

right singular vectors.
The above approach is enough to find the large singular components with singular value at least (1 +√

ε)σk+1, but we must find singular values all the way down to (1 + ε)σk+1 for a (1 + ε) relative error
approximation. To do this, we use the approach of [MM15] of using Chebyshev polynomials, which, given a
location parameter α, gives us a degree 1/

√
ε polynomial p for which p(x), for all x ≥ (1+ ε)α, is a constant

times greater than any p(x) for x ≤ α (see Lemma 3.9 for the mathematical statement). If we knew the
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location α = σk+1, then we could compute p(A)g in nnz(A)/
√
ε time and use the same approach as before

to find the support of all singular components i for which σi ≥ (1+ ε)σk+1. The challenge, of course, is that
we do not know σk+1.

We first show how to find the value of σk+1 up to a (1 +
√
ε) factor. To this end, we first show that if

σi for i ∈ [k] is large, i.e. σi ≥ (1 +
√
ε)σk+1, then we can find σi up to a (1 + ε) factor using the set of

sk large coordinates on the left and right located before, using the power method. However, note that we
do not know for which i this is true. That is, if we let Â be the sk × sk submatrix supported on the large
coordinates identified using the power method, we expect the large singular values of Â to be good estimates
of the large singular values of A, but we do not know which of them are large enough to actually be good
estimates.

To address this, let i ∈ [k], and first note that σi(Â) is always a lower bound on σi(A) by the Cauchy

interlacing theorem. Furthermore, suppose that B̂ is a rank i − 1 approximation to Â. Then,
∥

∥

∥A− B̂

∥

∥

∥

2
serves as an upper bound for σi(A), as

σi(A) = min
rank i − 1 C

‖A−C‖2 ≤
∥

∥

∥A− B̂

∥

∥

∥

2
.

We show that for i ∈ [k] such that σi ≥ (1+
√
ε)σk+1, these are good lower and upper bounds on the singular

value σi(A), i.e., they are within (1 + ε) factors of each other. Furthermore, they can both be computed in
time roughly

nnz(A)√
ε

+ poly(s, k, ε−1).

Thus, we have an extremely efficient way to certify our estimates to the singular values σi(A), if they are
large enough. We then consider the following binary search strategy over the singular values: if the upper
and lower bounds are within (1 + ε) factors of each other, then we keep searching lower, and otherwise,
we search higher. If the σi∗(A) found is such that σi∗(A) ≥ (1 +

√
ε)σk+1(A), then the top i∗ singular

components are found in the initial power method step accurately enough so that
∥

∥

∥
A− B̂

∥

∥

∥

2
is close to

σi∗+1(A) ≤ (1+
√
ε)σk+1(A), where B̂ is a rank i∗ approximation B̂ of Â. Otherwise, σi∗(A) itself is within

a (1 +
√
ε) factor of σk+1(A).

Now that we are within a (1 +
√
ε) factor of σk+1(A), we just need 1/

√
ε guesses in powers of (1 + ε)

in order to guess σk+1(A) up to a factor of (1 + ε). We can in fact afford to guess all of these locations
α, compute the corresponding Chebyshev polynomial p, compute p(A)g from precomputed Krylov iterates,
select the top sk entries, and then add the entries to the support that we consider.

With the support superset in hand, we finish the algorithm by performing an approximate SVD on this
submatrix. Our full discussion can be found in Section 3.

1.2 Streaming Frobenius Low Rank Approximation with Sparse Factors

We now discuss our results on the Frobenius norm sparse low rank approximation problem. For the Frobenius
norm, a variant of the sparse low rank approximation problem has previously been studied in [ZZS02, ZZS04],
who slightly relax the sparsity requirement compared to our formulation.

We consider the streaming setting, in which our input matrix A arrives as one pass over entrywise
additive updates Ai,j ← Ai,j + ∆ for ∆ ∈ R. The goal is to design algorithms which use low space. A
standard approach is to consider sketching algorithms, in which we choose a random m× (nd) matrix S and
maintain S(vec(A)), where vec(A) is the flattening of the n × d matrix A into an nd-dimensional vector,
and then postprocess S(vec(A)) for the final result. This yields an algorithm of space roughly Õ(m), up to
bit complexity factors. We refer to each row of S as a measurement. In fact, it is known that, with some
restrictions, any turnstile streaming algorithm can be implemented as a linear sketch with roughly the same
amount of memory [LNW14, AHLW16, KP20], so in some sense, the number of measurements required for
a sketching algorithm in a turnstile stream captures the space complexity of the streaming problem.

For the standard Frobenius norm low rank approximation problem, it is known since the work of [CW09,
BWZ16] that Θ̃(nk/ε) measurements are necessary and sufficient to output a rank k approximation of an
n× d matrix A with a relative error Frobenius norm guarantee.
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Theorem 1.4 ([CW09, BWZ16]). Let A ∈ Rn×d. Then, any randomized sketching algorithm which outputs
a rank k matrix B such that

‖A−B‖2F ≤ (1 + ε) min
rank k C

‖A−C‖2F
with probability at least 2/3 requires Θ((n+d)k/ε) measurements, and this lower bound is tight up to constant
factors.

1.2.1 Upper Bounds

We overcome the above negative result by showing that we can find an s × s-sparse rank k matrix B such
that

‖A−B‖2F ≤ (1 + ε) min
C∈Ss,k

‖A−C‖2F

in only O(sk(log n)/ε2) measurements, which for constant ε replaces the dependence on the ambient dimen-
sion n by a dependence of s on the desired sparsity. Our algorithm achieving this space bound iterates over
a net and runs in exponential time, which is necessary as we show in Section 4.2. We additionally present
polynomial time algorithms with some relaxations by allowing the output to be s′ × s′-sparse rank k, for
s′ = O(sk/ε), one with a relative error guarantee introduced above, as well as an improved algorithm with
the weaker additive error guarantee, i.e.,

‖A−B‖2F ≤ min
C∈Ss,k

‖A−C‖2F + ε‖A‖2F .

Theorem Sparsity Measurements Running Time Error
Theorem 4.3 s× s sk · poly(log n, ε−1) Exponential Time Relative Error
Theorem 4.4 O(sk/ε)×O(sk/ε) s2k2 · poly(logn, ε−1) Polynomial Time Relative Error
Theorem 4.8 O(sk/ε)×O(sk/ε) sk2 · poly(logn, ε−1) Polynomial Time Additive Error

Table 1: Our results for Frobenius norm sparse low rank approximation.

Both of our polynomial time bicriteria algorithms proceed by identifying O(sk/ε) heavy rows and columns
that must contain an approximately optimal s×s-sparse rank k matrix, and then computing an approximate
SVD on them. Although this algorithm is simple in the offline model, the challenge here is to implement
this algorithm in one pass over a stream with low memory.

By employing variations on classical techniques for finding heavy hitters in a stream, we show that the
identification of the indices of O(sk/ε) heavy rows and columns can be done in roughly O(sk/ε) measure-
ments. For our first relative error algorithm, we also maintain a separate heavy hitters data structure which
recovers every entry of A up to an additive error of

ε4

s2k2

∥

∥

∥
A[s2k2/ε4]

∥

∥

∥

2

F
,

where A[s2k2/ε4] denotes the matrix obtained by deleting the s2k2/ε4 largest entries of A in absolute value.

This takes an additional s2k2/ε4 measurements. Then, we recover the O(sk/ε)×O(sk/ε) submatrix of the
heavy rows and columns up to an overall additive Frobenius norm error of

O

(

sk

ε

)

·O
(

sk

ε

)

· ε4

s2k2

∥

∥

∥A[s2k2/ε4]

∥

∥

∥

2

F
≤ O(ε2)‖A−B‖2F

where B is any matrix supported on at most s2k2/ε4 entries. This is small enough so that we can simply
perform an offline approximate SVD on the recovered entries.

In order to improve upon the measurement bound of this simple algorithm, we change our approximate
SVD routine from a black box offline SVD algorithm to the ℓ2 sampling based approach of [FKV04, DKM06],
which first performs an adaptive sampling routine in order to reduce the dimension before performing an
SVD. Although this has a weaker additive error guarantee, we show that by carefully combining this approach
with heavy hitter algorithms, we can remove a factor of s in the measurement bound.
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1.2.2 Lower Bounds

Our upper bounds are complemented by relatively straightforward reductions from known lower bounds for
related problems. Perhaps the most obvious is the lower bound for the usual Frobenius norm low rank
approximation problem (Theorem 1.4), which already gives an Ω(sk/ε) lower bound.

Corollary 1.5. Let A ∈ Rn×d be such that there exists a unique B ∈ Ss,k that minimizes ‖A−B‖2F over
B ∈ Ss,k that is supported on an s×s submatrix and has orthogonal factors. Then, any randomized sketching
algorithm which outputs a matrix B ∈ Ss,k such that

‖A−B‖2F ≤ (1 + ε) min
rank k C

‖A−C‖2F

with probability at least 2/3 requires Ω(sk/ε) measurements.

Importantly, this lower bound holds even when there is a unique optimal solution that is promised
to lie on an s × s submatrix, and the sparse low rank factors are orthogonal. Note that none of these
properties is guaranteed for the general problem. In fact, given the promise that an optimal solution exists
on an s × s submatrix, our additive error polynomial time algorithm improves to a measurement bound of
sk · poly(logn, ε−1), which has a tight dependence on s and k.

Despite this natural lower bound, tighter lower bounds can be obtained from reductions from work in the
sparse recovery literature when the optimal solution need not be supported on an s × s submatrix. In the
sparse recovery problem, one is given a hidden vector x ∈ Rn, and the goal is to output an s-sparse vector
x̂ such that

‖x− x̂‖22 ≤ (1 + ε) min
s-sparse x′

‖x− x′‖22,

given linear measurements of the vector. The following lower bounds are known for this problem:

Theorem 1.6 ([PW11]). Let x ∈ Rn. Then, any randomized sketching algorithm which outputs an x̂ such
that

‖x− x̂‖22 ≤ (1 + ε) min
s-sparse x′

‖x− x′‖22

with probability at least 2/3 requires Ω(s(log(n/s))/ε) measurements. Furthermore, if the algorithm guaran-
tees that x̂ is s-sparse, then Ω(s/ε2) measurements are required.

Note that an sk-sparse vector can be written as the sum of k many s-sparse vectors. This simple
observation immediately gives the following:

Corollary 1.7. Let A ∈ Rn×d. Then, any randomized sketching algorithm which outputs a B̂ such that

∥

∥

∥A− B̂

∥

∥

∥

2

F
≤ (1 + ε) min

C∈Ss,k

‖A−C‖22

with probability at least 2/3 requires Ω(sk(log(n/sk))/ε) measurements. Furthermore, if the algorithm guar-

antees that B̂ is in Ss,k, then Ω(sk/ε2) measurements are required.

Thus, in the general case, both the logn factor as well as the quadratic dependence on ε are required.
Table 2 summarizes the above discussion:

Theorem Lower Bound Notes
Corollary 1.5 sk/ε Optimal solution supported on s× s submatrix
Corollary 1.7 sk(log(n/sk))/ε Non-sparse output allowed
Corollary 1.7 sk/ε2 Output required to be in Ss,k

Table 2: Measurement lower bounds for Frobenius norm sparse low rank approximation.

Our full discussion can be found in Section 4.
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1.3 Gaussian Noise Spectral Sparse Low Rank Approximation

As a final contribution, we study the sketching complexity of sparse low rank approximation in the common
setting where the input matrix A ∈ Rn×n is the sum of a low rank signal and additive Gaussian noise. That
is,

A = λX+G

where Gi,j ∼ N (0, 1), ‖X‖2 = 1, and λ is roughly O(
√
n). This “low rank signal plus Gaussian noise” setting

is ubiquitous in both theory and in practice, in areas such as matrix denoising (see, e.g., [SN13, CST13] and
references therein) which has applications to image denoising. Here, the normalization is such that two parts
G and λX have roughly the same operator norm. Two common computational problems in this setting are

(1) detection, the problem of distinguishing between the above distribution and A ∼ N (0, 1)n×n, and

(2) estimation, the problem of computing an estimate X̂ such that
∥

∥

∥
X̂−X

∥

∥

∥

2
is small.

We study these two problems in the streaming setting, where the main resource of study is the number of
measurements required for the computational task.

It is known that without the sparsity requirement for X, Ω(n2) measurements are required to even detect
the presence of a rank 1 X [LNW19, Corollary 3.3], that is, one must essentially read every entry of the
matrix.

Theorem 1.8 ([LNW19]). Let A ∈ Rn×n be drawn as either G ∼ N (0, 1)n×n or G+λuv⊤ for u ∼ N (0, In)
and v ∼ N (0, Id) drawn independently and λ = Θ(1/

√
n). Then, any randomized sketching algorithm that

distinguishes between these two cases must make at least Ω(n2) measurements.

As in the previous setting of Frobenius norm low rank approximation, we ask whether this bound can be
improved when we assume that X is s× s-sparse rank k. In this setting, we further restrict our attention to
X with disjoint support, in order to obtain space-efficient algorithms.

Definition 1.9 (Disjoint s× s-sparse rank k matrix). An s× s-sparse rank k matrix B ∈ Ss,k for

B =

k
∑

i=1

τixiy
⊤
i

is disjoint if the support of the component matrices xiy
⊤
i are pairwise disjoint. When the ambient dimensions

n and d are clear from the context, we write Os,k ⊆ Rn×d for the set of disjoint s×s-sparse rank k matrices.

It is often desirable for the components of a sparse low rank approximation to be orthogonal [Mac08,
BSBP16], and one could view this assumption as a strengthening of this notion.

For the problem of detecting the “signal” X, we obtain a lower bound of

Ω̃(n+ s2k)

measurements, where the first term comes from a 4-norm estimation lower bound of [AKO11], while the
second term is achieved by a generalization of the construction of Theorem 1.8. We complement these lower
bounds with algorithms achieving a measurement bound of

Õ(n+ s2k4/3)

which is off by a factor of k1/3 compared to the lower bound. The Õ(n) term follows also from a 4-norm
estimation algorithm, while the Õ(s2k4/3) term comes from an analysis of an algorithm which samples a
submatrix and iterates over a net to detect the signal.

For the problem of estimation of X, we show that, Θ(nsk log(n/s)) measurements is tight for obtaining
an X′ such that ‖X−X′‖2 ≤ 1

10

√
n. The upper bound again is a net iteration argument, while the lower

bound is a modification of sparse recovery lower bounds of [PW11].
Our full discussion can be found in Section 5.
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Problem Upper Bound Lower Bound

Detection (s ≤
√

n/k logn) Õ(n) Ω̃(n) [ANPW13]

Detection (s ≥
√

n/k logn) Õ(s2k4/3) Ω(s2k)

Estimation Õ(nsk) Ω̃(nsk) [PW11]

Table 3: Sketching complexity of Gaussian noise sparse low rank approximation.

1.4 Other Related Work

Sparse PCA. The closely related problem of sparse PCA also seeks sparse low rank approximations and
has been studied intensely in a variety of settings. In this problem, one seeks only a sparse right factor, that
is, an s-sparse unit vector x that maximizes the quantity x⊤A⊤Ax. We refer to [NmJ15, ZX18] for surveys
on various formulations, algorithms, and hardness results on sparse PCA. Note the distinction between
this problem and our problem, which seeks to minimize the reconstruction error with both sparse left and
right factors. From the perspective of computational complexity, it is known that sparse PCA is NP-hard
even to approximate [MWA06, Mag17], with improved inapproximability results under other complexity
theoretic assumptions [CPR16]. Sparse PCA has also recently been studied from an average-case complexity
perspective under the natural input distribution of the form “signal plus noise”, see e.g., [BB19].

1.5 Notation

We denote the ith standard basis vector (0, 0, . . . , 0, 1, 0, . . . , 0) by ei. For a matrix A ∈ Rn×d, we denote
the number of nonzero entries in A by nnz(A), the spectral norm by

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

,

and the Frobenius norm by

‖A‖F =

√

√

√

√

n
∑

i=1

d
∑

j=1

(Ai,j)2.

We will often use coordinate projection and sampling matrices:

Definition 1.10. For a set S ⊆ [n], we write PS for the n× n coordinate projection matrix that zeros out
all rows except for those indexed by S, i.e.,

(PS)i,j =

{

1 if i = j ∈ S

0 otherwise

and we write SS for the |S| × n sampling matrix for S, i.e.,

(SS)i,j =

{

1 if j ∈ S is the ith element of S

0 otherwise

For a matrix A ∈ Rn×d, we write

A = UΣV⊤ =

rank(A)
∑

i=1

σi(A)uiv
⊤
i

for its singular value decomposition (SVD), where U and V have orthonormal columns, Σ is a diagonal
matrix with σi(A) along its diagonal, and ui and vi are the ith columns of U and V, respectively. For
k ∈ [rank(A)], we write Ak = UkΣkV

⊤
k for the truncated SVD of A. Here, Uk is an n× k matrix with the

first k ui as its columns, Vk is a d×k matrix with the first k vi as its columns, and Σk is the k×k diagonal
matrix with the first k σi(A) along the diagonal.
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By now, extremely efficient approximation algorithms for the SVD are known [CW13, MM15, ZL16].
In particular, [MM15] show the following for relative error spectral norm SVD using the randomized block
Krylov iteration algorithm:

Theorem 1.11 (Randomized block Krylov iteration [MM15]). Let A ∈ Rn×d. Then, there is an algorithm
[MM15, Algorithm 2] running in time

O

(

nnz(A)
k log d√

ε

)

+ n poly(k, log d, ε−1)

[MM15, Theorem 7] which outputs a matrix Z ∈ Rn×k with orthogonal columns with the following guarantee
[MM15, Theorem 10]:

∥

∥A− ZZ⊤A
∥

∥

2
≤ (1 + ε)‖A−Ak‖2

2 Preliminaries

2.1 ε-Nets

We will need the notion of ε-nets for our analyses. See, e.g., Section 4.2 of [Ver18] for a standard reference.

Definition 2.1 (ε-net). For a set K, a subset N ⊆ K is an ε-net of K if for every x ∈ K there exists an
x̂ such that

‖x− x̂‖2 ≤ ε.

For K = Sd−1 the unit sphere in d dimensions, there exist small ε-nets.

Lemma 2.2 (Corollary 4.2.13, [Ver15]). Let ε ∈ (0, 1). There exists an ε-net N of Sd−1 of size at most

|N | ≤
(

3

ε

)d

.

Using this, we can construct an ε-net for Ss,k∩Sn×d−1, where Sn×d−1 denotes the set of all n×d matrices
with Frobenius norm 1, provided that the coefficients τi in Definition 1.1 are bounded by poly(n).

Corollary 2.3 (ε-net for Ss,k). Let ε ∈ (0, 1). There exists an ε-net N of Sboundeds,k ∩Sn×d−1 of size at most

|N | ≤ poly(nk/ε)sk,

where Sboundeds,k is the set of s× s-sparse rank k matrices with τi bounded by poly(n).

Proof. We first construct an ε-net N over rank 1 s× s sparse matrices in the Frobenius norm and bound
its size. Consider an (ε/2)-net for Ss−1, of size at most (6/ε)s (see Lemma 2.2). Then for any rank 1 s× s
sparse matrix σuv⊤, we may find vectors u′ and v′ in the net such that

∥

∥uv⊤ − u′(v′)⊤
∥

∥

F
≤
∥

∥uv⊤ − u′v⊤∥
∥

F
+
∥

∥u′v⊤ − u′(v′)⊤
∥

∥

F

≤ ‖u− u′‖2‖v‖2 + ‖u′‖2‖v − v′‖2
≤ ε.

Then we choose a sparsity pattern for this submatrix, which requires a net of total size at most

(

n

s

)2(
6

ε

)2s

≤
(

6en

εs

)2s

Now suppose X ∈ Ss,k with

X =
k
∑

i=1

τixiy
⊤
i .

We now approximate each component up to ε/k Frobenius norm error. Because τi ≤ poly(n), for each
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i ∈ [k], we can find a τ ′i among at most poly(n)k/ε candidates such that

|τi − τ ′i | ≤
ε

2k
.

Furthermore, we find x′
i and y′

i in an ε/ poly(n)k-net for s× s-sparse rank 1 matrices such that

∥

∥x′
iy

′⊤
i − xiy

⊤
i

∥

∥

F
≤ ε

poly(n)k
.

Then,

∥

∥τ ′ix
′
iy

′⊤
i − τixiy

⊤
i

∥

∥

F
≤
∥

∥τ ′ix
′
iy

′⊤
i − τ ′ixiy

⊤
i

∥

∥

F
+
∥

∥τ ′ixiy
⊤
i − τixiy

⊤
i

∥

∥

F

≤ |τi|
∥

∥x′
iy

′⊤
i − xiy

⊤
i

∥

∥

F
+ |τi − τ ′i |

∥

∥xiy
⊤
i

∥

∥

F

≤ ε

2k
+

ε

2k

≤ ε

k
.

Then summing over the k components, we find an X′ ∈ Ss,k for

X′ =
k
∑

i=1

τ ′ix
′
iy

′⊤
i

that is at most a distance of ε to X, by the triangle inequality. The total net size is

[

poly(n)k

ε

(

poly(n)k

εs

)2s
]k

= poly(nk/ε)sk.

2.2 CountSketch [CCF04]

We collect some results on CountSketch [CCF04], a versatile primitive for the design of sketching algorithms.

Definition 2.4 (CountSketch [CCF04]). A CountSketch matrix is a distribution over r×n matrices S where
samples are drawn as follows. Let h : [n]→ [r] and σ : [n]→ {±1} be random hash functions. Then,

(S)i,j =

{

σj if i = h(j)

0 otherwise
.

Equivalently,
S = HD

where D is an n × n diagonal matrix with σ(j) in the jth diagonal position for j ∈ [n], and H is an r × n
matrix where the jth column is the random standard basis vector eh(j) for j ∈ [n].

That is, S acts on a vector by multiplying each coordinate by a random sign and hashing it to one of r
buckets.

2.2.1 Tail Error Guarantee

The first guarantee achieved by CountSketch, introduced by [CCF04], is the tail error guarantee.

Lemma 2.5 (Tail error guarantee [CCF04]). Let x ∈ Rn. Let B ∈ N and δ ∈ (0, 1). Consider r = O
(

log 1
δ

)

independent copies of O(B) × n CountSketch matrices S(1),S(2), . . . ,S(r). Then, given

S(1)x,S(2)x, . . . ,S(r)x,

9



for each i ∈ [n], one can recover an estimate x̂i such that

Pr

{

|x̂i − xi|2 ≤
1

B

∥

∥

∥x[B]

∥

∥

∥

2

2

}

≥ 1− δ,

where x[B] denotes the vector obtained by zeroing out the B coordinates of x with largest absolute value.

2.2.2 Row-wise Approximation

The tail error guarantee generalizes to the following guarantee for estimating the rows of a matrix [MRWZ20,
Lemma 2.2]:

Lemma 2.6 (Row-wise approximation [MRWZ20]). Let A ∈ Rn×d, ε > 0, and δ ∈ (0, 1). Consider
r = O(log(1δ )) independent copies of O(1ε )× n CountSketch matrices S(1),S(2), . . . ,S(r). Then, given

S(1)A,S(2)A, . . . ,S(r)A,

one can obtain an estimate Â ∈ Rn×d such that for each i ∈ [n],

Pr

{

∥

∥

∥e
⊤
i Â− e⊤i A

∥

∥

∥

2

2
≤ ε
∥

∥

∥A[1/ε],∗

∥

∥

∥

2

F

}

≥ 1− δ,

where A[1/ε],∗ denotes the matrix with the top 1/ε rows with largest ℓ2 norm zeroed out.

As a corollary, we obtain the following lemma for approximating row norms with an additive-multiplicative
error guarantee.

Corollary 2.7 (Row norm approximation). Let A ∈ Rn×d, ε > 0, α > 0, and δ ∈ (0, 1). Consider r =
O(log(1δ )) independent copies of O(1ε )×n CountSketch matrices S(1),S(2), . . . ,S(r) and an O( 1

α2 (log
n
δ ))× d

i.i.d. Gaussian matrix G. Then, given

S(1)AG⊤,S(2)AG⊤, . . . ,S(r)AG⊤,

one can obtain an estimate ÂG⊤ ∈ Rn×d such that for each i ∈ [n],
∣

∣

∣

∥

∥

∥e
⊤
i ÂG⊤

∥

∥

∥

2
−
∥

∥e⊤i A
∥

∥

2

∣

∣

∣ ≤ α
∥

∥e⊤i A
∥

∥

2
+
√

(1 + α)ε
∥

∥

∥A[1/ε],∗

∥

∥

∥

F

where A[1/ε],∗ denotes the matrix with the top 1/ε rows with largest ℓ2 norm zeroed out.

Proof. Lemma 2.7 provides us with an estimate ÂG⊤ such that

Pr

{

∥

∥

∥e
⊤
i ÂG⊤ − e⊤i AG⊤

∥

∥

∥

2

2
≤ ε
∥

∥

∥(AG⊤)[1/ε],∗

∥

∥

∥

2

F

}

≥ 1− δ

2
.

Note that G is a Johnson-Lindenstrauss transform (see, e.g., [DG03]) so that

Pr
{

∀i ∈ [n],
∥

∥e⊤i AG⊤∥
∥

2

2
= (1± α)

∥

∥e⊤i A
∥

∥

2

2

}

≥ 1− δ

2
.

By a union bound, both of these happen with probability at least 1− δ. We now condition on this event.

We first bound
∥

∥

∥(AG⊤)[1/ε],∗

∥

∥

∥

2

F
. This quantity is at most the Frobenius norm of AG⊤ after deleting

any set of 1/ε rows. By letting these 1/ε rows be the 1/ε heaviest rows of A, say S ⊆ [n], we have the
bound

∥

∥

∥(AG⊤)[1/ε],∗

∥

∥

∥

2

F
≤

∑

i∈[n]\S

∥

∥eiAG⊤∥
∥

2

2
≤

∑

i∈[n]\S
(1 + α)‖eiA‖22 = (1 + α)

∥

∥

∥A[1/ε],∗

∥

∥

∥

2

F
.

Note then that
∥

∥

∥e
⊤
i ÂG⊤

∥

∥

∥

2
=
∥

∥e⊤i AG⊤∥
∥

2
±
∥

∥

∥e
⊤
i ÂG⊤ − e⊤i AG⊤

∥

∥

∥

2
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= (1± α)
∥

∥e⊤i A
∥

∥

2
±√ε

∥

∥

∥(AG⊤)[1/ε],∗

∥

∥

∥

F

= (1± α)
∥

∥e⊤i A
∥

∥

2
±
√

(1 + α)ε
∥

∥

∥A[1/ε],∗

∥

∥

∥

F
.

2.2.3 Approximate Matrix Product

The final guarantee for CountSketch is approximate matrix product, from [CW13, Lemma 32] (see also [TZ04]
and Theorems 2.8 and 2.9 of [Woo14]).

Lemma 2.8 (Approximate matrix product for CountSketch). Let A ∈ Rn×d, B ∈ Rm×d, and ε > 0.
Consider an r × d CountSketch matrix S for r = Ω(ε−2). Then,

Pr
{

∥

∥AS⊤SB⊤ −AB⊤∥
∥

2

F
≤ ε2‖A‖2F ‖B‖

2
F

}

≥ 99

100
.

3 Sparse Singular Vectors

In this section, we discuss our results on performing an approximate SVD with relative spectral norm error,
when we are promised that the input matrix A ∈ Rn×d has top k left and right singular vectors that are
s-sparse.

3.1 Approximating Singular Components

To carry out our plan as described in the introduction (Section 1.1.1), we first calculate the magnitude of
coordinates that we need to capture in order to achieve a relative error spectral approximation. We follow
[MM15] and make use of the fact that additive Frobenius norm low rank approximation implies additive
spectral norm low rank approximation, originally due to [Gu15].

Lemma 3.1 (Theorem 3.4 of [Gu15]). For any A ∈ Rn×d, let B ∈ Rn×d be any rank k matrix satisfying

‖A−B‖2F ≤ ‖A−Ak‖2F + η. Then,

‖A−B‖22 ≤ ‖A−Ak‖22 + η.

By the above result, it suffices to find a rank k matrix B such that

‖A−B‖2F ≤ ‖A−Ak‖2F + εσ2
k+1.

Using this, we show that it suffices to find all coordinates of the top left singular vectors Uej such that

|e⊤i Uej | ≥
ε

k
√
sr

σk+1

σj
,

and similarly, all coordinates of the top right singular vectors Vej such that

|e⊤i Vej | ≥
ε

k
√
sr

σk+1

σj
.

Lemma 3.2. Let A ∈ Rn×d have rank r with singular value decomposition A = UΣV⊤, and let ε ∈ (0, 1/2).
Let S ⊂ [n] and T ⊂ [d] be a set of coordinates such that

S ⊃
⋃

j∈[r]

{

i ∈ [n] : |e⊤i Uej | ≥
ε

k
√
sr

σk+1

σj

}

T ⊃
⋃

j∈[r]

{

i ∈ [d] : |e⊤i Vej | ≥
ε

k
√
sr

σk+1

σj

}

Let B be a rank k matrix such that

‖PSAPT −B‖2F ≤ min
rank k C

‖PSAPT −C‖2F + η.

Then,
‖A−B‖2F ≤ ‖A−Ak‖2F + 8εσ2

k+1 + η.
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Proof. Note first that

‖A−Ak‖2F =

r
∑

t=k+1

σ2
t (A) ≤

r
∑

t=k+1

σ2
k+1(A) ≤ σ2

k+1(A)r.

Then,

‖A−B‖2F = ‖A−PSAPT ‖2F + ‖PSAPT −B‖2F
(1)

≤ ‖A−PSAPT ‖2F + ‖PSAPT −Ak‖2F + η

(2)
= ‖A−PSAPT ‖2F + ‖PSAPT −PSAkPT ‖2F + ‖Ak −PSAkPT ‖2F + η

(3)
= ‖A−PSAkPT ‖2F + ‖Ak −PSAkPT ‖2F + η

(4)

≤ (‖A−Ak‖F + ‖Ak −PSAkPT ‖F )
2
+ ‖Ak −PSAkPT ‖2F + η

= ‖A−Ak‖2F + 2‖A−Ak‖F ‖Ak −PSAkPT ‖F + 2‖Ak −PSAkPT ‖2F + η

≤ ‖A−Ak‖2F + 2σk+1

√
r‖Ak −PSAkPT ‖F + 2‖Ak −PSAkPT ‖2F + η

In the above, the inequality (1) is due to the approximate optimality of B, the identities (2) and (3) are by
the Pythagorean theorem, and inequality (4) is the triangle inequality. Finally, we calculate that

‖Ak −PSAkPT ‖F ≤ ‖Ak −PSAk‖F + ‖PSAk −PSAkPT ‖F

=

∥

∥

∥

∥

∥

∥

k
∑

j=1

σjPSUej(Vej)
⊤

∥

∥

∥

∥

∥

∥

F

+

∥

∥

∥

∥

∥

∥

k
∑

j=1

σjPSUej(Vej)
⊤PT

∥

∥

∥

∥

∥

∥

F

≤
k
∑

j=1

σj‖PSUej‖2‖Vej‖2 + σj‖PSUej‖2‖PTVej‖2

≤
k
∑

j=1

2σj

(

ε

k
√
sr

σk+1

σj

)√
s

=
2ε√
r
σk+1

so the previous bound is

‖A−B‖2F ≤ ‖A−Ak‖2F + 4σk+1

√
r‖Ak −PSAkPT ‖F + 2‖Ak −PSAkPT ‖2F + η

≤ ‖A−Ak‖2F + 4εσ2
k+1 +

8ε2

r
σ2
k+1 + η

≤ ‖A−Ak‖2F + 8εσ2
k+1 + η.

3.2 Finding the Support of Singular Vectors with Large Singular Value

We next show how to find all large coordinates of singular vectors whose singular values σj are at least a
(1 +

√
ε) factor larger than σk+1. By the results of the previous section, we seek to find all of the large

coordinates of the top sparse singular vectors, which have absolute value at least

τj :=
ε

k
√
sr

σk+1

σj

for the jth singular vector.
Our identification of the large coordinates of the top sparse singular vectors starts from the standard

analysis of the power method (see also, e.g., the overview of [MM15]). If we run power method starting from
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a random Gaussian vector g ∼ N (0, Id), that is, we compute (AA⊤)qAg for some q ∈ N, then we retrieve a
random Gaussian linear combination of the left singular vectors Uej , each scaled by σ2q+1

j . This is a simple
consequence of the rotational invariance of the Gaussian:

Lemma 3.3. Let g′ ∼ N (0, Id) and let q ∈ N. Let A ∈ Rn×d be a rank r matrix and let A = UΣV⊤ be its
singular value decomposition. Then, (AA⊤)qAg′ has the same distribution as

UΣ2q+1g =

r
∑

j=1

gjσ
2q+1
j Uej

for g ∼ N (0, Ir).

Note then that for σj ≥ (1 +
√
ε)σk+1, the jth singular vector is scaled more than the (k+1)-st singular

vector by a factor of at least (σj/σk+1)
2q+1. For q roughly order 1/

√
ε, this separates all large coordinates

of the jth singular vector from the coordinates of the (k + 1)-st singular vector.

Lemma 3.4. For

q = O

(

1√
ε
log

sk2
√
sr logn

ε

)

,

the sk coordinates of (AA⊤)qAg with largest absolute value are guaranteed to contain all entries i ∈ [n] for
which there exists a j ∈ [k] with σj ≥ (1 +

√
ε)σk+1 and
∣

∣e⊤i Uej
∣

∣ ≥ τj .

Proof. For

q = O

(

1√
ε
log

sk2
√
sr logn

ε

)

,

the blow up factor (σj/σk+1)
2q+1 is at least

(

σj

σk+1

)2q+1

≥ (1 +
√
ε)2q

σj

σk+1
= Θ

(

sk2
√
sr logn

ε

)

σj

σk+1
= Θ

(

sk
√
log n

τj

)

for the jth singular component. The time required to compute this vector (AA⊤)qAg is

O

(

nnz(A)√
ε

log
sk2
√
sr logn

ε

)

= O

(

nnz(A)√
ε

log
srk log n

ε

)

Now note that for each i ∈ [n], we have that

e⊤i UΣ2q+1g ∼ N
(

0,
∥

∥e⊤i UΣ2q+1
∥

∥

2

2

)

.

Since the maximum absolute value among n Gaussians is O(
√
logn) with constant probability, we have

∣

∣e⊤i UΣ2q+1g
∣

∣ ≤ O(
√

logn)
∥

∥e⊤i UΣ2q+1
∥

∥

2
.

Furthermore, if we consider all i in the support of the top k singular vectors, which is at most sk coordinates,
then the minimum absolute value among the sk Gaussians is

∣

∣e⊤i UΣ2q+1g
∣

∣ ≥ Ω

(

1

sk

)

∥

∥e⊤i UΣ2q+1
∥

∥

2
.

Now consider a coordinate i ∈ [n] such that

∣

∣e⊤i Uej
∣

∣ ≥ τj
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for some j ∈ [k] such that σj ≥ (1 +
√
ε)σk+1. Then by the previous results,

∣

∣e⊤i UΣ2q+1g
∣

∣ ≥ Ω

(

1

sk

)

∥

∥e⊤i UΣ2q+1
∥

∥

2

≥ Ω

(

1

sk

)

σ2q+1
j τj

= Ω

(

1

sk

)

σ2q+1
k+1

(

σj

σk+1

)2q+1

τj

≥ Ω

(

1

sk

)

σ2q+1
k+1 Θ

(

sk
√
logn

τj

)

τj

= Ω
(

σ2q+1
k+1

√

logn
)

.

On the other hand, for any i ∈ [n] that is outside of the at most sk coordinates of the support of the top k
singular vectors, then

∣

∣e⊤i UΣ2q+1g
∣

∣ ≤ O(
√

logn)
∥

∥e⊤i UΣ2q+1
∥

∥

2
≤ O(σ2q+1

k+1

√

logn).

We thus conclude as desired.

In other words, we can identify a set of sk coordinates that contains all large entries of left singular
vectors j for which σj ≥ (1 +

√
ε)σk+1. Repeating for the right singular vectors, we may identify the sets S

and T as required by Lemma 3.2.

3.3 Approximating Large Singular Values

Our next task is to compute the singular values of A with σj(A) ≥ (1 +
√
ε)σk+1(A), up to (1 + ε) factors.

We first show that approximating the singular values of PSAPT directly approximates the singular values
of A, when the singular values are sufficiently large.

Lemma 3.5. Let m be the number of singular values of A such that σj(A) ≥ (1+
√
ε)σk+1(A). Let S ⊂ [n]

and T ⊂ [d] be sets satisfying the hypotheses of Lemma 3.2. Then for each l ∈ [m],

(1− 8ε)σ2
l (A) ≤ σ2

l (PSAPT ) ≤ σ2
l (A).

Proof. Recall the Cauchy interlacing theorem:

Theorem 3.6 (Cauchy interlacing theorem). Let M be a symmetric matrix and let N be a principal
submatrix of size l × l. Then for all j ∈ [l],

λj(M) ≥ λj(N) ≥ λn−l+j(M).

Then applying the interlacing theorem to M = AA⊤ and N = PSAA⊤P⊤
S , we find that the singular

values of PSA uniformly bound the top sk singular values of A from below, and similarly, the singular
values of PSAPT uniformly bound the singular values of PSA from below. We thus have that

σj(A) ≥ σj(PSA) ≥ σj(PSAPT )

for all j ∈ [sk]. Furthermore, we know by Lemma 3.2 that for each l ∈ [m],

‖A−Al‖2F ≤ ‖A− (PSAPT )l‖2F ≤ ‖A−Al‖2F + 8εσl+1(A)2 (1)

where (PSAPT )l is the best rank l approximation PSAPT . Now note that

‖A‖2F − ‖A−Al‖2F = ‖Al‖2F
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and

〈A− (PSAPT )l, (PSAPT )l〉 = 〈A−PSAPT , (PSAPT )l〉
+ 〈PSAPT − (PSAPT )l, (PSAPT )l〉 = 0

so
‖A‖2F − ‖A− (PSAPT )l‖2F = ‖(PSAPT )l‖2F

by the Pythagorean theorem. Then subtracting the inequalities of Equation 1 from ‖A‖2F , we have that

‖Al‖2F − 8εσl+1(A)2 ≤ ‖(PSAPT )l‖2F ≤ ‖Al‖2F .

Then,

σ2
l (PSAPT ) = ‖(PSAPT )l‖2F − ‖(PSAPT )l−1‖2F

≥ ‖Al‖2F − 8εσl+1(A)2 − ‖Al−1‖2F
= σ2

l (A)− 8εσl+1(A)2

≥ (1 − 8ε)σ2
l (A)

as desired.

We may use the existing results of [MM15] to find (1 + ε) factor approximations to the top k singular
values of PSAPT in time

O

(

nnz(PSAPT )k√
ε

log(sk)

)

= O

(

s2k3√
ε

log(sk)

)

.

However, note that given estimates for the singular values of PSAPT , we do not know which ones are within
a (1 + ε) factor of the singular values of A, since we do not know the number m of singular values j with
σj(A) ≥ (1 +

√
ε)σk+1(A). However, by the Cauchy interlacing theorem, the singular values of PSAPT are

always a lower bound on the singular values of A, so it suffices to compute an upper bound for the singular
values of A that are at most a (1 + ε) factor larger than the lower bound. We obtain such an upper bound
on the singular values of A by approximating ‖A−B‖2 for a rank l matrix B. Indeed, if B is rank l, then

‖A−B‖22 ≥ min
rank l C

‖A−C‖2F = σl+1(A)2.

This idea is executed in the following lemma.

Lemma 3.7. Let S ⊂ [n] and T ⊂ [d] be sets of size sk each that satisfy the hypotheses of Lemma 3.2.
Given such S and T and an index j ∈ [k], there is a randomized algorithm that runs in time

O

(

nnz(A) + s2k3√
ε

log(sk)

)

and outputs numbers U and L such that
L ≤ σ2

j (A) ≤ U

with probability at least 0.99. Furthermore, if j ∈ [m], where m is the number of singular values j with
σj ≥ (1 +

√
ε)σk+1, we have that

U

L
≤ 1 + 10ε

1− 9ε
≤ 1 + 20ε.

Proof. We first show how to obtain the lower bound L. By the Cauchy interlacing theorem (as in Lemma
3.5), we have that

σj(PSAPT ) ≤ σj(A).

Then by the randomized block Krylov algorithm of [MM15] (see Theorem 1.11), we may find an estimate
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L to σj(PSAPT ) such that
(1− ε)σj(PSAPT ) ≤ L ≤ σj(PSAPT )

in time

O

(

nnz(PSAPT )k√
ε

log(sk)

)

= O

(

s2k3√
ε

log(sk)

)

.

Furthermore, if j ∈ [m], then by Lemma 3.5,

L ≥ (1− ε)σj(PSAPT ) ≥ (1− ε)(1 − 8ε)σj(A) ≥ (1− 9ε)σj(A).

For the upper bound, we use the rank j approximation B obtained by running the randomized block
Krylov algorithm of [MM15] on PSAPT . Note that

σj(A) = min
rank j C

‖A−C‖2 ≤ ‖A−B‖2

for any rank j − 1 matrix B. By the results of [MM15], we may compute an estimate U such that

(1 + ε)‖A−B‖2 ≥ U ≥ ‖A−B‖2
in time

O

(

nnz(A−B)√
ε

)

= O

(

nnz(A) + s2k2√
ε

)

.

Furthermore, for j ∈ [m], if we find a rank j − 1 matrix B such that

‖PSAPT −B‖2F ≤ min
rank j − 1 C

‖PSAPT −C‖2F + εσj(PSAPT )
2

≤ min
rank j − 1 C

‖PSAPT −C‖2F + εσj(A)2,

which we can by the results of [MM15] as before, then by Lemma 3.2,

‖A−B‖2F ≤ ‖A−Aj−1‖2F + 9εσ2
j (A).

By Lemma 3.1, this implies that

‖A−B‖22 ≤ ‖A−Aj−1‖22 + 9εσ2
j (A) = (1 + 9ε)σ2

j (A).

We now show how to use the above result to efficiently find a (1+
√
ε) factor approximation to σk+1(A)

using binary search.

Lemma 3.8. There is a randomized algorithm that runs in time

O

(

nnz(A) + s2k3√
ε

log(sk)(log k)

)

that finds a (1 +
√
ε) factor approximation to σk+1(A).

Proof. If σk(A) ≥ (1 +
√
ε)σk+1(A), then deflating off the top k components already gives a (1 + ε) factor

approximation to σk+1(A). Otherwise, we proceed with binary search as follows.
Suppose we consider j ∈ [k]. If the upper and lower bounds for σj(A) in Lemma 3.7 are within a

(1 + O(ε)) factor, then we know that σk+1(A) is smaller than this, up to a (1 ± O(ε)) factor. On the
other hand, if the upper and lower bounds for σj(A) are further than a (1 + O(ε)) factor, then σj(A) ≤
(1 +

√
ε)σk+1(A), since otherwise the upper and lower bounds for σj(A) would have matched up to a

(1±O(ε)) factor by the second guarantee of Lemma 3.7. Thus, we may use binary search over the at most
k singular values in at most O(log k) calls to the algorithm of Lemma 3.7.
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3.4 Approximating Small Singular Values

With a (1 +
√
ε) factor approximation to σk+1(A) in hand, we now zoom into the singular values between

σk+1(A) and (1+
√
ε)σk+1(A). We consider partitioning this (1 +

√
ε) factor window into O(1/

√
ε) buckets

that increase in powers of (1 + ε), that is

L,L(1 + ε), L(1 + ε)2, L(1 + ε)3, . . . , L(1 + ε)O(1/
√
ε) = (1 +

√
ε)L

where L is a lower bound on σk+1(A), up to a (1 +
√
ε) factor. Our idea now is to simply enumerate over

these O(1/
√
ε) guesses to a (1 ± ε)-approximation of σk+1(A), and then choose the best result.

With only a (1 + ε) factor gap in the singular values, using power method as before will require roughly
(ignoring log factors) 1/ε iterations, which takes time roughly nnz(A)/ε to separate out the singular compo-
nents, which is above our target budget. However, using Chebyshev polynomials, it is known that a (1 + ε)
factor gap in the singular values can be separated with only roughly 1/

√
ε iterations [MM15] which takes

time only nnz(A)/
√
ε. The main lemma for this technique is the following:

Lemma 3.9 (Lemma 5, [MM15]). Given a specified value α > 0, gap γ ∈ (0, 1], and q ≥ 1, there exists a
degree q polynomial p(x) such that:

1. p((1 + γ)α) = (1 + γ)α

2. p(x) ≥ x for all x ≥ (1 + γ)α

3. |p(x)| ≤ α
2q

√
γ−1 for all x ∈ [0, α]

Furthermore, when q is odd, the polynomial only contains odd powered monomials.

In words, the above lemma states that there is a polynomial that “jumps” by a factor of 2q
√
γ−1 in a

window of size (1 + γ) at a specified location α. The difference between this lemma and our power method
analysis from before is that we must specify the location of our “jump”, α, in order to use the above
polynomial in the Krylov method, whereas in the power method, the polynomial p(x) = xq had the “jump”
property at any location α. Thus, in order to use the above lemma, we must first specify our jump location
α, and then proceed with our previous techniques.

Our procedure is thus as follows. We first compute Krylov iterates (AA⊤)iAg for i ∈ [q], where g ∼
N (0, Id) and

q = O

(

1√
ε
log

sk2
√
sr logn

ε

)

.

We then proceed with our enumeration procedure. We guess a bucket α = L(1+ ε)t for some t ∈ [O(1/
√
ε)],

and then consider the degree q polynomial pα(x) that jumps by a 2q
√
ε−1 factor at α by Lemma 3.9. Then,

we may compute the vector Upα(Σ)V⊤g as a linear combination of the Krylov iterates

(AA⊤)iAg = UΣ2i+1V⊤g

where the coefficients of the linear combination are the coefficients of the polynomial pα. Next, we take the
top sk entries of Upα(Σ)V⊤g as sets Sα and Tα, combine them with the sk entries S and T obtained earlier
by the power method, and then take our new subset of entries to be

S′ := S ∪
⋃

α

Sα

T ′ := T ∪
⋃

α

Tα

Finally we compute a rank k matrix B such that

‖PS′APT ′ −B‖2F ≤ min
rank k C

‖PS′APT ′ −C‖2F + εσ2
k+1(PS′APT ′)

using the results of [MM15].
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Note that if the α we choose satisfies α ∈ [σk+1(A), (1 + ε)σk+1(A)], then all singular values j that are
at least a (1 + ε) factor larger than α and at most Θ(1)σk+1(A) are scaled by at least a factor of

2q
√
ε−1 = Θ

(

sk2
√
sr logn

ε

)

= Θ

(

sk2
√
sr logn

ε

)

σj

σk+1
= Θ

(

sk
√
logn

τj

)

,

which means we may recover all coordinates of the jth singular vectors that are at least τj for these singular
values, as done in the analyses in Section 3.2. Thus, we have that

‖A−B‖22 ≤ ‖A−Al‖22 + 8εσ2
l+1(A) + εσ2

l+1(PS′APT ′)

≤ ‖A−Al‖22 + 9εσ2
l+1(A)

= (1 + 9ε)σ2
l+1(A)

≤ (1 + 9ε)(1 + ε)σ2
k+1(A)

≤ (1 + 11ε)σ2
k+1(A)

by Lemma 3.2, where l ∈ [k] is such that σ2
k+1(A) ≤ σ2

l+1(A) ≤ (1 + ε)σ2
k+1(A).

The initial computation of the Krylov iterates takes time

O(nnz(A)q) = O

(

nnz(A)√
ε

log
srk logn

ε

)

and a single guess of α takes time

O(nq) = O

(

n√
ε
log

srk logn

ε

)

which we repeat O(1/
√
ε) times, so the total running time in this section is

O

((

nnz(A)√
ε

+
n

ε

)

log
srk log n

ε

)

.

We then additionally run an approximate SVD using Theorem 1.11 on the O(sk/
√
ε) × O(sk/

√
ε) matrix,

which adds an s2k3(log(sk))/ε3/2 term, for a running time of

O

((

nnz(A)√
ε

+
n

ε

)

log
srk logn

ε
+

s2k3

ε3/2
log(sk)

)

.

This dominates the running times of the previous steps and thus is the running time of our entire algorithm.

4 Frobenius Sparse Low Rank Approximation

We now switch to discussing sparse low rank approximation with no assumptions on the input matrix, in
the Frobenius norm, in the streaming setting.

4.1 Algorithms

4.1.1 Exponential Time Algorithms for Sparse Output

Our first result is a näıve exponential time algorithm which iterates over an ε-net to find a good s× s sparse
rank k approximation, taking time roughly exp(O(sk logn)) and only O(sk(log n)/ε2) sketching dimensions.
In order to make our net argument, we will assume for this section that the τi in Definition 1.1 are bounded
by τi ≤ poly(n), to support Corollary 2.3. The exponential dependence on s and k is necessary, as we show
later in Section 4.2. The sketch is just a Gaussian matrix, and the analysis of the algorithm follows from
Gordon’s theorem, which is a dimensionality reduction result which shows the preservation of norms of sets
under random projections, when the target dimension scales with the Gaussian width of the set.
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Definition 4.1 (Gaussian width). The Gaussian width of a subset S ⊂ Rn is defined as

w(S) := E
g∼N (0,In)

[

sup
x∈S
〈g,x〉

]

.

Gordon’s theorem essentially states that a random projection to approximately

1

ε2

(

w(S)2 + log
1

δ

)

dimensions suffices to preserve the norms of all points in S, with probability at least 1− δ.

Theorem 4.2 (Gordon’s Theorem (Theorem 9.11, [BSS20])). Let G ∼ N (0, 1)m×d and let S ⊆ Sd−1 be a
closed subset of the d-dimensional unit sphere. Let

am := E
g∼N (0,Im)

‖g‖2 = Θ(
√
m).

Then for ε >
√

w(S)2/a2m,

Pr

{

(1 − ε)‖x‖2 ≤
1

am
‖Gx‖2 ≤ (1 + ε)‖x‖2, ∀x ∈ S

}

≥ 1− 2 exp

(

−
(

ε− w(S)

am

)2

m

)

.

The use of Gordon’s theorem for low rank matrix recovery is standard, see e.g. [Ver15]. We show that
this technique can be used for sparse low rank matrix approximation as well, by setting the failure rate δ to
(

n
s

)−2
and then iterating over all s× s submatrices of A.

Theorem 4.3. There is a randomized sketching algorithm which solves the Frobenius sparse low rank ap-
proximation with

O

(

sk

ε2
log

n

s

)

measurements and takes time
(poly(n)k/ε)sk

to output a D ∈ Ss,k such that

‖A−D‖2F ≤ (1 + ε) min
C∈Ss,k

‖A−C‖2F .

Proof. Note that we may write the objective as

min
s × s sparse rank k C

‖A−C‖2F = min
S,T∈([n]

s )×(
[n]
s )

min
rank k C

‖A|S×T −C‖2F

where A|S×T denotes the restriction of A to the submatrix indexed by coordinates S × T .
By [Ver15, Proposition 10.4], the Gaussian mean width of the set

D =
{

X ∈ R
s×s : ‖X‖2F = 1, rank(X) ≤ k

}

is at most
w(D) ≤ 4

√
sk.

We now fix S, T ∈
(

[n]
s

)

×
(

[n]
s

)

. Then by the translational invariance of Gaussian width [Ver15, Proposition
3.5] as well as the fact that padding zeros does not change the Gaussian width, we also have that w(D′) ≤
4
√
sk for the set

D′ =
{

A−X ∈ R
n×d : ‖X‖2F = 1, rank(X) ≤ k,X supported on S × T

}

.

Now let

m = Ω

(

1

ε2

(

w(D′) + log

(

n

s

)))

= Ω

(

sk

ε2
log

n

s

)

.
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Then by Gordon’s theorem (Theorem 4.2), an m× s2 Gaussian matrix G ∼ N (0, 1)m×s2 will satisfy

∥

∥

∥

∥

1

am
G vec(A−X)

∥

∥

∥

∥

2

2

= (1± ε)‖A−X‖2F

for all X of rank at most k supported on S × T , with probability at least 1−
(

n
s

)−2
/200. Thus, solving the

problem

min
X∈D

∥

∥

∥

∥

1

am
G vec(A−X)

∥

∥

∥

∥

2

2

provides a (1 + ε) multiplicative error solution for

min
X∈D
‖A−X‖2F

with probability at least 1 −
(

n
s

)−2
/200. By a union bound, this holds for all S, T ∈

(

[n]
s

)

×
(

[n]
s

)

with
probability at least 1− 1/200.

To solve the approximate minimization problem supported on S × T , we simply iterate over an ε-net
using Corollary 2.3, which has size at most

(poly(n)k/ε)sk.

4.1.2 Polynomial Time Bicriteria Algorithm with Relative Error

Although the above algorithm runs in exponential time, by our results in Section 4.2, we cannot hope for
polynomial time algorithms for the sparse low rank approximation problem. In order to find polynomial
time algorithms, we relax our requirement of outputting an s× s-sparse rank k matrix and instead allow for
larger matrices.

As a warm-up to our more technically involved additive error bicriteria algorithm of Section 4.1.3 and
Theorem 4.8 achieving roughly Õ(sk2) measurements, we prove a relative error algorithm achieving roughly
Õ(s2k2) measurements. More specifically, we show the following:

Theorem 4.4. Let A ∈ Rn×d. There is a randomized sketching algorithm which makes

O

(

s2k2

ε4
log(nd) +

sk

ε
log2(nd)

)

measurements to A and outputs a rank k matrix D which is supported on an O(sk/ε)×O(sk/ε) submatrix
such that

‖A−D‖2F ≤ (1 + ε) min
B∈Ss,k

‖A−B‖2F

in polynomial time.

Throughout this section, let B denote any s× s sparse rank k matrix. For our relative error polynomial
time algorithm, our first observation is that

‖A−B‖2F ≥
∥

∥

∥
A[s2k]

∥

∥

∥

2

F

where A
[s2k]

is the matrix obtained by zeroing out the s2k largest entries in absolute value from A. We can

similarly note that

‖A−B‖2F ≥
∥

∥

∥A[sk],∗

∥

∥

∥

2

F

where A[sk],∗ denotes the matrix obtained by zeroing out the sk heaviest rows of A, since B is supported

on at most sk rows. These tail guarantees are compatible with guarantees achievable efficiently in a stream
using CountSketch (see Section 2.2).
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Our next observation is to note that a relative error solution is supported on the intersection of the rows
and columns of A with squared norm at least τ , for

τ =
ε

sk

∥

∥

∥A[sk/ε],∗

∥

∥

∥

2

F
≤ ε

sk
‖A−B‖2F ,

since we miss at most sk rows of the optimal solution, and each of these will have squared norm at most τ .
This is formalized in the following lemma.

Lemma 4.5. Consider an s× s-sparse rank k matrix

B =
k
∑

i=1

τixiy
⊤
i

that minimizes ‖A−B‖2F . Let τ > 0 be a threshold parameter. Then, there exists a rank k matrix D

supported on the rows and columns of A with norm at least τ such that

‖A−D‖2F ≤ ‖A−B‖2F + skτ.

Proof. Let W be the support of an sk × sk submatrix that contains B, let X ⊆ W be the part of W
contained in columns of A with norm at most τ , and let W \X be the part of W contained in columns of
A with norm at least τ (see Figure 1).

B X W \X

Figure 1: The supports W,X,W \X to be used in the proof.

Let A |W denote the matrix A restricted to W , and similarly define A |X and A |W\X . Then, by
repeatedly using the Pythagorean theorem, we have that

‖A− (A |W )k‖2F = ‖A−A |W ‖2F + ‖A |W −(A |W )k‖2F
=
∥

∥A−A |W\X
∥

∥

2

F
− ‖A |X‖2F + ‖A |W −(A |W )k‖2F

=
∥

∥A−A |W\X
∥

∥

2

F
− ‖A |X‖2F + ‖A |W −(A |W )k‖2F

+
∥

∥A |W\X −(A |W\X)k
∥

∥

2

F
−
∥

∥A |W\X −(A |W\X)k
∥

∥

2

F

=
∥

∥A− (A |W\X)k
∥

∥

2

F
− ‖A |X‖2F + ‖A |W −(A |W )k‖2F

−
∥

∥A |W\X −(A |W\X)k
∥

∥

2

F
.

Note that if we restrict (A |W )k to W \X , then this is a rank k matrix supported on W \X and thus

∥

∥A |W\X −(A |W\X)k
∥

∥

2

F
≤
∥

∥A |W\X −((A |W )k) |W\X
∥

∥

2

F
=
∥

∥(AW − (A |W )k) |W\X
∥

∥

2

F
.
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Furthermore, we can remove the restriction toW\X so that the above is bounded above by ‖AW − (A |W )k‖2F ,
so

‖A |W −(A |W )k‖2F −
∥

∥A |W\X −(A |W\X)k
∥

∥

2

F
≥ 0.

We thus have that

‖A− (A |W )k‖2F ≥
∥

∥A− (A |W\X)k
∥

∥

2

F
− ‖A |X‖2F .

Rearranging and noting that
‖AX‖2F ≤ sk · τ,

we have that
∥

∥A− (A |W\X)k
∥

∥

2

F
≤ ‖A− (A |W )k‖2F + skτ.

Finally, since B is a rank k matrix supported on W , we have that

∥

∥A− (A |W\X)k
∥

∥

2

F
≤ ‖A−B‖2F + skτ.

We set the parameter τ in the above lemma to τ = ε
sk

∥

∥

∥A[sk/ε],∗

∥

∥

∥

2

F
, so that there exists a rank k solution

D such that

‖A−D‖2F ≤ ‖A−B‖2F + sk · ε

sk

∥

∥

∥A[sk/ε],∗

∥

∥

∥

2

F

≤ ‖A−B‖2F + ε
∥

∥

∥A[sk/ε],∗

∥

∥

∥

2

F

≤ ‖A−B‖2F + ε‖A−B‖2F
= (1 + ε)‖A−B‖2F

We can efficiently find such rows and columns using Lemma 2.7:

Lemma 4.6. With

O

(

sk

ε
log2(nd)

)

measurements, one can find a set S ⊆ [n] of rows of size O(sk/ε) containing all i ∈ [n] such that

∥

∥e⊤i A
∥

∥

2

2
≥ ε

sk

∥

∥

∥A[sk/ε],∗

∥

∥

∥

2

F
.

Proof. We use Lemma 2.7 with ε in the lemma set to ε
100sk and α set to 1/4. Suppose row i ∈ [n] has norm

at least
∥

∥e⊤i A
∥

∥

2
≥
√

ε

sk

∥

∥

∥A[sk/ε],∗

∥

∥

∥

F
.

This requires only

O

(

sk

ε
log2(nd)

)

measurements to identify. Then,

∥

∥

∥e
⊤
i ÂG⊤

∥

∥

∥

2
≥
∥

∥e⊤i A
∥

∥

2
− 1

4

∥

∥e⊤i A
∥

∥

2
−
√

5

4

√

ε

100sk

∥

∥

∥A[sk/ε],∗

∥

∥

∥

F

≥ 5

8

√

ε

sk

∥

∥

∥A[sk/ε],∗

∥

∥

∥

F
.
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On the other hand, if
∥

∥

∥e⊤i ÂG⊤
∥

∥

∥

2
≥ 5

8

√

ε
sk

∥

∥

∥A[sk/ε],∗

∥

∥

∥

F
, then

∥

∥e⊤i A
∥

∥

2
≥ 5

8

√

ε

sk

∥

∥

∥A[sk/ε],∗

∥

∥

∥

F
− 1

4

∥

∥e⊤i A
∥

∥

2
−
√

5

4

√

ε

100sk

∥

∥

∥A[sk/ε],∗

∥

∥

∥

F

=⇒
∥

∥e⊤i A
∥

∥

2
≥ 2

5

√

ε

sk

∥

∥

∥A[sk/ε],∗

∥

∥

∥

F
.

Thus, by selecting all rows with

∥

∥

∥e
⊤
i ÂG⊤

∥

∥

∥

2
≥ 5

8

√

ε

sk

∥

∥

∥A[sk/ε],∗

∥

∥

∥

F
,

we select all rows with
∥

∥e⊤i A
∥

∥

2
≥
√

ε

sk

∥

∥

∥A[sk/ε],∗

∥

∥

∥

F
.

Furthermore, there are at most 25
4

sk
ε such rows belonging to A[sk/ε],∗ and thus we select at most

25

4

sk

ε
+

sk

ε
= O

(

sk

ε

)

rows of A.

Finally, we let q = O(s2k2/ε4) and let r = log(nd). We then treat A as an nd-dimensional vector and

use the tail error guarantee of CountSketch (Lemma 2.5) in order to reconstruct a matrix Â such that

∥

∥

∥Â−A

∥

∥

∥

2

∞
≤ 1

q

∥

∥

∥A[q]

∥

∥

∥

2

F
≤ ε4

s2k2
‖A−B‖2F .

When restricted to the O(sk/ε)×O(sk/ε) submatrix S×T of the heavy rows and columns identified before,
we have that

∥

∥

∥Â |S×T −A |S×T

∥

∥

∥

2

F
≤ O

(

sk

ε

)2
∥

∥

∥Â−A

∥

∥

∥

2

∞
≤ ε2‖A−B‖2F .

This requires only

O

(

s2k2

ε4
log(nd)

)

measurements. We can then show that the optimal low rank approximation to Â |S×T will give us a relative
error sparse low rank approximation to A.

Lemma 4.7. Let S ⊆ [n] and T ⊆ [n] be supersets of the rows and columns of A that have squared norm at
least

τ =
ε

sk
‖A−B‖2F

and let Â be a matrix such that

∥

∥

∥Â |S×T −A |S×T

∥

∥

∥

2

F
≤ ε2‖A−B‖2F

where for a matrix M, MS×T denotes the restriction of M to the submatrix indexed by rows S and columns
T . Then,

∥

∥

∥A− (Â |S×T )k

∥

∥

∥

2

F
≤ (1 +O(ε))‖A−B‖2F .
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Proof. We have that

∥

∥

∥A |S×T −(Â |S×T )k

∥

∥

∥

F
≤
∥

∥

∥Â |S×T −(Â |S×T )k

∥

∥

∥

F
+
∥

∥

∥Â |S×T −A |S×T

∥

∥

∥

F

≤
∥

∥

∥Â |S×T −(A |S×T )k

∥

∥

∥

F
+
∥

∥

∥Â |S×T −A |S×T

∥

∥

∥

F

≤ ‖A |S×T −(A |S×T )k‖F + 2
∥

∥

∥Â |S×T −A |S×T

∥

∥

∥

F

≤ ‖A |S×T −(A |S×T )k‖F + 2ε‖A−B‖F
so by squaring both sides, we get

∥

∥

∥
A |S×T −(Â |S×T )k

∥

∥

∥

2

F
≤ (‖A |S×T −(A |S×T )k‖F + 2ε‖A−B‖F )

2

= ‖A |S×T −(A |S×T )k‖2F + 4ε‖A |S×T −(A |S×T )k‖F ‖A−B‖F + 4ε2‖A−B‖2F
= ‖A |S×T −(A |S×T )k‖2F + 4ε(1 + ε)‖A−B‖F ‖A−B‖F + 4ε2‖A−B‖2F
≤ ‖A |S×T −(A |S×T )k‖2F + (4ε(1 + ε) + 4ε2)‖A−B‖2F
= ‖A |S×T −(A |S×T )k‖2F + (4ε(1 + ε) + 4ε2)‖A−B‖2F .

Adding ‖A−A |S×T ‖2F on both sides and applying the Pythagorean theorem, we obtain

∥

∥

∥A− (Â |S×T )k

∥

∥

∥

2

F
≤ ‖A− (A |S×T )k‖2F +O(ε)‖A−B‖2F .

Since (A |S×T )k is the optimal matrix supported on the rows and column at least τ , we have by Lemma
4.5 that

∥

∥

∥A− (Â |S×T )k

∥

∥

∥

2

F
≤ ‖A−B‖2F +O(ε)‖A−B‖2F
= (1 +O(ε))‖A−B‖2F

as desired.

4.1.3 Polynomial Time Bicriteria Algorithm with Additive Error

The previous polynomial time relative error algorithm has a quadratic dependence on both s and k, whereas
a linear dependence is possible if we allow for exponential time algorithms. A natural question is whether
these can be improved to linear or not. The quadratic dependencies can be attributed to the tail error
guarantee we seek from every entry on our O(sk/ε) × O(sk/ε) submatrix that contains an approximately
optimal solution, which was used to compute an SVD. If we change our approximate SVD approach to be
based on sampling rows of this submatrix, then we would require a tail error guarantee on fewer entries,
and thus should lead to better upper bounds. This leads to the idea of implementing the [FKV04] ℓ2
sampling approach to approximate SVD in this setting. This approximate SVD subroutine gives additive
error guarantees rather than the stronger relative error guarantees in the previous section. However, with
this relaxation, we are able to improve the quadratic dependence on s to linear. In this section, we prove
the following theorem:

Theorem 4.8. Let A ∈ Rn×d. There is a randomized sketching algorithm which makes

O

(

sk2

ε6
log2 n

)

measurements to A and outputs a rank k matrix D supported on an O(sk/ε)×O(sk/ε) submatrix such that

‖A−D‖2F ≤ min
B∈Ss,k

‖A−B‖2F + ε‖A‖2F
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in polynomial time.

Remark 4.9. If we optimize over only rank k matrices that are supported on an s×s submatrix rather than
sums of k s× s matrices, then by making small adjustments to our argument, we can show that we use only

O

(

sk

ε6
log2 n

)

= sk poly(logn, ε−1)

measurements, i.e., linear in both s and k, which is the correct dependence on s and k.

Our algorithm roughly proceeds in the same way as the previous one: by identifying O(sk/ε) heavy rows
and columns that contain an additive error rank k approximation to A, and then performing an approximate
SVD on this O(sk/ε)×O(sk/ε) submatrix. The difference is that the approximate SVD will be replaced by
the [FKV04] routine which samples rows proportional to their ℓ2 norms.

Note that näively, the [FKV04] algorithm is implemented in two passes over a stream [DKM06]: one pass
to compute the ℓ2 norms of the rows, and one pass to obtain the sample of the rows. We now show the
intuition for conducting this sampling in one pass. The work of [MRWZ20] recently implemented subspace
sampling, a seemingly even more sequential sampling scheme, in one pass over a stream, and includes ℓ2
sampling as a special case. We show an alternate one pass implementation for ℓ2 sampling.

Our idea is to switch the ℓ2 norm computation step and then sampling step. That is, we first obtain
a sample of rows each sampled with probability p, and then later restrict to the rows of the sample with
ℓ2 norm Θ(p‖A‖2F ). By running this procedure in parallel for geometrically decreasing values of p, say
p = 1, 1/2, 1/4, . . . , 1/n, we obtain an [FKV04] sample. The advantage of this approach is that by sampling
first, we need to approximate fewer values of the matrix, which improves our upper bounds.

Approximate ℓ2 Sampling of Rows. By setting

τ =
ε

sk
‖A‖2F

in Lemma 4.5, we see that an additive error solution is supported in the O(sk/ε) × O(sk/ε) submatrix at
the intersection of the rows and columns with ℓ2 norm at least τ . Let these rows and columns be indexed
by S ⊆ [n] and T ⊆ [d], respectively. Then, Lemma 2.7 allows us to find the subset of coordinates S and T .

Next, we discuss how to approximately find a rank k projection V̂V̂⊤ that is supported on these coordinates
S and T . Our strategy is to obtain approximations to the rows of A that are sampled proportionally to
their ℓ2 norm, formalized in the following definition.

Definition 4.10 (ℓ2 sampling [FKV04]). Let A ∈ Rn×d. Then, P is a c-approximate ℓ2 sampling distribu-
tion if

Pi ≥ min

{

c

∥

∥e⊤i A
∥

∥

2

2

‖A‖2F
, 1

}

for each i ∈ [n].

It is known that a Θ(k/ε2)-approximate ℓ2 sample of the rows of A yields additive low rank approxima-
tions, which we seek [DKM06, Theorem 2].

Theorem 4.11 (LinearTimeSVD [DKM06]). Let A ∈ Rn×d. Then, there is an algorithm that samples
rows from a Θ(k/ε2)-approximate ℓ2 distribution and outputs a matrix Z ∈ Rd×k with orthogonal columns
such that

∥

∥A−AZZ⊤∥
∥

2

F
≤ ‖A−Ak‖2F + ε‖A‖2F .

Before we proceed with the sampling result, we show several lemmas that allow us to reduce the task
of obtaining an additive rank k approximation to A to obtaining an additive rank k approximation to a
surrogate matrix Â that is close to A in Frobenius norm.

Our first lemma shows that if Â is close to A in Frobenius norm and ÂV̂V⊤ is a good rank k approxi-
mation for A, then AV̂V⊤ is also a good rank k approximation for A.
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Lemma 4.12. Let V̂V⊤ be a rank k projection and let Â be such that

∥

∥

∥Â−A

∥

∥

∥

2

F
≤ δ.

Then,
∥

∥

∥A−AV̂V̂⊤
∥

∥

∥

2

F
≤
∥

∥

∥A− ÂV̂V̂⊤
∥

∥

∥

2

F
+ δ + 2

√
δ
∥

∥

∥A− ÂV̂V̂⊤
∥

∥

∥

F
.

Proof.

∥

∥

∥
A−AV̂V̂⊤

∥

∥

∥

2

F
≤
(∥

∥

∥
A− ÂV̂V̂⊤

∥

∥

∥

F
+
∥

∥

∥
ÂV̂V̂⊤ −AV̂V̂⊤

∥

∥

∥

F

)2

=
(∥

∥

∥A− ÂV̂V̂⊤
∥

∥

∥

F
+
∥

∥

∥(Â−A)V̂V̂⊤
∥

∥

∥

F

)2

≤
(∥

∥

∥A− ÂV̂V̂⊤
∥

∥

∥

F
+
∥

∥

∥Â−A

∥

∥

∥

F

)2

=
∥

∥

∥A− ÂV̂V̂⊤
∥

∥

∥

2

F
+
∥

∥

∥Â−A

∥

∥

∥

2

F
+ 2
∥

∥

∥A− ÂV̂V̂⊤
∥

∥

∥

F

∥

∥

∥Â−A

∥

∥

∥

F

≤
∥

∥

∥A− ÂV̂V̂⊤
∥

∥

∥

2

F
+ δ + 2

√
δ
∥

∥

∥A− ÂV̂V̂⊤
∥

∥

∥

F

Our second lemma shows that if Â and A are close in Frobenius norm, then a good additive error low
rank approximation of Â is a good additive error low rank approximation of A.

Lemma 4.13. Let A ∈ Rn×d and let Â be such that
∥

∥

∥Â−A

∥

∥

∥

2

F
≤ δ.

Let D be a rank k matrix such that
∥

∥

∥Â−D

∥

∥

∥

2

F
≤
∥

∥

∥Â− Âk

∥

∥

∥

2

F
+ η.

Then,

‖A−D‖2F ≤ ‖A−Ak‖2F + 2
√
δ‖A‖F + 2δ + η + 2

√

δ
(

2δ + 2‖A‖2F + η
)

.

Proof. We first estimate

∥

∥

∥Â−Ak

∥

∥

∥

2

F
≤
(∥

∥

∥Â−A

∥

∥

∥

F
+ ‖A−Ak‖F

)2

by triangle inequality

≤
(√

δ + ‖A−Ak‖F
)2

Then, we can bound

‖A−D‖2F ≤
(∥

∥

∥A− Â

∥

∥

∥

F
+
∥

∥

∥Â−D

∥

∥

∥

F

)2

≤
(

∥

∥

∥A− Â

∥

∥

∥

F
+

√

∥

∥

∥Â−Ak

∥

∥

∥

2

F
+ η

)2

≤
(

√
δ +

√

∥

∥

∥Â−Ak

∥

∥

∥

2

F
+ η

)2
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≤
(

√
δ +

√

(√
δ + ‖A−Ak‖F

)2

+ η

)2

= δ +
(√

δ + ‖A−Ak‖F
)2

+ η + 2

√

δ

(

(√
δ + ‖A−Ak‖F

)2

+ η

)

≤ δ +
(√

δ + ‖A−Ak‖F
)2

+ η + 2

√

δ
(

2δ + 2‖A−Ak‖2F + η
)

≤ δ +
(√

δ + ‖A−Ak‖F
)2

+ η + 2

√

δ
(

2δ + 2‖A‖2F + η
)

≤ ‖A−Ak‖2F + 2
√
δ‖A‖F + 2δ + η + 2

√

δ
(

2δ + 2‖A‖2F + η
)

.

Finally, we show that an ℓ2 norm approximation of the rows ofA implies a Frobenius norm approximation
of A.

Lemma 4.14. Let A ∈ Rn×d and let Â be such that for every i ∈ [n],

∥

∥

∥e
⊤
i Â− e⊤i A

∥

∥

∥

2

2
≤ ε
∥

∥e⊤i A
∥

∥

2

F
.

Then
∥

∥

∥Â−A

∥

∥

∥

2

F
≤ ε‖A‖2F

Proof.
∥

∥

∥
Â−A

∥

∥

∥

2

F
=

n
∑

i=1

∥

∥

∥
e⊤i Â− e⊤i A

∥

∥

∥

2

2
≤

n
∑

i=1

ε
∥

∥e⊤i A
∥

∥

2

F
≤ ε‖A‖2F

Outputting a Good Sparse Projection. By setting τ in Lemma 4.5 to (ε/sk)‖A‖2F , we may identify an
O(sk/ε)×O(sk/ε) submatrix that contains a good additive error s×s-sparse rank k low rank approximation
to A using

O

(

sk

ε
logn

)

measurements. Let S and T be the indices of the O(sk/ε) heavy rows and columns, and let AS×T denote
the O(sk/ε)×O(sk/ε) submatrix indexed by S and T . We now wish to perform an SVD on this submatrix.
We do this approximately by using the ℓ2 sampling machinery developed in [FKV04, DKM06].

Note that if ‖AS×T ‖2F < ε‖A‖2F , then

‖A‖2F = ‖A−AS×T ‖2F + ‖AS×T ‖2F ≤ ‖A−AS×T ‖2F + ε‖A‖2F

so 0 is already a good additive error low rank approximation. We thus WLOG assume that ‖AS×T ‖2F ≥
ε‖A‖2F .

If we conduct the ℓ2 sampling process (Definition 4.10) with c = Θ(k/ε2), note in particular that we
must sample all rows i ∈ S such that

∥

∥e⊤i AS×T

∥

∥

2

2
≥ Ω

(

ε2

k

)

‖AS×T ‖2F

with probability 1. Let i ∈ S be such a row. Note then that

∥

∥e⊤i AS×T

∥

∥

2

2
≥ Ω

(

ε3

k

)

‖A‖2F
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since ‖AS×T ‖2F ≥ ε‖A‖2F .
Suppose that we view A as a vector and attempt to reconstruct Â using CountSketch. With O(sk2/ε6)

CountSketch buckets, we may recover a matrix Â such that

∥

∥

∥Â−A

∥

∥

∥

2

∞
≤ ε6

sk2
‖A‖2F .

For row i, the error over the O(sk/ε) coordinates of the row is at most

∥

∥

∥e
⊤
i ÂS×T − e⊤i AS×T

∥

∥

∥

2

2
≤ O

(

sk

ε

)

· ε6

sk2
‖A‖2F ≤ O

(

ε5

k

)

‖A‖2F ≤ ε2
∥

∥e⊤i AS×T

∥

∥

2

2
.

Similarly, suppose that a row i ∈ S has squared norm at least

∥

∥e⊤i AS×T

∥

∥

2

2
≥ Ω

(

α
ε2

k

)

‖AS×T ‖2F ≥ Ω

(

α
ε3

k

)

‖A‖2F ,

then we must sample the row with probability at least α. Consider sampling each row of A with probability
α and let W be this sample and let PW be the associated sampling matrix. Then the resulting matrix PWA

has an expected squared Frobenius mass of E‖PWA‖2F = α‖A‖2F , and at most

‖PWA‖2F ≤ O
(

α log
n

ε

)

‖A‖2F

with probability at least 1−O(1/ log(n/ε)). Then again treating this subsampled matrix as a vector, we may
reconstruct this submatrix using CountSketch with O(sk2 log(n/ε)/ε6) buckets to recover an approximation

P̂WA such that
∥

∥

∥
P̂WA−PWA

∥

∥

∥

2

∞
≤ ε6

sk2 log(n/ε)
‖PWA‖2F = O(α)

ε6

sk2
‖A‖2F .

Then for this row i, if sampled, the error over the O(sk/ε) coordinates of the row is at most

∥

∥

∥e
⊤
i

̂PWAS×T − e⊤i PWAS×T

∥

∥

∥

2

2
≤ O

(

sk

ε

)

· O(α)
ε6

sk2
‖A‖2F ≤ O

(

α
ε5

k

)

≤ ε2
∥

∥e⊤i AS×T

∥

∥

2

2

with probability at least 1 − O(1/ log(n/ε)). By a union bound over all O(log(n/ε)) sampling levels for
α = 1, 1/2, 1/4, 1/8, . . . , ε2/n2, this is true for all of these sampling levels with constant probability.

Thus, we may obtain a Θ(k/ε2)-approximate ℓ2 sample of some matrix ÂS×T that satisfies

∥

∥

∥e
⊤
i ÂS×T − e⊤i AS×T

∥

∥

∥

2

2
≤ ε2

∥

∥e⊤i AS×T

∥

∥

2

2
,

where by Lemma 4.14,
∥

∥

∥ÂS×T −AS×T

∥

∥

∥

2

F
≤ ε2‖AS×T ‖2F . Now let ĈS×T be the rows sampled from ÂS×T

and let V̂ be the Θ(sk/ε)×k matrix of the top k right singular vectors of ĈS×T . Then by [DKM06, Theorem
2], we have that

∥

∥

∥ÂS×T − ÂS×T V̂V̂⊤
∥

∥

∥

2

F
≤
∥

∥

∥ÂS×T − (ÂS×T )k

∥

∥

∥

2

F
+ ε‖AS×T ‖2F

Then by Lemma 4.13,

∥

∥

∥AS×T − ÂS×T V̂V̂⊤
∥

∥

∥

2

F
≤ ‖AS×T − (AS×T )k‖2F + (3ε+ ε2 + ε

√

2 + ε+ 2ε2)‖AS×T ‖2F
≤ ‖AS×T − (AS×T )k‖2F +O(ε)‖AS×T ‖2F

and thus by Lemma 4.12,

∥

∥

∥AS×T −AS×T V̂V̂⊤
∥

∥

∥

2

F
≤ ‖AS×T − (AS×T )k‖2F +O(ε)‖AS×T ‖2F
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as well.
We now add back the squared Frobenius mass of the entries outside of the S × T submatrix, i.e.,

∥

∥A− S⊤
SAS×TST

∥

∥

2

F
. Adding

∥

∥A− S⊤
SAS×TST

∥

∥

2

F
on both sides, we have that

∥

∥A− S⊤
SAS×TST

∥

∥

2

F
+
∥

∥

∥AS×T −AS×T V̂V̂⊤
∥

∥

∥

2

F
=
∥

∥

∥A− S⊤
SAS×T V̂V̂⊤ST

∥

∥

∥

2

F

and
∥

∥A− S⊤
SAS×TST

∥

∥

2

F
+ ‖AS×T − (AS×T )k‖2F =

∥

∥A− S⊤
S (AS×T )kST

∥

∥

2

F

which shows that
∥

∥

∥A− S⊤
SAV̂V̂⊤ST

∥

∥

∥

2

F
≤
∥

∥A− S⊤
S (AS×T )kST

∥

∥

2

F
+O(ε)‖AS×T ‖2F .

Note then that
∥

∥A− S⊤
S (AS×T )kST

∥

∥

2

F
≤
∥

∥

∥A− B̂

∥

∥

∥

2

F

where B̂ keeps only the columns of an optimal s × s-sparse rank k B with ℓ2 norm at least (ε2/sk)‖A‖2F ,
and

‖AS×T ‖2F ≤ ‖A‖
2
F ,

so by combining the above bounds,

∥

∥

∥A− S⊤
SAS×T V̂V̂⊤ST

∥

∥

∥

2

F
≤
∥

∥A− S⊤
S (AS×T )kST

∥

∥

2

F
+O(ε)‖AS×T ‖2F

≤
∥

∥A− S⊤
S (AS×T )kST

∥

∥

2

F
+O(ε)‖A‖2F

≤
∥

∥

∥A− B̂

∥

∥

∥

2

F
+O(ε)‖A‖2F

≤ min
s × s-sparse rank k C

‖A−C‖2F + O(ε)‖A‖2F .

By rescaling ε by a constant factor, we conclude that

∥

∥

∥A− S⊤
SAS×T V̂V̂⊤ST

∥

∥

∥

2

F
≤ min

s × s-sparse rank k C
‖A−C‖2F + ε‖A‖2F

as desired.

Outputting a Good Factorization. Given the above result, we have coordinate projections down to a
submatrix supported on S × T , with S and T each of size O(sk/ε), and a rank k right projection for this
submatrix. Our final task is to obtain an actual O(sk/ε)×O(sk/ε) matrix, rather than just a right factor.

Recall the current form of our sparse low rank approximation:

∥

∥

∥A− S⊤
SAS×T V̂V̂⊤ST

∥

∥

∥

2

F
=
∥

∥

∥A− S⊤
S SSAP⊤

T V̂V̂⊤ST

∥

∥

∥

2

F
.

Note that here, we have S, T , and V̂, but we don’t have all of the entries of AS×T . We first use approximate
matrix product (Lemma 2.8) to approximate AS⊤

T V̂V̂⊤ by AR⊤RS⊤
T V̂V̂⊤, where R is an O(k/ε2) × n

CountSketch matrix. By applying Lemma 2.8 with ε in the lemma set to ε/
√
k, we have that

∥

∥

∥AS⊤
T V̂V̂⊤ −AR⊤RS⊤

T V̂V̂⊤
∥

∥

∥

2

F
≤ ε2

k
‖A‖2F

∥

∥

∥S
⊤
T V̂V̂⊤

∥

∥

∥

2

F
=

ε2

k
· ‖A‖2F · k = ε2‖A‖2F .

Next, suppose that T(1),T(2), . . . ,T(r) are (sk/ε3)× n CountSketch matrices for r = O(log(nsk/ε)). Then,
by applying row-wise approximation (Lemma 2.6) with ε in the lemma set to ε3/sk and d to O(sk/ε), if we
maintain T(j)AR⊤ for j ∈ [r], from which we can compute

T(j)AR⊤RS⊤
T V̂V̂⊤,
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for every i ∈ [n], we can compute an approximate row w(i) such that

∥

∥

∥e
⊤
i AR⊤RS⊤

T V̂V̂⊤ −w(i)
∥

∥

∥

2

2
≤ ε3

sk

∥

∥

∥AR⊤RS⊤
T V̂V̂⊤

∥

∥

∥

2

F
.

Note that
∥

∥

∥AS⊤
T R

⊤RV̂V̂⊤
∥

∥

∥

F
≤
∥

∥

∥AS⊤
T V̂V̂⊤

∥

∥

∥

F
+
∥

∥

∥AS⊤
T V̂V̂⊤ −AS⊤

TR
⊤RV̂V̂⊤

∥

∥

∥

F

≤ ‖A‖F + ε‖A‖F
= (1 + ε)‖A‖F

so
ε3

sk

∥

∥

∥AS⊤
TR

⊤RV̂V̂⊤
∥

∥

∥

2

F
≤ O

(

ε3

sk

)

‖A‖2F .

Thus, summing over the O(sk/ε) rows in S, and letting W be the matrix corresponding to the approximate
rows w(i) for i ∈ S,

∥

∥

∥SSAS⊤
TR

⊤RV̂V̂⊤ −W

∥

∥

∥

2

F
≤ O

(

sk

ε

)

ε3

sk
‖A‖2F = ε2‖A‖2F .

Then by a couple of applications of the triangle inequality,

∥

∥A− S⊤
SWS⊤

T

∥

∥

F
≤
∥

∥

∥A− S⊤
SSSAS⊤

TR
⊤RV̂V̂⊤ST

∥

∥

∥

F
+ ε‖A‖F

≤
∥

∥

∥A− S⊤
SSSAS⊤

T V̂V̂⊤ST

∥

∥

∥

F
+ 2ε‖A‖F

so
∥

∥A− S⊤
SWST

∥

∥

2

F
≤ min

s × s-sparse rank k C
‖A−C‖2F +O(ε)‖A‖2F

as desired.
To implement the above, we must maintain T(j)AR⊤ for j ∈ [r], which requires

O

(

sk

ε3

)

· O
(

k

ε2

)

· log nsk

ε
= O

(

sk2

ε5
log

nsk

ε

)

which is within our measurement budget.

4.2 Computational Complexity

In this section, we show that under a randomized version of the Exponential Time Hypothesis, the (1 + ε)-
approximate Frobenius sparse low rank approximation problem has no algorithm running in time

f(s)

(

1√
ε

)o(
√
s)

.

Related works have shown NP-completeness and computational hardness results for related low rank approx-
imation variants, including sparse PCA [MWA06, Mag17, CPR16], low rank approximation with weights or
missing data [GG11, RSW16] and ℓp low rank approximation for p ∈ (1, 2) [BBB+19]. The NP-completeness
result of [GG11] employs a reduction from the maximum-edge biclique problem to show hardness for the
rank 1 weighted low rank approximation problem, which is similar to our reduction from the s-biclique prob-
lem to show exponential running time in s under a randomized variant of the Exponential Time Hypothesis.
Related hardness results were shown by [RSW16, Theorem 1.4], also by a reduction to the maximum biclique
problem.

30



4.2.1 Dependence on s and ε

We first note that the sparse low rank approximation problem is NP-complete for ε = 1/n2. This is obtained
through a reduction from the s-Biclique problem, which asks whether a given bipartite graph contains an
s-biclique Ks,s or not:

Lemma 4.15. Let G = (L,R,E) be a bipartite graph with |L| = |R| = n, and let AG denote the n × n
biadjacency matrix for G, that is, (AG)i,j is 1 if vertex i ∈ L and j ∈ R are adjacent and 0 otherwise. Then
for ε = 1/n2, it is NP-hard to compute the cost ‖A−A∗‖2F of the optimal solution A∗ for the s× s-sparse
low rank approximation problem within a (1 + ε) factor.

Proof. If G contains a Ks,s, then AG contains an s× s all ones matrix, so the optimal cost is ‖A−A∗‖2F =
‖A‖2F − s2. On the other hand, if G contains no Ks,s, then every s × s submatrix of AG must have at
most s2 − 1 ones. Thus, the optimal cost is at least ‖A −A∗‖2F ≥ ‖A‖2F − s2 + 1. In any case, we have
that ‖A −A∗‖2F ≤ ‖A‖2F ≤ n2 so the costs in these two cases are separated by at least a 1 + ε factor for
ε = 1/n2.

This is similar to the reduction of sparse PCA to the s-Clique problem [Mag17]. The NP-completeness
of s-biclique Ks,s is stated without proof in [GJ79] and proven in e.g., [ADL+94].

In fact, it is also known that s-Biclique does not admit fixed parameter tractable (FPT) algorithms,
assuming a randomized version of the Exponential Time Hypothesis.

Theorem 4.16 (Corollary 1.8, [Lin18]). Under the randomized ETH, there is no f(s)·no(
√
s)-time algorithm

to decide whether a given graph contains a subgraph isomorphic to Ks,s.

Then by a similar reduction as before, under the randomized ETH, the (1 + n−2)-approximate s × s-
sparse low rank approximation problem admits no f(s) · no(

√
s)-time algorithm as well. Stated in terms of

the accuracy parameter ε and s, we have the following:

Corollary 4.17. Under the randomized ETH, there is no f(s) · (1/√ε)o(
√
s)-time algorithm to compute a

(1 + ε)-approximate s× s-sparse low rank approximation.

Remark 4.18. Recently, the running time lower bound for the s-Biclique problem has been shown to
admit no algorithms running in time f(s)no(s) under a variant of the Planted Clique conjecture, termed the
Strongish Planted Clique Hypothesis [MRS21]. Then using this, one concludes that there is no algorithm
running in time f(s)(1/

√
ε)o(s) for the (1+ε)-approximate Frobenius sparse low rank approximation problem

as well, under the Strongish Planted Clique Conjecture.

5 Gaussian Noise Spectral Sparse Low Rank Approximation

We finally consider the setting where we are given a matrix

A = λX+G

for G ∼ N (0, 1)n×n, λ = O(
√
n), and X ∈ Os,k has operator norm 1. Note that we consider disjoint s× s-

sparse rank k matrices Os,k rather than Ss,k in order to obtain tight bounds for this problem. Furthermore,
throughout this section, we will assume that the coefficients τi in the Definition 1.1 are bounded by τi ≤
poly(n), for convenience for certain net arguments.

In this setting, we consider both the problem of detection of the low rank signalX as well as the estimation
of the low rank signal.

5.1 Lemmas for Analysis

We first introduce simple lemmas which will be useful for our analysis. The first argues that orthogonal
sparse components can only add Frobenius mass to each other.

Lemma 5.1. Let u1,v1 and u2,v2 be two s-sparse left and right singular vector pairs. Then, the Frobenius
norm of the restriction of u1v

⊤
1 + u2v

⊤
2 to the s× s support of u1v

⊤
1 is at least ‖u1v

⊤
1 ‖F .
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Proof. Let Su be intersection of the supports of u1 and u2. Note then that 〈u1|Su
,u2|Su

〉 = 〈u1,u2〉 = 0.
Similarly, 〈v1|Sv

,v2|Sv
〉 = 0 where Sv is the intersection of the supports of v1 and v2. Then by the

Pythagorean theorem, the Frobenius norm of the sum u1v
⊤
1 + u2v

⊤
2 restricted to Su × Sv is

∥

∥u1|Su
v1|⊤Sv

+ u2|Su
v2|⊤Sv

∥

∥

2

F
=
∥

∥u1|Su
v1|⊤Sv

∥

∥

2

F
+
∥

∥u2|Su
v2|⊤Sv

∥

∥

2

F
+ 2
〈

u1|Su
v1|⊤Sv

,u2|Su
v2|⊤Sv

〉

=
∥

∥u1|Su
v1|⊤Sv

∥

∥

2

F
+
∥

∥u2|Su
v2|⊤Sv

∥

∥

2

F
+ 2〈u1|Su

,u2|Su
〉〈v1|Sv

,v2|Sv
〉

=
∥

∥u1|Su
v1|⊤Sv

∥

∥

2

F
+
∥

∥u2|Su
v2|⊤Sv

∥

∥

2

F
≥
∥

∥u1|Su
v1|⊤Sv

∥

∥

2

F

By adding in the rest of the entries of u1v
⊤
1 outside of Su × Sv, we conclude as desired.

Our second lemma shows that any unit vector is essentially an s-sparse vector with entries of squared
value roughly 1/s, for some s.

Lemma 5.2. Let v ∈ Rm. Then, there exists an s ∈ [m] such that there are at least s/2 entries of A with

squared value at least ‖v‖22(s(1 + log2 m))−1.

Proof. By scaling, assumeWLOG that ‖v‖22 = 1. If v has an entry with squared value at least (1+log2 m)−1,
then we are already done with s = 1. Thus, let |vi| < (1 + log2 m)−1 for all i ∈ [m].

Suppose for contradiction that for every ℓ ∈ [log2 m], there are fewer than 2ℓ/2 entries of v with absolute
value at least (2ℓ log2 m)−1. We then partition the entries of A into the multiset S0 of entries with squared
value at most 1/m(1 + log2 m) and the multisets Sℓ with squared value in

[

1

2ℓ(1 + log2 m)
,

2

2ℓ(1 + log2 m)

)

for each ℓ ∈ [log2 m]. Note then that

‖v‖22 < |S0| ·
1

m(1 + log2 m)
+

log2 m
∑

ℓ=1

|Sℓ| ·
2

2ℓ(1 + log2 m)

≤ m

m(1 + log2 m)
+

log2 m
∑

ℓ=1

2ℓ

2

2

2ℓ(1 + log2 m)

≤ 1

1 + log2 m
+

log2 m
∑

ℓ=1

1

1 + log2 m

=
1 + log2 m

1 + log2 m
= 1,

a contradiction.

5.2 Detection

We first consider the problem of detection.

5.2.1 Lower Bounds

As previously noted, [LNW19] give sketching lower bounds for the detection problem when X is a random
n × n rank 1 matrix. We first adapt this lower bound to the setting where X ∈ Os,k. For our sparse low
rank signal lower bound, we draw our low rank signal matrix as a random sparse vector.

Definition 5.3 (Random sparse vector). We define the distribution νs,n which samples a vector u ∈ Rn by
sampling a subset S ⊆ [n] of |S| = s random coordinates, drawing the values for u on the coordinates of S
as u|S ∼ N (0, Is), and 0s everywhere else.
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Now consider the problem of distinguishing between two distributions where D1 = N (0, 1)n×n is an n×n

matrix with independent standard Gaussian entries, and D2 is the distribution drawn as
∑k

j=1 wju
j(vj)⊤

where uj ∼ νn,s1 and vj ∼ νd,s2 , are all drawn independently (recall Definition 5.3). We take m linear
measurements and denote the corresponding measurements as L1,L2, . . . ,Lm. We WLOG assume that
∥

∥Li
∥

∥

2

F
= 1 and tr(Li(Lj)⊤) = 0 for i 6= j. Let L1 and L2 denote the distribution of the m dimensional linear

sketches of D1 and D2, respectively.

Useful Computations. We will need the following simple lemma.

Lemma 5.4. Let A ∈ Rn×d. Then,

E
S∼([n]

s )
‖SSA‖2F =

∑

S∈([n]
s )

1
(

n
s

)

∑

i∈S

‖e⊤i A‖22 =
∑

i∈[n]

(

n−1
s−1

)

(

n
s

) ‖e⊤i A‖22 =
s

n
‖A‖2F

We also need the following computation for later use. This slightly modifies [LNW19, Lemma 3.1].

Lemma 5.5. Let A ∈ Rn×d with ‖A‖F < 1. Let u′ ∼ νs1,n and v′ ∼ νs2,d be drawn independently. Then,

E
u′,v′

exp(u′⊤Av′) ≤ 1 +
s1s2
nd
‖A‖2F .

Proof. It is shown in the proof of [LNW19, Lemma 3.1] that for a matrix M ∈ Rs1×s2 and independent
Gaussians x ∼ N (0, Is1) and y ∼ N (0, Is2) that

E
x,y

exp(x⊤My⊤) =
∏

i

1
√

1− σ2
i (M)

.

Applying this identity, we obtain

E
u′∼νs1,n

v′∼νs2,d

exp
(

u′⊤Av′) = E
S∼([n]

s1
),T∼([d]s2

)
E

x∼N (0,Is1),y∼N (0,Is2)
exp
(

x⊤(SSAS⊤
T )y

)

= E
S∼([n]

s1
),T∼([d]s2

)

∏

i

1
√

1− σ2
i (SSAS⊤

T )

We then continue to bound as

E
S∼([n]

s1
),T∼([d]s2

)

∏

i

1
√

1− σ2
i (SSAS⊤

T )
≤ E

S∼([n]
s1
),T∼([d]s2

)

1
√

1−∑i σ
2
i (SSAS⊤

T )

= E
S∼([n]

s1
),T∼([d]s2

)

1
√

1− ‖SSAS⊤
T ‖2F

≤ E
S∼([n]

s1
),T∼([d]s2

)
1 + ‖SSAS⊤

T ‖2F 1/
√
1− t ≤ 1 + t on [0, 1/2]

= 1 + E
S∼([n]

s1
)

E
T∼([d]s2

)
‖SSAS⊤

T ‖2F

= 1 +
s1s2
nd
‖A‖2F Lemma 5.4

which is the desired conclusion.

Main Lower Bound.
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Lemma 5.6. We consider sketching dimension m with normalization vector w ∈ Rk. Let s1 and s2 be
sparsity parameters and let n, d be the dimensions of the Gaussian matrix. Further suppose

m
s1s2
nd
‖w‖42 ≤ c

for a small enough constant c. Then,

‖L1 − L2‖TV ≤
1

10
.

Proof. Note that L1 = N (0, Im) and L2 = N (0, Im) ∗ µ where µ is the distribution of













∑k
j=1 wj(u

j)⊤L1vj

∑k
j=1 wj(u

j)⊤L2vj

...
∑k

j=1 wj(u
j)⊤Lmvj













∈ R
m

Define

ξ :=

m
∑

i=1





k
∑

j=1

wj(u
j)⊤Livj





2

Note that for a single j ∈ [k], E(uj)⊤Livj = 0 so

E ξ =
m
∑

i=1

E





k
∑

j=1

wj(u
j)⊤Livj





2

=

m
∑

i=1

k
∑

j=1

E
(

wj(u
j)⊤Livj

)2

=

m
∑

i=1

k
∑

j=1

w2
j

n
∑

a=1

d
∑

b=1

(Li)2a,b E(uj)2a E(vj)2b

=
ms1s2
nd

‖w‖22

We now define the event
E :=

{

‖w‖22ξ < 1/2
}

.

The expected value of ‖w‖22ξ is
ms1s2
nd

‖w‖42 ≤ c

so by Markov’s inequality, Pr(E) ≥ 1−2c. Restrict µ to this event and let µ̃ denote the resulting distribution.
Let L̃2 = N (0, Im) ∗ µ̃. Then using Propositions 2.1 and 2.2 of [LNW19],

‖L1 − L2‖TV ≤
∥

∥

∥L1 − L̃2
∥

∥

∥

TV

+
∥

∥

∥L̃2 − L2
∥

∥

∥

TV

≤
√

E
z1,z2∼µ̃

exp(〈z1, z2〉)− 1 + ‖µ̃− µ‖
TV

≤
√

1

Pr(E) E
z1∼µ̃,z2∼µ

exp(〈z1, z2〉)− 1 +Pr(Ec).
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Then,

E
z1∼µ̃,z2∼µ

exp(〈z1, z2〉) = E exp





m
∑

i=1

k
∑

j=1

k
∑

j′=1

wj(u
j)⊤Livj ·wj′(u

j′ )⊤Livj′





= E exp





k
∑

j′=1

(uj′ )⊤





m
∑

i=1

k
∑

j=1

wj(u
j)⊤Livj ·wj′L

i



vj′





= E
u1,...,ur,v1,...,vr|E

k
∏

j′=1

E
uj′∼νk,m

vj′∼νk,n

exp
(

(uj′ )⊤Qj′vj′
)

where Qj′ is an n× d matrix defined by

Qj′ :=

m
∑

i=1

k
∑

j=1

wj(u
j)⊤Livj ·wj′L

i

We have that

‖Qj′‖2F =

∥

∥

∥

∥

∥

∥

m
∑

i=1

k
∑

j=1

wj(u
j)⊤Livj ·wj′L

i

∥

∥

∥

∥

∥

∥

2

F

=

m
∑

i=1

∥

∥

∥

∥

∥

∥

k
∑

j=1

wj(u
j)⊤Livj ·wj′L

i

∥

∥

∥

∥

∥

∥

2

F

since the Li are orthogonal

=

m
∑

i=1





k
∑

j=1

wj(u
j)⊤Livj ·wj′





2

∥

∥Li
∥

∥

2

F

= w2
j′

m
∑

i=1





k
∑

j=1

wj(u
j)⊤Livj





2

= w2
j′ξ < 1

since we have conditioned on E . Thus,

E
u1,...,uk,v1,...,vk|E

k
∏

j′=1

E
uj′ ,vj′

exp
(

(uj′)⊤Qj′vj′
)

≤ E
u1,...,uk,v1,...,vk|E

k
∏

j′=1

(

1 +
s1s2
nd

w2
j′ξ
)

≤ E
u1,...,uk,v1,...,vk|E

exp





k
∑

j′=1

s1s2
nd

w2
j′ξ





= E
u1,...,uk,v1,...,vk|E

exp
(s1s2

nd
‖w‖22ξ

)

≤ E
u1,...,uk,v1,...,vk|E

1 + 2
s1s2
nd
‖w‖22ξ

≤ 1 + 2c

Thus,

‖L1 − L2‖TV ≤
√

2c

1− 2c
+ 2c ≤ 1

10
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when c is small enough.

Corollary 5.7. Let k = 1, d = n, and

w =

√
n√

s1s2
.

Then, a randomized sketching algorithm distinguishing between D1 and D2 must make at least m = Ω(s1s2)
measurements.

Proof. By Lemma 5.6, we must have that

m
s1s2
n2

w4 = m
1

s1s2
≥ c

for a constant c. Thus, m ≥ cs1s2 = Ω(s1s2), as desired.

Now note that if we set s1 = s and s2 = sk in the above theorem, this yields a disjoint s× s-sparse rank
k matrix. To detect this matrix, our theorem states that Ω(s2k) measurements are required.

Corollary 5.8. Any randomized sketching algorithm distinguishing between A = G and A = λX +G for
G ∼ N (0, 1)n×n, λ =

√
n, and X ∈ Os,k with ‖X‖2 = 1 requires Ω(s2k) measurements.

Despite this natural lower bound, there is in fact a better lower bound when s2k is small. Consider the
task of distinguishing between A = G and A = G +

√
neie

⊤
j for two randomly chosen coordinates i ∼ [n]

and j ∼ [n]. This is the hard instance in [ANPW13] for estimating the p = 4 norm of an n2 dimensional
vector in the context of frequency moment estimation. For this problem, they show that

Ω((n2)1−2/p log(n2)) = Ω(n logn)

measurements are required. Putting these together, the lower bound we obtain is

Ω(n logn+ s2k).

5.2.2 Upper Bounds

We have two upper bounds, each matching the two terms, the n logn and the s2k, in the lower bound.

Small s Regime: s ≤
√

n/k logn. We first show that when

s2k log(s2k) ≤ n

or equivalently when s ≤
√

n/k logn, that is, when the first term in the lower bound is roughly tight, then
an algorithm based on 4-norm estimation achieves a bound of n · poly log(n) measurements. In this setting,
we essentially need none of the structure provided by the fact that X ∈ Os,k. In fact, all we use is that

‖X‖2F ≥ 1 and that X is supported on s2k coordinates.
For intuition, let b ≤ n and suppose that X is supported on b entries with each nonzero entry equal to

1/
√
b, so the corresponding entry in A is

√

n/b. Now consider a random sample S of n2/b2 elements of A,

whose 4-norm we compute in roughly
√

n2/b2 = n/b measurements. If S contains no entries of X, then
‖S‖44 = Θ(n2/b2), while if S does contain an entry of X, then 4-norm is a constant times larger, so we can
distinguish between the two cases. If we now repeat this b times, for a total of b · (n/b) = n measurements,
then we sample a total of b · (n2/b2) = n2/b elements, so one of these trials will find one of the b elements of
X.

As described earlier, when s ≤
√

n/k logn, then we may make use of 4-norm estimation algorithms to
detect the presence of the signal.

Theorem 5.9 (Sketching frequency moments [BO10, AKO11, Gan15, GW18]). For p > 2, the p-norm of
an n-dimensional vector can be approximated up to constant factors with probability 1 − δ with sketching
complexity Θ(n1−2/p log(1/δ) + n1−2/p log2/p(1/δ) logn).
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Algorithm 1 Detection algorithm for s ≤
√

n/k logn

Input: A ∈ Rn×n, sparsity s, rank k
Output: True if A = G+

√
nX and false otherwise

1: for i = 0 to i = ⌈log2(s2k)⌉ do
2: s′ := 2i, α = O((s′2 log(s2k))−1), m := Θ(n2α2), τ := Θ(m)
3: for j = 1 to j = O(s′2 log2(s2k)) do
4: Sample a set S of m entries of A
5: Obtain an estimate y for ‖S‖44 with O(

√
m(log s2k)(logn)) measurements (Theorem 5.9)

6: if y ≥ τ then

7: return True
8: end if

9: end for

10: end for

11: return False

Theorem 5.10. Let X ∈ Ss,k. Then Algorithm 1 makes O(n(log3(sk))(log n)) sketching measurements
and distinguishes between the cases of A = G +

√
nX and A = G with constant probability, where G ∼

N (0, 1)n×n.

Proof. We show in general that when X has Frobenius norm ‖X‖2F ≥ r for some r and is supported on b
entries, then the sketching complexity is

O
(n

r
(log3 b)(log log b)(logn)

)

.

The result then follows since
‖X‖2F ≥ ‖X‖

2
2 = 1

and X is supported on s2k entries. In this case, we assume the parameter regime

nr

b log b
≥ c

for some sufficiently large constant c.
By applying Lemma 5.2 to X viewed as a vector in b dimensions, there exists some s′ ∈ [b] such that

there are at least s′/2 entries of X with squared value at least

α := r(s′(1 + log2 b))
−1.

This translates to an entry of squared value at least nα in A after scaling X by
√
n. Now consider a

random sample of m = O(n2α2) entries of A. Note that m ≥ 1 by assumption on our parameter regime.
The 4-norm of this sample can be approximated up to constant factors with probability at least 1−O(1/b)
with O(

√
m(log b)(logn)) measurements by Theorem 5.9.

If this sample contains only Gaussian entries, then the 4-norm has an expectation of O(m1/4) [PVZ17,
Proposition 2.4] and concentrates to this expectation up to a (1 + ε) factor with probability at least
1− exp(−Ω(ε√m)) [PVZ17, Theorem 1.1]. On the other hand, if this sample contains an entry of squared
size nα, then this single entry increases the 4-norm of the sample by a constant factor, so this distinguishes
between the two cases. The probability that this random sample contains one of these entries of squared
size nα is

p = O

(

ms′

n2

)

= O(α2s′) = O

(

r2

s′ log2 b

)

.
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Thus, with O(log(1/δ)/p) repetitions for δ = 1/ log2 b, the probability that we find none of the s′ large
entries is at most

(1− p)log(1/δ)/p ≤ exp

(

−p log
1
δ

p

)

= δ

we find one of the s′ entries of squared size at least nα with constant probability.
The total number of sketching measurements assuming that we know s′ was

O

(√
m(log b)(log n) · log

1
δ

p

)

= O

(

nα(log b)(logn) · log
1
δ

α2s′

)

= O

(

n

r
(log2 b)(logn) log

1

δ

)

By guessing s′ up to constant factors by s′ = 1, 2, 4, . . . , b in log2 b guesses, our final sketching complexity
is

O
(n

r
(log3 b)(log log b)(logn)

)

.

Thus, in the regime where s ≤
√

n/k logn, the detection problem can roughly be viewed as a simpler
case of the 4-norm estimation problem, since both the algorithms and lower bounds are captured by 4-norm
estimation.

Large s Regime: s ≥
√

n/k logn. When s ≥
√

n/k logn, the 4-norm estimation approach cannot work,
and our approach shifts to sampling a submatrix and iterating over a net to identify the signal. We illustrate
the basic idea of the algorithm on the hard instance of the lower bound in Corollary 5.8, where the signal
matrix is X is essentially uv⊤ for u ∼ N (0, Is) and u ∼ N (0, Isk), normalized appropriately, so that the
signal matrix added to the Gaussian noise has operator norm

√
n. To detect this signal, suppose we sample

an sk × s submatrix. Then, in expectation, we sample a

s2k

n
× s2k

n

submatrix X′ of X. We then iterate over a net N for (s2k/n)× (s2k/n)-sparse rank 1 matrices, which has
log size roughly Õ(s2k/n), to try to find a net vector that aligns with X′. If we find such a net vector, then
the inner product between the net vector and X′ will be

‖X′‖F =

√

s2k

n
· s

2k

n
· n

s2k
=

√

s2k

n
.

On the other hand, note that the inner product between the net vector and the Gaussian noise will just be
a standard Gaussian, since the net vector has Frobenius norm 1. Now for any δ ∈ (0, 1), the Gaussian will

be at most
√

log 1
δ with probability at least 1 − δ, so with δ = 1/Θ(|N |), we can union bound over the net

to see that the Gaussian noise is at most
√

log
1

δ
= Õ

(
√

s2k

n

)

.

We thus see that by adjusting constants and log factors appropriately, we can distinguish between the
Gaussian noise and the signal and thus solve the detection problem.

In general, this approach will work to give a sketching upper bound of Õ(s2k) dimensions, if we can find
an a× b submatrix with operator norm at least Ω̃(1) for ab ≤ Õ(s2k). However, we are unable to show that
such a submatrix exists for every X ∈ Os,k. Instead, we obtain a looser bound of

Õ(s2k4/3)

measurements by showing two algorithms that roughly follow the above approach, one for when the Frobenius
norm of X is large and one for when the Frobenius norm of X is small:

38



Lemma 5.11. Let X ∈ Os,k be an n× n matrix with Frobenius norm at least

‖X‖2F ≥ r.

Then, we can distinguish G+
√
nX and G for G ∼ N (0, 1)n×n with

O

(

s2k2

r2
(log6 s)(log2 n)

)

measurements.

Proof. Write

X =

k
∑

i=1

τixiy
⊤
i .

Note then that

‖X‖2F =

k
∑

i=1

∥

∥τixiy
⊤
i

∥

∥

2

F
=

k
∑

i=1

τ2i .

Then there is some i ∈ [k] such that τ2i ≥ r/k.
We now apply Lemma 5.2 to each of the vectors xi and yi, so that xi has at least s1/2 entries, say

S1 ⊆ [n] of xi have squared size at least (s1(1 + log2 s))
−1, and similarly, yi has at least s2/2 entries, say

S2 ⊆ [n], of yi have squared size at least (s2(1 + log2 s))
−1. We refer to these entries as the flat entries.

Handling Sparse Components. Suppose that

s1s2 ≤ O

(

nr

k(1 + log2 s)
2 logn

)

= Õ
(nr

k

)

.

Then, there is a submatrix supported on s1s2 entries with squared Frobenius norm at least

nτ2i
s1s2(1 + log2 s)

2
≥ nr

ks1s2(1 + log2 s)
2
≥ 1,

which has a sparsity of b = s1s2 and Frobenius norm r ≥ 1 such that

nr

b log b
≥ c

so we can detect this submatrix by using the 4-norm estimation procedure of Theorem 5.10. We thus
assume that

s1s2 > Ω

(

nr

k(1 + log2 s)
2 logn

)

= Ω̃
(nr

k

)

. (2)

Handling Dense Components. When s1s2 = Ω̃(nr/k) as in Equation (2), then our algorithm is to
sample a submatrix. Suppose for the moment that we know s1 and s2, and we will remove this assumption
later. We then sample a random n1×n2 submatrix A′ of A, for n1 and n2 to be determined later. Then by
Chernoff bounds, we sample t1 := Θ(n1s1/n) rows and t2 := Θ(n2s2/n) columns of the component τixiyi

in expectation, and with high probability 1−O(1/ log2 s) as long as

Θ
(n1s1

n

)

= Θ
(n2s2

n

)

≥ log log s.
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Denote this flat sampled submatrix of X, supported on the flat entries S1×S2, as X
′. We now consider an

ε-net N (in the Frobenius norm) over rank 1 n1×n2 matrices with t1× t2-sparse components and operator
norm 1. This has size

(

n1

t1

)(

6

ε

)t1

·
(

n2

t2

)(

6

ε

)t2

≤
(

6en1

εt1

)t1(6en2

εt2

)t2

by a straightforward modification of the proof of Corollary 2.3. If A ∼ N (0, 1)n×n, then A′ is just a n1×n2

Gaussian matrix so for all B ∈ N ,

〈A′,B〉 ∼ N (0, ‖B‖2F ) = N (0, 1)

On the other hand, if A has the rank 1 signal, then for some B ∈ N , B is ε-close to X′ in Frobenius norm
and thus

〈A′,B〉 ∼ N (
〈√

nX′,B
〉

, ‖B‖2F ) = N (
〈√

nX′,B
〉

, 1)

where
〈√

nX′,B
〉

= Θ(‖√nX′‖F ) = Θ

(
√

t1t2
nτ2i

s1s2(1 + log2 s)
2

)

≥ Ω

(
√

n1n2r

kn log2 s

)

.

Then the two Gaussians means are separated by Θ(
√
n‖X′‖F ), while by a union bound over the net N ,

the Gaussian noise can be as large as

Θ(
√

log|N |) = Θ

(
√

t1 log
6en1

εt1
+ t2 log

6en2

εt2

)

≤ O

(√
n1s1 + n2s2√

n

√

logn

)

.

One can check that this is at most Θ(
√
n‖X′‖F ) if

n1 = O

(

k

r
s2(log

2 s)(log n)

)

, n2 = O

(

k

r
s1(log

2 s)(logn)

)

.

Thus, the total sketching complexity so far is

O

(

k2

r2
s1s2(log

4 s)(log2 n)

)

Now to remove our assumption that we know s1 and s2, we must iterate over O(log2 s) guesses for s1 =
1, 2, 4, . . . , s and s2 = 1, 2, 4, . . . , s, which brings the total sketching complexity up to

O

(

s2k2

r2
(log6 s)(log2 n)

)

.

Lemma 5.12. Let X ∈ Os,k be an n× n matrix with Frobenius norm at most

‖X‖2F ≤ r.

Then, we can distinguish G+
√
nX and G for G ∼ N (0, 1)n×n with

O(s2kr log6(sk) log2 n).

measurements.

Proof. The proof proceeds in two stages. We first prove the existence of a small rank 1 approximation to
X, and then iterate over a net to find it.
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Existence of a Sparse Rank 1 Approximation. Let u and v be the top left and right singular vectors
of X. Write the vectors u and v in level sets by

u =

O(log(sk))
∑

i=1

ui, v =

O(log(sk))
∑

i=1

vi.

Then,

1 =
∣

∣u⊤Xv
∣

∣ ≤
O(logn)
∑

i=1

O(logn)
∑

j=1

∣

∣u⊤
i Xvj

∣

∣

and thus by averaging, there exist i, j such that

1

Θ(log2(sk))
≤
∣

∣u⊤
i Xvj

∣

∣

where ui is s1-sparse and vj is s2-sparse. Let X |u,v denote the restriction of X to the supports of u and
v. Then,

∣

∣u⊤
i Xvj

∣

∣ ≤ ‖X |u,v‖1√
ab

≤
√

nnz(X |u,v)‖X |u,v‖2√
ab

≤
√
s2k
√
r√

ab
.

Combining the previous bounds,
s1s2 ≤ Θ(s2kr log2(sk)).

Net Argument. By the previous argument, there exist vectors u and v of norm at most 1 that are
s1-sparse and s2-sparse for s1, s2 ∈ [sk], respectively, such that

∣

∣

〈

uv⊤,X
〉∣

∣ =
∣

∣u⊤Xv
∣

∣ ≥ 1

Θ(log2(sk))

and
s1s2 ≤ Θ(s2kr log2(sk)).

We then proceed as in the subsampling and net iteration step of Lemma 5.11. Since the calculations are
essentially the same, we only quickly outline the proof. We first assume we know s1 and s2 and we sample
a n1 × n2 submatrix. This samples a t1 × t2 submatrix of X |u,v where

t1 = Θ
(n1s1

n

)

, t2 = Θ
(n2s2

n

)

.

We then iterate over a net N over t1 × t2 rank 1 matrices of log size at most

log|N | ≤ (t1 + t2) logn =
n1s2 + n2s2

n
logn.

Let B ∈ N . If there is no signal, then

〈B,A〉 ∼ N (0, ‖B‖2F ) = N (0, 1)

while if there is a signal, then for some B ∈ N ,

〈B,A〉 ∼ N (
〈√

nX |u,v,B
〉

, ‖B‖2F ) = N (
〈√

nX |u,v,B
〉

, 1)

where
〈√

nX |u,v,B
〉

= Θ

(
√

t1t2
n

s1s2 log
2(sk)

)

= Θ

(
√

n1n2

n log2(sk)

)

.
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This is larger than the noise from the Gaussian over N as long as

√

log|N | =
√

n1s2 + n2s2
n

logn = O

(

√

n1n2

n log2(sk)

)

which happens for
n1 = O(s2 log

2(sk) logn), n2 = O(s1 log
2(sk) logn).

Thus, the required number of samples in this case is

O(s1s2 log
4(sk) log2 n) = O(s2kr log4(sk) log2 n)

Iterating over log2(sk) choices of s1 and s2, the total number of measurements is

O(s2kr log6(sk) log2 n).

By combining Lemmas 5.11 and 5.12 and balancing parameters, we obtain the following:

Theorem 5.13. Let X ∈ Os,k be an n × n matrix. Then, we can distinguish G +
√
nX and G for

G ∼ N (0, 1)n×n with

O
(

s2k4/3(log6 sk)(log2 n)
)

measurements.

Proof. If ‖X‖2F ≥ k1/3, then we use Lemma 5.11 to obtain a bound of

O

(

s2k2

k2/3
(log6 s)(log2 n)

)

≤ O
(

s2k4/3(log6(sk))(log2 n)
)

.

Otherwise, when ‖X‖2F < k1/3, we use Lemma 5.12 to obtain a bound of

O
(

s2k4/3(log6(sk))(log2 n)
)

.

5.3 Estimation

We now consider the estimation problem, in which, given a matrix A = G +
√
nX, we must output an

s× s-sparse matrix rank k X′ ∈ Ss,k such that

X = ‖X−X′‖2 ≤ ε.

For this problem, for constant ε, we show that iteration over a net gives an algorithm that makesO(nsk log(nk))
measurements in Theorem 5.15, and this is approximately optimal by a Gaussian channel information ca-
pacity argument in Theorem 5.16 by showing a lower bound of Ω(nsk log(n/sk)) measurements.

5.3.1 Gaussian Noise Estimation Upper Bound

We will need an analogue of the approximate matrix product lemma (Lemma 2.8) for matrices with i.i.d.
Gaussian entries from [Sar06, Lemma 6].

Lemma 5.14 (Gaussian approximate matrix product [Sar06]). Let A ∈ Rn×d, B ∈ Rm×d, and ε > 0.
Consider an r × d matrix S of all i.i.d. Gaussian entries for r = Ω(ε−2(log(n+m))(log 1

δ )). Then,

Pr
{

∥

∥AS⊤SB⊤ −AB⊤∥
∥

2

F
≤ ε2‖A‖2F ‖B‖

2
F

}

≥ 1− δ.

Given this lemma, our algorithm is simply to approximately maximize the inner product between A and
net vectors given by Corollary 2.3.
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Theorem 5.15. Let ε, s, n be such that

√

2s log
3en

εs
≤ ε2
√
n.

Let H be an m× n2 Gaussian matrix for

m = O
(ns

ε4
log

n

εs

)

.

Consider A = G +
√
nX for a s × s sparse rank 1 matrix X with operator norm 1 and G ∼ N (0, 1)n×n.

Then, there is an algorithm which, given m Gaussian measurements of A, outputs an s × s sparse rank 1
matrix X′ such that

‖X−X′‖2 ≤ ε.

Proof. We iterate over an ε-net N for Ss,k of size at most (poly(n)k/ε)sk, which exists by Corollary 2.3.
Our approach is to select the best candidate in the net by finding the X′ ∈ N that approximately maximizes
the inner product with X. Indeed, if we find a X′ such that

〈X,X′〉 ≥ 1− ε2/2

then

‖X−X′‖22 ≤ ‖X−X′‖2F
= ‖X‖2F + ‖X′‖2F − 2〈X,X′〉
= 2− 2〈X,X′〉 ≤ ε2.

To do this, we make use of the approximate matrix product lemma, Lemma 5.14. Then with the failure
rate set to δ = 1/10|N | and the accuracy parameter ε in the lemma set to ε2/

√
n, we use

m = Θ

(

nsk

ε4
log

nk

ε

)

measurements to guarantee that for an m× n2 i.i.d. Gaussian matrix S and a net vector X′ ∈ N ,

Pr

{

|〈A,X′〉 − 〈S vec(A),S vec(X′)〉| ≤ ε2√
n
‖A‖F ‖X′‖F

}

≥ 1− 1

10|N | .

Note that
ε2√
n
‖A‖F ‖X′‖F =

ε2√
n
· n · 1 = ε2

√
n.

Furthermore,

〈A,X′〉 =
〈

G+
√
nX,X′〉 ∼ N (

〈√
nX,X′〉, ‖X′‖2F ) = N (

√
n〈X,X′〉, 1),

and a standard Gaussian is at most O(
√

log(1/δ)) with probability at least 1−δ. Then by setting δ = 1/|N |,
we have by a union bound over the net that, with constant probability,

〈S vec(A),S vec(X′)〉 = 〈A,X′〉 ± ε2
√
n

=
√
n〈X,X′〉 ±

(

O(sk) log
nk

ε
+ ε2
√
n

)

=
√
n〈X,X′〉 ± 2ε2

√
n
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=
√
n
(

〈X,X′〉 ± 2ε2
)

for all X′ ∈ N . Thus by rescaling ε, we may approximately maximize the inner product between X and
X′, and thus retrieve a net vector X′ such that

‖X−X′‖2 ≤ ε.

5.3.2 Gaussian Noise Estimation Lower Bound

Theorem 5.16. Suppose that S is a random m× (nd) matrix such that, given S(vec(A)) for A =
√
nX+

1
100G for s × s-sparse rank k matrix X with ‖X‖2 = 1 and G ∼ N (0, 1)n×n, there is an algorithm which
outputs an s× s-sparse rank k matrix B such that

‖A−B‖2 ≤
1

10
‖G‖2.

Then, m = Ω(nsk log(n/sk)).

Proof. We follow the sparse recovery lower bound technique of [PW11] using the information capacity of a
Gaussian channel. The techniques are essentially the same, so we only briefly outline their argument and
the modifications that are necessary.

Consider a family F of sk-sparse supports such that:

• |S△S′| ≥ sk for S 6= S′ ∈ F

• PrS∈F [i ∈ S] = sk/n for all i ∈ [n]

• log|F| = Ω(sk log(n/sk))

which can be taken to be a random linear code in [n/sk]sk with relative distance 1/2.
We then define a communication game as follows. Alice first chooses a random S ∼ F . Then to construct

a random rank 1 matrix X, she chooses a random row i ∈ [n] and chooses a random sign vector supported
on the support S on the ith row, and normalizes by

√

n/sk so that the resulting matrix X has operator
norm

√
n. She then sets y = S(vec(X + 1

100G)) for G ∼ N (0, 1)n×n and sends y to Bob. Bob performs
the Gaussian noise estimation algorithm on y to retrieve some s × s sparse rank k matrix B, rounds to a
matrix X′ in the set of possible matrices X, and returns the support S′ = supp(X′).

We WLOG assume that S has orthonormal rows. Note that for any fixed matrix V with Frobenius
norm 1,

EX〈X,V〉2 =
n

sk
ES∼FEi∼[n]





∑

j∈S

(e⊤i Vej)
2



 =
n

sk

sk

n2
=

1

n

while E〈G,V〉2 = Ex∼N (0,1) x
2 = 1. Thus, for i ∈ [m], if V = e⊤i S, then

e⊤i y = e⊤i S

(

vec

(

X+
1

100
G

))

= 〈V,X〉+ 1

100
〈V,G〉

is a Gaussian channel with noise-to-signal ratio

α =
E〈G,V〉2

EX〈X,V〉2
= n.

The following lemma follows exactly as in [PW11]:

Lemma 5.17 (Lemma 4.1 of [PW11]).

I(S;S′) = O

(

m log

(

1 +
1

α

))
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We now show that a successful Gaussian noise estimation output must necessarily retrieve S′ with
constant probability. Because the recovery is successful with probability at least 9/10, with this probabiliy,
we have that ‖A−B‖2 ≤ ‖G‖2/10 so

‖X−B‖2 ≤
∥

∥

∥

∥

X+
1

100
G−B− 1

100
G

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

X+
1

100
G−B

∥

∥

∥

∥

2

+
1

100
‖G‖2

= ‖A−B‖2 +
1

100
‖G‖2

≤ 11

100
‖G‖2.

By [Ver12], ‖G‖2 ≤ 2.1
√
n so the above bound is at most (24/100)

√
n. Now note that if X 6= X′, then

‖X−X′‖ ≥ √n

so

‖X′ −B‖2 ≥ ‖X−X′‖2 − ‖X−B‖2 ≥
76

100

√
n

and thus X′ is not the closest matrix to B in the allowed matrices, which is a contradiction.
By Fano’s inequality, we then have that

I(S;S′) = H(S)−H(S | S′) ≥ −1 + 9

10
log|F| = Ω(sk log(n/sk))

but we showed that I(S;S′) = O(m log(1 + 1/n)) = O(m/n), so

m = Ω(nsk log(n/sk))

as claimed.
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